research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the RuPhos ligand

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
*Correspondence e-mail: kcarsch@g.harvard.edu, dkiper@fas.harvard.edu, zheng@chemistry.harvard.edu

Edited by J. T. Mague, Tulane University, USA (Received 22 December 2020; accepted 14 January 2021; online 26 January 2021)

Palladium 2-di­cyclo­hexyl­phosphanyl-2′,6′-diisopropoxybiphenyl (Pd–RuPhos) catalysts demonstrate high catalytic activity for Negishi cross-couplings of sterically hindered aryl halides, for Suzuki–Miyaura cross-couplings of tosyl­ated olefins, and for Buchwald–Hartwig amination of sterically hindered amines. The solid-state structure of the free RuPhos ligand, C30H43O2P, is reported herein for the first time. RuPhos crystallizes in a triclinic cell containing two independent mol­ecules of the phosphine without any lattice solvent. Pertinent bond metrics and comparisons to other phosphine ligands are presented. The structure of RuPhos will be of assistance in the use of this ligand in the design of cross-coupling catalysts.

1. Chemical context

Cross-coupling reactions have emerged as a facile method for Csp2—Csp2 and Csp2—N bond formations. A variety of ancillary phosphine ligands have been observed to mediate challenging Pd-catalyzed cross-coupling reactions (Christmann & Vilar, 2005[Christmann, U. & Vilar, R. (2005). Angew. Chem. Int. Ed. 44, 366-374.]). The Pd0 reagent Pd2(dba)3 (dba = di­benz­yl­ideneacetone) in the presence of the ligand 2-di­­cyclo­hexyl­phosphanyl-2′,6′-diisopropoxybiphenyl (RuPhos, see scheme) is especially effective at catalyzing Csp2—Csp2 bond formation between sterically hindered aryl rings that were previously challenging to couple by traditional cross-coupling methods employing other supporting phosphine ligands (Milne & Buchwald, 2004[Milne, J. A. & Buchwald, S. L. (2004). J. Am. Chem. Soc. 126, 13028-13032.]). Pd–RuPhos has shown efficacy for a variety of organic substrate transformations, including cross-coupling reactions with sterically hindered aryl halides (Otani et al., 2011[Otani, T., Hachiya, M., Hashizume, D., Matsuo, T. & Tamao, K. (2011). Chem. Asian J. 6, 350-354.]; Carsch et al., 2019[Carsch, K. M., DiMucci, I. M., Iovan, D. A., Li, A., Zheng, S. L., Titus, C. J., Lee, S. J., Irwin, K. D., Nordlund, D., Lancaster, K. M. & Betley, T. A. (2019). Science, 365, 1138-1143.]), stereoselective Csp2—Csp2 bond formation from tosyl­ated olefins (Li et al., 2017[Li, B. X., Le, D. N., Mack, K. A., McClory, A., Lim, N.-K., Cravillion, T., Savage, S., Han, C., Collum, D. B., Zhang, H. & Gosselin, F. (2017). J. Am. Chem. Soc. 139, 10777-10783.]), Csp2—N bond formation afforded by the Buchwald–Hartwig amination (Charles et al., 2005[Charles, M. D., Schultz, P. & Buchwald, S. L. (2005). Org. Lett. 7, 3965-3968.]), and in the synthesis of new materials, such as the catalyst-transfer polycondensation to furnish polymeric semiconductors such as poly(3-alkyl­thio­phenes) (Lee et al., 2020[Lee, J., Park, H., Hwang, S.-H., Lee, I.-H. & Choi, T.-L. (2020). Macromolecules, 53, 3306-3314.]).

[Scheme 1]

The steric and electronic properties of the ancillary phosphine ligand can have a profound impact on the outcome of the cross-coupling reaction. For example, in the Buchwald–Hartwig amination, Pd–RuPhos displays high catalytic activity for cross-coupling reactions with sterically hindered substrates such as cyclic secondary amines, whereas the related congener, Pd–BrettPhos, demonstrates high catalytic activity with primary amines (Tian et al., 2020[Tian, J., Wang, G., Qi, Z. H. & Ma, J. (2020). ACS Omega, 5, 21385-21391.]; Charles et al., 2005[Charles, M. D., Schultz, P. & Buchwald, S. L. (2005). Org. Lett. 7, 3965-3968.]). The electronic properties and steric profile of the ligand scaffold impact the elementary steps and catalytic performance of the resulting metal complex (van Leeuwen et al., 2000[Leeuwen, P. W. N. M. van, Kamer, P. C. J., Reek, J. N. H. & Dierkes, P. (2000). Chem. Rev. 100, 2741-2770.]). Recent density functional calculations corroborate the importance of ligand properties on the kinetics of cross-coupling chemistry: the rate-limiting step for Pd–RuPhos is predicted to be reductive elimination, while that of the congener Pd–BrettPhos is predicted to be oxidative addition (Tian et al., 2020[Tian, J., Wang, G., Qi, Z. H. & Ma, J. (2020). ACS Omega, 5, 21385-21391.]). Curiously, the solid-state structure of RuPhos remains absent from the literature. Knowledge of the structural metrics of RuPhos will benefit mechanistic and computational studies of this important ligand and will aid in the rational design of new RuPhos-derivative catalysts.

2. Structural commentary

The free RuPhos ligand (Fig. 1[link]) was characterized by single-crystal X-ray diffraction, with pertinent bond metrics listed in Table 1[link] and experimental structural details delineated in Table 2[link]. The asymmetric unit contains two independent mol­ecules, RuPhos A and RuPhos B, which differ modestly in conformation. For conciseness, only the structural metrics of RuPhos B are described hereafter, and RuPhos B is simply referred to as RuPhos. Details of the structural metrics of both mol­ecules in the asymmetric unit can be found in the supporting information.

Table 1
Selected geometric parameters (Å, °) for the two independent mol­ecules RuPhos A and RuPhos B

Bond distances    
C—C Biar­yl C4—C13 1.495 (2), 1.499 (2)
Ar—P C18—P1 1.848 (2), 1.848 (2)
Cy—P C19—P1 1.876 (2), 1.877 (2)
Cy—P C25—P1 1.865 (2), 1.862 (2)
     
Selected bond angles    
Ar—P—Cy C18—P1—C25 101.31 (8), 101.86 (8)
Cy—P—Cy C25—P1—C19 106.07 (8), 105.46 (8)
Ar—P—Cy C18—P1—C19 98.31 (8), 97.03 (8)
     
Selected torsional angles    
Biar­yl C3—C4—C13—C14 82.6 (2), 73.2 (2)
Biar­yl C3—C4—C13—C18 97.6 (2), 105.8 (2)
Biar­yl C5—C4—C13—C14 96.1 (2), 103.8 (2)
Biar­yl C5—C4—C13—C18 83.7 (2), 77.2 (2)

Table 2
Experimental details

Crystal data
Chemical formula C30H43O2P
Mr 466.61
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.6160 (4), 15.8209 (7), 19.0324 (9)
α, β, γ (°) 71.2052 (8), 85.1144 (8), 87.9801 (9)
V3) 2731.0 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.12
Crystal size (mm) 0.42 × 0.24 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS2016/2; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.687, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 55802, 9733, 7694
Rint 0.044
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.116, 1.05
No. of reflections 9733
No. of parameters 603
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.49, −0.27
Computer programs: APEX3 and SAINT (Bruker, 2015[Bruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).
[Figure 1]
Figure 1
Ellipsoid plot (50% probability ellipsoids) of RuPhos. Hydrogen atoms are omitted for clarity.

