research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of [Cu(phen)(H2O)3(MF6)]·H2O (M = Ti, Zr, Hf) and [Cu(phen)(H2O)2F]2[HfF6]·H2O

CROSSMARK_Color_square_no_text.svg

a2145 Sheridan Road, Evanston, IL 60208, USA
*Correspondence e-mail: krp@northwestern.edu

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 23 December 2020; accepted 19 January 2021; online 26 January 2021)

The crystal structures of three bridged bimetallic mol­ecular compounds, namely, tri­aqua-2κ3O-μ-fluorido-penta­fluorido-1κ5F-(1,10-phenanthroline-2κ2N,N′)copper(II)titanium(IV) monohydrate, [Cu(TiF6)(phen)(H2O)3]·H2O (phen is 1,10-phenanthroline, C12H8N2), (I), tri­aqua-2κ3O-μ-fluorido-penta­fluorido-1κ5F-(1,10-phenanthroline-2κ2N,N′)copper(II)zirconium(IV) monohydrate, [Cu(ZrF6)(phen)(H2O)3]·H2O, (II), and tri­aqua-2κ3O-μ-fluorido-penta­fluorido-1κ5F-(1,10-phenanthroline-2κ2N,N′)copper(II)hafnium(IV) monohydrate, [Cu(HfF6)(phen)(H2O)3]·H2O, (III), and one mol­ecular salt, bis­[diaqua­fluorido­(1,10-phenanthroline-κ2N,N′)copper(II)] hexa­fluorido­hafnate(IV) dihydrate, [CuF(phen)(H2O)2]2[HfF6]·2H2O, (IV), are reported. The bridged bimetallic compounds adopt Λ-shaped configurations, with the octa­hedrally coordinated copper(II) center linked to the fluorinated early transition metal via a fluoride linkage. The extended structures of these Λ-shaped compounds are organized through both intra- and inter­molecular hydrogen bonds and inter­molecular ππ stacking. The salt compound [Cu(phen)(H2O)2F]2[HfF6]·H2O displays an isolated square-pyramidal Cu(phen)(H2O)2F+ complex linked to other cationic complexes and isolated HfF62− anions through inter­molecular hydrogen-bonding inter­actions.

1. Chemical context

Lambda (Λ)-shaped mol­ecules have been demonstrated as efficient building blocks in the synthesis of non-centrosymmetric (NCS) materials via arrangement into head-to-tail and accordion (head-to-head, tail-to-tail) structures (Yamamoto et al., 1992[Yamamoto, H., Katogi, S., Watanabe, T., Sato, H., Miyata, S. & Hosomi, T. (1992). Appl. Phys. Lett. 60, 935-937]; Tao et al., 1994[Tao, X. T., Watanabe, T., Shimoda, S., Zou, D. C., Sato, H. & Miyata, S. (1994). Chem. Mater. 6, 1961-1966.], 1995[Tao, X. T., Watanabe, T., Zou, D. C., Shimoda, S., Usui, H., Sato, H. & Miyata, S. (1995). J. Polym. Sci. B Polym. Phys. 33, 2205-2210.]; Ostroverkhov et al., 2001[Ostroverkhov, V., Petschek, R. G., Singer, K. D. & Twieg, R. J. (2001). Chem. Phys. Lett. 340, 109-115.]; Chang et al., 2009[Chang, P.-H., Chen, J.-Y., Tsai, H.-C. & Hsiue, G.-H. (2009). J. Polym. Sci. A Polym. Chem. 47, 4937-4949.]). Although this concept was first applied to organic Λ-shaped mol­ecules in crystalline materials and polymers, recently NCS compounds based on inorganic bimetallic Λ-shapes have been reported, namely K10(Mo2O4F7)3X (X = Cl, ([Br3][Br])1/2, ([I3][I])1/2), K10(Nb2O2F9)3X (X = Br, ([Br3][Br])1/2, ([I3][I])1/2), and [Cu(H2O)5(VOF4(H2O))]·H2O (Donakowski et al., 2012[Donakowski, M. D., Gautier, R., Yeon, J., Moore, D. T., Nino, J. C., Halasyamani, P. S. & Poeppelmeier, K. R. (2012). J. Am. Chem. Soc. 134, 7679-7689.]; Holland et al., 2014[Holland, M., Donakowski, M. D., Pozzi, E. A., Rasmussen, A. M., Tran, T. T., Pease-Dodson, S. E., Halasyamani, P. S., Seideman, T., Van Duyne, R. P. & Poeppelmeier, K. R. (2014). Inorg. Chem. 53, 221-228.]). Here, we report the structures of three centrosymmetric compounds based on inorganic bimetallic Λ-shapes with the formula [Cu(phen)(H2O)3(MF6)]·H2O (M = Ti, Zr, Hf; phen = 1,10-phenanthroline). Although these compounds crystallize with inversion symmetry, the novel mol­ecular building units are potential targets of future studies aimed to perturb their packing arrangement to form NCS structures. The salt compound [Cu(phen)(H2O)2F]2[HfF6]·H2O provides a point of comparison as an unbridged analogue of [Cu(phen)(H2O)3(HfF6)]·H2O.

[Scheme 1]

2. Structural commentary

Compound (I)[link] has the formula [Cu(phen)(H2O)3(TiF6)]·H2O and crystallizes in the ortho­rhom­bic space group Pbca (Fig. 1[link]). The structure of compound (I)[link] features Cu1 in a tetra­gonally distorted octa­hedral environment with elongated axial Cu1—F1 [2.3643 (12) Å] and Cu1—O1 [2.2794 (17) Å] bonds owing to the Jahn–Teller effect of copper(II). The Cu1 center is linked to the TiF62− anion through the bridging F1 ligand. The octa­hedral coordination environment of Ti1 is slightly distorted, with Ti1—F bond lengths ranging from 1.8395 (13) to 1.9035 (13) Å. The Λ-shape, indicated by the Cu1—F1—Ti1 bond angle of 134.93 (6)°, is enforced by the two intra­molecular O2—H2B⋯F5 and O3—H3B⋯F6 hydrogen bonds (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯F2i 0.70 (4) 2.08 (4) 2.775 (2) 175 (4)
O1—H1B⋯F4ii 0.77 (4) 1.96 (4) 2.726 (2) 174 (3)
O2—H2A⋯O4 0.83 (3) 1.83 (3) 2.654 (2) 175 (3)
O2—H2B⋯F5 0.83 (4) 1.85 (4) 2.666 (2) 167 (3)
O3—H3A⋯F3i 0.84 (4) 1.85 (4) 2.683 (2) 171 (4)
O3—H3B⋯F6 0.90 (4) 1.81 (4) 2.683 (2) 163 (3)
O4—H4A⋯F3iii 0.75 (4) 2.00 (4) 2.718 (2) 163 (4)
O4—H4B⋯F2i 0.77 (3) 1.96 (3) 2.691 (2) 156 (3)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z].
[Figure 1]
Figure 1
Mol­ecular structure of compound (I)[link], [Cu(phen)(H2O)3(TiF6)]·H2O. Ellipsoids of non-H atoms are drawn at 50% probability. H atoms are drawn with an atomic radius of 0.135 Å.

Compound (II)[link] has the formula [Cu(phen)(H2O)3(ZrF6)]·H2O and crystallizes in the monoclinic space group P21/n (Fig. 2[link]). The structure of compound (II)[link] features Cu1 in a tetra­gonally distorted octa­hedral environment with elongated axial Cu1—F1 [2.5184 (6) Å] and Cu—O1 [2.2758 (7) Å] bonds owing to the Jahn–Teller effect of copper(II). The Cu1 center is linked to the ZrF62− anion through the bridging F1 ligand. The octa­hedral coordination environment of Zr1 is slightly distorted, with Zr1—F bond lengths ranging from 1.9910 (6) to 2.0430 (6) Å. The Λ-shape, indicated by the Cu1—F1—Zr1 bond angle of 132.59 (3)°, is enforced by an intra­molecular O2—H2B⋯F6 hydrogen bond (Table 2[link]). The single intra­molecular hydrogen bond in compound (II)[link] tilts the ZrF62− group significantly relative to the TiF62− group in compound (I)[link], which is depicted in Fig. 5[link] and reflected in the F1—Cu1—N1 bond angle of 77.75 (3)° angle in compound (II)[link] compared to 89.45 (6)° in compound (I)[link].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯F5i 0.794 (18) 1.944 (18) 2.7338 (9) 173.5 (18)
O1—H1B⋯F4ii 0.78 (2) 1.93 (2) 2.7147 (10) 179 (2)
O2—H2A⋯F3i 0.79 (2) 1.85 (2) 2.6324 (10) 171 (2)
O2—H2B⋯F6 0.82 (2) 1.87 (2) 2.6491 (10) 159.2 (19)
O3—H3A⋯F2iii 0.79 (2) 1.85 (2) 2.6327 (10) 177.5 (19)
O3—H3B⋯O4iv 0.79 (2) 1.87 (2) 2.6481 (12) 170 (2)
O4—H4A⋯F3 0.799 (19) 2.002 (19) 2.7691 (10) 160.9 (18)
O4—H4B⋯F5v 0.78 (2) 2.02 (2) 2.7449 (11) 155 (2)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x-1, y, z]; (v) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Mol­ecular structure of compound (II)[link], [Cu(phen)(H2O)3(ZrF6)]·H2O. Ellipsoids of non-H atoms are drawn at 50% probability. H atoms are drawn with an atomic radius of 0.135 Å.
[Figure 5]
Figure 5
Comparison of the mol­ecular structures of (a) compound (I)[link] and (b) compound (III)[link].

