research communications
of the RuPhos ligand
aDepartment of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
*Correspondence e-mail: kcarsch@g.harvard.edu, dkiper@fas.harvard.edu, zheng@chemistry.harvard.edu
Palladium 2-dicyclohexylphosphanyl-2′,6′-diisopropoxybiphenyl (Pd–RuPhos) catalysts demonstrate high 30H43O2P, is reported herein for the first time. RuPhos crystallizes in a triclinic cell containing two independent molecules of the phosphine without any lattice solvent. Pertinent bond metrics and comparisons to other phosphine ligands are presented. The structure of RuPhos will be of assistance in the use of this ligand in the design of cross-coupling catalysts.
for Negishi cross-couplings of sterically hindered aryl halides, for Suzuki–Miyaura cross-couplings of tosylated and for Buchwald–Hartwig amination of sterically hindered The solid-state structure of the free RuPhos ligand, CKeywords: RuPhos; Buchwald ligand; phosphine; cone angle; crystal structure.
CCDC reference: 2056274
1. Chemical context
Cross-coupling reactions have emerged as a facile method for Csp2—Csp2 and Csp2—N bond formations. A variety of ancillary phosphine ligands have been observed to mediate challenging Pd-catalyzed cross-coupling reactions (Christmann & Vilar, 2005). The Pd0 reagent Pd2(dba)3 (dba = dibenzylideneacetone) in the presence of the ligand 2-dicyclohexylphosphanyl-2′,6′-diisopropoxybiphenyl (RuPhos, see scheme) is especially effective at catalyzing Csp2—Csp2 bond formation between sterically hindered aryl rings that were previously challenging to couple by traditional cross-coupling methods employing other supporting phosphine ligands (Milne & Buchwald, 2004). Pd–RuPhos has shown efficacy for a variety of organic substrate transformations, including cross-coupling reactions with sterically hindered aryl halides (Otani et al., 2011; Carsch et al., 2019), stereoselective Csp2—Csp2 bond formation from tosylated (Li et al., 2017), Csp2—N bond formation afforded by the Buchwald–Hartwig amination (Charles et al., 2005), and in the synthesis of new materials, such as the catalyst-transfer to furnish polymeric semiconductors such as poly(3-alkylthiophenes) (Lee et al., 2020).
The steric and electronic properties of the ancillary phosphine ligand can have a profound impact on the outcome of the cross-coupling reaction. For example, in the Buchwald–Hartwig amination, Pd–RuPhos displays high et al., 2020; Charles et al., 2005). The electronic properties and steric profile of the ligand scaffold impact the elementary steps and catalytic performance of the resulting metal complex (van Leeuwen et al., 2000). Recent density functional calculations corroborate the importance of ligand properties on the kinetics of cross-coupling chemistry: the rate-limiting step for Pd–RuPhos is predicted to be while that of the congener Pd–BrettPhos is predicted to be (Tian et al., 2020). Curiously, the solid-state structure of RuPhos remains absent from the literature. Knowledge of the structural metrics of RuPhos will benefit mechanistic and computational studies of this important ligand and will aid in the rational design of new RuPhos-derivative catalysts.
for cross-coupling reactions with sterically hindered substrates such as cyclic secondary whereas the related congener, Pd–BrettPhos, demonstrates high with primary (Tian2. Structural commentary
The free RuPhos ligand (Fig. 1) was characterized by single-crystal X-ray diffraction, with pertinent bond metrics listed in Table 1 and experimental structural details delineated in Table 2. The contains two independent molecules, RuPhos A and RuPhos B, which differ modestly in conformation. For conciseness, only the structural metrics of RuPhos B are described hereafter, and RuPhos B is simply referred to as RuPhos. Details of the structural metrics of both molecules in the can be found in the supporting information.
|
The C—C bond lengths (Table S3) in the arene rings differ minimally, ranging from 1.385 (2) to 1.402 (2) Å. The P—Csp2 and P—Csp3 bond lengths (Table 1) were observed to vary minimally between RuPhos A and RuPhos B. The P—CAr bond length (P1B—C18B) is 1.848 (2) Å and it is comparable to the previously reported P-–CAr bond lengths in PPh3 (Samouei et al., 2014). As expected, the P—CCy bond lengths are somewhat longer [P1B—C19B: 1.877 (2) Å; P1B—C25B: 1.862 (2) Å] and comparable to those observed in PCy3 (Davies et al., 1991). The Cy(C25B)—P1B—Cy(19B) angle is 105.46 (8)°. The two CAr—P—CCy angles are 97.03 (8)° (C18B—P1B—C19B) and 101.86 (8)° (C18B—P1B—C25B). The cyclohexyl rings each adopt a chair conformation relative to P1B and are in an asymmetric orientation relative to the biaryl substituent. No notable interactions between the cyclohexyl rings and other atoms within RuPhos are observed. Additional electron density close to the phosphorus is resolved and assigned to a lone pair rather than a light atom based on its proximity to the phosphorous atom.
The Tolman cone angle quantifies steric and electronic effects of phosphine ligands (Tolman, 1977) and is defined as the angle from a hypothetical metal M located 2.28 Å from the phosphorus atom to the van der Waals radii of the outermost atoms of the phosphine ligand. Half angles are defined by the angle between the M—P bond and the line between M—Hi, where Hi is the outermost atom on the substituent, calculated as:
θi = ai + sin −1(rH/di)
where θi is the angle defined between M—Hi and M—P and di is the distance between M and Hi (Müller & Mingos, 1995). For unligated RuPhos, the computed Tolman cone angle is 201.53° (Table S5). For comparison, the cone angle for Pd–RuPhos is 198.06° (Arrechea & Buchwald, 2016). The RuPhos cone angle is larger than those found in PCy3 (170°) and PPh3 (145°) (Jover & Cirera, 2019) and is attributed to the steric profile of the biaryl substituent. The cone angle of free RuPhos is larger than the cone angle of Pd–RuPhos, consistent with slight modification of the P accompanying complexation to the Pd center.
3. Supramolecular features
The crystal packing of RuPhos follows a parallelepiped geometry (Fig. 2), showing two types of intermolecular channel-like interfaces, which alternate in parallel planes. In the first type of interface channel, cyclohexyl substituents from different RuPhos molecules face towards each other. The distance between cyclohexyl rings (Table S6) in different unit cells is less than 4 Å [d(C20A—C22B) = 3.942 (3) Å, d(C20A—C21B) = 3.977 (3) Å], consistent with there being no void in the crystal packing. In the second type of channel, biaryl substituents from different RuPhos molecules arrange themselves in a zigzag offset chain pattern (Fig. S2).
Within the ca 3 Å, as defined by the distance between the isopropyl units [H9BA⋯H9AC: 2.91839 (9) Å]. No void space is observed in the as evident by a space-filling model (Fig. S3).
RuPhos A and RuPhos B are spaced apart by of RuPhos shows consistency in atomic composition and connectivity with the reported structure. Coordination by the phosphine to a metal should occlude equatorial ligands on one side of the metal, though less so than its BrettPhos congener would. The small hindrance of Pd–RuPhos is thought to contribute to its high for hindered secondary while the larger hindrance of BrettPhos contributes to its high for primary (Arrechea & Buchwald, 2016The cone angles of free RuPhos and Pd–RuPhos (Arrechea & Buchwald, 2016) measure 201.54 and 198.07°, respectively. They are smaller than that of free BrettPhos and Pd–BrettPhos (Dikundwar et al., 2017; DeAngelis et al., 2015), which are 220.29 and 204.22°, respectively. Because the proportion of s character in the lone pair of a phosphine ligand is inversely proportional to the cone angle of the ligand (Tolman, 1977), the smaller Tolman cone angle of RuPhos implies that RuPhos donates less electron density to its coordinated metal than BrettPhos does. This electronic implication of the RuPhos cone angle corroborates calculations that is the rate-limiting step for Pd–RuPhos-catalyzed couplings (Tian et al., 2020).
4. Database survey
The structure of the unligated RuPhos ligand has not been previously published according to a search of the Cambridge Structural Database using ConQuest 2020.3.0 (CSD, version 5.42, November 2020; Groom et al., 2016). The structure of metallated PdII RuPhos has been reported (Arrechea & Buchwald, 2016).
5. Synthesis and crystallization
RuPhos was purchased from Oakwood Chemical and purified by in vacuo and allowed to stand at room temperature under air with slow evaporation for two weeks in a hexanes/ethyl acetate (10:1) mixture. Colorless plates were observed (Fig. S1) and employed for data collection.
(silica, ethyl acetate). Fractions containing RuPhos were concentratedNo evidence for phosphine oxidation was observed in the final et al., 2007).