The C—C bond lengths (Table S3) in the arene rings differ minimally, ranging from 1.385 (2) to 1.402 (2) Å. The P—Csp2 and P—Csp3 bond lengths (Table 1[link]) were observed to vary minimally between RuPhos A and RuPhos B. The P—CAr bond length (P1B—C18B) is 1.848 (2) Å and it is comparable to the previously reported P-–CAr bond lengths in PPh3 (Samouei et al., 2014[Samouei, H., Miloserdov, F. M., Escudero-Adán, E. C. & Grushin, V. V. (2014). Organometallics, 33, 7279-7283.]). As expected, the P—CCy bond lengths are somewhat longer [P1B—C19B: 1.877 (2) Å; P1B—C25B: 1.862 (2) Å] and comparable to those observed in PCy3 (Davies et al., 1991[Davies, J. A., Dutremez, S. & Pinkerton, A. A. (1991). Inorg. Chem. 30, 2380-2387.]). The Cy(C25B)—P1B—Cy(19B) angle is 105.46 (8)°. The two CAr—P—CCy angles are 97.03 (8)° (C18B—P1B—C19B) and 101.86 (8)° (C18B—P1B—C25B). The cyclo­hexyl rings each adopt a chair conformation relative to P1B and are in an asymmetric orientation relative to the biaryl substituent. No notable inter­actions between the cyclo­hexyl rings and other atoms within RuPhos are observed. Additional electron density close to the phospho­rus is resolved and assigned to a lone pair rather than a light atom based on its proximity to the phospho­rous atom.

The Tolman cone angle qu­anti­fies steric and electronic effects of phosphine ligands (Tolman, 1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]) and is defined as the angle from a hypothetical metal M located 2.28 Å from the phospho­rus atom to the van der Waals radii of the outermost atoms of the phosphine ligand. Half angles are defined by the angle between the M—P bond and the line between M—Hi, where Hi is the outermost atom on the substituent, calculated as:

θi = ai + sin −1(rH/di)

where θi is the angle defined between M—Hi and M—P and di is the distance between M and Hi (Müller & Mingos, 1995[Müller, T. E. & Mingos, D. M. P. (1995). Transition Met. Chem. 20, 533-539.]). For unligated RuPhos, the computed Tolman cone angle is 201.53° (Table S5). For comparison, the cone angle for Pd–RuPhos is 198.06° (Arrechea & Buchwald, 2016[Arrechea, P. L. & Buchwald, S. L. (2016). J. Am. Chem. Soc. 138, 12486-12493.]). The RuPhos cone angle is larger than those found in PCy3 (170°) and PPh3 (145°) (Jover & Cirera, 2019[Jover, J. & Cirera, J. (2019). Dalton Trans. 48, 15036-15048.]) and is attributed to the steric profile of the biaryl substituent. The cone angle of free RuPhos is larger than the cone angle of Pd–RuPhos, consistent with slight modification of the P hybridization accompanying complexation to the Pd center.

3. Supra­molecular features

The crystal packing of RuPhos follows a parallelepiped geometry (Fig. 2[link]), showing two types of inter­molecular channel-like inter­faces, which alternate in parallel planes. In the first type of inter­face channel, cyclo­hexyl substituents from different RuPhos mol­ecules face towards each other. The distance between cyclo­hexyl rings (Table S6) in different unit cells is less than 4 Å [d(C20A—C22B) = 3.942 (3) Å, d(C20A—C21B) = 3.977 (3) Å], consistent with there being no void in the crystal packing. In the second type of channel, biaryl substituents from different RuPhos mol­ecules arrange themselves in a zigzag offset chain pattern (Fig. S2).

[Figure 2]
Figure 2
Crystal structure of RuPhos assigned to a parallelepiped geometry, viewed down the a axis (Mercury; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). Color scheme: P (orange), C (gray), O (red).

Within the asymmetric unit, RuPhos A and RuPhos B are spaced apart by ca 3 Å, as defined by the distance between the isopropyl units [H9BA⋯H9AC: 2.91839 (9) Å]. No void space is observed in the asymmetric unit as evident by a space-filling model (Fig. S3).

The crystal structure of RuPhos shows consistency in atomic composition and connectivity with the reported structure. Coordination by the phosphine to a metal should occlude equatorial ligands on one side of the metal, though less so than its BrettPhos congener would. The small hindrance of Pd–RuPhos is thought to contribute to its high catalytic activity for hindered secondary amines while the larger hindrance of BrettPhos contributes to its high catalytic activity for primary amines (Arrechea & Buchwald, 2016[Arrechea, P. L. & Buchwald, S. L. (2016). J. Am. Chem. Soc. 138, 12486-12493.]; Tian et al., 2020[Tian, J., Wang, G., Qi, Z. H. & Ma, J. (2020). ACS Omega, 5, 21385-21391.]).

The cone angles of free RuPhos and Pd–RuPhos (Arrechea & Buchwald, 2016[Arrechea, P. L. & Buchwald, S. L. (2016). J. Am. Chem. Soc. 138, 12486-12493.]) measure 201.54 and 198.07°, respectively. They are smaller than that of free BrettPhos and Pd–BrettPhos (Dikundwar et al., 2017[Dikundwar, A. G., Chodon, P., Thomas, S. P. & Bhutani, H. (2017). Cryst. Growth Des. 17, 1982-1990.]; DeAngelis et al., 2015[DeAngelis, A. J., Gildner, P. G., Chow, R. & Colacot, T. J. (2015). J. Org. Chem. 80, 6794-6813.]), which are 220.29 and 204.22°, respectively. Because the proportion of s character in the lone pair of a phosphine ligand is inversely proportional to the cone angle of the ligand (Tolman, 1977[Tolman, C. A. (1977). Chem. Rev. 77, 313-348.]), the smaller Tolman cone angle of RuPhos implies that RuPhos donates less electron density to its coordinated metal than BrettPhos does. This electronic implication of the RuPhos cone angle corroborates calculations that reductive elimination is the rate-limiting step for Pd–RuPhos-catalyzed couplings (Tian et al., 2020[Tian, J., Wang, G., Qi, Z. H. & Ma, J. (2020). ACS Omega, 5, 21385-21391.]).

4. Database survey

The structure of the unligated RuPhos ligand has not been previously published according to a search of the Cambridge Structural Database using ConQuest 2020.3.0 (CSD, version 5.42, November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The structure of metallated PdII RuPhos has been reported (Arrechea & Buchwald, 2016[Arrechea, P. L. & Buchwald, S. L. (2016). J. Am. Chem. Soc. 138, 12486-12493.]).

5. Synthesis and crystallization

RuPhos was purchased from Oakwood Chemical and purified by column chromatography (silica, ethyl acetate). Fractions containing RuPhos were concentrated in vacuo and allowed to stand at room temperature under air with slow evaporation for two weeks in a hexa­nes/ethyl acetate (10:1) mixture. Colorless plates were observed (Fig. S1) and employed for data collection.