Compound (III)[link] has the formula [Cu(phen)(H2O)3(HfF6)]·H2O and crystallizes in the monoclinic space group P21/n (Fig. 3[link]). Compound (III)[link] is isostructural to compound (II)[link].

[Figure 3]
Figure 3
Mol­ecular structure of compound (III)[link], [Cu(phen)(H2O)3(HfF6)]·H2O. Ellipsoids of non-H atoms are drawn at 50% probability. H atoms are drawn with an atomic radius of 0.135 Å.

Compound (IV)[link] has the formula [Cu(phen)(H2O)2F]2[HfF6]·H2O and crystallizes in the monoclinic space group P21/n (Fig. 4[link]). The structure of compound (IV)[link] features isolated square pyramidal Cu(phen)(H2O)2F+ cations and octa­hedral HfF62− anions. The free HfF62− octa­hedron occupies an inversion center with three distinct bond lengths ranging between 1.9863 (10) and 1.9957 (9) Å.

[Figure 4]
Figure 4
Mol­ecular structure of compound (IV)[link], [Cu(phen)(H2O)2F]2[HfF6]·H2O. Ellipsoids of non-H atoms are drawn at 50% probability. H atoms are drawn with an atomic radius of 0.135 Å.

3. Supra­molecular features

The Λ-shaped building units in compounds (I)–(III) are arranged in head-to-tail chains via inter­molecular hydrogen bonding with multiple hydrogen-bonding inter­actions and ππ stacking contacts to adjacent chains.

Each [Cu(phen)(H2O)3(TiF6)] complex in compound (I)[link] participates in hydrogen bonding with four other [Cu(phen)(H2O)3(TiF6)] complexes and three free water mol­ecules (Fig. 6[link], Table 1[link]). The complexes pack with both face-to-face and displaced ππ stacking inter­actions (Table 5[link]).

Table 5
π–π stacking inter­actions in compounds (I)–(IV)

Compound number type dphen­yl–pyridine dpyridine–pyridine dphen­yl–phen­yl inter­planar angle
(I) face-to-face 3.699 4.162 3.583 0
(I) displaced 6.042 4.128 8.111 8.68
(II)/(III) parallel displaced 4.469 3.407 6.324 0
(II)/(III) parallel displaced 3.510 4.472 4.035 0
(IV) face-to-face 3.664 3.48 4.07 0
(IV) parallel displaced 3.508 3.881 4.604 0
[Figure 6]
Figure 6
Packing diagrams of compound (I)[link], [Cu(phen)(H2O)3(TiF6)]·H2O. Yellow polyhedra represent Cu(phen)(H2O)32+ cations and purple polyhedra represent TiF62− anions.

The [Cu(phen)(H2O)3(MF6)] (M = Zr, Hf) units in compound (II)[link] and compound (III)[link] are involved in five hydrogen-bonding contacts to adjacent [Cu(phen)(H2O)3(MF6)] complexes and three contacts to hydrating water mol­ecules (Fig. 7[link], Table 2[link], and Table 3[link]). The [Cu(phen)(H2O)3(MF6)] complexes participate in parallel displaced ππ stacking inter­actions (Table 5[link]).

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯F5i 0.80 (3) 1.94 (3) 2.7359 (13) 172 (3)
O1—H1B⋯F4ii 0.77 (3) 1.95 (3) 2.7135 (13) 176 (3)
O2—H2A⋯F6 0.86 (3) 1.85 (3) 2.6456 (14) 154 (3)
O2—H2B⋯F3i 0.77 (3) 1.87 (3) 2.6362 (14) 171 (3)
O3—H3A⋯O4iii 0.81 (3) 1.85 (3) 2.6529 (17) 173 (3)
O3—H3B⋯F2iv 0.77 (3) 1.86 (3) 2.6330 (15) 176 (3)
O4—H4A⋯F5v 0.81 (3) 2.00 (3) 2.7429 (15) 154 (3)
O4—H4B⋯F3 0.81 (3) 2.01 (3) 2.7702 (14) 156 (3)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 7]
Figure 7
Packing diagrams of compound (II)[link], [Cu(phen)(H2O)3(ZrF6)]·H2O, and compound (III)[link], [Cu(phen)(H2O)3(HfF6)]·H2O. Yellow polyhedra represent Cu(phen)(H2O)32+ cations and green polyhedra represent ZrF62− or HfF62− anions.

In compound (IV)[link], each fluoride ligand forms two hydrogen bonds with the water ligands of adjacent Cu(phen)(H2O)2F+ complexes (Fig. 8[link]). The equatorial water ligands form O1—H1A⋯F1 hydrogen bonds with adjacent Cu(phen)(H2O)2F+ complexes and O1—H1B⋯F4 hydrogen bonds with HfF62− groups (Table 4[link]). The apical water mol­ecule forms an O2—H2B⋯F1 hydrogen bond to an adjacent Cu(phen)(H2O)2F+ complex and a O2—H2A⋯O3 hydrogen bond with a free water mol­ecule (Table 4[link]). Each MF62− group forms hydrogen bonds with four free water mol­ecules and two Cu(phen)(H2O)2F+ complexes. The Cu(phen)(H2O)2F+ complexes pack with both face-to-face and parallel displaced ππ stacking inter­actions (Table 5[link]).

Table 4
Hydrogen-bond geometry (Å, °) for (IV)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯F4 0.81 (3) 1.78 (3) 2.5926 (14) 176 (3)
O1—H1B⋯F1i 0.74 (3) 1.85 (3) 2.5861 (13) 172 (3)
O2—H2A⋯O3 0.74 (3) 1.95 (3) 2.6906 (15) 176 (3)
O2—H2B⋯F1ii 0.80 (3) 1.83 (3) 2.6255 (13) 175 (2)
O3—H3A⋯F2 0.78 (3) 1.94 (3) 2.7270 (17) 176 (3)
O3—H3B⋯F3iii 0.75 (3) 1.96 (3) 2.7020 (15) 173 (3)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, -y+2, -z+2].
[Figure 8]
Figure 8
Packing diagrams of compound (IV)[link], [Cu(phen)(H2O)2F]2[HfF6]·H2O. Yellow polyhedra represent Cu(phen)(H2O)2F+ cations and green polyhedra represent HfF62− anions.

4. Database survey

Aside from compounds (I)[link], (II)[link], and (III)[link], the compound [Cu(H2O)5(VO(H2O)F4)]·H2O (Donakowski et al., 2012[Donakowski, M. D., Gautier, R., Yeon, J., Moore, D. T., Nino, J. C., Halasyamani, P. S. & Poeppelmeier, K. R. (2012). J. Am. Chem. Soc. 134, 7679-7689.]) is the only example of a mol­ecular inorganic Λ-shape known to the authors. [Cu(H2O)5(VOF4(H2O))]·H2O contains a mol­ecular Λ-shaped [Cu(H2O)5(VOF4(H2O))] mol­ecule that is bridged via the Cu1—O8—V1 linkage with a bond angle of 142.88°. The Λ-shape of this complex is supported by a single intra­molecular hydrogen bond as well as two hydrogen-bonding inter­actions with a free water mol­ecule that serves as an inter­molecular `bridging mol­ecule'. In contrast, the hydrating water mol­ecules in compounds (I)[link], (II)[link], and (III)[link] bridge between adjacent complexes rather than the same complex. The smallest O8—Cu—O bond angle in [Cu(H2O)5(VOF4(H2O))]·H2O is 88.42°, meaning that the complex has a small tilt similar to compound (I)[link].

The Λ-shapes in [Cu(H2O)5(VO(H2O)F4)]·H2O are arranged in a polar NCS lattice containing head-to-head/tail-to-tail chains in which the polar moments of the Λ-shaped complexes are partially aligned perpendicular to the chain direction, with head-to-tail orientations between chains. In contrast, the Λ-shapes found in compounds (I)[link], (II)[link], and (III)[link] are arranged in non-polar head-to-tail chains in which the polar moments of the Λ-shaped complexes are arranged in an anti­parallel fashion within the chain, with a head-to-tail arrangement between chains.