This is attributed to hindered phosphine rotation and the steric profile of the biaryl substituent (Barder6. Refinement
Crystal data, data collection and structure . H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl).
details are summarized in Table 2Supporting information
CCDC reference: 2056274
https://doi.org/10.1107/S2056989021000542/mw2173sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021000542/mw2173Isup3.hkl
Supporting Information RLVs, bond metrics, structural information. DOI: https://doi.org/10.1107/S2056989021000542/mw2173sup4.pdf
Supporting information file. DOI: https://doi.org/10.1107/S2056989021000542/mw2173Isup4.cml
Data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C30H43O2P | Z = 4 |
Mr = 466.61 | F(000) = 1016 |
Triclinic, P1 | Dx = 1.135 Mg m−3 |
a = 9.6160 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 15.8209 (7) Å | Cell parameters from 9987 reflections |
c = 19.0324 (9) Å | θ = 2.2–24.8° |
α = 71.2052 (8)° | µ = 0.12 mm−1 |
β = 85.1144 (8)° | T = 100 K |
γ = 87.9801 (9)° | Plate, colorless |
V = 2731.0 (2) Å3 | 0.42 × 0.24 × 0.12 mm |
Bruker APEXII CCD diffractometer | 7694 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.044 |
ω and phi scans | θmax = 25.1°, θmin = 1.4° |
Absorption correction: multi-scan (SADABS2016/2; Krause et al., 2015) | h = −11→11 |
Tmin = 0.687, Tmax = 0.745 | k = −18→18 |
55802 measured reflections | l = −22→22 |
9733 independent reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0678P)2 + 0.4429P] where P = (Fo2 + 2Fc2)/3 |
9733 reflections | (Δ/σ)max = 0.001 |
603 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. No significant disordering was present. |
x | y | z | Uiso*/Ueq | ||
P1A | 0.44121 (4) | 0.24874 (3) | 0.10395 (2) | 0.02025 (12) | |
O1A | 0.73773 (12) | 0.26833 (8) | 0.22546 (7) | 0.0254 (3) | |
O2A | 0.38076 (12) | 0.46762 (8) | 0.12987 (7) | 0.0260 (3) | |
C1A | 0.76140 (18) | 0.49580 (12) | 0.09137 (10) | 0.0253 (4) | |
H1A | 0.828797 | 0.538226 | 0.062727 | 0.030* | |
C2A | 0.80634 (18) | 0.41479 (12) | 0.13848 (9) | 0.0232 (4) | |
H2A | 0.903169 | 0.401717 | 0.142059 | 0.028* | |
C3A | 0.70763 (17) | 0.35312 (11) | 0.18034 (9) | 0.0205 (4) | |
C4A | 0.56474 (17) | 0.37326 (11) | 0.17716 (9) | 0.0201 (4) | |
C5A | 0.52256 (17) | 0.45552 (11) | 0.12887 (9) | 0.0212 (4) | |
C6A | 0.62045 (18) | 0.51673 (12) | 0.08484 (9) | 0.0238 (4) | |
H6A | 0.591592 | 0.571762 | 0.050958 | 0.029* | |
C7A | 0.87460 (17) | 0.24929 (12) | 0.25305 (9) | 0.0226 (4) | |
H7A | 0.947689 | 0.268124 | 0.210533 | 0.027* | |
C8A | 0.8784 (2) | 0.14893 (12) | 0.28799 (11) | 0.0327 (4) | |
H8AA | 0.803622 | 0.130433 | 0.327973 | 0.049* | |
H8AB | 0.968856 | 0.130520 | 0.308542 | 0.049* | |
H8AC | 0.865337 | 0.120769 | 0.250117 | 0.049* | |
C9A | 0.8942 (2) | 0.29824 (13) | 0.30753 (11) | 0.0337 (5) | |
H9AA | 0.881824 | 0.362507 | 0.283121 | 0.051* | |
H9AB | 0.988436 | 0.286470 | 0.324639 | 0.051* | |
H9AC | 0.825244 | 0.277568 | 0.350252 | 0.051* | |
C10A | 0.32140 (18) | 0.55063 (11) | 0.08509 (10) | 0.0234 (4) | |
H10A | 0.364353 | 0.567120 | 0.032781 | 0.028* | |
C11A | 0.16772 (18) | 0.53064 (12) | 0.08720 (10) | 0.0286 (4) | |
H11A | 0.157521 | 0.479873 | 0.069211 | 0.043* | |
H11B | 0.120351 | 0.583090 | 0.055317 | 0.043* | |
H11C | 0.125984 | 0.516023 | 0.138452 | 0.043* | |
C12A | 0.3421 (2) | 0.62528 (12) | 0.11709 (10) | 0.0281 (4) | |
H12A | 0.302150 | 0.607829 | 0.168801 | 0.042* | |
H12B | 0.295424 | 0.679661 | 0.087671 | 0.042* | |
H12C | 0.442088 | 0.636519 | 0.115453 | 0.042* | |
C13A | 0.45947 (16) | 0.30853 (11) | 0.22582 (9) | 0.0189 (4) | |
C14A | 0.42997 (18) | 0.30783 (12) | 0.29927 (9) | 0.0244 (4) | |
H14A | 0.478409 | 0.347259 | 0.316983 | 0.029* | |
C15A | 0.33181 (18) | 0.25092 (12) | 0.34640 (9) | 0.0243 (4) | |
H15A | 0.312327 | 0.251473 | 0.396033 | 0.029* | |
C16A | 0.26173 (17) | 0.19284 (12) | 0.32077 (9) | 0.0228 (4) | |
H16A | 0.193853 | 0.153456 | 0.352835 | 0.027* | |
C17A | 0.29094 (17) | 0.19236 (11) | 0.24816 (9) | 0.0219 (4) | |
H17A | 0.242364 | 0.152374 | 0.231117 | 0.026* | |
C18A | 0.39021 (16) | 0.24941 (11) | 0.19962 (9) | 0.0191 (4) | |
C19A | 0.56208 (17) | 0.14958 (11) | 0.12748 (9) | 0.0225 (4) | |
H19A | 0.623416 | 0.158877 | 0.164187 | 0.027* | |
C20A | 0.49358 (18) | 0.05907 (12) | 0.16617 (11) | 0.0277 (4) | |
H20A | 0.430588 | 0.046087 | 0.132477 | 0.033* | |
H20B | 0.436623 | 0.061208 | 0.211426 | 0.033* | |
C21A | 0.6032 (2) | −0.01574 (13) | 0.18785 (12) | 0.0336 (5) | |
H21A | 0.660653 | −0.005816 | 0.225178 | 0.040* | |
H21B | 0.555675 | −0.073817 | 0.210701 | 0.040* | |
C22A | 0.6969 (2) | −0.01855 (13) | 0.12017 (12) | 0.0358 (5) | |
H22A | 0.768857 | −0.065767 | 0.135702 | 0.043* | |
H22B | 0.640685 | −0.033274 | 0.084521 | 0.043* | |
C23A | 0.7672 (2) | 0.07093 (14) | 0.08252 (11) | 0.0343 (5) | |
H23A | 0.824561 | 0.068569 | 0.037461 | 0.041* | |
H23B | 0.830192 | 0.082695 | 0.116769 | 0.041* | |
C24A | 0.66063 (19) | 0.14738 (14) | 0.06047 (10) | 0.0317 (4) | |
H24A | 0.710452 | 0.204885 | 0.039698 | 0.038* | |