No evidence for phosphine oxidation was observed in the final refinement. This is attributed to hindered phosphine rotation and the steric profile of the biaryl substituent (Barder et al., 2007[Barder, T. E. & Buchwald, S. L. (2007). J. Am. Chem. Soc. 129, 5096-5101.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-Dicyclohexylphosphanyl-2',6'-bis(propan-2-yloxy)biphenyl top
Crystal data top
C30H43O2PZ = 4
Mr = 466.61F(000) = 1016
Triclinic, P1Dx = 1.135 Mg m3
a = 9.6160 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 15.8209 (7) ÅCell parameters from 9987 reflections
c = 19.0324 (9) Åθ = 2.2–24.8°
α = 71.2052 (8)°µ = 0.12 mm1
β = 85.1144 (8)°T = 100 K
γ = 87.9801 (9)°Plate, colorless
V = 2731.0 (2) Å30.42 × 0.24 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
7694 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
ω and phi scansθmax = 25.1°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS2016/2; Krause et al., 2015)
h = 1111
Tmin = 0.687, Tmax = 0.745k = 1818
55802 measured reflectionsl = 2222
9733 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0678P)2 + 0.4429P]
where P = (Fo2 + 2Fc2)/3
9733 reflections(Δ/σ)max = 0.001
603 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.27 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. No significant disordering was present.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P1A0.44121 (4)0.24874 (3)0.10395 (2)0.02025 (12)
O1A0.73773 (12)0.26833 (8)0.22546 (7)0.0254 (3)
O2A0.38076 (12)0.46762 (8)0.12987 (7)0.0260 (3)
C1A0.76140 (18)0.49580 (12)0.09137 (10)0.0253 (4)
H1A0.8287970.5382260.0627270.030*
C2A0.80634 (18)0.41479 (12)0.13848 (9)0.0232 (4)
H2A0.9031690.4017170.1420590.028*
C3A0.70763 (17)0.35312 (11)0.18034 (9)0.0205 (4)
C4A0.56474 (17)0.37326 (11)0.17716 (9)0.0201 (4)
C5A0.52256 (17)0.45552 (11)0.12887 (9)0.0212 (4)
C6A0.62045 (18)0.51673 (12)0.08484 (9)0.0238 (4)
H6A0.5915920.5717620.0509580.029*
C7A0.87460 (17)0.24929 (12)0.25305 (9)0.0226 (4)
H7A0.9476890.2681240.2105330.027*
C8A0.8784 (2)0.14893 (12)0.28799 (11)0.0327 (4)
H8AA0.8036220.1304330.3279730.049*
H8AB0.9688560.1305200.3085420.049*
H8AC0.8653370.1207690.2501170.049*
C9A0.8942 (2)0.29824 (13)0.30753 (11)0.0337 (5)
H9AA0.8818240.3625070.2831210.051*
H9AB0.9884360.2864700.3246390.051*
H9AC0.8252440.2775680.3502520.051*
C10A0.32140 (18)0.55063 (11)0.08509 (10)0.0234 (4)
H10A0.3643530.5671200.0327810.028*
C11A0.16772 (18)0.53064 (12)0.08720 (10)0.0286 (4)
H11A0.1575210.4798730.0692110.043*
H11B0.1203510.5830900.0553170.043*
H11C0.1259840.5160230.1384520.043*
C12A0.3421 (2)0.62528 (12)0.11709 (10)0.0281 (4)
H12A0.3021500.6078290.1688010.042*
H12B0.2954240.6796610.0876710.042*
H12C0.4420880.6365190.1154530.042*
C13A0.45947 (16)0.30853 (11)0.22582 (9)0.0189 (4)
C14A0.42997 (18)0.30783 (12)0.29927 (9)0.0244 (4)
H14A0.4784090.3472590.3169830.029*
C15A0.33181 (18)0.25092 (12)0.34640 (9)0.0243 (4)
H15A0.3123270.2514730.3960330.029*
C16A0.26173 (17)0.19284 (12)0.32077 (9)0.0228 (4)
H16A0.1938530.1534560.3528350.027*
C17A0.29094 (17)0.19236 (11)0.24816 (9)0.0219 (4)
H17A0.2423640.1523740.2311170.026*
C18A0.39021 (16)0.24941 (11)0.19962 (9)0.0191 (4)
C19A0.56208 (17)0.14958 (11)0.12748 (9)0.0225 (4)
H19A0.6234160.1588770.1641870.027*
C20A0.49358 (18)0.05907 (12)0.16617 (11)0.0277 (4)
H20A0.4305880.0460870.1324770.033*
H20B0.4366230.0612080.2114260.033*
C21A0.6032 (2)0.01574 (13)0.18785 (12)0.0336 (5)
H21A0.6606530.0058160.2251780.040*
H21B0.5556750.0738170.2107010.040*
C22A0.6969 (2)0.01855 (13)0.12017 (12)0.0358 (5)
H22A0.7688570.0657670.1357020.043*
H22B0.6406850.0332740.0845210.043*
C23A0.7672 (2)0.07093 (14)0.08252 (11)0.0343 (5)
H23A0.8245610.0685690.0374610.041*
H23B0.8301920.0826950.1167690.041*
C24A0.66063 (19)0.14738 (14)0.06047 (10)0.0317 (4)
H24A0.7104520.2048850.0396980.038*
H24B0.6054550.1398400.0213230.038*
C25A0.27731 (17)0.20963 (11)0.07905 (9)0.0208 (4)
H25A0.2479720.1520250.1175650.025*
C26A0.16401 (17)0.28097 (11)0.07721 (9)0.0228 (4)
H26A0.1476610.2874110.1273040.027*
H26B0.1970140.3390670.0421420.027*
C27A0.02658 (18)0.25724 (13)0.05328 (10)0.0272 (4)
H27A0.0428760.3054460.0514840.033*
H27B0.0104780.2014450.0902210.033*
C28A0.04904 (19)0.24489 (13)0.02343 (10)0.0287 (4)
H28A0.0395010.2262910.0368630.034*
H28B0.0770980.3023880.0612130.034*
C29A0.16146 (18)0.17469 (12)0.02343 (10)0.0265 (4)
H29A0.1784020.1706590.0743020.032*
H29B0.1280800.1158110.0100160.032*
C30A0.29839 (18)0.19636 (12)0.00209 (9)0.0232 (4)
H30A0.3379470.2514080.0348150.028*
H30B0.3661190.1470970.0044640.028*
P1B1.03926 (4)0.27391 (3)0.64698 (2)0.01980 (12)
O1B0.73186 (12)0.17442 (8)0.56160 (6)0.0247 (3)
O2B1.08772 (12)0.37786 (8)0.45063 (6)0.0236 (3)
C1B0.70695 (18)0.41179 (12)0.45028 (9)0.0243 (4)
H1B0.6395250.4570950.4316520.029*
C2B0.66229 (18)0.32608 (12)0.49049 (9)0.0232 (4)
H2B0.5656220.3125110.4991340.028*
C3B0.76187 (17)0.26046 (11)0.51789 (9)0.0198 (4)
C4B0.90492 (17)0.27906 (11)0.50426 (9)0.0185 (4)
C5B0.94642 (17)0.36631 (11)0.46270 (9)0.0201 (4)
C6B0.84761 (18)0.43300 (12)0.43657 (9)0.0238 (4)