5. Synthesis and crystallization

The compounds reported here were synthesized by the hydro­thermal pouch method (Harrison et al., 1993[Harrison, W. T. A., Nenoff, T. M., Gier, T. E. & Stucky, G. D. (1993). Inorg. Chem. 32, 2437-2441.]). In each reaction, reagents were heat-sealed in Teflon pouches. Groups of six pouches were then placed into a 125 mL Parr autoclave with 40 mL of distilled water as backfill. The autoclave was heated at a rate of 5 K min−1 to 423 K and held at 423 K for 24 h. The autoclaves were allowed to cool to room temperature at a rate of 6 K h−1. Solid products were recovered by vacuum filtration. Compound (I)[link] was synthesized in a pouch containing 1.69 mmol of CuO, 1.69 mmol of TiO2, 2.56 mmol of 1,10-phenanthroline, 1.0 mL (27.6 mmol) of HF(aq) (48%), and 0.1 mL (5.5 mmol) of deionized H2O. Compound (II)[link] was synthesized in a pouch containing 1.69 mmol of CuO, 1.69 mmol of ZrO2, 2.56 mmol of phen, 1.0 mL (27.6 mmol) of HF(aq) (48%), and 0.1 mL (5.5 mmol) of deionized H2O. Compound (III)[link] was synthesized in a pouch containing 1.69 mmol of CuO, 1.69 mmol of HfO2, 2.56 mmol of phen, 1.0 mL (27.6 mmol) of HF(aq) (48%), and 0.1 mL (5.5 mmol) of deionized H2O. Compound (IV)[link] was synthesized in a pouch containing 1.69 mmol of CuO, 1.69 mmol of HfO2, 2.56 mmol of phen, 0.4 mL (11.03 mmol) of HF(aq) (48%), and 0.7 mL (38.85 mmol) of deionized H2O.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. Non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen-atom positions were assigned from difference map peaks with the exception of C—H hydrogen atoms of 1,10-phenanthroline, which were constrained to ride at distances of 0.95 Å from the associated C atoms with Uiso(H) = 1.2Ueq(C) within OLEX2 (Dolomanov et al., 2009).