H24B | 0.605455 | 0.139840 | 0.021323 | 0.038* | |
C25A | 0.27731 (17) | 0.20963 (11) | 0.07905 (9) | 0.0208 (4) | |
H25A | 0.247972 | 0.152025 | 0.117565 | 0.025* | |
C26A | 0.16401 (17) | 0.28097 (11) | 0.07721 (9) | 0.0228 (4) | |
H26A | 0.147661 | 0.287411 | 0.127304 | 0.027* | |
H26B | 0.197014 | 0.339067 | 0.042142 | 0.027* | |
C27A | 0.02658 (18) | 0.25724 (13) | 0.05328 (10) | 0.0272 (4) | |
H27A | −0.042876 | 0.305446 | 0.051484 | 0.033* | |
H27B | −0.010478 | 0.201445 | 0.090221 | 0.033* | |
C28A | 0.04904 (19) | 0.24489 (13) | −0.02343 (10) | 0.0287 (4) | |
H28A | −0.039501 | 0.226291 | −0.036863 | 0.034* | |
H28B | 0.077098 | 0.302388 | −0.061213 | 0.034* | |
C29A | 0.16146 (18) | 0.17469 (12) | −0.02343 (10) | 0.0265 (4) | |
H29A | 0.178402 | 0.170659 | −0.074302 | 0.032* | |
H29B | 0.128080 | 0.115811 | 0.010016 | 0.032* | |
C30A | 0.29839 (18) | 0.19636 (12) | 0.00209 (9) | 0.0232 (4) | |
H30A | 0.337947 | 0.251408 | −0.034815 | 0.028* | |
H30B | 0.366119 | 0.147097 | 0.004464 | 0.028* | |
P1B | 1.03926 (4) | 0.27391 (3) | 0.64698 (2) | 0.01980 (12) | |
O1B | 0.73186 (12) | 0.17442 (8) | 0.56160 (6) | 0.0247 (3) | |
O2B | 1.08772 (12) | 0.37786 (8) | 0.45063 (6) | 0.0236 (3) | |
C1B | 0.70695 (18) | 0.41179 (12) | 0.45028 (9) | 0.0243 (4) | |
H1B | 0.639525 | 0.457095 | 0.431652 | 0.029* | |
C2B | 0.66229 (18) | 0.32608 (12) | 0.49049 (9) | 0.0232 (4) | |
H2B | 0.565622 | 0.312511 | 0.499134 | 0.028* | |
C3B | 0.76187 (17) | 0.26046 (11) | 0.51789 (9) | 0.0198 (4) | |
C4B | 0.90492 (17) | 0.27906 (11) | 0.50426 (9) | 0.0185 (4) | |
C5B | 0.94642 (17) | 0.36631 (11) | 0.46270 (9) | 0.0201 (4) | |
C6B | 0.84761 (18) | 0.43300 (12) | 0.43657 (9) | 0.0238 (4) | |
H6B | 0.876068 | 0.492322 | 0.409687 | 0.029* | |
C7B | 0.59642 (17) | 0.13792 (12) | 0.56147 (10) | 0.0239 (4) | |
H7B | 0.521795 | 0.179088 | 0.571536 | 0.029* | |
C8B | 0.59304 (19) | 0.05138 (13) | 0.62519 (11) | 0.0335 (5) | |
H8BA | 0.667611 | 0.011687 | 0.615704 | 0.050* | |
H8BB | 0.502508 | 0.022705 | 0.629810 | 0.050* | |
H8BC | 0.606787 | 0.063489 | 0.671467 | 0.050* | |
C9B | 0.5798 (2) | 0.12544 (13) | 0.48696 (11) | 0.0323 (4) | |
H9BA | 0.589932 | 0.183135 | 0.447410 | 0.049* | |
H9BB | 0.487089 | 0.101298 | 0.487438 | 0.049* | |
H9BC | 0.651476 | 0.083819 | 0.477855 | 0.049* | |
C10B | 1.14318 (18) | 0.46379 (11) | 0.40493 (9) | 0.0244 (4) | |
H10B | 1.093593 | 0.512342 | 0.420388 | 0.029* | |
C11B | 1.29504 (19) | 0.46067 (13) | 0.42091 (10) | 0.0283 (4) | |
H11D | 1.301510 | 0.450503 | 0.474117 | 0.042* | |
H11E | 1.339250 | 0.517506 | 0.391998 | 0.042* | |
H11F | 1.342733 | 0.411976 | 0.406959 | 0.042* | |
C12B | 1.1272 (2) | 0.47910 (13) | 0.32287 (10) | 0.0301 (4) | |
H12D | 1.178641 | 0.432585 | 0.307474 | 0.045* | |
H12E | 1.164566 | 0.537774 | 0.293236 | 0.045* | |
H12F | 1.028194 | 0.476797 | 0.315047 | 0.045* | |
C13B | 1.01048 (16) | 0.20602 (11) | 0.53049 (9) | 0.0177 (3) | |
C14B | 1.03032 (17) | 0.14347 (11) | 0.49285 (9) | 0.0215 (4) | |
H14B | 0.976273 | 0.147910 | 0.452260 | 0.026* | |
C15B | 1.12756 (17) | 0.07502 (11) | 0.51373 (9) | 0.0227 (4) | |
H15B | 1.139771 | 0.032658 | 0.487868 | 0.027* | |
C16B | 1.20710 (17) | 0.06889 (11) | 0.57289 (9) | 0.0224 (4) | |
H16B | 1.275321 | 0.022894 | 0.587028 | 0.027* | |
C17B | 1.18669 (17) | 0.13003 (11) | 0.61122 (9) | 0.0217 (4) | |
H17B | 1.241577 | 0.125313 | 0.651551 | 0.026* | |
C18B | 1.08682 (17) | 0.19868 (11) | 0.59176 (9) | 0.0194 (4) | |
C19B | 0.91541 (17) | 0.19627 (11) | 0.71832 (9) | 0.0223 (4) | |
H19B | 0.856780 | 0.169966 | 0.689800 | 0.027* | |
C20B | 0.98146 (18) | 0.11693 (12) | 0.77526 (10) | 0.0286 (4) | |
H20C | 1.041014 | 0.082756 | 0.748730 | 0.034* | |
H20D | 1.041788 | 0.139264 | 0.804967 | 0.034* | |
C21B | 0.8713 (2) | 0.05504 (13) | 0.82749 (11) | 0.0345 (5) | |
H21C | 0.817380 | 0.027502 | 0.798613 | 0.041* | |
H21D | 0.918013 | 0.006570 | 0.865178 | 0.041* | |
C22B | 0.7725 (2) | 0.10601 (14) | 0.86646 (11) | 0.0353 (5) | |
H22C | 0.699449 | 0.065258 | 0.897991 | 0.042* | |
H22D | 0.824911 | 0.128745 | 0.899127 | 0.042* | |
C23B | 0.70455 (19) | 0.18366 (13) | 0.80992 (11) | 0.0320 (4) | |
H23C | 0.643527 | 0.217229 | 0.836379 | 0.038* | |
H23D | 0.645504 | 0.160359 | 0.780269 | 0.038* | |
C24B | 0.81342 (18) | 0.24663 (12) | 0.75773 (10) | 0.0272 (4) | |
H24C | 0.866091 | 0.274836 | 0.786643 | 0.033* | |
H24D | 0.765810 | 0.294559 | 0.720036 | 0.033* | |
C25B | 1.20122 (17) | 0.27172 (11) | 0.69469 (9) | 0.0208 (4) | |
H25B | 1.228156 | 0.208342 | 0.720520 | 0.025* | |
C26B | 1.31797 (17) | 0.31641 (12) | 0.63462 (9) | 0.0222 (4) | |
H26C | 1.334558 | 0.281686 | 0.599700 | 0.027* | |
H26D | 1.287521 | 0.377284 | 0.605919 | 0.027* | |
C27B | 1.45393 (18) | 0.32211 (13) | 0.66890 (10) | 0.0282 (4) | |
H27C | 1.524993 | 0.353401 | 0.629089 | 0.034* | |
H27D | 1.489293 | 0.261125 | 0.693694 | 0.034* | |
C28B | 1.4312 (2) | 0.37213 (14) | 0.72561 (10) | 0.0321 (4) | |
H28C | 1.519260 | 0.372367 | 0.748948 | 0.039* | |
H28D | 1.404605 | 0.434862 | 0.699914 | 0.039* | |