H6B0.8760680.4923220.4096870.029*
C7B0.59642 (17)0.13792 (12)0.56147 (10)0.0239 (4)
H7B0.5217950.1790880.5715360.029*
C8B0.59304 (19)0.05138 (13)0.62519 (11)0.0335 (5)
H8BA0.6676110.0116870.6157040.050*
H8BB0.5025080.0227050.6298100.050*
H8BC0.6067870.0634890.6714670.050*
C9B0.5798 (2)0.12544 (13)0.48696 (11)0.0323 (4)
H9BA0.5899320.1831350.4474100.049*
H9BB0.4870890.1012980.4874380.049*
H9BC0.6514760.0838190.4778550.049*
C10B1.14318 (18)0.46379 (11)0.40493 (9)0.0244 (4)
H10B1.0935930.5123420.4203880.029*
C11B1.29504 (19)0.46067 (13)0.42091 (10)0.0283 (4)
H11D1.3015100.4505030.4741170.042*
H11E1.3392500.5175060.3919980.042*
H11F1.3427330.4119760.4069590.042*
C12B1.1272 (2)0.47910 (13)0.32287 (10)0.0301 (4)
H12D1.1786410.4325850.3074740.045*
H12E1.1645660.5377740.2932360.045*
H12F1.0281940.4767970.3150470.045*
C13B1.01048 (16)0.20602 (11)0.53049 (9)0.0177 (3)
C14B1.03032 (17)0.14347 (11)0.49285 (9)0.0215 (4)
H14B0.9762730.1479100.4522600.026*
C15B1.12756 (17)0.07502 (11)0.51373 (9)0.0227 (4)
H15B1.1397710.0326580.4878680.027*
C16B1.20710 (17)0.06889 (11)0.57289 (9)0.0224 (4)
H16B1.2753210.0228940.5870280.027*
C17B1.18669 (17)0.13003 (11)0.61122 (9)0.0217 (4)
H17B1.2415770.1253130.6515510.026*
C18B1.08682 (17)0.19868 (11)0.59176 (9)0.0194 (4)
C19B0.91541 (17)0.19627 (11)0.71832 (9)0.0223 (4)
H19B0.8567800.1699660.6898000.027*
C20B0.98146 (18)0.11693 (12)0.77526 (10)0.0286 (4)
H20C1.0410140.0827560.7487300.034*
H20D1.0417880.1392640.8049670.034*
C21B0.8713 (2)0.05504 (13)0.82749 (11)0.0345 (5)
H21C0.8173800.0275020.7986130.041*
H21D0.9180130.0065700.8651780.041*
C22B0.7725 (2)0.10601 (14)0.86646 (11)0.0353 (5)
H22C0.6994490.0652580.8979910.042*
H22D0.8249110.1287450.8991270.042*
C23B0.70455 (19)0.18366 (13)0.80992 (11)0.0320 (4)
H23C0.6435270.2172290.8363790.038*
H23D0.6455040.1603590.7802690.038*
C24B0.81342 (18)0.24663 (12)0.75773 (10)0.0272 (4)
H24C0.8660910.2748360.7866430.033*
H24D0.7658100.2945590.7200360.033*
C25B1.20122 (17)0.27172 (11)0.69469 (9)0.0208 (4)
H25B1.2281560.2083420.7205200.025*
C26B1.31797 (17)0.31641 (12)0.63462 (9)0.0222 (4)
H26C1.3345580.2816860.5997000.027*
H26D1.2875210.3772840.6059190.027*
C27B1.45393 (18)0.32211 (13)0.66890 (10)0.0282 (4)
H27C1.5249930.3534010.6290890.034*
H27D1.4892930.2611250.6936940.034*
C28B1.4312 (2)0.37213 (14)0.72561 (10)0.0321 (4)
H28C1.5192600.3723670.7489480.039*
H28D1.4046050.4348620.6999140.039*
C29B1.31674 (19)0.32821 (13)0.78577 (10)0.0289 (4)
H29C1.3004060.3635040.8202690.035*
H29D1.3476920.2675900.8147890.035*
C30B1.18020 (18)0.32175 (12)0.75184 (9)0.0245 (4)
H30C1.1441030.3826140.7273170.029*
H30D1.1098510.2902480.7919830.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P1A0.0213 (2)0.0221 (2)0.0174 (2)0.00280 (18)0.00069 (17)0.00635 (18)
O1A0.0190 (6)0.0217 (7)0.0317 (7)0.0014 (5)0.0075 (5)0.0017 (5)
O2A0.0212 (6)0.0212 (7)0.0308 (7)0.0014 (5)0.0038 (5)0.0016 (5)
C1A0.0266 (9)0.0263 (10)0.0233 (9)0.0079 (8)0.0009 (7)0.0082 (8)
C2A0.0209 (9)0.0256 (10)0.0242 (9)0.0019 (7)0.0023 (7)0.0092 (8)
C3A0.0228 (9)0.0212 (9)0.0187 (8)0.0007 (7)0.0051 (7)0.0070 (7)
C4A0.0230 (9)0.0201 (9)0.0188 (8)0.0012 (7)0.0026 (7)0.0081 (7)
C5A0.0212 (9)0.0226 (9)0.0214 (9)0.0003 (7)0.0021 (7)0.0092 (7)
C6A0.0287 (10)0.0217 (9)0.0206 (9)0.0019 (7)0.0018 (7)0.0058 (7)
C7A0.0172 (8)0.0266 (10)0.0229 (9)0.0015 (7)0.0047 (7)0.0059 (8)
C8A0.0289 (10)0.0289 (11)0.0387 (11)0.0028 (8)0.0109 (8)0.0068 (9)
C9A0.0408 (11)0.0334 (11)0.0284 (10)0.0036 (9)0.0133 (9)0.0099 (9)
C10A0.0273 (9)0.0200 (9)0.0209 (9)0.0036 (7)0.0048 (7)0.0035 (7)
C11A0.0271 (10)0.0286 (10)0.0315 (10)0.0048 (8)0.0072 (8)0.0109 (8)
C12A0.0328 (10)0.0269 (10)0.0256 (10)0.0008 (8)0.0022 (8)0.0099 (8)
C13A0.0183 (8)0.0171 (9)0.0202 (8)0.0036 (7)0.0040 (7)0.0043 (7)
C14A0.0260 (9)0.0259 (10)0.0235 (9)0.0003 (7)0.0045 (7)0.0103 (8)
C15A0.0264 (9)0.0293 (10)0.0173 (9)0.0024 (8)0.0030 (7)0.0076 (8)
C16A0.0206 (9)0.0240 (9)0.0200 (9)0.0010 (7)0.0011 (7)0.0025 (7)
C17A0.0212 (9)0.0223 (9)0.0228 (9)0.0019 (7)0.0037 (7)0.0075 (7)
C18A0.0192 (8)0.0204 (9)0.0171 (8)0.0029 (7)0.0031 (7)0.0049 (7)
C19A0.0211 (9)0.0258 (10)0.0217 (9)0.0004 (7)0.0033 (7)0.0089 (7)
C20A0.0243 (9)0.0233 (10)0.0349 (10)0.0005 (7)0.0029 (8)0.0085 (8)
C21A0.0304 (10)0.0241 (10)0.0454 (12)0.0001 (8)0.0067 (9)0.0091 (9)
C22A0.0331 (11)0.0382 (12)0.0455 (12)0.0123 (9)0.0159 (9)0.0246 (10)
C23A0.0276 (10)0.0470 (13)0.0282 (10)0.0096 (9)0.0017 (8)0.0130 (9)
C24A0.0287 (10)0.0406 (12)0.0240 (10)0.0065 (9)0.0001 (8)0.0092 (9)
C25A0.0229 (9)0.0207 (9)0.0193 (9)0.0012 (7)0.0018 (7)0.0068 (7)
C26A0.0263 (9)0.0224 (9)0.0197 (9)0.0015 (7)0.0021 (7)0.0070 (7)
C27A0.0252 (9)0.0332 (11)0.0260 (10)0.0055 (8)0.0063 (7)0.0127 (8)
C28A0.0260 (10)0.0339 (11)0.0284 (10)0.0035 (8)0.0081 (8)0.0122 (8)
C29A0.0299 (10)0.0300 (10)0.0231 (9)0.0006 (8)0.0053 (7)0.0127 (8)
C30A0.0245 (9)0.0255 (10)0.0224 (9)0.0020 (7)0.0047 (7)0.0110 (8)
P1B0.0204 (2)0.0215 (2)0.0189 (2)0.00027 (18)0.00450 (17)0.00770 (18)
O1B0.0187 (6)0.0236 (7)0.0270 (7)0.0037 (5)0.0050 (5)0.0001 (5)