Table 6
Experimental details

  (I) (II) (III) (IV)
Crystal data
Chemical formula [CuTiF6(C12H8N2)(H2O)3]·H2O [CuZrF6(C12H8N2)(H2O)3]·H2O [CuHfF6(C12H8N2)(H2O)3]·H2O [CuF(C12H8N2)(H2O)2]2[HfF6]·2H2O
Mr 477.71 521.03 608.30 926.07
Crystal system, space group Orthorhombic, Pbca Monoclinic, P21/n Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 100 100 101 100
a, b, c (Å) 13.3603 (3), 14.1385 (3), 17.7895 (4) 9.9486 (4), 17.3006 (7), 10.0022 (4) 9.9411 (3), 17.2733 (4), 9.9972 (2) 13.6451 (2), 7.1161 (1), 15.7457 (3)
α, β, γ (°) 90, 90, 90 90, 95.1335 (18), 90 90, 95.116 (1), 90 90, 99.691 (1), 90
V3) 3360.34 (13) 1714.64 (12) 1709.84 (7) 1507.09 (4)
Z 8 4 4 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 1.83 1.93 7.39 4.93
Crystal size (mm) 0.09 × 0.07 × 0.05 0.24 × 0.12 × 0.11 0.17 × 0.12 × 0.05 0.16 × 0.16 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEX CCD area detector Bruker Kappa APEX CCD area detector Bruker Kappa APEX CCD area detector Bruker Kappa APEX CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.668, 0.746 0.683, 0.747 0.480, 0.747 0.489, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 36860, 4534, 3928 87607, 7546, 7052 43322, 8248, 7980 123138, 5034, 4982
Rint 0.043 0.031 0.026 0.033
(sin θ/λ)max−1) 0.686 0.807 0.835 0.737
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.071, 1.10 0.018, 0.047, 1.04 0.015, 0.036, 1.13 0.014, 0.035, 1.15
No. of reflections 4534 7546 8248 5034
No. of parameters 267 267 267 230
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.46, −0.45 0.57, −0.67 1.03, −0.98 0.67, −0.70
Computer programs: APEX2 and SAINT (Bruker, 2017[Bruker (2017). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For all structures, data collection: APEX2(Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Triaqua-2κ3O-µ-fluorido-pentafluorido-1κ5F-(1,10-phenanthroline-2κ2N,N')copper(II)titanium(IV) monohydrate (I) top
Crystal data top
[CuTiF6(C12H8N2)(H2O)3]·H2ODx = 1.889 Mg m3
Mr = 477.71Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 9952 reflections
a = 13.3603 (3) Åθ = 2.8–29.1°
b = 14.1385 (3) ŵ = 1.83 mm1
c = 17.7895 (4) ÅT = 100 K
V = 3360.34 (13) Å3Block, blue
Z = 80.09 × 0.07 × 0.05 mm
F(000) = 1912
Data collection top
Bruker Kappa APEX CCD area detector
diffractometer
4534 independent reflections
Radiation source: sealed tube3928 reflections with I > 2σ(I)
Triumph monochromatorRint = 0.043
Detector resolution: 8 pixels mm-1θmax = 29.2°, θmin = 2.3°
ω and φ scansh = 1818
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1919
Tmin = 0.668, Tmax = 0.746l = 2324
36860 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0163P)2 + 6.5495P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
4534 reflectionsΔρmax = 0.46 e Å3
267 parametersΔρmin = 0.45 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.56746 (2)0.74025 (2)0.36021 (2)0.01008 (7)
Ti10.53873 (3)0.60258 (3)0.17156 (2)0.00930 (8)
F10.53330 (10)0.61607 (9)0.27499 (7)0.0133 (2)
F20.41521 (9)0.54030 (9)0.17056 (7)0.0160 (3)
F30.59857 (10)0.48206 (9)0.18751 (7)0.0146 (3)
F40.54844 (10)0.58432 (9)0.06857 (7)0.0170 (3)
F50.66406 (10)0.65896 (10)0.17257 (8)0.0194 (3)
F60.47531 (11)0.71718 (9)0.16027 (7)0.0180 (3)
O10.58746 (13)0.88113 (12)0.42069 (10)0.0153 (3)
H1A0.586 (3)0.923 (3)0.400 (2)0.036 (11)*
H1B0.578 (2)0.894 (2)0.462 (2)0.033 (9)*
O20.68191 (13)0.76878 (12)0.29363 (9)0.0163 (3)
H2A0.702 (2)0.824 (2)0.2876 (17)0.025 (8)*
H2B0.679 (3)0.742 (2)0.252 (2)0.042 (10)*
O30.46639 (13)0.80398 (12)0.29423 (9)0.0160 (3)
H3A0.451 (3)0.861 (3)0.297 (2)0.042 (10)*
H3B0.468 (3)0.787 (2)0.246 (2)0.040 (10)*
N10.46103 (13)0.69042 (12)0.42847 (10)0.0105 (3)
N20.65702 (13)0.66919 (12)0.43147 (10)0.0109 (3)
C10.36234 (16)0.69370 (15)0.42054 (12)0.0129 (4)
H10.3349510.7220360.3767060.015*
C20.29739 (16)0.65669 (15)0.47477 (13)0.0149 (4)
H20.2270490.6594060.4672600.018*
C30.33568 (17)0.61635 (15)0.53897 (13)0.0150 (4)
H30.2920950.5935340.5770710.018*
C40.44001 (17)0.60926 (15)0.54763 (12)0.0136 (4)
C50.49937 (16)0.64734 (14)0.48989 (12)0.0105 (4)
C60.48834 (18)0.56371 (16)0.60994 (13)0.0166 (4)
H60.4490070.5392690.6499620.020*
C70.58924 (18)0.55511 (15)0.61248 (12)0.0166 (4)
H70.6195300.5249510.6544320.020*
C80.65119 (17)0.59062 (15)0.55310 (12)0.0146 (4)
C90.60562 (16)0.63669 (14)0.49233 (12)0.0109 (4)
C100.75608 (18)0.57771 (16)0.54860 (13)0.0176 (4)
H100.7911220.5476340.5884540.021*
C110.80665 (17)0.60883 (16)0.48648 (14)0.0179 (4)
H110.8768600.5992950.4827040.022*
C120.75501 (16)0.65480 (15)0.42832 (13)0.0145 (4)
H120.7911790.6761640.3855950.017*
O40.74837 (14)0.94525 (12)0.28380 (11)0.0194 (3)
H4A0.782 (3)0.961 (2)0.253 (2)0.036 (10)*
H4B0.708 (2)0.984 (2)0.2893 (17)0.026 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01007 (12)0.01075 (12)0.00941 (12)0.00031 (9)0.00038 (9)0.00084 (9)
Ti10.00972 (17)0.00994 (16)0.00822 (16)0.00046 (13)0.00042 (13)0.00037 (13)
F10.0171 (6)0.0134 (6)0.0092 (6)0.0008 (5)0.0015 (5)0.0002 (4)
F20.0106 (6)0.0187 (6)0.0188 (7)0.0023 (5)0.0008 (5)0.0042 (5)
F30.0143 (6)0.0134 (6)0.0161 (6)0.0024 (5)0.0012 (5)0.0010 (5)
F40.0198 (7)0.0222 (7)0.0088 (6)0.0007 (5)0.0013 (5)0.0017 (5)
F50.0159 (6)0.0246 (7)0.0176 (7)0.0090 (5)0.0053 (5)0.0060 (5)
F60.0273 (7)0.0125 (6)0.0143 (6)0.0049 (5)0.0031 (5)0.0002 (5)
O10.0225 (9)0.0130 (8)0.0103 (8)0.0006 (6)0.0004 (6)0.0001 (6)
O20.0184 (8)0.0168 (8)0.0137 (8)0.0046 (6)0.0044 (6)0.0022 (6)
O30.0212 (8)0.0135 (8)0.0132 (8)0.0053 (6)0.0026 (6)0.0013 (6)
N10.0105 (8)0.0103 (8)0.0105 (8)0.0002 (6)0.0007 (6)0.0008 (6)
N20.0097 (8)0.0105 (8)0.0126 (8)0.0014 (6)0.0002 (6)0.0018 (6)
C10.0115 (10)0.0145 (9)0.0127 (10)0.0011 (8)0.0016 (8)0.0021 (8)
C20.0106 (10)0.0143 (10)0.0198 (11)0.0003 (8)0.0008 (8)0.0024 (8)
C30.0159 (10)0.0143 (10)0.0149 (10)0.0025 (8)0.0051 (8)0.0035 (8)
C40.0169 (10)0.0112 (9)0.0126 (10)0.0005 (8)0.0010 (8)0.0026 (7)
C50.0116 (9)0.0095 (9)0.0103 (9)0.0001 (7)0.0004 (7)0.0018 (7)
C60.0244 (12)0.0137 (10)0.0116 (10)0.0007 (8)0.0020 (9)0.0006 (8)
C70.0250 (12)0.0131 (10)0.0116 (10)0.0015 (8)0.0053 (9)0.0015 (8)
C80.0179 (11)0.0120 (9)0.0138 (10)0.0020 (8)0.0054 (8)0.0023 (8)
C90.0126 (10)0.0088 (9)0.0111 (9)0.0010 (7)0.0007 (8)0.0018 (7)
C100.0178 (11)0.0153 (10)0.0196 (11)0.0037 (8)0.0091 (9)0.0029 (8)
C110.0119 (10)0.0175 (10)0.0245 (12)0.0042 (8)0.0043 (9)0.0032 (9)
C120.0121 (10)0.0133 (9)0.0180 (10)0.0001 (8)0.0003 (8)0.0046 (8)
O40.0165 (8)0.0163 (8)0.0255 (9)0.0008 (7)0.0078 (7)0.0021 (7)
Geometric parameters (Å, º) top