C29B | 1.31674 (19) | 0.32821 (13) | 0.78577 (10) | 0.0289 (4) | |
H29C | 1.300406 | 0.363504 | 0.820269 | 0.035* | |
H29D | 1.347692 | 0.267590 | 0.814789 | 0.035* | |
C30B | 1.18020 (18) | 0.32175 (12) | 0.75184 (9) | 0.0245 (4) | |
H30C | 1.144103 | 0.382614 | 0.727317 | 0.029* | |
H30D | 1.109851 | 0.290248 | 0.791983 | 0.029* |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1A | 0.0213 (2) | 0.0221 (2) | 0.0174 (2) | −0.00280 (18) | −0.00069 (17) | −0.00635 (18) |
O1A | 0.0190 (6) | 0.0217 (7) | 0.0317 (7) | −0.0014 (5) | −0.0075 (5) | −0.0017 (5) |
O2A | 0.0212 (6) | 0.0212 (7) | 0.0308 (7) | 0.0014 (5) | −0.0038 (5) | −0.0016 (5) |
C1A | 0.0266 (9) | 0.0263 (10) | 0.0233 (9) | −0.0079 (8) | 0.0009 (7) | −0.0082 (8) |
C2A | 0.0209 (9) | 0.0256 (10) | 0.0242 (9) | −0.0019 (7) | −0.0023 (7) | −0.0092 (8) |
C3A | 0.0228 (9) | 0.0212 (9) | 0.0187 (8) | −0.0007 (7) | −0.0051 (7) | −0.0070 (7) |
C4A | 0.0230 (9) | 0.0201 (9) | 0.0188 (8) | −0.0012 (7) | −0.0026 (7) | −0.0081 (7) |
C5A | 0.0212 (9) | 0.0226 (9) | 0.0214 (9) | −0.0003 (7) | −0.0021 (7) | −0.0092 (7) |
C6A | 0.0287 (10) | 0.0217 (9) | 0.0206 (9) | −0.0019 (7) | −0.0018 (7) | −0.0058 (7) |
C7A | 0.0172 (8) | 0.0266 (10) | 0.0229 (9) | 0.0015 (7) | −0.0047 (7) | −0.0059 (8) |
C8A | 0.0289 (10) | 0.0289 (11) | 0.0387 (11) | 0.0028 (8) | −0.0109 (8) | −0.0068 (9) |
C9A | 0.0408 (11) | 0.0334 (11) | 0.0284 (10) | 0.0036 (9) | −0.0133 (9) | −0.0099 (9) |
C10A | 0.0273 (9) | 0.0200 (9) | 0.0209 (9) | 0.0036 (7) | −0.0048 (7) | −0.0035 (7) |
C11A | 0.0271 (10) | 0.0286 (10) | 0.0315 (10) | 0.0048 (8) | −0.0072 (8) | −0.0109 (8) |
C12A | 0.0328 (10) | 0.0269 (10) | 0.0256 (10) | 0.0008 (8) | −0.0022 (8) | −0.0099 (8) |
C13A | 0.0183 (8) | 0.0171 (9) | 0.0202 (8) | 0.0036 (7) | −0.0040 (7) | −0.0043 (7) |
C14A | 0.0260 (9) | 0.0259 (10) | 0.0235 (9) | −0.0003 (7) | −0.0045 (7) | −0.0103 (8) |
C15A | 0.0264 (9) | 0.0293 (10) | 0.0173 (9) | 0.0024 (8) | −0.0030 (7) | −0.0076 (8) |
C16A | 0.0206 (9) | 0.0240 (9) | 0.0200 (9) | −0.0010 (7) | 0.0011 (7) | −0.0025 (7) |
C17A | 0.0212 (9) | 0.0223 (9) | 0.0228 (9) | −0.0019 (7) | −0.0037 (7) | −0.0075 (7) |
C18A | 0.0192 (8) | 0.0204 (9) | 0.0171 (8) | 0.0029 (7) | −0.0031 (7) | −0.0049 (7) |
C19A | 0.0211 (9) | 0.0258 (10) | 0.0217 (9) | 0.0004 (7) | −0.0033 (7) | −0.0089 (7) |
C20A | 0.0243 (9) | 0.0233 (10) | 0.0349 (10) | −0.0005 (7) | −0.0029 (8) | −0.0085 (8) |
C21A | 0.0304 (10) | 0.0241 (10) | 0.0454 (12) | 0.0001 (8) | −0.0067 (9) | −0.0091 (9) |
C22A | 0.0331 (11) | 0.0382 (12) | 0.0455 (12) | 0.0123 (9) | −0.0159 (9) | −0.0246 (10) |
C23A | 0.0276 (10) | 0.0470 (13) | 0.0282 (10) | 0.0096 (9) | −0.0017 (8) | −0.0130 (9) |
C24A | 0.0287 (10) | 0.0406 (12) | 0.0240 (10) | 0.0065 (9) | −0.0001 (8) | −0.0092 (9) |
C25A | 0.0229 (9) | 0.0207 (9) | 0.0193 (9) | −0.0012 (7) | −0.0018 (7) | −0.0068 (7) |
C26A | 0.0263 (9) | 0.0224 (9) | 0.0197 (9) | 0.0015 (7) | −0.0021 (7) | −0.0070 (7) |
C27A | 0.0252 (9) | 0.0332 (11) | 0.0260 (10) | 0.0055 (8) | −0.0063 (7) | −0.0127 (8) |
C28A | 0.0260 (10) | 0.0339 (11) | 0.0284 (10) | 0.0035 (8) | −0.0081 (8) | −0.0122 (8) |
C29A | 0.0299 (10) | 0.0300 (10) | 0.0231 (9) | 0.0006 (8) | −0.0053 (7) | −0.0127 (8) |
C30A | 0.0245 (9) | 0.0255 (10) | 0.0224 (9) | 0.0020 (7) | −0.0047 (7) | −0.0110 (8) |
P1B | 0.0204 (2) | 0.0215 (2) | 0.0189 (2) | 0.00027 (18) | −0.00450 (17) | −0.00770 (18) |
O1B | 0.0187 (6) | 0.0236 (7) | 0.0270 (7) | −0.0037 (5) | −0.0050 (5) | −0.0001 (5) |
O2B | 0.0223 (6) | 0.0189 (6) | 0.0257 (6) | −0.0036 (5) | 0.0004 (5) | −0.0021 (5) |
C1B | 0.0262 (9) | 0.0231 (10) | 0.0243 (9) | 0.0051 (7) | −0.0043 (7) | −0.0083 (8) |
C2B | 0.0205 (9) | 0.0282 (10) | 0.0216 (9) | 0.0009 (7) | −0.0032 (7) | −0.0086 (8) |
C3B | 0.0234 (9) | 0.0197 (9) | 0.0166 (8) | −0.0019 (7) | −0.0022 (7) | −0.0057 (7) |
C4B | 0.0216 (9) | 0.0205 (9) | 0.0152 (8) | 0.0001 (7) | −0.0037 (6) | −0.0078 (7) |
C5B | 0.0226 (9) | 0.0218 (9) | 0.0173 (8) | −0.0015 (7) | −0.0019 (7) | −0.0078 (7) |
C6B | 0.0295 (10) | 0.0184 (9) | 0.0225 (9) | −0.0001 (7) | −0.0023 (7) | −0.0049 (7) |
C7B | 0.0153 (8) | 0.0259 (10) | 0.0280 (9) | −0.0026 (7) | −0.0007 (7) | −0.0049 (8) |
C8B | 0.0259 (10) | 0.0323 (11) | 0.0360 (11) | −0.0073 (8) | −0.0033 (8) | −0.0011 (9) |
C9B | 0.0337 (11) | 0.0306 (11) | 0.0344 (11) | −0.0029 (8) | −0.0074 (8) | −0.0114 (9) |
C10B | 0.0308 (10) | 0.0171 (9) | 0.0234 (9) | −0.0063 (7) | 0.0022 (7) | −0.0044 (7) |
C11B | 0.0302 (10) | 0.0286 (10) | 0.0269 (10) | −0.0099 (8) | 0.0027 (8) | −0.0101 (8) |
C12B | 0.0358 (11) | 0.0266 (10) | 0.0250 (10) | −0.0033 (8) | 0.0004 (8) | −0.0048 (8) |
C13B | 0.0183 (8) | 0.0167 (9) | 0.0167 (8) | −0.0039 (7) | −0.0002 (6) | −0.0032 (7) |
C14B | 0.0224 (9) | 0.0241 (9) | 0.0177 (8) | −0.0049 (7) | −0.0016 (7) | −0.0059 (7) |
C15B | 0.0250 (9) | 0.0202 (9) | 0.0236 (9) | −0.0025 (7) | 0.0007 (7) | −0.0086 (7) |
C16B | 0.0212 (9) | 0.0184 (9) | 0.0255 (9) | 0.0003 (7) | −0.0018 (7) | −0.0041 (7) |