O2B0.0223 (6)0.0189 (6)0.0257 (6)0.0036 (5)0.0004 (5)0.0021 (5)
C1B0.0262 (9)0.0231 (10)0.0243 (9)0.0051 (7)0.0043 (7)0.0083 (8)
C2B0.0205 (9)0.0282 (10)0.0216 (9)0.0009 (7)0.0032 (7)0.0086 (8)
C3B0.0234 (9)0.0197 (9)0.0166 (8)0.0019 (7)0.0022 (7)0.0057 (7)
C4B0.0216 (9)0.0205 (9)0.0152 (8)0.0001 (7)0.0037 (6)0.0078 (7)
C5B0.0226 (9)0.0218 (9)0.0173 (8)0.0015 (7)0.0019 (7)0.0078 (7)
C6B0.0295 (10)0.0184 (9)0.0225 (9)0.0001 (7)0.0023 (7)0.0049 (7)
C7B0.0153 (8)0.0259 (10)0.0280 (9)0.0026 (7)0.0007 (7)0.0049 (8)
C8B0.0259 (10)0.0323 (11)0.0360 (11)0.0073 (8)0.0033 (8)0.0011 (9)
C9B0.0337 (11)0.0306 (11)0.0344 (11)0.0029 (8)0.0074 (8)0.0114 (9)
C10B0.0308 (10)0.0171 (9)0.0234 (9)0.0063 (7)0.0022 (7)0.0044 (7)
C11B0.0302 (10)0.0286 (10)0.0269 (10)0.0099 (8)0.0027 (8)0.0101 (8)
C12B0.0358 (11)0.0266 (10)0.0250 (10)0.0033 (8)0.0004 (8)0.0048 (8)
C13B0.0183 (8)0.0167 (9)0.0167 (8)0.0039 (7)0.0002 (6)0.0032 (7)
C14B0.0224 (9)0.0241 (9)0.0177 (8)0.0049 (7)0.0016 (7)0.0059 (7)
C15B0.0250 (9)0.0202 (9)0.0236 (9)0.0025 (7)0.0007 (7)0.0086 (7)
C16B0.0212 (9)0.0184 (9)0.0255 (9)0.0003 (7)0.0018 (7)0.0041 (7)
C17B0.0198 (9)0.0239 (9)0.0208 (9)0.0013 (7)0.0058 (7)0.0053 (7)
C18B0.0186 (8)0.0195 (9)0.0199 (8)0.0033 (7)0.0003 (7)0.0061 (7)
C19B0.0202 (9)0.0247 (9)0.0242 (9)0.0017 (7)0.0044 (7)0.0098 (8)
C20B0.0245 (9)0.0296 (10)0.0278 (10)0.0016 (8)0.0026 (8)0.0036 (8)
C21B0.0325 (11)0.0329 (11)0.0313 (11)0.0061 (9)0.0015 (8)0.0003 (9)
C22B0.0346 (11)0.0451 (13)0.0270 (10)0.0155 (9)0.0035 (8)0.0124 (9)
C23B0.0267 (10)0.0392 (12)0.0353 (11)0.0069 (8)0.0036 (8)0.0200 (9)
C24B0.0231 (9)0.0311 (10)0.0300 (10)0.0011 (8)0.0000 (8)0.0138 (8)
C25B0.0212 (9)0.0224 (9)0.0194 (9)0.0008 (7)0.0036 (7)0.0069 (7)
C26B0.0241 (9)0.0236 (9)0.0191 (9)0.0035 (7)0.0017 (7)0.0067 (7)
C27B0.0232 (9)0.0362 (11)0.0243 (9)0.0073 (8)0.0010 (7)0.0081 (8)
C28B0.0306 (10)0.0409 (12)0.0262 (10)0.0132 (9)0.0050 (8)0.0105 (9)
C29B0.0308 (10)0.0378 (11)0.0199 (9)0.0059 (8)0.0041 (8)0.0108 (8)
C30B0.0251 (9)0.0303 (10)0.0201 (9)0.0047 (8)0.0026 (7)0.0102 (8)
Geometric parameters (Å, º) top
P1A—C18A1.8482 (16)P1B—C18B1.8482 (17)
P1A—C25A1.8645 (17)P1B—C25B1.8624 (17)
P1A—C19A1.8762 (17)P1B—C19B1.8771 (17)
O1A—C3A1.376 (2)O1B—C3B1.373 (2)
O1A—C7A1.4444 (19)O1B—C7B1.4437 (19)
O2A—C5A1.370 (2)O2B—C5B1.367 (2)
O2A—C10A1.444 (2)O2B—C10B1.449 (2)
C1A—C2A1.386 (3)C1B—C2B1.388 (2)
C1A—C6A1.390 (2)C1B—C6B1.388 (2)
C1A—H1A0.9500C1B—H1B0.9500
C2A—C3A1.387 (2)C2B—C3B1.390 (2)
C2A—H2A0.9500C2B—H2B0.9500
C3A—C4A1.401 (2)C3B—C4B1.402 (2)
C4A—C5A1.399 (2)C4B—C5B1.404 (2)
C4A—C13A1.495 (2)C4B—C13B1.499 (2)
C5A—C6A1.390 (2)C5B—C6B1.391 (2)
C6A—H6A0.9500C6B—H6B0.9500
C7A—C9A1.507 (2)C7B—C8B1.508 (2)
C7A—C8A1.511 (2)C7B—C9B1.516 (3)
C7A—H7A1.0000C7B—H7B1.0000
C8A—H8AA0.9800C8B—H8BA0.9800
C8A—H8AB0.9800C8B—H8BB0.9800
C8A—H8AC0.9800C8B—H8BC0.9800
C9A—H9AA0.9800C9B—H9BA0.9800
C9A—H9AB0.9800C9B—H9BB0.9800
C9A—H9AC0.9800C9B—H9BC0.9800
C10A—C11A1.517 (2)C10B—C11B1.513 (2)
C10A—C12A1.518 (2)C10B—C12B1.522 (2)
C10A—H10A1.0000C10B—H10B1.0000
C11A—H11A0.9800C11B—H11D0.9800
C11A—H11B0.9800C11B—H11E0.9800
C11A—H11C0.9800C11B—H11F0.9800
C12A—H12A0.9800C12B—H12D0.9800
C12A—H12B0.9800C12B—H12E0.9800
C12A—H12C0.9800C12B—H12F0.9800
C13A—C14A1.399 (2)C13B—C14B1.396 (2)
C13A—C18A1.403 (2)C13B—C18B1.402 (2)
C14A—C15A1.379 (2)C14B—C15B1.385 (2)
C14A—H14A0.9500C14B—H14B0.9500
C15A—C16A1.387 (2)C15B—C16B1.390 (2)
C15A—H15A0.9500C15B—H15B0.9500
C16A—C17A1.389 (2)C16B—C17B1.387 (2)
C16A—H16A0.9500C16B—H16B0.9500
C17A—C18A1.397 (2)C17B—C18B1.402 (2)
C17A—H17A0.9500C17B—H17B0.9500
C19A—C20A1.527 (2)C19B—C20B1.529 (2)
C19A—C24A1.532 (2)C19B—C24B1.538 (2)
C19A—H19A1.0000C19B—H19B1.0000
C20A—C21A1.534 (3)C20B—C21B1.528 (2)
C20A—H20A0.9900C20B—H20C0.9900
C20A—H20B0.9900C20B—H20D0.9900
C21A—C22A1.520 (3)C21B—C22B1.521 (3)
C21A—H21A0.9900C21B—H21C0.9900
C21A—H21B0.9900C21B—H21D0.9900
C22A—C23A1.518 (3)C22B—C23B1.518 (3)
C22A—H22A0.9900C22B—H22C0.9900
C22A—H22B0.9900C22B—H22D0.9900
C23A—C24A1.532 (3)C23B—C24B1.528 (2)
C23A—H23A0.9900C23B—H23C0.9900
C23A—H23B0.9900C23B—H23D0.9900
C24A—H24A0.9900C24B—H24C0.9900
C24A—H24B0.9900C24B—H24D0.9900
C25A—C26A1.535 (2)C25B—C30B1.535 (2)
C25A—C30A1.541 (2)C25B—C26B1.544 (2)
C25A—H25A1.0000C25B—H25B1.0000
C26A—C27A1.531 (2)C26B—C27B1.528 (2)
C26A—H26A0.9900C26B—H26C0.9900
C26A—H26B0.9900C26B—H26D0.9900
C27A—C28A1.531 (2)C27B—C28B1.529 (3)
C27A—H27A0.9900C27B—H27C0.9900
C27A—H27B0.9900C27B—H27D0.9900
C28A—C29A1.522 (2)C28B—C29B1.527 (2)
C28A—H28A0.9900C28B—H28C0.9900
C28A—H28B0.9900C28B—H28D0.9900
C29A—C30A1.528 (2)C29B—C30B1.532 (2)
C29A—H29A0.9900C29B—H29C0.9900
C29A—H29B0.9900C29B—H29D0.9900
C30A—H30A0.9900C30B—H30C0.9900
C30A—H30B0.9900C30B—H30D0.9900
C18A—P1A—C25A101.31 (7)C18B—P1B—C25B101.86 (8)
C18A—P1A—C19A98.31 (7)C18B—P1B—C19B97.03 (7)
C25A—P1A—C19A106.07 (8)C25B—P1B—C19B105.46 (8)
C3A—O1A—C7A119.19 (12)C3B—O1B—C7B119.71 (13)
C5A—O2A—C10A120.37 (13)C5B—O2B—C10B119.60 (13)
C2A—C1A—C6A121.85 (16)C2B—C1B—C6B121.67 (16)
C2A—C1A—H1A119.1C2B—C1B—H1B119.2