Cu1—F12.3643 (12)C1—H10.9500
Cu1—O12.2794 (17)C1—C21.399 (3)
Cu1—O21.9758 (16)C2—H20.9500
Cu1—O32.0032 (16)C2—C31.375 (3)
Cu1—N11.9981 (18)C3—H30.9500
Cu1—N22.0120 (18)C3—C41.406 (3)
Ti1—F11.8511 (13)C4—C51.405 (3)
Ti1—F21.8706 (13)C4—C61.435 (3)
Ti1—F31.9035 (13)C5—C91.428 (3)
Ti1—F41.8548 (13)C6—H60.9500
Ti1—F51.8545 (13)C6—C71.354 (3)
Ti1—F61.8395 (13)C7—H70.9500
O1—H1A0.70 (4)C7—C81.433 (3)
O1—H1B0.77 (4)C8—C91.401 (3)
O2—H2A0.83 (3)C8—C101.416 (3)
O2—H2B0.83 (4)C10—H100.9500
O3—H3A0.84 (4)C10—C111.368 (3)
O3—H3B0.90 (4)C11—H110.9500
N1—C11.327 (3)C11—C121.403 (3)
N1—C51.352 (3)C12—H120.9500
N2—C91.362 (3)O4—H4A0.75 (4)
N2—C121.326 (3)O4—H4B0.77 (3)
O1—Cu1—F1166.96 (6)C5—N1—Cu1112.35 (14)
O2—Cu1—F185.21 (6)C9—N2—Cu1111.68 (14)
O2—Cu1—O190.79 (7)C12—N2—Cu1129.58 (15)
O2—Cu1—O394.51 (7)C12—N2—C9118.66 (19)
O2—Cu1—N1170.75 (7)N1—C1—H1119.0
O2—Cu1—N291.11 (7)N1—C1—C2122.0 (2)
O3—Cu1—F180.11 (6)C2—C1—H1119.0
O3—Cu1—O187.85 (7)C1—C2—H2120.1
O3—Cu1—N2174.07 (7)C3—C2—C1119.8 (2)
N1—Cu1—F189.45 (6)C3—C2—H2120.1
N1—Cu1—O196.01 (7)C2—C3—H3120.4
N1—Cu1—O392.01 (7)C2—C3—C4119.3 (2)
N1—Cu1—N282.20 (7)C4—C3—H3120.4
N2—Cu1—F198.51 (6)C3—C4—C6124.2 (2)
N2—Cu1—O193.97 (7)C5—C4—C3116.9 (2)
F1—Ti1—F291.34 (6)C5—C4—C6118.8 (2)
F1—Ti1—F387.74 (6)N1—C5—C4123.3 (2)
F1—Ti1—F4177.26 (6)N1—C5—C9116.67 (19)
F1—Ti1—F588.94 (6)C4—C5—C9119.90 (19)
F2—Ti1—F387.17 (6)C4—C6—H6119.5
F4—Ti1—F289.24 (6)C7—C6—C4120.9 (2)
F4—Ti1—F389.61 (6)C7—C6—H6119.5
F5—Ti1—F2177.38 (6)C6—C7—H7119.4
F5—Ti1—F390.24 (6)C6—C7—C8121.3 (2)
F5—Ti1—F490.36 (6)C8—C7—H7119.4
F6—Ti1—F189.99 (6)C9—C8—C7118.7 (2)
F6—Ti1—F290.41 (6)C9—C8—C10116.5 (2)
F6—Ti1—F3176.64 (6)C10—C8—C7124.6 (2)
F6—Ti1—F492.69 (6)N2—C9—C5116.19 (18)
F6—Ti1—F592.20 (7)N2—C9—C8123.4 (2)
Ti1—F1—Cu1134.93 (6)C8—C9—C5120.3 (2)
Cu1—O1—H1A119 (3)C8—C10—H10120.2
Cu1—O1—H1B130 (2)C11—C10—C8119.5 (2)
H1A—O1—H1B107 (4)C11—C10—H10120.2
Cu1—O2—H2A122 (2)C10—C11—H11119.9
Cu1—O2—H2B113 (2)C10—C11—C12120.1 (2)
H2A—O2—H2B109 (3)C12—C11—H11119.9
Cu1—O3—H3A125 (2)N2—C12—C11121.7 (2)
Cu1—O3—H3B115 (2)N2—C12—H12119.2
H3A—O3—H3B109 (3)C11—C12—H12119.2
C1—N1—Cu1129.07 (15)H4A—O4—H4B107 (3)
C1—N1—C5118.57 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···F2i0.70 (4)2.08 (4)2.775 (2)175 (4)
O1—H1B···F4ii0.77 (4)1.96 (4)2.726 (2)174 (3)
O2—H2A···O40.83 (3)1.83 (3)2.654 (2)175 (3)
O2—H2B···F50.83 (4)1.85 (4)2.666 (2)167 (3)
O3—H3A···F3i0.84 (4)1.85 (4)2.683 (2)171 (4)
O3—H3B···F60.90 (4)1.81 (4)2.683 (2)163 (3)
O4—H4A···F3iii0.75 (4)2.00 (4)2.718 (2)163 (4)
O4—H4B···F2i0.77 (3)1.96 (3)2.691 (2)156 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x+3/2, y+1/2, z.
Triaqua-2κ3O-µ-fluorido-pentafluorido-1κ5F-(1,10-phenanthroline-2κ2N,N')copper(II)zirconium(IV) monohydrate (II) top
Crystal data top
[CuZrF6(C12H8N2)(H2O)3]·H2OF(000) = 1028
Mr = 521.03Dx = 2.018 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.9486 (4) ÅCell parameters from 9425 reflections
b = 17.3006 (7) Åθ = 3.0–34.9°
c = 10.0022 (4) ŵ = 1.93 mm1
β = 95.1335 (18)°T = 100 K
V = 1714.64 (12) Å3Cuboid, blue
Z = 40.24 × 0.12 × 0.11 mm
Data collection top
Bruker Kappa APEX CCD area detector
diffractometer
7546 independent reflections
Radiation source: sealed tube7052 reflections with I > 2σ(I)
Triumph monochromatorRint = 0.031
Detector resolution: 8 pixels mm-1θmax = 35.0°, θmin = 2.4°
ω and φ scansh = 1516
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 2727
Tmin = 0.683, Tmax = 0.747l = 1616
87607 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.047 w = 1/[σ2(Fo2) + (0.0222P)2 + 0.6601P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
7546 reflectionsΔρmax = 0.57 e Å3
267 parametersΔρmin = 0.67 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zr10.47531 (2)0.17833 (2)0.18511 (2)0.00928 (2)
Cu10.23490 (2)0.36879 (2)0.23859 (2)0.01147 (3)
F10.40575 (7)0.28382 (3)0.13913 (6)0.01738 (11)
F20.55807 (7)0.20897 (4)0.36687 (6)0.02055 (12)
F30.65583 (6)0.20677 (4)0.11564 (6)0.01671 (11)
F40.53575 (7)0.06931 (3)0.22042 (7)0.01918 (11)
F50.41618 (6)0.14484 (4)0.00414 (6)0.01543 (10)
F60.29772 (6)0.15382 (4)0.25277 (6)0.01807 (11)
O10.09615 (8)0.43805 (4)0.36235 (8)0.01672 (13)
H1A0.0425 (17)0.4171 (10)0.4041 (17)0.028 (4)*
H1B0.0583 (19)0.4762 (12)0.3397 (19)0.039 (5)*
O20.22635 (9)0.28333 (4)0.36875 (8)0.02195 (15)
H2A0.198 (2)0.2842 (11)0.440 (2)0.043 (5)*
H2B0.2341 (19)0.2387 (11)0.3444 (19)0.039 (5)*
O30.08658 (9)0.32098 (6)0.12593 (9)0.02716 (19)
H3A0.0786 (18)0.3133 (10)0.048 (2)0.034 (5)*
H3B0.019 (2)0.3082 (11)0.155 (2)0.040 (5)*
N10.40931 (8)0.40912 (4)0.32659 (8)0.01241 (12)
N20.25539 (8)0.45780 (4)0.11410 (7)0.01176 (12)
C10.48666 (10)0.38078 (6)0.42972 (10)0.01668 (16)
H10.4561840.3368790.4754020.020*
C20.61195 (11)0.41331 (6)0.47385 (10)0.02059 (19)
H20.6652310.3912950.5477660.025*
C30.65728 (10)0.47718 (7)0.40963 (11)0.02061 (19)
H30.7421690.4995490.4384370.025*
C40.57629 (9)0.50917 (6)0.30041 (10)0.01582 (16)
C50.45370 (9)0.47190 (5)0.26198 (9)0.01215 (14)
C60.61134 (10)0.57674 (6)0.22755 (11)0.02057 (18)
H60.6934850.6029120.2535550.025*
C70.52933 (11)0.60382 (6)0.12238 (11)0.01943 (18)
H70.5545290.6489070.0765050.023*
C80.40516 (10)0.56548 (5)0.07928 (9)0.01432 (15)
C90.36882 (9)0.49938 (5)0.14917 (9)0.01139 (13)
C100.31652 (11)0.58914 (6)0.03080 (10)0.01766 (17)
H100.3360750.6338090.0807930.021*
C110.20132 (11)0.54697 (6)0.06530 (10)0.01771 (16)
H110.1404920.5625260.1390200.021*
C120.17425 (9)0.48094 (6)0.00892 (9)0.01485 (15)
H120.0952570.4517560.0167960.018*
O40.86608 (9)0.29013 (6)0.24604 (9)0.02461 (17)
H4A0.8042 (19)0.2617 (10)0.2257 (18)0.031 (4)*
H4B0.864 (2)0.2988 (12)0.322 (2)0.042 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zr10.01037 (4)0.00955 (4)0.00795 (4)0.00034 (2)0.00102 (3)0.00012 (2)
Cu10.01226 (5)0.01299 (5)0.00913 (5)0.00278 (3)0.00070 (4)0.00011 (3)
F10.0245 (3)0.0125 (2)0.0153 (2)0.0038 (2)0.0034 (2)0.00169 (19)
F20.0276 (3)0.0226 (3)0.0105 (2)0.0005 (2)0.0032 (2)0.0021 (2)
F30.0134 (2)0.0231 (3)0.0138 (2)0.0050 (2)0.0024 (2)0.0008 (2)
F40.0211 (3)0.0117 (2)0.0239 (3)0.0020 (2)0.0028 (2)0.0013 (2)
F50.0146 (2)0.0202 (3)0.0111 (2)0.0012 (2)0.00087 (19)0.00385 (19)
F60.0169 (3)0.0176 (3)0.0209 (3)0.0025 (2)0.0084 (2)0.0003 (2)
O10.0169 (3)0.0148 (3)0.0194 (3)0.0016 (2)0.0069 (3)0.0026 (2)
O20.0385 (5)0.0138 (3)0.0155 (3)0.0005 (3)0.0134 (3)0.0004 (2)
O30.0223 (4)0.0459 (5)0.0138 (3)0.0194 (4)0.0047 (3)0.0101 (3)
N10.0129 (3)0.0130 (3)0.0111 (3)0.0020 (2)0.0005 (2)0.0016 (2)
N20.0099 (3)0.0147 (3)0.0107 (3)0.0003 (2)0.0012 (2)0.0001 (2)