C17B | 0.0198 (9) | 0.0239 (9) | 0.0208 (9) | −0.0013 (7) | −0.0058 (7) | −0.0053 (7) |
C18B | 0.0186 (8) | 0.0195 (9) | 0.0199 (8) | −0.0033 (7) | 0.0003 (7) | −0.0061 (7) |
C19B | 0.0202 (9) | 0.0247 (9) | 0.0242 (9) | −0.0017 (7) | −0.0044 (7) | −0.0098 (8) |
C20B | 0.0245 (9) | 0.0296 (10) | 0.0278 (10) | −0.0016 (8) | −0.0026 (8) | −0.0036 (8) |
C21B | 0.0325 (11) | 0.0329 (11) | 0.0313 (11) | −0.0061 (9) | −0.0015 (8) | −0.0003 (9) |
C22B | 0.0346 (11) | 0.0451 (13) | 0.0270 (10) | −0.0155 (9) | 0.0035 (8) | −0.0124 (9) |
C23B | 0.0267 (10) | 0.0392 (12) | 0.0353 (11) | −0.0069 (8) | 0.0036 (8) | −0.0200 (9) |
C24B | 0.0231 (9) | 0.0311 (10) | 0.0300 (10) | −0.0011 (8) | 0.0000 (8) | −0.0138 (8) |
C25B | 0.0212 (9) | 0.0224 (9) | 0.0194 (9) | −0.0008 (7) | −0.0036 (7) | −0.0069 (7) |
C26B | 0.0241 (9) | 0.0236 (9) | 0.0191 (9) | −0.0035 (7) | −0.0017 (7) | −0.0067 (7) |
C27B | 0.0232 (9) | 0.0362 (11) | 0.0243 (9) | −0.0073 (8) | −0.0010 (7) | −0.0081 (8) |
C28B | 0.0306 (10) | 0.0409 (12) | 0.0262 (10) | −0.0132 (9) | −0.0050 (8) | −0.0105 (9) |
C29B | 0.0308 (10) | 0.0378 (11) | 0.0199 (9) | −0.0059 (8) | −0.0041 (8) | −0.0108 (8) |
C30B | 0.0251 (9) | 0.0303 (10) | 0.0201 (9) | −0.0047 (8) | −0.0026 (7) | −0.0102 (8) |
P1A—C18A | 1.8482 (16) | P1B—C18B | 1.8482 (17) |
P1A—C25A | 1.8645 (17) | P1B—C25B | 1.8624 (17) |
P1A—C19A | 1.8762 (17) | P1B—C19B | 1.8771 (17) |
O1A—C3A | 1.376 (2) | O1B—C3B | 1.373 (2) |
O1A—C7A | 1.4444 (19) | O1B—C7B | 1.4437 (19) |
O2A—C5A | 1.370 (2) | O2B—C5B | 1.367 (2) |
O2A—C10A | 1.444 (2) | O2B—C10B | 1.449 (2) |
C1A—C2A | 1.386 (3) | C1B—C2B | 1.388 (2) |
C1A—C6A | 1.390 (2) | C1B—C6B | 1.388 (2) |
C1A—H1A | 0.9500 | C1B—H1B | 0.9500 |
C2A—C3A | 1.387 (2) | C2B—C3B | 1.390 (2) |
C2A—H2A | 0.9500 | C2B—H2B | 0.9500 |
C3A—C4A | 1.401 (2) | C3B—C4B | 1.402 (2) |
C4A—C5A | 1.399 (2) | C4B—C5B | 1.404 (2) |
C4A—C13A | 1.495 (2) | C4B—C13B | 1.499 (2) |
C5A—C6A | 1.390 (2) | C5B—C6B | 1.391 (2) |
C6A—H6A | 0.9500 | C6B—H6B | 0.9500 |
C7A—C9A | 1.507 (2) | C7B—C8B | 1.508 (2) |
C7A—C8A | 1.511 (2) | C7B—C9B | 1.516 (3) |
C7A—H7A | 1.0000 | C7B—H7B | 1.0000 |
C8A—H8AA | 0.9800 | C8B—H8BA | 0.9800 |
C8A—H8AB | 0.9800 | C8B—H8BB | 0.9800 |
C8A—H8AC | 0.9800 | C8B—H8BC | 0.9800 |
C9A—H9AA | 0.9800 | C9B—H9BA | 0.9800 |
C9A—H9AB | 0.9800 | C9B—H9BB | 0.9800 |
C9A—H9AC | 0.9800 | C9B—H9BC | 0.9800 |
C10A—C11A | 1.517 (2) | C10B—C11B | 1.513 (2) |
C10A—C12A | 1.518 (2) | C10B—C12B | 1.522 (2) |
C10A—H10A | 1.0000 | C10B—H10B | 1.0000 |
C11A—H11A | 0.9800 | C11B—H11D | 0.9800 |
C11A—H11B | 0.9800 | C11B—H11E | 0.9800 |
C11A—H11C | 0.9800 | C11B—H11F | 0.9800 |
C12A—H12A | 0.9800 | C12B—H12D | 0.9800 |
C12A—H12B | 0.9800 | C12B—H12E | 0.9800 |
C12A—H12C | 0.9800 | C12B—H12F | 0.9800 |
C13A—C14A | 1.399 (2) | C13B—C14B | 1.396 (2) |
C13A—C18A | 1.403 (2) | C13B—C18B | 1.402 (2) |
C14A—C15A | 1.379 (2) | C14B—C15B | 1.385 (2) |
C14A—H14A | 0.9500 | C14B—H14B | 0.9500 |
C15A—C16A | 1.387 (2) | C15B—C16B | 1.390 (2) |
C15A—H15A | 0.9500 | C15B—H15B | 0.9500 |
C16A—C17A | 1.389 (2) | C16B—C17B | 1.387 (2) |
C16A—H16A | 0.9500 | C16B—H16B | 0.9500 |
C17A—C18A | 1.397 (2) | C17B—C18B | 1.402 (2) |
C17A—H17A | 0.9500 | C17B—H17B | 0.9500 |
C19A—C20A | 1.527 (2) | C19B—C20B | 1.529 (2) |
C19A—C24A | 1.532 (2) | C19B—C24B | 1.538 (2) |
C19A—H19A | 1.0000 | C19B—H19B | 1.0000 |
C20A—C21A | 1.534 (3) | C20B—C21B | 1.528 (2) |
C20A—H20A | 0.9900 | C20B—H20C | 0.9900 |
C20A—H20B | 0.9900 | C20B—H20D | 0.9900 |
C21A—C22A | 1.520 (3) | C21B—C22B | 1.521 (3) |
C21A—H21A | 0.9900 | C21B—H21C | 0.9900 |
C21A—H21B | 0.9900 | C21B—H21D | 0.9900 |
C22A—C23A | 1.518 (3) | C22B—C23B | 1.518 (3) |
C22A—H22A | 0.9900 | C22B—H22C | 0.9900 |
C22A—H22B | 0.9900 | C22B—H22D | 0.9900 |
C23A—C24A | 1.532 (3) | C23B—C24B | 1.528 (2) |
C23A—H23A | 0.9900 | C23B—H23C | 0.9900 |
C23A—H23B | 0.9900 | C23B—H23D | 0.9900 |
C24A—H24A | 0.9900 | C24B—H24C | 0.9900 |
C24A—H24B | 0.9900 | C24B—H24D | 0.9900 |
C25A—C26A | 1.535 (2) | C25B—C30B | 1.535 (2) |
C25A—C30A | 1.541 (2) | C25B—C26B | 1.544 (2) |
C25A—H25A | 1.0000 | C25B—H25B | 1.0000 |
C26A—C27A | 1.531 (2) | C26B—C27B | 1.528 (2) |
C26A—H26A | 0.9900 | C26B—H26C | 0.9900 |
C26A—H26B | 0.9900 | C26B—H26D | 0.9900 |
C27A—C28A | 1.531 (2) | C27B—C28B | 1.529 (3) |
C27A—H27A | 0.9900 | C27B—H27C | 0.9900 |
C27A—H27B | 0.9900 | C27B—H27D | 0.9900 |
C28A—C29A | 1.522 (2) | C28B—C29B | 1.527 (2) |
C28A—H28A | 0.9900 | C28B—H28C | 0.9900 |
C28A—H28B | 0.9900 | C28B—H28D | 0.9900 |
C29A—C30A | 1.528 (2) | C29B—C30B | 1.532 (2) |
C29A—H29A | 0.9900 | C29B—H29C | 0.9900 |
C29A—H29B | 0.9900 | C29B—H29D | 0.9900 |
C30A—H30A | 0.9900 | C30B—H30C | 0.9900 |
C30A—H30B | 0.9900 | C30B—H30D | 0.9900 |
C18A—P1A—C25A | 101.31 (7) | C18B—P1B—C25B | 101.86 (8) |
C18A—P1A—C19A | 98.31 (7) | C18B—P1B—C19B | 97.03 (7) |
C25A—P1A—C19A | 106.07 (8) | C25B—P1B—C19B | 105.46 (8) |
C3A—O1A—C7A | 119.19 (12) | C3B—O1B—C7B | 119.71 (13) |
C5A—O2A—C10A | 120.37 (13) | C5B—O2B—C10B | 119.60 (13) |
C2A—C1A—C6A | 121.85 (16) | C2B—C1B—C6B | 121.67 (16) |