C6A—C1A—H1A119.1C6B—C1B—H1B119.2
C1A—C2A—C3A118.90 (16)C1B—C2B—C3B118.66 (16)
C1A—C2A—H2A120.6C1B—C2B—H2B120.7
C3A—C2A—H2A120.6C3B—C2B—H2B120.7
O1A—C3A—C2A124.80 (15)O1B—C3B—C2B124.58 (15)
O1A—C3A—C4A114.40 (14)O1B—C3B—C4B114.10 (14)
C2A—C3A—C4A120.76 (15)C2B—C3B—C4B121.29 (15)
C5A—C4A—C3A118.97 (15)C3B—C4B—C5B118.52 (15)
C5A—C4A—C13A120.65 (15)C3B—C4B—C13B120.34 (14)
C3A—C4A—C13A120.36 (15)C5B—C4B—C13B121.08 (14)
O2A—C5A—C6A125.33 (15)O2B—C5B—C6B124.82 (15)
O2A—C5A—C4A113.90 (14)O2B—C5B—C4B114.52 (14)
C6A—C5A—C4A120.76 (16)C6B—C5B—C4B120.66 (15)
C1A—C6A—C5A118.68 (16)C1B—C6B—C5B119.18 (16)
C1A—C6A—H6A120.7C1B—C6B—H6B120.4
C5A—C6A—H6A120.7C5B—C6B—H6B120.4
O1A—C7A—C9A110.12 (14)O1B—C7B—C8B104.22 (14)
O1A—C7A—C8A104.46 (13)O1B—C7B—C9B110.32 (14)
C9A—C7A—C8A113.08 (15)C8B—C7B—C9B113.21 (16)
O1A—C7A—H7A109.7O1B—C7B—H7B109.6
C9A—C7A—H7A109.7C8B—C7B—H7B109.6
C8A—C7A—H7A109.7C9B—C7B—H7B109.6
C7A—C8A—H8AA109.5C7B—C8B—H8BA109.5
C7A—C8A—H8AB109.5C7B—C8B—H8BB109.5
H8AA—C8A—H8AB109.5H8BA—C8B—H8BB109.5
C7A—C8A—H8AC109.5C7B—C8B—H8BC109.5
H8AA—C8A—H8AC109.5H8BA—C8B—H8BC109.5
H8AB—C8A—H8AC109.5H8BB—C8B—H8BC109.5
C7A—C9A—H9AA109.5C7B—C9B—H9BA109.5
C7A—C9A—H9AB109.5C7B—C9B—H9BB109.5
H9AA—C9A—H9AB109.5H9BA—C9B—H9BB109.5
C7A—C9A—H9AC109.5C7B—C9B—H9BC109.5
H9AA—C9A—H9AC109.5H9BA—C9B—H9BC109.5
H9AB—C9A—H9AC109.5H9BB—C9B—H9BC109.5
O2A—C10A—C11A104.29 (13)O2B—C10B—C11B105.04 (14)
O2A—C10A—C12A111.20 (14)O2B—C10B—C12B111.04 (14)
C11A—C10A—C12A111.12 (15)C11B—C10B—C12B111.61 (15)
O2A—C10A—H10A110.0O2B—C10B—H10B109.7
C11A—C10A—H10A110.0C11B—C10B—H10B109.7
C12A—C10A—H10A110.0C12B—C10B—H10B109.7
C10A—C11A—H11A109.5C10B—C11B—H11D109.5
C10A—C11A—H11B109.5C10B—C11B—H11E109.5
H11A—C11A—H11B109.5H11D—C11B—H11E109.5
C10A—C11A—H11C109.5C10B—C11B—H11F109.5
H11A—C11A—H11C109.5H11D—C11B—H11F109.5
H11B—C11A—H11C109.5H11E—C11B—H11F109.5
C10A—C12A—H12A109.5C10B—C12B—H12D109.5
C10A—C12A—H12B109.5C10B—C12B—H12E109.5
H12A—C12A—H12B109.5H12D—C12B—H12E109.5
C10A—C12A—H12C109.5C10B—C12B—H12F109.5
H12A—C12A—H12C109.5H12D—C12B—H12F109.5
H12B—C12A—H12C109.5H12E—C12B—H12F109.5
C14A—C13A—C18A119.78 (15)C14B—C13B—C18B119.97 (15)
C14A—C13A—C4A118.46 (15)C14B—C13B—C4B118.23 (14)
C18A—C13A—C4A121.76 (14)C18B—C13B—C4B121.79 (14)
C15A—C14A—C13A121.16 (16)C15B—C14B—C13B121.06 (16)
C15A—C14A—H14A119.4C15B—C14B—H14B119.5
C13A—C14A—H14A119.4C13B—C14B—H14B119.5
C14A—C15A—C16A119.48 (16)C14B—C15B—C16B119.40 (16)
C14A—C15A—H15A120.3C14B—C15B—H15B120.3
C16A—C15A—H15A120.3C16B—C15B—H15B120.3
C15A—C16A—C17A119.91 (15)C17B—C16B—C15B119.89 (16)
C15A—C16A—H16A120.0C17B—C16B—H16B120.1
C17A—C16A—H16A120.0C15B—C16B—H16B120.1
C16A—C17A—C18A121.45 (16)C16B—C17B—C18B121.45 (16)
C16A—C17A—H17A119.3C16B—C17B—H17B119.3
C18A—C17A—H17A119.3C18B—C17B—H17B119.3
C17A—C18A—C13A118.21 (15)C13B—C18B—C17B118.16 (15)
C17A—C18A—P1A123.97 (13)C13B—C18B—P1B117.90 (12)
C13A—C18A—P1A117.78 (12)C17B—C18B—P1B123.72 (13)
C20A—C19A—C24A111.30 (15)C20B—C19B—C24B110.52 (15)
C20A—C19A—P1A116.03 (12)C20B—C19B—P1B116.21 (12)
C24A—C19A—P1A112.09 (12)C24B—C19B—P1B111.95 (12)
C20A—C19A—H19A105.5C20B—C19B—H19B105.8
C24A—C19A—H19A105.5C24B—C19B—H19B105.8
P1A—C19A—H19A105.5P1B—C19B—H19B105.8
C19A—C20A—C21A111.30 (14)C21B—C20B—C19B111.89 (15)
C19A—C20A—H20A109.4C21B—C20B—H20C109.2
C21A—C20A—H20A109.4C19B—C20B—H20C109.2
C19A—C20A—H20B109.4C21B—C20B—H20D109.2
C21A—C20A—H20B109.4C19B—C20B—H20D109.2
H20A—C20A—H20B108.0H20C—C20B—H20D107.9
C22A—C21A—C20A110.94 (16)C22B—C21B—C20B111.02 (16)
C22A—C21A—H21A109.5C22B—C21B—H21C109.4
C20A—C21A—H21A109.5C20B—C21B—H21C109.4
C22A—C21A—H21B109.5C22B—C21B—H21D109.4
C20A—C21A—H21B109.5C20B—C21B—H21D109.4
H21A—C21A—H21B108.0H21C—C21B—H21D108.0
C23A—C22A—C21A110.46 (16)C23B—C22B—C21B110.62 (16)
C23A—C22A—H22A109.6C23B—C22B—H22C109.5
C21A—C22A—H22A109.6C21B—C22B—H22C109.5
C23A—C22A—H22B109.6C23B—C22B—H22D109.5
C21A—C22A—H22B109.6C21B—C22B—H22D109.5
H22A—C22A—H22B108.1H22C—C22B—H22D108.1
C22A—C23A—C24A111.86 (16)C22B—C23B—C24B111.55 (15)
C22A—C23A—H23A109.2C22B—C23B—H23C109.3
C24A—C23A—H23A109.2C24B—C23B—H23C109.3
C22A—C23A—H23B109.2C22B—C23B—H23D109.3
C24A—C23A—H23B109.2C24B—C23B—H23D109.3
H23A—C23A—H23B107.9H23C—C23B—H23D108.0
C19A—C24A—C23A111.26 (15)C23B—C24B—C19B111.15 (15)
C19A—C24A—H24A109.4C23B—C24B—H24C109.4
C23A—C24A—H24A109.4C19B—C24B—H24C109.4
C19A—C24A—H24B109.4C23B—C24B—H24D109.4
C23A—C24A—H24B109.4C19B—C24B—H24D109.4
H24A—C24A—H24B108.0H24C—C24B—H24D108.0
C26A—C25A—C30A109.39 (14)C30B—C25B—C26B109.85 (14)
C26A—C25A—P1A107.90 (11)C30B—C25B—P1B111.27 (11)
C30A—C25A—P1A110.88 (11)C26B—C25B—P1B107.78 (11)
C26A—C25A—H25A109.5C30B—C25B—H25B109.3
C30A—C25A—H25A109.5C26B—C25B—H25B109.3
P1A—C25A—H25A109.5P1B—C25B—H25B109.3
C27A—C26A—C25A111.96 (14)C27B—C26B—C25B111.70 (14)
C27A—C26A—H26A109.2C27B—C26B—H26C109.3
C25A—C26A—H26A109.2C25B—C26B—H26C109.3
C27A—C26A—H26B109.2C27B—C26B—H26D109.3
C25A—C26A—H26B109.2C25B—C26B—H26D109.3
H26A—C26A—H26B107.9H26C—C26B—H26D107.9
C26A—C27A—C28A110.49 (14)C26B—C27B—C28B110.84 (15)
C26A—C27A—H27A109.6C26B—C27B—H27C109.5
C28A—C27A—H27A109.6C28B—C27B—H27C109.5