C10.0184 (4)0.0180 (4)0.0130 (4)0.0059 (3)0.0024 (3)0.0022 (3)
C20.0165 (4)0.0273 (5)0.0167 (4)0.0079 (4)0.0055 (3)0.0057 (4)
C30.0118 (4)0.0282 (5)0.0209 (4)0.0019 (3)0.0030 (3)0.0099 (4)
C40.0110 (4)0.0187 (4)0.0177 (4)0.0007 (3)0.0011 (3)0.0068 (3)
C50.0104 (3)0.0136 (3)0.0124 (3)0.0002 (3)0.0006 (3)0.0034 (3)
C60.0149 (4)0.0201 (4)0.0273 (5)0.0064 (3)0.0053 (4)0.0079 (4)
C70.0193 (4)0.0153 (4)0.0248 (5)0.0050 (3)0.0083 (4)0.0034 (3)
C80.0161 (4)0.0118 (3)0.0157 (4)0.0007 (3)0.0054 (3)0.0014 (3)
C90.0103 (3)0.0125 (3)0.0116 (3)0.0002 (2)0.0023 (3)0.0013 (3)
C100.0238 (5)0.0140 (4)0.0159 (4)0.0026 (3)0.0058 (3)0.0021 (3)
C110.0208 (4)0.0189 (4)0.0133 (4)0.0051 (3)0.0007 (3)0.0030 (3)
C120.0129 (4)0.0188 (4)0.0125 (3)0.0017 (3)0.0005 (3)0.0011 (3)
O40.0210 (4)0.0353 (4)0.0176 (3)0.0141 (3)0.0026 (3)0.0055 (3)
Geometric parameters (Å, º) top
Zr1—F11.9910 (6)C1—H10.9500
Zr1—F21.9991 (6)C1—C21.4023 (15)
Zr1—F32.0430 (6)C2—H20.9500
Zr1—F42.0014 (6)C2—C31.3744 (17)
Zr1—F52.0163 (6)C3—H30.9500
Zr1—F61.9933 (6)C3—C41.4111 (15)
Cu1—F12.5184 (6)C4—C51.4025 (13)
Cu1—O12.2758 (7)C4—C61.4369 (15)
Cu1—O21.9768 (8)C5—C91.4288 (13)
Cu1—O31.9580 (8)C6—H60.9500
Cu1—N11.9997 (8)C6—C71.3558 (17)
Cu1—N22.0021 (8)C7—H70.9500
O1—H1A0.794 (18)C7—C81.4341 (14)
O1—H1B0.78 (2)C8—C91.4044 (12)
O2—H2A0.79 (2)C8—C101.4085 (14)
O2—H2B0.82 (2)C10—H100.9500
O3—H3A0.79 (2)C10—C111.3762 (15)
O3—H3B0.79 (2)C11—H110.9500
N1—C11.3245 (12)C11—C121.4015 (13)
N1—C51.3577 (12)C12—H120.9500
N2—C91.3577 (11)O4—H4A0.799 (19)
N2—C121.3292 (12)O4—H4B0.78 (2)
F1—Zr1—F294.21 (3)C5—N1—Cu1112.08 (6)
F1—Zr1—F389.92 (3)C9—N2—Cu1112.05 (6)
F1—Zr1—F4175.79 (3)C12—N2—Cu1129.46 (6)
F1—Zr1—F588.87 (3)C12—N2—C9118.47 (8)
F1—Zr1—F688.46 (3)N1—C1—H1118.8
F2—Zr1—F386.70 (3)N1—C1—C2122.32 (10)
F2—Zr1—F489.81 (3)C2—C1—H1118.8
F2—Zr1—F5172.66 (3)C1—C2—H2120.2
F4—Zr1—F391.58 (3)C3—C2—C1119.67 (9)
F4—Zr1—F587.29 (3)C3—C2—H2120.2
F5—Zr1—F386.64 (2)C2—C3—H3120.4
F6—Zr1—F293.04 (3)C2—C3—C4119.25 (9)
F6—Zr1—F3178.34 (3)C4—C3—H3120.4
F6—Zr1—F490.06 (3)C3—C4—C6124.33 (9)
F6—Zr1—F593.71 (3)C5—C4—C3117.02 (9)
O1—Cu1—F1170.35 (2)C5—C4—C6118.65 (9)
O2—Cu1—F183.91 (3)N1—C5—C4123.31 (9)
O2—Cu1—O188.37 (3)N1—C5—C9116.59 (8)
O2—Cu1—N193.32 (4)C4—C5—C9120.10 (8)
O2—Cu1—N2176.00 (4)C4—C6—H6119.4
O3—Cu1—F191.52 (3)C7—C6—C4121.21 (9)
O3—Cu1—O194.18 (3)C7—C6—H6119.4
O3—Cu1—O289.34 (4)C6—C7—H7119.5
O3—Cu1—N1168.59 (3)C6—C7—C8121.05 (9)
O3—Cu1—N294.61 (4)C8—C7—H7119.5
N1—Cu1—F177.75 (3)C9—C8—C7118.70 (9)
N1—Cu1—O196.98 (3)C9—C8—C10117.05 (9)
N1—Cu1—N282.69 (3)C10—C8—C7124.25 (9)
N2—Cu1—F195.36 (3)N2—C9—C5116.52 (8)
N2—Cu1—O191.94 (3)N2—C9—C8123.22 (8)
Zr1—F1—Cu1132.59 (3)C8—C9—C5120.25 (8)
Cu1—O1—H1A121.0 (13)C8—C10—H10120.3
Cu1—O1—H1B125.9 (14)C11—C10—C8119.41 (9)
H1A—O1—H1B102.0 (18)C11—C10—H10120.3
Cu1—O2—H2A128.2 (14)C10—C11—H11120.2
Cu1—O2—H2B120.1 (13)C10—C11—C12119.63 (9)
H2A—O2—H2B109.8 (19)C12—C11—H11120.2
Cu1—O3—H3A130.1 (13)N2—C12—C11122.20 (9)
Cu1—O3—H3B122.1 (15)N2—C12—H12118.9
H3A—O3—H3B107.6 (19)C11—C12—H12118.9
C1—N1—Cu1129.37 (7)H4A—O4—H4B106.4 (19)
C1—N1—C5118.41 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···F5i0.794 (18)1.944 (18)2.7338 (9)173.5 (18)
O1—H1B···F4ii0.78 (2)1.93 (2)2.7147 (10)179 (2)
O2—H2A···F3i0.79 (2)1.85 (2)2.6324 (10)171 (2)
O2—H2B···F60.82 (2)1.87 (2)2.6491 (10)159.2 (19)
O3—H3A···F2iii0.79 (2)1.85 (2)2.6327 (10)177.5 (19)
O3—H3B···O4iv0.79 (2)1.87 (2)2.6481 (12)170 (2)
O4—H4A···F30.799 (19)2.002 (19)2.7691 (10)160.9 (18)
O4—H4B···F5v0.78 (2)2.02 (2)2.7449 (11)155 (2)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z1/2; (iv) x1, y, z; (v) x+1/2, y+1/2, z+1/2.
Triaqua-2κ3O-µ-fluorido-pentafluorido-1κ5F-(1,10-phenanthroline-2κ2N,N')copper(II)hafnium(IV) monohydrate (III) top
Crystal data top
[CuHfF6(C12H8N2)(H2O)3]·H2OF(000) = 1156
Mr = 608.30Dx = 2.363 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.9411 (3) ÅCell parameters from 9921 reflections
b = 17.2733 (4) Åθ = 2.4–36.4°
c = 9.9972 (2) ŵ = 7.39 mm1
β = 95.116 (1)°T = 101 K
V = 1709.84 (7) Å3Rodlike, blue
Z = 40.17 × 0.12 × 0.05 mm
Data collection top
Bruker Kappa APEX CCD area detector
diffractometer
8248 independent reflections
Radiation source: sealed tube7980 reflections with I > 2σ(I)
Triumph monochromatorRint = 0.026
Detector resolution: 8 pixels mm-1θmax = 36.4°, θmin = 2.4°
ω and φ scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 2828
Tmin = 0.480, Tmax = 0.747l = 1316
43322 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.015H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.036 w = 1/[σ2(Fo2) + (0.0108P)2 + 0.940P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.005
8248 reflectionsΔρmax = 1.03 e Å3
267 parametersΔρmin = 0.98 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hf10.52483 (2)0.82180 (2)0.31483 (2)0.00816 (1)
Cu10.76520 (2)0.63146 (2)0.26150 (2)0.01043 (2)
F10.59437 (9)0.71639 (5)0.36048 (9)0.01579 (14)
F20.44315 (10)0.79101 (5)0.13341 (9)0.01846 (15)
F30.34510 (8)0.79333 (5)0.38379 (9)0.01545 (13)
F40.46393 (9)0.93051 (5)0.27960 (10)0.01710 (15)
F50.58415 (8)0.85522 (5)0.50333 (8)0.01413 (13)
F60.70198 (9)0.84641 (5)0.24732 (9)0.01652 (14)
O10.90410 (10)0.56191 (6)0.13766 (11)0.01534 (16)
H1A0.952 (3)0.5850 (18)0.092 (3)0.043 (8)*
H1B0.944 (3)0.5250 (18)0.158 (3)0.038 (8)*
O20.77370 (14)0.71712 (6)0.13085 (11)0.0204 (2)
H2A0.770 (3)0.7646 (16)0.155 (3)0.039 (8)*
H2B0.794 (3)0.7190 (18)0.058 (3)0.041 (8)*
O30.91370 (13)0.67963 (8)0.37400 (13)0.0258 (3)
H3A0.982 (3)0.6915 (16)0.342 (3)0.036 (8)*
H3B0.923 (3)0.6862 (16)0.451 (3)0.036 (8)*
N10.59097 (11)0.59097 (6)0.17348 (10)0.01118 (15)
N20.74478 (10)0.54241 (6)0.38597 (10)0.01065 (14)
C10.51346 (13)0.61947 (7)0.07036 (13)0.01500 (19)
H10.5438860.6635100.0247680.018*
C20.38773 (14)0.58678 (9)0.02611 (15)0.0187 (2)
H20.3342810.6088490.0477180.022*
C30.34248 (13)0.52246 (9)0.09056 (15)0.0185 (2)
H30.2577130.4998310.0617410.022*
C40.42372 (12)0.49081 (7)0.19968 (14)0.01433 (19)
C50.38832 (14)0.42310 (8)0.27286 (16)0.0186 (2)
H50.3059230.3970160.2471400.022*
C60.47075 (14)0.39590 (8)0.37801 (15)0.0175 (2)
H60.4458330.3505950.4237060.021*
C70.59489 (13)0.43449 (7)0.42121 (13)0.01293 (18)
C80.63154 (11)0.50068 (6)0.35078 (12)0.01037 (16)
C90.54650 (11)0.52808 (7)0.23831 (12)0.01084 (16)
C100.68394 (14)0.41075 (7)0.53102 (14)0.0160 (2)
H100.6646850.3658600.5808010.019*
C110.79903 (14)0.45307 (7)0.56563 (14)0.0159 (2)
H110.8598270.4376080.6395080.019*
C120.82601 (12)0.51916 (7)0.49119 (13)0.01334 (18)