C2A—C1A—H1A | 119.1 | C2B—C1B—H1B | 119.2 |
C6A—C1A—H1A | 119.1 | C6B—C1B—H1B | 119.2 |
C1A—C2A—C3A | 118.90 (16) | C1B—C2B—C3B | 118.66 (16) |
C1A—C2A—H2A | 120.6 | C1B—C2B—H2B | 120.7 |
C3A—C2A—H2A | 120.6 | C3B—C2B—H2B | 120.7 |
O1A—C3A—C2A | 124.80 (15) | O1B—C3B—C2B | 124.58 (15) |
O1A—C3A—C4A | 114.40 (14) | O1B—C3B—C4B | 114.10 (14) |
C2A—C3A—C4A | 120.76 (15) | C2B—C3B—C4B | 121.29 (15) |
C5A—C4A—C3A | 118.97 (15) | C3B—C4B—C5B | 118.52 (15) |
C5A—C4A—C13A | 120.65 (15) | C3B—C4B—C13B | 120.34 (14) |
C3A—C4A—C13A | 120.36 (15) | C5B—C4B—C13B | 121.08 (14) |
O2A—C5A—C6A | 125.33 (15) | O2B—C5B—C6B | 124.82 (15) |
O2A—C5A—C4A | 113.90 (14) | O2B—C5B—C4B | 114.52 (14) |
C6A—C5A—C4A | 120.76 (16) | C6B—C5B—C4B | 120.66 (15) |
C1A—C6A—C5A | 118.68 (16) | C1B—C6B—C5B | 119.18 (16) |
C1A—C6A—H6A | 120.7 | C1B—C6B—H6B | 120.4 |
C5A—C6A—H6A | 120.7 | C5B—C6B—H6B | 120.4 |
O1A—C7A—C9A | 110.12 (14) | O1B—C7B—C8B | 104.22 (14) |
O1A—C7A—C8A | 104.46 (13) | O1B—C7B—C9B | 110.32 (14) |
C9A—C7A—C8A | 113.08 (15) | C8B—C7B—C9B | 113.21 (16) |
O1A—C7A—H7A | 109.7 | O1B—C7B—H7B | 109.6 |
C9A—C7A—H7A | 109.7 | C8B—C7B—H7B | 109.6 |
C8A—C7A—H7A | 109.7 | C9B—C7B—H7B | 109.6 |
C7A—C8A—H8AA | 109.5 | C7B—C8B—H8BA | 109.5 |
C7A—C8A—H8AB | 109.5 | C7B—C8B—H8BB | 109.5 |
H8AA—C8A—H8AB | 109.5 | H8BA—C8B—H8BB | 109.5 |
C7A—C8A—H8AC | 109.5 | C7B—C8B—H8BC | 109.5 |
H8AA—C8A—H8AC | 109.5 | H8BA—C8B—H8BC | 109.5 |
H8AB—C8A—H8AC | 109.5 | H8BB—C8B—H8BC | 109.5 |
C7A—C9A—H9AA | 109.5 | C7B—C9B—H9BA | 109.5 |
C7A—C9A—H9AB | 109.5 | C7B—C9B—H9BB | 109.5 |
H9AA—C9A—H9AB | 109.5 | H9BA—C9B—H9BB | 109.5 |
C7A—C9A—H9AC | 109.5 | C7B—C9B—H9BC | 109.5 |
H9AA—C9A—H9AC | 109.5 | H9BA—C9B—H9BC | 109.5 |
H9AB—C9A—H9AC | 109.5 | H9BB—C9B—H9BC | 109.5 |
O2A—C10A—C11A | 104.29 (13) | O2B—C10B—C11B | 105.04 (14) |
O2A—C10A—C12A | 111.20 (14) | O2B—C10B—C12B | 111.04 (14) |
C11A—C10A—C12A | 111.12 (15) | C11B—C10B—C12B | 111.61 (15) |
O2A—C10A—H10A | 110.0 | O2B—C10B—H10B | 109.7 |
C11A—C10A—H10A | 110.0 | C11B—C10B—H10B | 109.7 |
C12A—C10A—H10A | 110.0 | C12B—C10B—H10B | 109.7 |
C10A—C11A—H11A | 109.5 | C10B—C11B—H11D | 109.5 |
C10A—C11A—H11B | 109.5 | C10B—C11B—H11E | 109.5 |
H11A—C11A—H11B | 109.5 | H11D—C11B—H11E | 109.5 |
C10A—C11A—H11C | 109.5 | C10B—C11B—H11F | 109.5 |
H11A—C11A—H11C | 109.5 | H11D—C11B—H11F | 109.5 |
H11B—C11A—H11C | 109.5 | H11E—C11B—H11F | 109.5 |
C10A—C12A—H12A | 109.5 | C10B—C12B—H12D | 109.5 |
C10A—C12A—H12B | 109.5 | C10B—C12B—H12E | 109.5 |
H12A—C12A—H12B | 109.5 | H12D—C12B—H12E | 109.5 |
C10A—C12A—H12C | 109.5 | C10B—C12B—H12F | 109.5 |
H12A—C12A—H12C | 109.5 | H12D—C12B—H12F | 109.5 |
H12B—C12A—H12C | 109.5 | H12E—C12B—H12F | 109.5 |
C14A—C13A—C18A | 119.78 (15) | C14B—C13B—C18B | 119.97 (15) |
C14A—C13A—C4A | 118.46 (15) | C14B—C13B—C4B | 118.23 (14) |
C18A—C13A—C4A | 121.76 (14) | C18B—C13B—C4B | 121.79 (14) |
C15A—C14A—C13A | 121.16 (16) | C15B—C14B—C13B | 121.06 (16) |
C15A—C14A—H14A | 119.4 | C15B—C14B—H14B | 119.5 |
C13A—C14A—H14A | 119.4 | C13B—C14B—H14B | 119.5 |
C14A—C15A—C16A | 119.48 (16) | C14B—C15B—C16B | 119.40 (16) |
C14A—C15A—H15A | 120.3 | C14B—C15B—H15B | 120.3 |
C16A—C15A—H15A | 120.3 | C16B—C15B—H15B | 120.3 |
C15A—C16A—C17A | 119.91 (15) | C17B—C16B—C15B | 119.89 (16) |
C15A—C16A—H16A | 120.0 | C17B—C16B—H16B | 120.1 |
C17A—C16A—H16A | 120.0 | C15B—C16B—H16B | 120.1 |
C16A—C17A—C18A | 121.45 (16) | C16B—C17B—C18B | 121.45 (16) |
C16A—C17A—H17A | 119.3 | C16B—C17B—H17B | 119.3 |
C18A—C17A—H17A | 119.3 | C18B—C17B—H17B | 119.3 |
C17A—C18A—C13A | 118.21 (15) | C13B—C18B—C17B | 118.16 (15) |
C17A—C18A—P1A | 123.97 (13) | C13B—C18B—P1B | 117.90 (12) |
C13A—C18A—P1A | 117.78 (12) | C17B—C18B—P1B | 123.72 (13) |
C20A—C19A—C24A | 111.30 (15) | C20B—C19B—C24B | 110.52 (15) |
C20A—C19A—P1A | 116.03 (12) | C20B—C19B—P1B | 116.21 (12) |
C24A—C19A—P1A | 112.09 (12) | C24B—C19B—P1B | 111.95 (12) |
C20A—C19A—H19A | 105.5 | C20B—C19B—H19B | 105.8 |
C24A—C19A—H19A | 105.5 | C24B—C19B—H19B | 105.8 |
P1A—C19A—H19A | 105.5 | P1B—C19B—H19B | 105.8 |
C19A—C20A—C21A | 111.30 (14) | C21B—C20B—C19B | 111.89 (15) |
C19A—C20A—H20A | 109.4 | C21B—C20B—H20C | 109.2 |
C21A—C20A—H20A | 109.4 | C19B—C20B—H20C | 109.2 |
C19A—C20A—H20B | 109.4 | C21B—C20B—H20D | 109.2 |
C21A—C20A—H20B | 109.4 | C19B—C20B—H20D | 109.2 |
H20A—C20A—H20B | 108.0 | H20C—C20B—H20D | 107.9 |
C22A—C21A—C20A | 110.94 (16) | C22B—C21B—C20B | 111.02 (16) |
C22A—C21A—H21A | 109.5 | C22B—C21B—H21C | 109.4 |
C20A—C21A—H21A | 109.5 | C20B—C21B—H21C | 109.4 |
C22A—C21A—H21B | 109.5 | C22B—C21B—H21D | 109.4 |
C20A—C21A—H21B | 109.5 | C20B—C21B—H21D | 109.4 |
H21A—C21A—H21B | 108.0 | H21C—C21B—H21D | 108.0 |
C23A—C22A—C21A | 110.46 (16) | C23B—C22B—C21B | 110.62 (16) |
C23A—C22A—H22A | 109.6 | C23B—C22B—H22C | 109.5 |
C21A—C22A—H22A | 109.6 | C21B—C22B—H22C | 109.5 |
C23A—C22A—H22B | 109.6 | C23B—C22B—H22D | 109.5 |
C21A—C22A—H22B | 109.6 | C21B—C22B—H22D | 109.5 |
H22A—C22A—H22B | 108.1 | H22C—C22B—H22D | 108.1 |
C22A—C23A—C24A | 111.86 (16) | C22B—C23B—C24B | 111.55 (15) |
C22A—C23A—H23A | 109.2 | C22B—C23B—H23C | 109.3 |
C24A—C23A—H23A | 109.2 | C24B—C23B—H23C | 109.3 |
C22A—C23A—H23B | 109.2 | C22B—C23B—H23D | 109.3 |
C24A—C23A—H23B | 109.2 | C24B—C23B—H23D | 109.3 |
H23A—C23A—H23B | 107.9 | H23C—C23B—H23D | 108.0 |
C19A—C24A—C23A | 111.26 (15) | C23B—C24B—C19B | 111.15 (15) |
C19A—C24A—H24A | 109.4 | C23B—C24B—H24C | 109.4 |
C23A—C24A—H24A | 109.4 | C19B—C24B—H24C | 109.4 |
C19A—C24A—H24B | 109.4 | C23B—C24B—H24D | 109.4 |
C23A—C24A—H24B | 109.4 | C19B—C24B—H24D | 109.4 |
H24A—C24A—H24B | 108.0 | H24C—C24B—H24D | 108.0 |
C26A—C25A—C30A | 109.39 (14) | C30B—C25B—C26B | 109.85 (14) |
C26A—C25A—P1A | 107.90 (11) | C30B—C25B—P1B | 111.27 (11) |
C30A—C25A—P1A | 110.88 (11) | C26B—C25B—P1B | 107.78 (11) |
C26A—C25A—H25A | 109.5 | C30B—C25B—H25B | 109.3 |
C30A—C25A—H25A | 109.5 | C26B—C25B—H25B | 109.3 |
P1A—C25A—H25A | 109.5 | P1B—C25B—H25B | 109.3 |
C27A—C26A—C25A | 111.96 (14) | C27B—C26B—C25B | 111.70 (14) |
C27A—C26A—H26A | 109.2 | C27B—C26B—H26C | 109.3 |
C25A—C26A—H26A | 109.2 | C25B—C26B—H26C | 109.3 |
C27A—C26A—H26B | 109.2 | C27B—C26B—H26D | 109.3 |
C25A—C26A—H26B | 109.2 | C25B—C26B—H26D | 109.3 |
H26A—C26A—H26B | 107.9 | H26C—C26B—H26D | 107.9 |
C26A—C27A—C28A | 110.49 (14) | C26B—C27B—C28B | 110.84 (15) |
C26A—C27A—H27A | 109.6 | C26B—C27B—H27C | 109.5 |
C28A—C27A—H27A | 109.6 | C28B—C27B—H27C | 109.5 |
C26A—C27A—H27B | 109.6 | C26B—C27B—H27D | 109.5 |
C28A—C27A—H27B | 109.6 | C28B—C27B—H27D | 109.5 |
H27A—C27A—H27B | 108.1 | H27C—C27B—H27D | 108.1 |
C29A—C28A—C27A | 110.67 (15) | C29B—C28B—C27B | 110.81 (15) |
C29A—C28A—H28A | 109.5 | C29B—C28B—H28C | 109.5 |
C27A—C28A—H28A | 109.5 | C27B—C28B—H28C | 109.5 |
C29A—C28A—H28B | 109.5 | C29B—C28B—H28D | 109.5 |
C27A—C28A—H28B | 109.5 | C27B—C28B—H28D | 109.5 |
H28A—C28A—H28B | 108.1 | H28C—C28B—H28D | 108.1 |
C28A—C29A—C30A | 112.09 (15) | C28B—C29B—C30B | 111.36 (15) |
C28A—C29A—H29A | 109.2 | C28B—C29B—H29C | 109.4 |
C30A—C29A—H29A | 109.2 | C30B—C29B—H29C | 109.4 |
C28A—C29A—H29B | 109.2 | C28B—C29B—H29D | 109.4 |
C30A—C29A—H29B | 109.2 | C30B—C29B—H29D | 109.4 |
H29A—C29A—H29B | 107.9 | H29C—C29B—H29D | 108.0 |
C29A—C30A—C25A | 111.79 (14) | C29B—C30B—C25B | 111.57 (14) |
C29A—C30A—H30A | 109.3 | C29B—C30B—H30C | 109.3 |
C25A—C30A—H30A | 109.3 | C25B—C30B—H30C | 109.3 |
C29A—C30A—H30B | 109.3 | C29B—C30B—H30D | 109.3 |
C25A—C30A—H30B | 109.3 | C25B—C30B—H30D | 109.3 |
H30A—C30A—H30B | 107.9 | H30C—C30B—H30D | 108.0 |
C6A—C1A—C2A—C3A | −0.2 (3) | C6B—C1B—C2B—C3B | 0.4 (3) |
C7A—O1A—C3A—C2A | 22.6 (2) | C7B—O1B—C3B—C2B | 21.1 (2) |
C7A—O1A—C3A—C4A | −159.49 (14) | C7B—O1B—C3B—C4B | −160.94 (14) |
C1A—C2A—C3A—O1A | 175.60 (16) | C1B—C2B—C3B—O1B | 176.52 (15) |
C1A—C2A—C3A—C4A | −2.2 (2) | C1B—C2B—C3B—C4B | −1.3 (2) |
O1A—C3A—C4A—C5A | −175.61 (14) | O1B—C3B—C4B—C5B | −177.37 (14) |
C2A—C3A—C4A—C5A | 2.4 (2) | C2B—C3B—C4B—C5B | 0.7 (2) |
O1A—C3A—C4A—C13A | 5.6 (2) | O1B—C3B—C4B—C13B | 5.6 (2) |
C2A—C3A—C4A—C13A | −176.36 (15) | C2B—C3B—C4B—C13B | −176.37 (15) |
C10A—O2A—C5A—C6A | −2.7 (2) | C10B—O2B—C5B—C6B | −2.8 (2) |
C10A—O2A—C5A—C4A | 177.65 (14) | C10B—O2B—C5B—C4B | 176.58 (13) |
C3A—C4A—C5A—O2A | 179.42 (14) | C3B—C4B—C5B—O2B | −178.51 (14) |
C13A—C4A—C5A—O2A | −1.8 (2) | C13B—C4B—C5B—O2B | −1.5 (2) |
C3A—C4A—C5A—C6A | −0.3 (2) | C3B—C4B—C5B—C6B | 0.9 (2) |
C13A—C4A—C5A—C6A | 178.46 (15) | C13B—C4B—C5B—C6B | 177.94 (15) |
C2A—C1A—C6A—C5A | 2.2 (3) | C2B—C1B—C6B—C5B | 1.1 (3) |
O2A—C5A—C6A—C1A | 178.38 (16) | O2B—C5B—C6B—C1B | 177.55 (15) |
C4A—C5A—C6A—C1A | −2.0 (2) | C4B—C5B—C6B—C1B | −1.8 (2) |
C3A—O1A—C7A—C9A | 67.99 (18) | C3B—O1B—C7B—C8B | −169.65 (14) |
C3A—O1A—C7A—C8A | −170.30 (14) | C3B—O1B—C7B—C9B | 68.52 (19) |
C5A—O2A—C10A—C11A | 167.36 (14) | C5B—O2B—C10B—C11B | 164.71 (14) |
C5A—O2A—C10A—C12A | −72.79 (19) | C5B—O2B—C10B—C12B | −74.49 (18) |
C5A—C4A—C13A—C14A | −96.12 (19) | C3B—C4B—C13B—C14B | 73.2 (2) |
C3A—C4A—C13A—C14A | 82.6 (2) | C5B—C4B—C13B—C14B | −103.78 (18) |
C5A—C4A—C13A—C18A | 83.7 (2) | C3B—C4B—C13B—C18B | −105.83 (19) |
C3A—C4A—C13A—C18A | −97.6 (2) | C5B—C4B—C13B—C18B | 77.2 (2) |
C18A—C13A—C14A—C15A | −1.1 (3) | C18B—C13B—C14B—C15B | −1.8 (2) |
C4A—C13A—C14A—C15A | 178.67 (16) | C4B—C13B—C14B—C15B | 179.17 (15) |
C13A—C14A—C15A—C16A | 0.5 (3) | C13B—C14B—C15B—C16B | −0.3 (2) |
C14A—C15A—C16A—C17A | 0.1 (3) | C14B—C15B—C16B—C17B | 1.2 (2) |
C15A—C16A—C17A—C18A | 0.0 (3) | C15B—C16B—C17B—C18B | 0.0 (2) |
C16A—C17A—C18A—C13A | −0.7 (2) | C14B—C13B—C18B—C17B | 3.0 (2) |
C16A—C17A—C18A—P1A | 176.77 (13) | C4B—C13B—C18B—C17B | −178.03 (14) |
C14A—C13A—C18A—C17A | 1.2 (2) | C14B—C13B—C18B—P1B | −171.87 (12) |
C4A—C13A—C18A—C17A | −178.58 (15) | C4B—C13B—C18B—P1B | 7.1 (2) |
C14A—C13A—C18A—P1A | −176.40 (12) | C16B—C17B—C18B—C13B | −2.1 (2) |
C4A—C13A—C18A—P1A | 3.8 (2) | C16B—C17B—C18B—P1B | 172.39 (13) |
C25A—P1A—C18A—C17A | 29.19 (16) | C25B—P1B—C18B—C13B | −159.33 (13) |
C19A—P1A—C18A—C17A | −79.14 (15) | C19B—P1B—C18B—C13B | 93.19 (13) |
C25A—P1A—C18A—C13A | −153.34 (13) | C25B—P1B—C18B—C17B | 26.15 (16) |
C19A—P1A—C18A—C13A | 98.32 (13) | C19B—P1B—C18B—C17B | −81.32 (15) |