C26A—C27A—H27B109.6C26B—C27B—H27D109.5
C28A—C27A—H27B109.6C28B—C27B—H27D109.5
H27A—C27A—H27B108.1H27C—C27B—H27D108.1
C29A—C28A—C27A110.67 (15)C29B—C28B—C27B110.81 (15)
C29A—C28A—H28A109.5C29B—C28B—H28C109.5
C27A—C28A—H28A109.5C27B—C28B—H28C109.5
C29A—C28A—H28B109.5C29B—C28B—H28D109.5
C27A—C28A—H28B109.5C27B—C28B—H28D109.5
H28A—C28A—H28B108.1H28C—C28B—H28D108.1
C28A—C29A—C30A112.09 (15)C28B—C29B—C30B111.36 (15)
C28A—C29A—H29A109.2C28B—C29B—H29C109.4
C30A—C29A—H29A109.2C30B—C29B—H29C109.4
C28A—C29A—H29B109.2C28B—C29B—H29D109.4
C30A—C29A—H29B109.2C30B—C29B—H29D109.4
H29A—C29A—H29B107.9H29C—C29B—H29D108.0
C29A—C30A—C25A111.79 (14)C29B—C30B—C25B111.57 (14)
C29A—C30A—H30A109.3C29B—C30B—H30C109.3
C25A—C30A—H30A109.3C25B—C30B—H30C109.3
C29A—C30A—H30B109.3C29B—C30B—H30D109.3
C25A—C30A—H30B109.3C25B—C30B—H30D109.3
H30A—C30A—H30B107.9H30C—C30B—H30D108.0
C6A—C1A—C2A—C3A0.2 (3)C6B—C1B—C2B—C3B0.4 (3)
C7A—O1A—C3A—C2A22.6 (2)C7B—O1B—C3B—C2B21.1 (2)
C7A—O1A—C3A—C4A159.49 (14)C7B—O1B—C3B—C4B160.94 (14)
C1A—C2A—C3A—O1A175.60 (16)C1B—C2B—C3B—O1B176.52 (15)
C1A—C2A—C3A—C4A2.2 (2)C1B—C2B—C3B—C4B1.3 (2)
O1A—C3A—C4A—C5A175.61 (14)O1B—C3B—C4B—C5B177.37 (14)
C2A—C3A—C4A—C5A2.4 (2)C2B—C3B—C4B—C5B0.7 (2)
O1A—C3A—C4A—C13A5.6 (2)O1B—C3B—C4B—C13B5.6 (2)
C2A—C3A—C4A—C13A176.36 (15)C2B—C3B—C4B—C13B176.37 (15)
C10A—O2A—C5A—C6A2.7 (2)C10B—O2B—C5B—C6B2.8 (2)
C10A—O2A—C5A—C4A177.65 (14)C10B—O2B—C5B—C4B176.58 (13)
C3A—C4A—C5A—O2A179.42 (14)C3B—C4B—C5B—O2B178.51 (14)
C13A—C4A—C5A—O2A1.8 (2)C13B—C4B—C5B—O2B1.5 (2)
C3A—C4A—C5A—C6A0.3 (2)C3B—C4B—C5B—C6B0.9 (2)
C13A—C4A—C5A—C6A178.46 (15)C13B—C4B—C5B—C6B177.94 (15)
C2A—C1A—C6A—C5A2.2 (3)C2B—C1B—C6B—C5B1.1 (3)
O2A—C5A—C6A—C1A178.38 (16)O2B—C5B—C6B—C1B177.55 (15)
C4A—C5A—C6A—C1A2.0 (2)C4B—C5B—C6B—C1B1.8 (2)
C3A—O1A—C7A—C9A67.99 (18)C3B—O1B—C7B—C8B169.65 (14)
C3A—O1A—C7A—C8A170.30 (14)C3B—O1B—C7B—C9B68.52 (19)
C5A—O2A—C10A—C11A167.36 (14)C5B—O2B—C10B—C11B164.71 (14)
C5A—O2A—C10A—C12A72.79 (19)C5B—O2B—C10B—C12B74.49 (18)
C5A—C4A—C13A—C14A96.12 (19)C3B—C4B—C13B—C14B73.2 (2)
C3A—C4A—C13A—C14A82.6 (2)C5B—C4B—C13B—C14B103.78 (18)
C5A—C4A—C13A—C18A83.7 (2)C3B—C4B—C13B—C18B105.83 (19)
C3A—C4A—C13A—C18A97.6 (2)C5B—C4B—C13B—C18B77.2 (2)
C18A—C13A—C14A—C15A1.1 (3)C18B—C13B—C14B—C15B1.8 (2)
C4A—C13A—C14A—C15A178.67 (16)C4B—C13B—C14B—C15B179.17 (15)
C13A—C14A—C15A—C16A0.5 (3)C13B—C14B—C15B—C16B0.3 (2)
C14A—C15A—C16A—C17A0.1 (3)C14B—C15B—C16B—C17B1.2 (2)
C15A—C16A—C17A—C18A0.0 (3)C15B—C16B—C17B—C18B0.0 (2)
C16A—C17A—C18A—C13A0.7 (2)C14B—C13B—C18B—C17B3.0 (2)
C16A—C17A—C18A—P1A176.77 (13)C4B—C13B—C18B—C17B178.03 (14)
C14A—C13A—C18A—C17A1.2 (2)C14B—C13B—C18B—P1B171.87 (12)
C4A—C13A—C18A—C17A178.58 (15)C4B—C13B—C18B—P1B7.1 (2)
C14A—C13A—C18A—P1A176.40 (12)C16B—C17B—C18B—C13B2.1 (2)
C4A—C13A—C18A—P1A3.8 (2)C16B—C17B—C18B—P1B172.39 (13)
C25A—P1A—C18A—C17A29.19 (16)C25B—P1B—C18B—C13B159.33 (13)
C19A—P1A—C18A—C17A79.14 (15)C19B—P1B—C18B—C13B93.19 (13)
C25A—P1A—C18A—C13A153.34 (13)C25B—P1B—C18B—C17B26.15 (16)
C19A—P1A—C18A—C13A98.32 (13)C19B—P1B—C18B—C17B81.32 (15)
C18A—P1A—C19A—C20A69.43 (14)C18B—P1B—C19B—C20B72.74 (14)
C25A—P1A—C19A—C20A34.95 (15)C25B—P1B—C19B—C20B31.67 (15)
C18A—P1A—C19A—C24A161.19 (13)C18B—P1B—C19B—C24B158.96 (12)
C25A—P1A—C19A—C24A94.43 (14)C25B—P1B—C19B—C24B96.63 (13)
C24A—C19A—C20A—C21A54.5 (2)C24B—C19B—C20B—C21B54.6 (2)
P1A—C19A—C20A—C21A175.70 (13)P1B—C19B—C20B—C21B176.42 (13)
C19A—C20A—C21A—C22A56.6 (2)C19B—C20B—C21B—C22B55.9 (2)
C20A—C21A—C22A—C23A57.2 (2)C20B—C21B—C22B—C23B56.4 (2)
C21A—C22A—C23A—C24A56.6 (2)C21B—C22B—C23B—C24B56.9 (2)
C20A—C19A—C24A—C23A53.4 (2)C22B—C23B—C24B—C19B56.1 (2)
P1A—C19A—C24A—C23A174.79 (13)C20B—C19B—C24B—C23B54.35 (19)
C22A—C23A—C24A—C19A54.8 (2)P1B—C19B—C24B—C23B174.40 (12)
C18A—P1A—C25A—C26A64.78 (12)C18B—P1B—C25B—C30B173.24 (12)
C19A—P1A—C25A—C26A166.96 (11)C19B—P1B—C25B—C30B72.42 (13)
C18A—P1A—C25A—C30A175.44 (12)C18B—P1B—C25B—C26B66.26 (13)
C19A—P1A—C25A—C30A73.26 (13)C19B—P1B—C25B—C26B167.08 (11)
C30A—C25A—C26A—C27A56.37 (18)C30B—C25B—C26B—C27B55.71 (19)
P1A—C25A—C26A—C27A177.09 (11)P1B—C25B—C26B—C27B177.10 (12)
C25A—C26A—C27A—C28A57.73 (19)C25B—C26B—C27B—C28B56.7 (2)
C26A—C27A—C28A—C29A56.0 (2)C26B—C27B—C28B—C29B56.3 (2)
C27A—C28A—C29A—C30A55.3 (2)C27B—C28B—C29B—C30B56.1 (2)
C28A—C29A—C30A—C25A55.2 (2)C28B—C29B—C30B—C25B56.1 (2)
C26A—C25A—C30A—C29A54.59 (19)C26B—C25B—C30B—C29B55.11 (19)
P1A—C25A—C30A—C29A173.47 (12)P1B—C25B—C30B—C29B174.39 (12)
Selected geometric parameters (Å, °) for RuPhos A and RuPhos B top
Two independent molecules of RhPhos are located in the asymmetric unit of RuPhos B.
Bond distances
C—C BiarylC4—C131.495 (2), 1.499 (2)
Ar—PC18—P11.848 (2), 1.848 (2)
Cy—PC19—P11.876 (2), 1.877 (2)
Cy—PC25—P11.865 (2), 1.862 (2)
Selected bond angles
Ar—P—CyC18—P1—C25101.31 (8), 101.86 (8)
Cy—P—CyC25—P1—C19106.07 (8), 105.46 (8)
Ar—P—CyC18—P1—C1998.31 (8), 97.03 (8)
Selected torsional angles
BiarylC3—C4—C13—C1482.6 (2), 73.2 (2)
BiarylC3—C4—C13—C1897.6 (2), 105.8 (2)
BiarylC5—C4—C13—C1496.1 (2), 103.8 (2)
BiarylC5—C4—C13—C1883.7 (2), 77.2 (2)
 