H120.9051020.5483790.5168120.016*
O40.13489 (12)0.70967 (8)0.25315 (12)0.0224 (2)
H4A0.143 (3)0.6980 (16)0.176 (3)0.030 (7)*
H4B0.200 (3)0.7376 (18)0.269 (3)0.043 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hf10.00935 (2)0.00804 (2)0.00717 (2)0.00036 (1)0.00110 (1)0.00014 (1)
Cu10.01135 (5)0.01143 (5)0.00851 (6)0.00251 (4)0.00096 (4)0.00007 (4)
F10.0220 (4)0.0106 (3)0.0152 (3)0.0038 (3)0.0040 (3)0.0018 (2)
F20.0247 (4)0.0205 (4)0.0095 (3)0.0001 (3)0.0024 (3)0.0022 (3)
F30.0121 (3)0.0211 (4)0.0134 (3)0.0043 (3)0.0027 (2)0.0008 (3)
F40.0185 (4)0.0101 (3)0.0220 (4)0.0021 (2)0.0022 (3)0.0012 (3)
F50.0138 (3)0.0182 (3)0.0101 (3)0.0009 (2)0.0005 (2)0.0036 (2)
F60.0154 (3)0.0159 (3)0.0195 (4)0.0027 (3)0.0086 (3)0.0005 (3)
O10.0153 (4)0.0138 (4)0.0177 (4)0.0018 (3)0.0062 (3)0.0026 (3)
O20.0361 (6)0.0122 (4)0.0147 (4)0.0008 (4)0.0127 (4)0.0002 (3)
O30.0208 (5)0.0440 (7)0.0132 (5)0.0190 (5)0.0050 (4)0.0095 (4)
N10.0121 (4)0.0118 (4)0.0094 (4)0.0016 (3)0.0002 (3)0.0011 (3)
N20.0094 (3)0.0127 (4)0.0098 (4)0.0003 (3)0.0005 (3)0.0000 (3)
C10.0168 (5)0.0155 (5)0.0120 (5)0.0052 (4)0.0023 (4)0.0018 (3)
C20.0141 (5)0.0248 (6)0.0160 (5)0.0063 (4)0.0045 (4)0.0049 (4)
C30.0112 (4)0.0253 (6)0.0183 (6)0.0016 (4)0.0025 (4)0.0082 (4)
C40.0103 (4)0.0164 (5)0.0162 (5)0.0012 (3)0.0009 (3)0.0056 (4)
C50.0137 (5)0.0184 (5)0.0242 (6)0.0060 (4)0.0052 (4)0.0060 (4)
C60.0178 (5)0.0138 (5)0.0221 (6)0.0052 (4)0.0073 (4)0.0030 (4)
C70.0152 (4)0.0100 (4)0.0143 (5)0.0003 (3)0.0051 (4)0.0007 (3)
C80.0096 (4)0.0105 (4)0.0113 (4)0.0008 (3)0.0025 (3)0.0011 (3)
C90.0090 (4)0.0123 (4)0.0111 (4)0.0002 (3)0.0007 (3)0.0026 (3)
C100.0212 (5)0.0127 (4)0.0148 (5)0.0024 (4)0.0053 (4)0.0022 (4)
C110.0190 (5)0.0158 (5)0.0129 (5)0.0038 (4)0.0008 (4)0.0032 (4)
C120.0121 (4)0.0166 (5)0.0110 (4)0.0010 (3)0.0004 (3)0.0012 (3)
O40.0190 (4)0.0316 (6)0.0167 (5)0.0120 (4)0.0027 (3)0.0048 (4)
Geometric parameters (Å, º) top
Hf1—F11.9863 (8)C1—H10.9500
Hf1—F21.9922 (9)C1—C21.4065 (19)
Hf1—F32.0320 (8)C2—H20.9500
Hf1—F41.9946 (8)C2—C31.380 (2)
Hf1—F52.0085 (8)C3—H30.9500
Hf1—F61.9873 (8)C3—C41.409 (2)
Cu1—F12.5130 (9)C4—C51.440 (2)
Cu1—O12.2776 (10)C4—C91.4033 (16)
Cu1—O21.9804 (11)C5—H50.9500
Cu1—O31.9597 (11)C5—C61.358 (2)
Cu1—N11.9979 (11)C6—H60.9500
Cu1—N22.0002 (10)C6—C71.4348 (18)
O1—H1A0.80 (3)C7—C81.4076 (17)
O1—H1B0.77 (3)C7—C101.4085 (19)
O2—H2A0.86 (3)C8—C91.4259 (17)
O2—H2B0.77 (3)C10—H100.9500
O3—H3A0.81 (3)C10—C111.376 (2)
O3—H3B0.77 (3)C11—H110.9500
N1—C11.3256 (16)C11—C121.4016 (18)
N1—C91.3590 (16)C12—H120.9500
N2—C81.3565 (15)O4—H4A0.81 (3)
N2—C121.3298 (16)O4—H4B0.81 (3)
F1—Hf1—F294.00 (4)C9—N1—Cu1112.08 (8)
F1—Hf1—F389.93 (4)C8—N2—Cu1112.04 (8)
F1—Hf1—F4175.95 (4)C12—N2—Cu1129.51 (8)
F1—Hf1—F588.90 (4)C12—N2—C8118.43 (10)
F1—Hf1—F688.47 (4)N1—C1—H1118.9
F2—Hf1—F386.85 (4)N1—C1—C2122.28 (13)
F2—Hf1—F489.88 (4)C2—C1—H1118.9
F2—Hf1—F5173.04 (4)C1—C2—H2120.2
F4—Hf1—F391.46 (4)C3—C2—C1119.61 (12)
F4—Hf1—F587.38 (4)C3—C2—H2120.2
F5—Hf1—F386.83 (3)C2—C3—H3120.5
F6—Hf1—F292.84 (4)C2—C3—C4119.07 (12)
F6—Hf1—F3178.34 (4)C4—C3—H3120.5
F6—Hf1—F490.17 (4)C3—C4—C5124.03 (12)
F6—Hf1—F593.57 (4)C9—C4—C3117.37 (12)
O1—Cu1—F1170.30 (3)C9—C4—C5118.61 (12)
O2—Cu1—F183.89 (4)C4—C5—H5119.4
O2—Cu1—O188.40 (4)C6—C5—C4121.10 (12)
O2—Cu1—N193.29 (5)C6—C5—H5119.4
O2—Cu1—N2175.97 (5)C5—C6—H6119.5
O3—Cu1—F191.55 (5)C5—C6—C7121.04 (12)
O3—Cu1—O194.23 (5)C7—C6—H6119.5
O3—Cu1—O289.26 (6)C8—C7—C6118.74 (12)
O3—Cu1—N1168.66 (5)C8—C7—C10116.98 (11)
O3—Cu1—N294.73 (5)C10—C7—C6124.28 (12)
N1—Cu1—F177.76 (4)N2—C8—C7123.21 (11)
N1—Cu1—O196.88 (4)N2—C8—C9116.62 (10)
N1—Cu1—N282.69 (4)C7—C8—C9120.16 (10)
N2—Cu1—F195.41 (4)N1—C9—C4123.19 (11)
N2—Cu1—O191.87 (4)N1—C9—C8116.50 (10)
Hf1—F1—Cu1132.71 (4)C4—C9—C8120.31 (11)
Cu1—O1—H1A118 (2)C7—C10—H10120.3
Cu1—O1—H1B128 (2)C11—C10—C7119.48 (12)
H1A—O1—H1B104 (3)C11—C10—H10120.3
Cu1—O2—H2A121 (2)C10—C11—H11120.2
Cu1—O2—H2B133 (2)C10—C11—C12119.57 (12)
H2A—O2—H2B104 (3)C12—C11—H11120.2
Cu1—O3—H3A120 (2)N2—C12—C11122.31 (12)
Cu1—O3—H3B131 (2)N2—C12—H12118.8
H3A—O3—H3B109 (3)C11—C12—H12118.8
C1—N1—Cu1129.31 (9)H4A—O4—H4B101 (3)
C1—N1—C9118.46 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···F5i0.80 (3)1.94 (3)2.7359 (13)172 (3)
O1—H1B···F4ii0.77 (3)1.95 (3)2.7135 (13)176 (3)
O2—H2A···F60.86 (3)1.85 (3)2.6456 (14)154 (3)
O2—H2B···F3i0.77 (3)1.87 (3)2.6362 (14)171 (3)
O3—H3A···O4iii0.81 (3)1.85 (3)2.6529 (17)173 (3)
O3—H3B···F2iv0.77 (3)1.86 (3)2.6330 (15)176 (3)
O4—H4A···F5v0.81 (3)2.00 (3)2.7429 (15)154 (3)
O4—H4B···F30.81 (3)2.01 (3)2.7702 (14)156 (3)
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y, z; (iv) x+1/2, y+3/2, z+1/2; (v) x1/2, y+3/2, z1/2.
Bis[diaquafluorido(1,10-phenanthroline-κ2N,N')copper(II)] hexafluoridohafnate(IV) dihydrate (IV) top
Crystal data top
[CuF(C12H8N2)(H2O)2]2[HfF6]·2H2OF(000) = 900
Mr = 926.07Dx = 2.041 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.6451 (2) ÅCell parameters from 9864 reflections
b = 7.1161 (1) Åθ = 3.2–31.6°
c = 15.7457 (3) ŵ = 4.93 mm1
β = 99.691 (1)°T = 100 K
V = 1507.09 (4) Å3Block, blue
Z = 20.16 × 0.16 × 0.10 mm
Data collection top
Bruker Kappa APEX CCD area detector
diffractometer
5034 independent reflections
Radiation source: sealed tube4982 reflections with I > 2σ(I)
Triumph monochromatorRint = 0.033
Detector resolution: 8 pixels mm-1θmax = 31.6°, θmin = 1.8°
ω and φ scansh = 2020
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1010
Tmin = 0.489, Tmax = 0.746l = 2323
123138 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.014 w = 1/[σ2(Fo2) + (0.0117P)2 + 1.360P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.035(Δ/σ)max = 0.002
S = 1.15Δρmax = 0.67 e Å3
5034 reflectionsΔρmin = 0.70 e Å3
230 parametersExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00177 (14)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.62127 (2)0.64187 (2)0.68925 (2)0.01005 (3)
F10.76115 (6)0.65941 (11)0.70156 (5)0.01498 (14)
O10.62607 (8)0.45374 (15)0.78219 (7)0.01690 (18)
H1A0.624 (2)0.491 (3)0.8306 (18)0.038 (7)*
H1B0.6623 (18)0.375 (4)0.7848 (15)0.031 (6)*
O20.61132 (8)0.88111 (16)0.76902 (8)0.0210 (2)
H2A0.5660 (19)0.907 (4)0.7866 (16)0.035 (6)*
H2B0.6525 (18)0.961 (3)0.7795 (15)0.028 (6)*
N10.47279 (8)0.62122 (15)0.66010 (7)0.01255 (18)
N20.60647 (8)0.72932 (15)0.56647 (7)0.01210 (18)
C10.40802 (10)0.5731 (2)0.71056 (9)0.0173 (2)
H10.4319690.5366850.7683770.021*
C20.30508 (11)0.5746 (2)0.68062 (10)0.0229 (3)
H20.2602520.5426700.7184190.027*
C30.26932 (10)0.6223 (2)0.59655 (11)0.0227 (3)