C18A—P1A—C19A—C20A | 69.43 (14) | C18B—P1B—C19B—C20B | 72.74 (14) |
C25A—P1A—C19A—C20A | −34.95 (15) | C25B—P1B—C19B—C20B | −31.67 (15) |
C18A—P1A—C19A—C24A | −161.19 (13) | C18B—P1B—C19B—C24B | −158.96 (12) |
C25A—P1A—C19A—C24A | 94.43 (14) | C25B—P1B—C19B—C24B | 96.63 (13) |
C24A—C19A—C20A—C21A | 54.5 (2) | C24B—C19B—C20B—C21B | 54.6 (2) |
P1A—C19A—C20A—C21A | −175.70 (13) | P1B—C19B—C20B—C21B | −176.42 (13) |
C19A—C20A—C21A—C22A | −56.6 (2) | C19B—C20B—C21B—C22B | −55.9 (2) |
C20A—C21A—C22A—C23A | 57.2 (2) | C20B—C21B—C22B—C23B | 56.4 (2) |
C21A—C22A—C23A—C24A | −56.6 (2) | C21B—C22B—C23B—C24B | −56.9 (2) |
C20A—C19A—C24A—C23A | −53.4 (2) | C22B—C23B—C24B—C19B | 56.1 (2) |
P1A—C19A—C24A—C23A | 174.79 (13) | C20B—C19B—C24B—C23B | −54.35 (19) |
C22A—C23A—C24A—C19A | 54.8 (2) | P1B—C19B—C24B—C23B | 174.40 (12) |
C18A—P1A—C25A—C26A | 64.78 (12) | C18B—P1B—C25B—C30B | −173.24 (12) |
C19A—P1A—C25A—C26A | 166.96 (11) | C19B—P1B—C25B—C30B | −72.42 (13) |
C18A—P1A—C25A—C30A | −175.44 (12) | C18B—P1B—C25B—C26B | 66.26 (13) |
C19A—P1A—C25A—C30A | −73.26 (13) | C19B—P1B—C25B—C26B | 167.08 (11) |
C30A—C25A—C26A—C27A | 56.37 (18) | C30B—C25B—C26B—C27B | 55.71 (19) |
P1A—C25A—C26A—C27A | 177.09 (11) | P1B—C25B—C26B—C27B | 177.10 (12) |
C25A—C26A—C27A—C28A | −57.73 (19) | C25B—C26B—C27B—C28B | −56.7 (2) |
C26A—C27A—C28A—C29A | 56.0 (2) | C26B—C27B—C28B—C29B | 56.3 (2) |
C27A—C28A—C29A—C30A | −55.3 (2) | C27B—C28B—C29B—C30B | −56.1 (2) |
C28A—C29A—C30A—C25A | 55.2 (2) | C28B—C29B—C30B—C25B | 56.1 (2) |
C26A—C25A—C30A—C29A | −54.59 (19) | C26B—C25B—C30B—C29B | −55.11 (19) |
P1A—C25A—C30A—C29A | −173.47 (12) | P1B—C25B—C30B—C29B | −174.39 (12) |
Two independent molecules of RhPhos are located in the asymmetric unit of RuPhos B. |
Bond distances | ||
C—C Biaryl | C4—C13 | 1.495 (2), 1.499 (2) |
Ar—P | C18—P1 | 1.848 (2), 1.848 (2) |
Cy—P | C19—P1 | 1.876 (2), 1.877 (2) |
Cy—P | C25—P1 | 1.865 (2), 1.862 (2) |
Selected bond angles | ||
Ar—P—Cy | C18—P1—C25 | 101.31 (8), 101.86 (8) |
Cy—P—Cy | C25—P1—C19 | 106.07 (8), 105.46 (8) |
Ar—P—Cy | C18—P1—C19 | 98.31 (8), 97.03 (8) |
Selected torsional angles | ||
Biaryl | C3—C4—C13—C14 | 82.6 (2), 73.2 (2) |
Biaryl | C3—C4—C13—C18 | 97.6 (2), 105.8 (2) |
Biaryl | C5—C4—C13—C14 | 96.1 (2), 103.8 (2) |
Biaryl | C5—C4—C13—C18 | 83.7 (2), 77.2 (2) |
Acknowledgements
We thank N. Ayoub, Rui Sun, and Shelby Elizabeth Elder (Harvard) for helpful discussions.
Funding information
Funding for this research was provided by Harvard University.
References
Arrechea, P. L. & Buchwald, S. L. (2016). J. Am. Chem. Soc. 138, 12486–12493. CSD CrossRef CAS PubMed Google Scholar
Barder, T. E. & Buchwald, S. L. (2007). J. Am. Chem. Soc. 129, 5096–5101. CrossRef PubMed CAS Google Scholar
Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carsch, K. M., DiMucci, I. M., Iovan, D. A., Li, A., Zheng, S. L., Titus, C. J., Lee, S. J., Irwin, K. D., Nordlund, D., Lancaster, K. M. & Betley, T. A. (2019). Science, 365, 1138–1143. CSD CrossRef CAS PubMed Google Scholar
Charles, M. D., Schultz, P. & Buchwald, S. L. (2005). Org. Lett. 7, 3965–3968. CrossRef PubMed CAS Google Scholar
Christmann, U. & Vilar, R. (2005). Angew. Chem. Int. Ed. 44, 366–374. Web of Science CrossRef CAS Google Scholar
Davies, J. A., Dutremez, S. & Pinkerton, A. A. (1991). Inorg. Chem. 30, 2380–2387. CSD CrossRef CAS Web of Science Google Scholar
DeAngelis, A. J., Gildner, P. G., Chow, R. & Colacot, T. J. (2015). J. Org. Chem. 80, 6794–6813. CSD CrossRef CAS PubMed Google Scholar
Dikundwar, A. G., Chodon, P., Thomas, S. P. & Bhutani, H. (2017). Cryst. Growth Des. 17, 1982–1990. CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jover, J. & Cirera, J. (2019). Dalton Trans. 48, 15036–15048. CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lee, J., Park, H., Hwang, S.-H., Lee, I.-H. & Choi, T.-L. (2020). Macromolecules, 53, 3306–3314. CrossRef CAS Google Scholar
Leeuwen, P. W. N. M. van, Kamer, P. C. J., Reek, J. N. H. & Dierkes, P. (2000). Chem. Rev. 100, 2741–2770. Web of Science CrossRef PubMed Google Scholar
Li, B. X., Le, D. N., Mack, K. A., McClory, A., Lim, N.-K., Cravillion, T., Savage, S., Han, C., Collum, D. B., Zhang, H. & Gosselin, F. (2017). J. Am. Chem. Soc. 139, 10777–10783. CSD CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Milne, J. A. & Buchwald, S. L. (2004). J. Am. Chem. Soc. 126, 13028–13032. CrossRef PubMed CAS Google Scholar
Müller, T. E. & Mingos, D. M. P. (1995). Transition Met. Chem. 20, 533–539. Google Scholar
Otani, T., Hachiya, M., Hashizume, D., Matsuo, T. & Tamao, K. (2011). Chem. Asian J. 6, 350–354. CSD CrossRef CAS PubMed Google Scholar
Samouei, H., Miloserdov, F. M., Escudero-Adán, E. C. & Grushin, V. V. (2014). Organometallics, 33, 7279–7283. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tian, J., Wang, G., Qi, Z. H. & Ma, J. (2020). ACS Omega, 5, 21385–21391. CrossRef CAS PubMed Google Scholar
Tolman, C. A. (1977). Chem. Rev. 77, 313–348. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.