Acknowledgements

We thank N. Ayoub, Rui Sun, and Shelby Elizabeth Elder (Harvard) for helpful discussions.

Funding information

Funding for this research was provided by Harvard University.

References

First citationArrechea, P. L. & Buchwald, S. L. (2016). J. Am. Chem. Soc. 138, 12486–12493.  CSD CrossRef CAS PubMed Google Scholar
First citationBarder, T. E. & Buchwald, S. L. (2007). J. Am. Chem. Soc. 129, 5096–5101.  CrossRef PubMed CAS Google Scholar
First citationBruker (2015). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarsch, K. M., DiMucci, I. M., Iovan, D. A., Li, A., Zheng, S. L., Titus, C. J., Lee, S. J., Irwin, K. D., Nordlund, D., Lancaster, K. M. & Betley, T. A. (2019). Science, 365, 1138–1143.  CSD CrossRef CAS PubMed Google Scholar
First citationCharles, M. D., Schultz, P. & Buchwald, S. L. (2005). Org. Lett. 7, 3965–3968.  CrossRef PubMed CAS Google Scholar
First citationChristmann, U. & Vilar, R. (2005). Angew. Chem. Int. Ed. 44, 366–374.  Web of Science CrossRef CAS Google Scholar
First citationDavies, J. A., Dutremez, S. & Pinkerton, A. A. (1991). Inorg. Chem. 30, 2380–2387.  CSD CrossRef CAS Web of Science Google Scholar
First citationDeAngelis, A. J., Gildner, P. G., Chow, R. & Colacot, T. J. (2015). J. Org. Chem. 80, 6794–6813.  CSD CrossRef CAS PubMed Google Scholar
First citationDikundwar, A. G., Chodon, P., Thomas, S. P. & Bhutani, H. (2017). Cryst. Growth Des. 17, 1982–1990.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJover, J. & Cirera, J. (2019). Dalton Trans. 48, 15036–15048.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLee, J., Park, H., Hwang, S.-H., Lee, I.-H. & Choi, T.-L. (2020). Macromolecules, 53, 3306–3314.  CrossRef CAS Google Scholar
First citationLeeuwen, P. W. N. M. van, Kamer, P. C. J., Reek, J. N. H. & Dierkes, P. (2000). Chem. Rev. 100, 2741–2770.  Web of Science CrossRef PubMed Google Scholar
First citationLi, B. X., Le, D. N., Mack, K. A., McClory, A., Lim, N.-K., Cravillion, T., Savage, S., Han, C., Collum, D. B., Zhang, H. & Gosselin, F. (2017). J. Am. Chem. Soc. 139, 10777–10783.  CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMilne, J. A. & Buchwald, S. L. (2004). J. Am. Chem. Soc. 126, 13028–13032.  CrossRef PubMed CAS Google Scholar
First citationMüller, T. E. & Mingos, D. M. P. (1995). Transition Met. Chem. 20, 533–539.  Google Scholar
First citationOtani, T., Hachiya, M., Hashizume, D., Matsuo, T. & Tamao, K. (2011). Chem. Asian J. 6, 350–354.  CSD CrossRef CAS PubMed Google Scholar
First citationSamouei, H., Miloserdov, F. M., Escudero-Adán, E. C. & Grushin, V. V. (2014). Organometallics, 33, 7279–7283.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTian, J., Wang, G., Qi, Z. H. & Ma, J. (2020). ACS Omega, 5, 21385–21391.  CrossRef CAS PubMed Google Scholar
First citationTolman, C. A. (1977). Chem. Rev. 77, 313–348.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds