research communications
H)-one
and Hirshfeld surface analysis of the hydrochloride salt of 8-{4-[(6-phenylpyridin-3-yl)methyl]piperazin-1-yl}-3,4-dihydroquinolin-2(1aDepartment of Chemistry, King Fahd University of Petroleum and Minerals, 31261 Dahran, Saudi Arabia, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch
The amine 8-{4-[(6-phenylpyridin-3-yl)methyl]piperazin-1-yl}-3,4-dihydroquinolin-2(1H)-one was crystallized as the hydrochloride salt, 4-(2-oxo-1,2,3,4-tetrahydroquinolin-8-yl)-1-[(6-phenylpyridin-3-yl)methyl]piperazin-1-ium chloride, C25H27N4+·Cl− (I·HCl). The conformation of the organic cation is half-moon in shape enclosing the chloride anion. The piperidine ring of the 3,4-dihydroquinolin-2(1H)-one moiety has a screw-boat conformation, while the piperazine ring has a chair conformation. In the biaryl group, the pyridine ring is inclined to the phenyl ring by 40.17 (7) and by 36.86 (8)° to the aromatic ring of the quinoline moiety. In the crystal, the cations are linked by pairwise N—H⋯O hydrogen bonds, forming inversion dimers enclosing an R22(8) ring motif. The Cl− anion is linked to the cation by an N—H⋯Cl hydrogen bond. These units are linked by a series of C—H⋯O, C—H⋯N and C—H⋯Cl hydrogen bonds, forming layers lying parallel to the ab plane.
Keywords: crystal structure; dihydroquinolin-2(1H)-one; piperazine; hydrochloride; molecular salt; dopamine D2 receptor; serotonin 5-HT1a receptor; hydrogen bonding; Hirshfeld surface analysis.
CCDC reference: 2059142
1. Chemical context
Schizophrenia is a psychiatric illness afflicting over 1% of the world's population. Adoprazine© and Bifeprunox© (Fig. 1) are two drugs that were developed for the treatment of Schizophrenia in the early 2000s. The main action of these two compounds is to combine dopamine D2 receptor blockade with serotonin 5-HT1A receptor activation rather than antagonism (Feenstra et al., 2001, 2006). In continuing efforts in this field, Ullah and collaborators have synthesized a series of compounds that are structural analogues of Adoprazine© and Bifeprunox© (Ullah, 2012, 2014a,b; Ullah & Al-Shaheri, 2012). These include a number of 1-aryl-4-(biarylmethylene)piperazines (Ullah, 2012), such as 8-{4-[(6-phenylpyridin-3-yl)methyl]piperazin-1-yl}-3,4-dihydroquinolin-2(1H)-one (I), and 8-(4-{[6-(4-fluorophenyl)pyridin-3-yl]methyl}piperazin-1-yl)-3,4-dihydroquinolin-2(1H)-one (II) Ghani et al. (2014) have reported that the D2 receptor binding affinity of compounds I and II are Ki = 28.4 nM for I and 42.0 nM for II. The 5-HT1A receptor binding affinities were reported to be Ki = 4.30 nM for I and 52.5 nM for II. Hence, inserting a fluorine atom in the phenylpyridine unit in II did not improve its binding affinity compared to that of I. Full details concerning these assays are given in Ghani et al. (2014).
The II has been reported previously (Ullah & Altaf, 2014) and will be compared here to that of the hydrochloride salt of compound I.
of the hydrochloride salt of2. Structural commentary
Due to the difficulty of forming suitable crystals for X-ray I and II were converted to their hydrochloride salts by treatment with HCl in MeOH.
compoundsThe organic cation of I·HCl has a half-moon shape enclosing the chloride anion (Fig. 2). The molecular salt II·HCl crystallized as a monohydrate and here, while the cation also has a half-moon shape, it encloses the water molecule of crystallization (Ullah & Altaf, 2014; see Fig. S1 in the supporting information). The two cations differ essentially in the conformation of the biaryl group (rings B = N4/C15–C19 and C = C20–C25) and their orientation with respect to the aromatic ring (A = C4–C9) of the 3,4-dihydroquinolin-2(1H)-one moiety. This is illustrated by the view of their structural overlap, shown in Fig. 3. In I·HCl, pyridine ring B is inclined to phenyl ring C by 40.17 (8)° while in II·HCl the equivalent dihedral angle is 10.06 (11)°. In I·HCl, ring A is inclined to rings B and C by 36.86 (8) and 14.16 (8)°, respectively. These dihedral angles differ considerably from the dihedral angles in II·HCl, where ring A is inclined to rings B and C by 51.20 (9) and 41.40 (11)°, respectively. In both compounds, the piperidine ring (N1/C1–C4/C9) has a screw-boat conformation with the torsion angle C1—C2—C3—C4 being −56.17 (18)° in I·HCl and −55.6 (2)° in II·HCl. In both compounds, the piperazine ring (N2/N3/C10–C13) has a chair conformation.
3. Supramolecular features
In the crystal of I·HCl, the organic cations are linked by a pair of N—H⋯O hydrogen bonds, forming an inversion dimer enclosing an R22(8) ring motif (Fig. 4 and Table 1). The Cl− anion is linked to the cation by an N—H⋯Cl hydrogen bond (Fig. 4 and Table 1). The dimers are linked by a C—H⋯O hydrogen bond, forming ribbons propagating along the a-axis direction. The ribbons are then linked via C—H⋯Cl hydrogen bonds to form layers lying parallel to the ab plane (Fig. 5 and Table 1). There are C—H⋯π(C4–C9) contacts present within the layers (Table 1), but there are no significant contacts present between the layers.
In the crystal of II·HCl (Ullah & Altaf, 2014; see Figs. S2 and S3, and Table S1 in the supporting information), the cations are linked by the water molecules of crystallization via N—H⋯Ow and Ow—H⋯O hydrogen bonds to form dimers with R44(12) ring motifs. The dimers are in turn linked by the Cl− anions, via Ow—H⋯Cl⋯H—N hydrogen bonds, to form chains propagating along the b-axis direction. The chains are linked via C—H⋯Cl and C—H⋯O hydrogen bonds, forming layers parallel to the ab plane.
In both cases, hydrogen-bonded layers are formed stacking along the c-axis direction and lying parallel to the ab plane. There are no significant directional inter-layer contacts present in either crystal structure.
4. Hirshfeld surface analysis and two-dimensional fingerprint plots
The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) and the associated two-dimensional fingerprint plots (McKinnon et al., 2007) were performed with CrystalExplorer17 (Turner et al., 2017) following the protocol of Tiekink and collaborators (Tan et al., 2019).
The Hirshfeld surfaces are colour-mapped with the normalized contact distance, dnorm, varying from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The Hirshfeld surfaces (HS) of I·HCl and II·HCl mapped over dnorm are given in Fig. 6. It is evident from Fig. 6a and 6b that there are important contacts present in the crystals of both compounds, the strong hydrogen bonds (Table 1 and Table S1) being indicated by the large red zones.
The percentage contributions of inter-atomic contacts to the HS for both compounds are compared in Table 2. The two-dimensional fingerprint plots for the title salt, I·HCl, and those for II·HCl, are compared in Figs. 7 and 8. They reveal, as expected, that the principal contributions to the overall HS surface involve H⋯H contacts at 51.5 and 42.1%, respectively. The difference is attributed to the presence of F⋯H/H⋯F contacts in the crystal of II·HCl, amounting to 7.5%. The second most important contribution to the HS is from the C⋯H/H⋯C contacts at 20.2 and 20.5%, for I·HCl and II·HCl, respectively. These are followed by the Cl⋯H⋯Cl contacts at 10.1 and 12.8% for I·HCl and II·HCl, respectively, and O⋯H/H⋯O contacts at, respectively, 7.4 and 8.7%. The N⋯H/H⋯N contacts contribute, respectively, 6.5 and 5.3%. The C⋯C contacts in I·HCl contribute 2.9%, while the C⋯F contacts in II·HCl contribute 1.4%. All other atom⋯atom contacts contribute <1% to the HS for both compounds.
|
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.42, last update November 2020; Groom et al., 2016) for 8-(piperazin-1-yl)-3,4-dihydroquinolin-2(1H)-ones gave three hits for compounds 8-{1-[(4′-fluoro-[1,1′-biphenyl]-3-yl)methyl]piperidin-4-yl}-3,4-dihydroquinolin-2(1H)-one (III), that crystallized as a chloroform 0.25-solvate (CSD refcode FITSEI; Ullah & Stoeckli-Evans, 2014), 8-[4-([1,1′-biphenyl]-3-ylmethyl)piperazin-1-yl]quinolin-2(1H)-one (IV) (REYHIP; Ullah et al., 2017) and 8-[1-([1,1′-biphenyl]-3-ylmethyl)piperidin-4-yl]-3,4-dihydroquinolin-2(1H)-one (V) (REYHEL; Ullah et al., 2017). Their chemical structures are shown in Fig. 9, together with those for compounds 8-[4-([1,1′-biphenyl]-3-ylmethyl)piperazin-1-yl]-2-methoxyquinoline (VI) (AKUXIQ; Ullah & Altaf, 2014), 8-(1-{[5-(cyclopent-1-en-1-yl)pyridin-3-yl]methyl}piperidin-4-yl)-3,4-dihydroquinolin-2(1H)-one (VII) (AKUWOV; Ullah et al., 2015) and 8-{1-[3-(cyclopent-1-en-1-yl)benzyl]piperidin-4-yl}-3,4-dihydroquinolin-2(1H)-one (VIII) (AKUWUB; Ullah et al., 2015). The CIFs for compounds II·HCl (AKUXEM; Ullah & Altaf, 2014) and VI–VIII have been updated recently in the CSD.
Compounds III to VIII all have a similar conformation; a curved or half-moon shape, as shown for the cation of I·HCl in Fig. 2. The piperidine rings of the dihydroquinoline units in compounds I·HCl, II·HCl, III, V, VII and VIII have screw-boat conformations. The piperidine or piperazine rings in all eight compounds have chair conformations.
6. Synthesis and crystallization
The synthesis of compounds I and II has been reported (Ullah, 2012; compounds 5c and 5d in that paper). Colourless plate-like crystals of their hydrochloride salts were obtained by slow evaporation of solutions in dichloromethane and methanol; ratios (8:3) and (8.5:1.5), respectively.
7. Refinement
Crystal data, data collection and structure . The NH H atoms were located in a difference electron-density map and freely refined. The C-bound H atoms were included in calculated positions and refined as riding on the parent atom: C—H = 0.95–0.99 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2059142
https://doi.org/10.1107/S2056989021000979/hb7965sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021000979/hb7965Isup2.hkl
Details concerning structure II.HCl. DOI: https://doi.org/10.1107/S2056989021000979/hb7965sup3.pdf
Data collection: X-AREA (Stoe & Cie, 2009); cell
X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015), PLATON (Spek, 2020) and publCIF (Westrip, 2010).C25H27N4O+·Cl− | Z = 2 |
Mr = 434.95 | F(000) = 460 |
Triclinic, P1 | Dx = 1.312 Mg m−3 |
a = 8.4791 (8) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.4091 (10) Å | Cell parameters from 9997 reflections |
c = 13.6862 (14) Å | θ = 1.5–26.1° |
α = 90.138 (8)° | µ = 0.20 mm−1 |
β = 94.833 (8)° | T = 173 K |
γ = 113.745 (7)° | Rod, colourless |
V = 1100.88 (19) Å3 | 0.45 × 0.33 × 0.18 mm |
Stoe IPDS 2 diffractometer | 4156 independent reflections |
Radiation source: fine-focus sealed tube | 2912 reflections with I > 2σ(I) |
Plane graphite monochromator | Rint = 0.077 |
φ + ω scans | θmax = 25.6°, θmin = 1.5° |
Absorption correction: multi-scan (MULABS; Spek, 2020) | h = −10→9 |
Tmin = 0.379, Tmax = 1.000 | k = −12→12 |
13410 measured reflections | l = −16→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.033 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.071 | w = 1/[σ2(Fo2) + (0.0262P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.83 | (Δ/σ)max = 0.001 |
4156 reflections | Δρmax = 0.22 e Å−3 |
289 parameters | Δρmin = −0.22 e Å−3 |
0 restraints | Extinction correction: (SHELXL-2018/3; Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0061 (11) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.17052 (13) | 0.47203 (11) | −0.07307 (8) | 0.0288 (3) | |
N1 | 0.07882 (16) | 0.49233 (13) | −0.13301 (10) | 0.0234 (3) | |
H1N | 0.122 (2) | 0.5073 (18) | −0.0734 (13) | 0.034 (5)* | |
N2 | 0.44879 (14) | 0.63611 (12) | −0.11540 (9) | 0.0220 (3) | |
N3 | 0.68062 (15) | 0.82122 (13) | 0.04180 (9) | 0.0217 (3) | |
H3N | 0.746 (2) | 0.906 (2) | 0.0090 (13) | 0.052 (5)* | |
N4 | 0.94060 (18) | 1.20937 (14) | 0.25205 (11) | 0.0399 (4) | |
C1 | −0.09235 (18) | 0.46487 (15) | −0.14318 (11) | 0.0236 (3) | |
C2 | −0.1799 (2) | 0.42765 (18) | −0.24529 (12) | 0.0329 (4) | |
H2A | −0.160759 | 0.514512 | −0.280987 | 0.040* | |
H2B | −0.306002 | 0.375119 | −0.242625 | 0.040* | |
C3 | −0.1077 (2) | 0.33797 (19) | −0.29954 (13) | 0.0392 (4) | |
H3A | −0.135909 | 0.247286 | −0.267359 | 0.047* | |
H3B | −0.160866 | 0.318222 | −0.368136 | 0.047* | |
C4 | 0.0858 (2) | 0.41520 (16) | −0.29844 (12) | 0.0302 (4) | |
C5 | 0.1751 (2) | 0.41199 (19) | −0.37763 (13) | 0.0392 (4) | |
H5 | 0.114179 | 0.360241 | −0.436140 | 0.047* | |
C6 | 0.3535 (2) | 0.48412 (19) | −0.37196 (13) | 0.0392 (4) | |
H6 | 0.414790 | 0.480812 | −0.426264 | 0.047* | |
C7 | 0.4424 (2) | 0.56092 (17) | −0.28716 (12) | 0.0310 (4) | |
H7 | 0.564389 | 0.610806 | −0.284514 | 0.037* | |
C8 | 0.35719 (18) | 0.56693 (15) | −0.20549 (11) | 0.0230 (3) | |
C9 | 0.17520 (18) | 0.49231 (15) | −0.21240 (11) | 0.0228 (3) | |
C10 | 0.63546 (18) | 0.67238 (16) | −0.10867 (11) | 0.0266 (4) | |
H10A | 0.692624 | 0.755875 | −0.147562 | 0.032* | |
H10B | 0.656720 | 0.593449 | −0.136332 | 0.032* | |
C11 | 0.71077 (19) | 0.70267 (16) | −0.00407 (11) | 0.0256 (4) | |
H11A | 0.836721 | 0.727272 | −0.001024 | 0.031* | |
H11B | 0.657845 | 0.617257 | 0.033766 | 0.031* | |
C12 | 0.49249 (17) | 0.79433 (16) | 0.02658 (11) | 0.0238 (3) | |
H12A | 0.476973 | 0.878517 | 0.049257 | 0.029* | |
H12B | 0.425884 | 0.715170 | 0.066760 | 0.029* | |
C13 | 0.42172 (18) | 0.75986 (15) | −0.08004 (11) | 0.0232 (3) | |
H13A | 0.296647 | 0.739395 | −0.086798 | 0.028* | |
H13B | 0.481455 | 0.841377 | −0.120110 | 0.028* | |
C14 | 0.74694 (19) | 0.83801 (16) | 0.14807 (11) | 0.0271 (4) | |
H14A | 0.863559 | 0.836905 | 0.153532 | 0.033* | |
H14B | 0.670376 | 0.755999 | 0.182549 | 0.033* | |
C15 | 0.75825 (19) | 0.96984 (16) | 0.19971 (11) | 0.0259 (4) | |
C16 | 0.6286 (2) | 0.97397 (16) | 0.25369 (11) | 0.0276 (4) | |
H16 | 0.521948 | 0.894116 | 0.253316 | 0.033* | |
C17 | 0.6549 (2) | 1.09519 (16) | 0.30836 (11) | 0.0289 (4) | |
C18 | 0.8145 (2) | 1.20792 (17) | 0.30499 (12) | 0.0354 (4) | |
H18 | 0.835305 | 1.290278 | 0.343377 | 0.042* | |
C19 | 0.9109 (2) | 1.09080 (17) | 0.20072 (13) | 0.0351 (4) | |
H19 | 0.998875 | 1.089041 | 0.162807 | 0.042* | |
C20 | 0.5209 (2) | 1.10509 (17) | 0.36734 (12) | 0.0326 (4) | |
C21 | 0.3467 (2) | 1.04802 (18) | 0.33182 (13) | 0.0366 (4) | |
H21 | 0.312714 | 1.001744 | 0.268836 | 0.044* | |
C22 | 0.2225 (3) | 1.0581 (2) | 0.38747 (14) | 0.0480 (5) | |
H22 | 0.103978 | 1.017354 | 0.362924 | 0.058* | |
C23 | 0.2710 (3) | 1.1276 (2) | 0.47900 (15) | 0.0557 (6) | |
H23 | 0.186196 | 1.135071 | 0.517087 | 0.067* | |
C24 | 0.4438 (3) | 1.1856 (2) | 0.51400 (14) | 0.0515 (5) | |
H24 | 0.477753 | 1.233593 | 0.576400 | 0.062* | |
C25 | 0.5676 (3) | 1.17463 (19) | 0.45928 (13) | 0.0436 (5) | |
H25 | 0.685829 | 1.214852 | 0.484499 | 0.052* | |
Cl1 | 0.16918 (5) | 0.91117 (4) | 0.07387 (3) | 0.02965 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0214 (5) | 0.0315 (6) | 0.0325 (6) | 0.0094 (5) | 0.0034 (5) | 0.0009 (5) |
N1 | 0.0193 (6) | 0.0251 (7) | 0.0233 (8) | 0.0067 (5) | 0.0005 (6) | −0.0016 (6) |
N2 | 0.0166 (6) | 0.0211 (7) | 0.0291 (7) | 0.0082 (5) | 0.0028 (5) | −0.0021 (5) |
N3 | 0.0168 (6) | 0.0190 (6) | 0.0284 (7) | 0.0063 (5) | 0.0026 (5) | 0.0015 (5) |
N4 | 0.0338 (8) | 0.0276 (8) | 0.0486 (9) | 0.0042 (6) | −0.0047 (7) | −0.0027 (7) |
C1 | 0.0190 (7) | 0.0168 (7) | 0.0326 (9) | 0.0045 (6) | 0.0034 (7) | 0.0017 (6) |
C2 | 0.0223 (8) | 0.0363 (10) | 0.0332 (9) | 0.0056 (7) | −0.0024 (7) | −0.0034 (8) |
C3 | 0.0324 (9) | 0.0379 (10) | 0.0365 (10) | 0.0046 (8) | −0.0038 (8) | −0.0151 (8) |
C4 | 0.0314 (9) | 0.0255 (9) | 0.0318 (9) | 0.0100 (7) | 0.0002 (7) | −0.0055 (7) |
C5 | 0.0440 (10) | 0.0421 (11) | 0.0304 (10) | 0.0168 (8) | 0.0004 (8) | −0.0131 (8) |
C6 | 0.0448 (11) | 0.0452 (11) | 0.0306 (10) | 0.0196 (9) | 0.0129 (8) | −0.0062 (8) |
C7 | 0.0277 (8) | 0.0314 (9) | 0.0346 (9) | 0.0120 (7) | 0.0074 (7) | −0.0004 (7) |
C8 | 0.0253 (8) | 0.0197 (8) | 0.0259 (8) | 0.0109 (6) | 0.0035 (7) | 0.0009 (6) |
C9 | 0.0253 (8) | 0.0182 (7) | 0.0255 (8) | 0.0089 (6) | 0.0037 (7) | −0.0004 (6) |
C10 | 0.0182 (7) | 0.0260 (8) | 0.0366 (9) | 0.0093 (6) | 0.0059 (7) | −0.0005 (7) |
C11 | 0.0184 (7) | 0.0223 (8) | 0.0383 (10) | 0.0105 (6) | 0.0021 (7) | −0.0009 (7) |
C12 | 0.0152 (7) | 0.0248 (8) | 0.0313 (9) | 0.0079 (6) | 0.0029 (6) | −0.0023 (6) |
C13 | 0.0183 (7) | 0.0217 (8) | 0.0302 (9) | 0.0091 (6) | 0.0007 (6) | −0.0018 (6) |
C14 | 0.0217 (8) | 0.0273 (9) | 0.0311 (9) | 0.0092 (6) | −0.0006 (7) | 0.0032 (7) |
C15 | 0.0261 (8) | 0.0246 (8) | 0.0242 (8) | 0.0085 (6) | −0.0037 (7) | 0.0011 (6) |
C16 | 0.0281 (8) | 0.0232 (8) | 0.0267 (9) | 0.0063 (6) | −0.0019 (7) | 0.0001 (7) |
C17 | 0.0379 (9) | 0.0271 (9) | 0.0216 (9) | 0.0144 (7) | −0.0041 (7) | −0.0001 (7) |
C18 | 0.0448 (10) | 0.0227 (9) | 0.0325 (10) | 0.0099 (7) | −0.0103 (8) | −0.0043 (7) |
C19 | 0.0278 (9) | 0.0305 (10) | 0.0404 (10) | 0.0057 (7) | −0.0010 (8) | −0.0003 (8) |
C20 | 0.0492 (11) | 0.0253 (9) | 0.0252 (9) | 0.0179 (8) | −0.0002 (8) | 0.0013 (7) |
C21 | 0.0497 (11) | 0.0336 (10) | 0.0296 (9) | 0.0197 (8) | 0.0049 (8) | 0.0003 (7) |
C22 | 0.0534 (12) | 0.0526 (12) | 0.0471 (12) | 0.0299 (10) | 0.0099 (10) | 0.0062 (10) |
C23 | 0.0860 (17) | 0.0597 (14) | 0.0428 (13) | 0.0481 (13) | 0.0242 (12) | 0.0077 (10) |
C24 | 0.0872 (17) | 0.0492 (12) | 0.0286 (11) | 0.0380 (12) | 0.0067 (11) | −0.0037 (9) |
C25 | 0.0672 (13) | 0.0374 (10) | 0.0294 (10) | 0.0259 (9) | −0.0023 (9) | −0.0025 (8) |
Cl1 | 0.02283 (19) | 0.0261 (2) | 0.0381 (2) | 0.00758 (15) | 0.00489 (17) | 0.00481 (17) |
O1—C1 | 1.2298 (17) | C10—H10B | 0.9900 |
N1—C1 | 1.3562 (19) | C11—H11A | 0.9900 |
N1—C9 | 1.4136 (19) | C11—H11B | 0.9900 |
N1—H1N | 0.852 (17) | C12—C13 | 1.515 (2) |
N2—C8 | 1.4233 (19) | C12—H12A | 0.9900 |
N2—C10 | 1.4665 (18) | C12—H12B | 0.9900 |
N2—C13 | 1.4832 (19) | C13—H13A | 0.9900 |
N3—C14 | 1.4981 (19) | C13—H13B | 0.9900 |
N3—C12 | 1.5002 (17) | C14—C15 | 1.507 (2) |
N3—C11 | 1.5031 (19) | C14—H14A | 0.9900 |
N3—H3N | 0.967 (18) | C14—H14B | 0.9900 |
N4—C18 | 1.336 (2) | C15—C16 | 1.390 (2) |
N4—C19 | 1.340 (2) | C15—C19 | 1.395 (2) |
C1—C2 | 1.498 (2) | C16—C17 | 1.394 (2) |
C2—C3 | 1.527 (2) | C16—H16 | 0.9500 |
C2—H2A | 0.9900 | C17—C18 | 1.394 (2) |
C2—H2B | 0.9900 | C17—C20 | 1.484 (2) |
C3—C4 | 1.507 (2) | C18—H18 | 0.9500 |
C3—H3A | 0.9900 | C19—H19 | 0.9500 |
C3—H3B | 0.9900 | C20—C25 | 1.395 (2) |
C4—C5 | 1.381 (2) | C20—C21 | 1.393 (2) |
C4—C9 | 1.400 (2) | C21—C22 | 1.387 (2) |
C5—C6 | 1.387 (2) | C21—H21 | 0.9500 |
C5—H5 | 0.9500 | C22—C23 | 1.389 (3) |
C6—C7 | 1.384 (2) | C22—H22 | 0.9500 |
C6—H6 | 0.9500 | C23—C24 | 1.382 (3) |
C7—C8 | 1.395 (2) | C23—H23 | 0.9500 |
C7—H7 | 0.9500 | C24—C25 | 1.380 (3) |
C8—C9 | 1.415 (2) | C24—H24 | 0.9500 |
C10—C11 | 1.496 (2) | C25—H25 | 0.9500 |
C10—H10A | 0.9900 | ||
C1—N1—C9 | 123.74 (14) | C10—C11—H11B | 109.3 |
C1—N1—H1N | 112.8 (11) | N3—C11—H11B | 109.3 |
C9—N1—H1N | 123.5 (11) | H11A—C11—H11B | 107.9 |
C8—N2—C10 | 114.51 (12) | N3—C12—C13 | 112.12 (12) |
C8—N2—C13 | 118.19 (12) | N3—C12—H12A | 109.2 |
C10—N2—C13 | 108.27 (11) | C13—C12—H12A | 109.2 |
C14—N3—C12 | 112.69 (12) | N3—C12—H12B | 109.2 |
C14—N3—C11 | 108.66 (12) | C13—C12—H12B | 109.2 |
C12—N3—C11 | 110.14 (11) | H12A—C12—H12B | 107.9 |
C14—N3—H3N | 109.2 (11) | N2—C13—C12 | 109.53 (12) |
C12—N3—H3N | 108.5 (11) | N2—C13—H13A | 109.8 |
C11—N3—H3N | 107.6 (11) | C12—C13—H13A | 109.8 |
C18—N4—C19 | 116.51 (14) | N2—C13—H13B | 109.8 |
O1—C1—N1 | 122.03 (14) | C12—C13—H13B | 109.8 |
O1—C1—C2 | 121.99 (13) | H13A—C13—H13B | 108.2 |
N1—C1—C2 | 115.97 (14) | N3—C14—C15 | 115.00 (13) |
C1—C2—C3 | 110.04 (14) | N3—C14—H14A | 108.5 |
C1—C2—H2A | 109.7 | C15—C14—H14A | 108.5 |
C3—C2—H2A | 109.7 | N3—C14—H14B | 108.5 |
C1—C2—H2B | 109.7 | C15—C14—H14B | 108.5 |
C3—C2—H2B | 109.7 | H14A—C14—H14B | 107.5 |
H2A—C2—H2B | 108.2 | C16—C15—C19 | 117.83 (15) |
C4—C3—C2 | 109.40 (13) | C16—C15—C14 | 122.94 (13) |
C4—C3—H3A | 109.8 | C19—C15—C14 | 119.00 (15) |
C2—C3—H3A | 109.8 | C15—C16—C17 | 120.04 (14) |
C4—C3—H3B | 109.8 | C15—C16—H16 | 120.0 |
C2—C3—H3B | 109.8 | C17—C16—H16 | 120.0 |
H3A—C3—H3B | 108.2 | C18—C17—C16 | 116.57 (15) |
C5—C4—C9 | 119.99 (15) | C18—C17—C20 | 121.22 (15) |
C5—C4—C3 | 122.79 (15) | C16—C17—C20 | 122.21 (14) |
C9—C4—C3 | 117.22 (14) | N4—C18—C17 | 125.19 (16) |
C4—C5—C6 | 120.19 (16) | N4—C18—H18 | 117.4 |
C4—C5—H5 | 119.9 | C17—C18—H18 | 117.4 |
C6—C5—H5 | 119.9 | N4—C19—C15 | 123.81 (17) |
C7—C6—C5 | 119.99 (15) | N4—C19—H19 | 118.1 |
C7—C6—H6 | 120.0 | C15—C19—H19 | 118.1 |
C5—C6—H6 | 120.0 | C25—C20—C21 | 118.47 (17) |
C6—C7—C8 | 121.68 (14) | C25—C20—C17 | 120.38 (17) |
C6—C7—H7 | 119.2 | C21—C20—C17 | 121.13 (15) |
C8—C7—H7 | 119.2 | C22—C21—C20 | 120.67 (18) |
C7—C8—N2 | 121.99 (13) | C22—C21—H21 | 119.7 |
C7—C8—C9 | 117.59 (14) | C20—C21—H21 | 119.7 |
N2—C8—C9 | 120.26 (13) | C21—C22—C23 | 120.2 (2) |
C4—C9—N1 | 118.14 (13) | C21—C22—H22 | 119.9 |
C4—C9—C8 | 120.56 (14) | C23—C22—H22 | 119.9 |
N1—C9—C8 | 121.30 (13) | C24—C23—C22 | 119.25 (19) |
N2—C10—C11 | 110.45 (12) | C24—C23—H23 | 120.4 |
N2—C10—H10A | 109.6 | C22—C23—H23 | 120.4 |
C11—C10—H10A | 109.6 | C25—C24—C23 | 120.72 (19) |
N2—C10—H10B | 109.6 | C25—C24—H24 | 119.6 |
C11—C10—H10B | 109.6 | C23—C24—H24 | 119.6 |
H10A—C10—H10B | 108.1 | C24—C25—C20 | 120.67 (19) |
C10—C11—N3 | 111.72 (13) | C24—C25—H25 | 119.7 |
C10—C11—H11A | 109.3 | C20—C25—H25 | 119.7 |
N3—C11—H11A | 109.3 | ||
C9—N1—C1—O1 | −176.62 (13) | C14—N3—C12—C13 | −172.97 (12) |
C9—N1—C1—C2 | 2.4 (2) | C11—N3—C12—C13 | −51.46 (16) |
O1—C1—C2—C3 | −143.54 (15) | C8—N2—C13—C12 | 165.68 (11) |
N1—C1—C2—C3 | 37.46 (18) | C10—N2—C13—C12 | −62.04 (14) |
C1—C2—C3—C4 | −56.18 (18) | N3—C12—C13—N2 | 57.34 (15) |
C2—C3—C4—C5 | −141.79 (17) | C12—N3—C14—C15 | −69.10 (16) |
C2—C3—C4—C9 | 38.3 (2) | C11—N3—C14—C15 | 168.56 (12) |
C9—C4—C5—C6 | 0.5 (3) | N3—C14—C15—C16 | 95.52 (17) |
C3—C4—C5—C6 | −179.36 (17) | N3—C14—C15—C19 | −90.00 (17) |
C4—C5—C6—C7 | −0.7 (3) | C19—C15—C16—C17 | −1.5 (2) |
C5—C6—C7—C8 | 0.8 (3) | C14—C15—C16—C17 | 173.04 (14) |
C6—C7—C8—N2 | 174.79 (15) | C15—C16—C17—C18 | 0.1 (2) |
C6—C7—C8—C9 | −0.5 (2) | C15—C16—C17—C20 | −179.93 (14) |
C10—N2—C8—C7 | −12.7 (2) | C19—N4—C18—C17 | −1.9 (3) |
C13—N2—C8—C7 | 116.78 (16) | C16—C17—C18—N4 | 1.7 (2) |
C10—N2—C8—C9 | 162.54 (13) | C20—C17—C18—N4 | −178.24 (15) |
C13—N2—C8—C9 | −68.01 (17) | C18—N4—C19—C15 | 0.4 (3) |
C5—C4—C9—N1 | −179.77 (15) | C16—C15—C19—N4 | 1.3 (3) |
C3—C4—C9—N1 | 0.1 (2) | C14—C15—C19—N4 | −173.47 (16) |
C5—C4—C9—C8 | −0.3 (2) | C18—C17—C20—C25 | −39.3 (2) |
C3—C4—C9—C8 | 179.60 (15) | C16—C17—C20—C25 | 140.79 (17) |
C1—N1—C9—C4 | −23.1 (2) | C18—C17—C20—C21 | 139.46 (17) |
C1—N1—C9—C8 | 157.43 (14) | C16—C17—C20—C21 | −40.5 (2) |
C7—C8—C9—C4 | 0.3 (2) | C25—C20—C21—C22 | −1.1 (2) |
N2—C8—C9—C4 | −175.13 (14) | C17—C20—C21—C22 | −179.88 (15) |
C7—C8—C9—N1 | 179.77 (14) | C20—C21—C22—C23 | 1.1 (3) |
N2—C8—C9—N1 | 4.4 (2) | C21—C22—C23—C24 | −0.4 (3) |
C8—N2—C10—C11 | −162.59 (12) | C22—C23—C24—C25 | −0.3 (3) |
C13—N2—C10—C11 | 63.20 (15) | C23—C24—C25—C20 | 0.2 (3) |
N2—C10—C11—N3 | −58.73 (16) | C21—C20—C25—C24 | 0.5 (3) |
C14—N3—C11—C10 | 175.64 (11) | C17—C20—C25—C24 | 179.25 (15) |
C12—N3—C11—C10 | 51.76 (15) |
Cg is the centroid of the C4–C9 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.85 (2) | 2.01 (2) | 2.844 (2) | 168 (2) |
N3—H3N···Cl1ii | 0.97 (2) | 2.12 (2) | 3.065 (1) | 167 (2) |
C10—H10B···O1iii | 0.99 | 2.40 | 3.151 (2) | 132 |
C11—H11A···Cl1iii | 0.99 | 2.80 | 3.668 (2) | 147 |
C12—H12A···Cl1 | 0.99 | 2.81 | 3.520 (2) | 129 |
C12—H12B···O1i | 0.99 | 2.26 | 3.123 (2) | 144 |
C13—H13A···N1 | 0.99 | 2.53 | 3.138 (2) | 120 |
C14—H14A···Cl1iii | 0.99 | 2.71 | 3.585 (2) | 147 |
C21—H21···Cl1 | 0.95 | 2.83 | 3.757 (2) | 165 |
C18—H18···Cgii | 0.95 | 2.83 | 3.487 (2) | 127 |
Symmetry codes: (i) −x, −y+1, −z; (ii) −x+1, −y+2, −z; (iii) x+1, y, z. |
Contact | I·HCl % contribution | II·HCl % contribution |
H···H | 51.5 | 42.1 |
C···H/H···C | 20.2 | 20.5 |
Cl···H/H···Cl | 10.1 | 12.8 |
O···H/H···O | 7.4 | 8.7 |
N···H/H···N | 6.5 | 5.3 |
F···H/H···F | – | 7.5 |
C···F/F···C | – | 1.4 |
C···C | 2.9 | 0.8 |
Acknowledgements
HSE is grateful to the University of Neuchâtel for their support over the years.
Funding information
Funding for this research was provided by: King Fahd University of Petroleum and Minerals, Dahran, Saudia Arabia; University of Neuchâtel.
References
Feenstra, R. W., de Moes, J., Hofma, J. J., Kling, H., Kuipers, W., Long, S. K., Tulp, M. T. M., van der Heyden, J. A. M. & Kruse, C. G. (2001). Bioorg. Med. Chem. Lett. 11, 2345–2349. CrossRef PubMed CAS Google Scholar
Feenstra, R. W., van den Hoogenband, A., Stroomer, C. N. J., van Stuivenberg, H. H., Tulp, M. T. M., Long, S. K., van der Heyden, J. A. M. & Kruse, C. G. (2006). Chem. Pharm. Bull. 54, 1326–1330. CrossRef CAS Google Scholar
Ghani, U., Ullah, N., Ali, S. A. & Al-Muallem, H. A. (2014). Asian J. Chem. 26, 8258–8362. CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Ullah, N. (2012). Z. Naturforsch. Teil B, 67, 75–84. CrossRef CAS Google Scholar
Ullah, N. (2014a). Med. Chem. 10, 484–496. CrossRef CAS PubMed Google Scholar
Ullah, N. (2014b). J. Enzyme Inhib. Med. Chem. 29, 281–291. CrossRef CAS PubMed Google Scholar
Ullah, N. & Al-Shaheri, A. A. Q. (2012). J. Chem. Sci. 67, 253–262. CAS Google Scholar
Ullah, N. & Altaf, M. (2014). Crystallogr. Rep. 59, 1057–1062. CSD CrossRef CAS Google Scholar
Ullah, N., Altaf, M. & Mansha, M. (2017). Z. Naturforsch. Teil B, 58, 1697–1702. CAS Google Scholar
Ullah, N., Altaf, M., Mansha, M. & Ba-Salem, A. O. (2015). J. Struct. Chem. 56, 1441–1445. CSD CrossRef CAS Google Scholar
Ullah, N. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, o103–o104. CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.