H30.1998280.6215430.5756190.027*
C40.33664 (10)0.67219 (19)0.54175 (9)0.0169 (2)
C50.43786 (9)0.67246 (17)0.57741 (8)0.0125 (2)
C60.30786 (11)0.7249 (2)0.45299 (10)0.0218 (3)
H60.2396210.7215800.4275550.026*
C70.37640 (12)0.7791 (2)0.40497 (9)0.0212 (3)
H70.3552710.8144340.3465770.025*
C80.48019 (11)0.78432 (18)0.44052 (8)0.0161 (2)
C90.51006 (9)0.72954 (17)0.52666 (8)0.0122 (2)
C100.55590 (12)0.84042 (19)0.39478 (9)0.0204 (3)
H100.5396380.8791210.3363610.024*
C110.65340 (12)0.8386 (2)0.43549 (9)0.0206 (3)
H110.7049810.8753870.4053060.025*
C120.67606 (10)0.78186 (19)0.52197 (8)0.0162 (2)
H120.7435790.7811150.5495300.019*
Hf10.5000000.5000001.0000000.01221 (3)
F20.41065 (9)0.67878 (17)0.92652 (8)0.0399 (3)
F30.54442 (8)0.69971 (16)1.08602 (7)0.0347 (3)
F40.61050 (7)0.56285 (16)0.93645 (6)0.0286 (2)
O30.44170 (9)0.97485 (17)0.82435 (8)0.0211 (2)
H3A0.4338 (19)0.893 (4)0.8558 (17)0.044 (7)*
H3B0.4502 (18)1.063 (4)0.8509 (16)0.034 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.00921 (6)0.01226 (7)0.00874 (6)0.00025 (5)0.00170 (5)0.00021 (5)
F10.0105 (3)0.0159 (4)0.0182 (4)0.0005 (3)0.0014 (3)0.0001 (3)
O10.0223 (5)0.0169 (4)0.0126 (4)0.0065 (4)0.0061 (4)0.0035 (3)
O20.0179 (5)0.0181 (5)0.0301 (5)0.0050 (4)0.0127 (4)0.0111 (4)
N10.0116 (4)0.0135 (5)0.0128 (4)0.0001 (4)0.0027 (3)0.0023 (4)
N20.0146 (4)0.0112 (4)0.0107 (4)0.0009 (4)0.0028 (3)0.0007 (3)
C10.0155 (5)0.0213 (6)0.0166 (6)0.0021 (5)0.0070 (4)0.0041 (5)
C20.0147 (6)0.0280 (7)0.0281 (7)0.0020 (5)0.0099 (5)0.0065 (6)
C30.0117 (5)0.0253 (7)0.0305 (7)0.0023 (5)0.0024 (5)0.0074 (6)
C40.0136 (5)0.0146 (5)0.0210 (6)0.0034 (4)0.0014 (4)0.0046 (5)
C50.0127 (5)0.0107 (5)0.0134 (5)0.0020 (4)0.0001 (4)0.0026 (4)
C60.0203 (6)0.0179 (6)0.0230 (6)0.0072 (5)0.0084 (5)0.0047 (5)
C70.0291 (7)0.0151 (6)0.0157 (6)0.0074 (5)0.0075 (5)0.0020 (5)
C80.0256 (6)0.0104 (5)0.0108 (5)0.0033 (5)0.0008 (4)0.0006 (4)
C90.0161 (5)0.0089 (5)0.0109 (5)0.0014 (4)0.0004 (4)0.0012 (4)
C100.0371 (8)0.0129 (5)0.0112 (5)0.0010 (5)0.0044 (5)0.0012 (4)
C110.0323 (7)0.0161 (6)0.0156 (6)0.0021 (5)0.0104 (5)0.0006 (5)
C120.0206 (6)0.0149 (5)0.0144 (5)0.0029 (5)0.0064 (4)0.0013 (4)
Hf10.01420 (4)0.01322 (4)0.01094 (4)0.00344 (2)0.00713 (2)0.00266 (2)
F20.0325 (6)0.0375 (6)0.0482 (7)0.0045 (5)0.0029 (5)0.0185 (5)
F30.0321 (5)0.0372 (6)0.0387 (6)0.0155 (4)0.0174 (4)0.0263 (5)
F40.0268 (5)0.0418 (6)0.0213 (4)0.0156 (4)0.0165 (4)0.0086 (4)
O30.0212 (5)0.0188 (5)0.0250 (5)0.0002 (4)0.0093 (4)0.0061 (4)
Geometric parameters (Å, º) top
Cu1—F11.8899 (8)C5—C91.4279 (18)
Cu1—O11.9763 (10)C6—H60.9500
Cu1—O22.1335 (11)C6—C71.354 (2)
Cu1—N12.0060 (11)C7—H70.9500
Cu1—N22.0085 (11)C7—C81.433 (2)
O1—H1A0.81 (3)C8—C91.4042 (17)
O1—H1B0.74 (3)C8—C101.413 (2)
O2—H2A0.74 (3)C10—H100.9500
O2—H2B0.80 (3)C10—C111.376 (2)
N1—C11.3290 (16)C11—H110.9500
N1—C51.3588 (16)C11—C121.4039 (19)
N2—C91.3586 (16)C12—H120.9500
N2—C121.3254 (16)Hf1—F21.9922 (11)
C1—H10.9500Hf1—F2i1.9921 (11)
C1—C21.4044 (19)Hf1—F31.9863 (10)
C2—H20.9500Hf1—F3i1.9863 (10)
C2—C31.374 (2)Hf1—F41.9957 (9)
C3—H30.9500Hf1—F4i1.9957 (9)
C3—C41.408 (2)O3—H3A0.78 (3)
C4—C51.4006 (17)O3—H3B0.75 (3)
C4—C61.436 (2)
F1—Cu1—O193.54 (4)C4—C6—H6119.5
F1—Cu1—O292.88 (4)C7—C6—C4121.08 (13)
F1—Cu1—N1172.75 (4)C7—C6—H6119.5
F1—Cu1—N290.83 (4)C6—C7—H7119.4
O1—Cu1—O295.86 (5)C6—C7—C8121.29 (13)
O1—Cu1—N191.49 (5)C8—C7—H7119.4
O1—Cu1—N2155.24 (5)C9—C8—C7118.50 (13)
N1—Cu1—O291.79 (4)C9—C8—C10116.91 (13)
N1—Cu1—N282.44 (4)C10—C8—C7124.59 (13)
N2—Cu1—O2108.26 (5)N2—C9—C5116.56 (11)
Cu1—O1—H1A118.1 (17)N2—C9—C8123.16 (12)
Cu1—O1—H1B119.3 (18)C8—C9—C5120.27 (12)
H1A—O1—H1B109 (2)C8—C10—H10120.2
Cu1—O2—H2A124 (2)C11—C10—C8119.50 (12)
Cu1—O2—H2B125.3 (17)C11—C10—H10120.2
H2A—O2—H2B110 (3)C10—C11—H11120.3
C1—N1—Cu1129.04 (9)C10—C11—C12119.49 (13)
C1—N1—C5118.73 (11)C12—C11—H11120.3
C5—N1—Cu1112.17 (8)N2—C12—C11122.24 (13)
C9—N2—Cu1112.16 (8)N2—C12—H12118.9
C12—N2—Cu1129.15 (9)C11—C12—H12118.9
C12—N2—C9118.69 (11)F2i—Hf1—F2180.0
N1—C1—H1119.1F2—Hf1—F490.34 (5)
N1—C1—C2121.71 (13)F2—Hf1—F4i89.66 (5)
C2—C1—H1119.1F2i—Hf1—F4i90.34 (5)
C1—C2—H2120.1F2i—Hf1—F489.66 (5)
C3—C2—C1119.88 (13)F3i—Hf1—F2i91.48 (6)
C3—C2—H2120.1F3i—Hf1—F288.52 (6)
C2—C3—H3120.3F3—Hf1—F2i88.52 (6)
C2—C3—C4119.36 (13)F3—Hf1—F291.48 (6)
C4—C3—H3120.3F3i—Hf1—F3180.0
C3—C4—C6124.23 (13)F3—Hf1—F490.69 (4)
C5—C4—C3117.12 (13)F3i—Hf1—F4i90.69 (4)
C5—C4—C6118.64 (13)F3i—Hf1—F489.31 (4)
N1—C5—C4123.15 (12)F3—Hf1—F4i89.31 (4)
N1—C5—C9116.67 (11)F4i—Hf1—F4180.0
C4—C5—C9120.18 (12)H3A—O3—H3B107 (3)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···F40.81 (3)1.78 (3)2.5926 (14)176 (3)
O1—H1B···F1ii0.74 (3)1.85 (3)2.5861 (13)172 (3)
O2—H2A···O30.74 (3)1.95 (3)2.6906 (15)176 (3)
O2—H2B···F1iii0.80 (3)1.83 (3)2.6255 (13)175 (2)
O3—H3A···F20.78 (3)1.94 (3)2.7270 (17)176 (3)
O3—H3B···F3iv0.75 (3)1.96 (3)2.7020 (15)173 (3)
Symmetry codes: (ii) x+3/2, y1/2, z+3/2; (iii) x+3/2, y+1/2, z+3/2; (iv) x+1, y+2, z+2.
ππ stacking interactions in compounds (I)–(IV) top
Compound numbertypedphenyl–pyridinedpyridine–pyridinedphenyl–phenylinterplanar angle
(I)face-to-face3.6994.1623.5830
(I)displaced6.0424.1288.1118.68
(II)/(III)parallel displaced4.4693.4076.3240
(II)/(III)parallel displaced3.5104.4724.0350
(IV)face to face3.6643.484.070
(IV)parallel displaced3.5083.8814.6040
 

Acknowledgements

Single-crystal X-ray diffraction data were acquired at IMSERC at Northwestern University, which has received support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-1542205), the State of Illinois, and the Inter­national Institute for Nanotechnology (IIN).

Funding information

Funding for this research was provided by: National Science Foundation (award No. DMR-1904701).

References

First citationBruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2017). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, P.-H., Chen, J.-Y., Tsai, H.-C. & Hsiue, G.-H. (2009). J. Polym. Sci. A Polym. Chem. 47, 4937–4949.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDonakowski, M. D., Gautier, R., Yeon, J., Moore, D. T., Nino, J. C., Halasyamani, P. S. & Poeppelmeier, K. R. (2012). J. Am. Chem. Soc. 134, 7679–7689.  CrossRef ICSD CAS PubMed Google Scholar
First citationHarrison, W. T. A., Nenoff, T. M., Gier, T. E. & Stucky, G. D. (1993). Inorg. Chem. 32, 2437–2441.  CrossRef ICSD CAS Web of Science Google Scholar
First citationHolland, M., Donakowski, M. D., Pozzi, E. A., Rasmussen, A. M., Tran, T. T., Pease-Dodson, S. E., Halasyamani, P. S., Seideman, T., Van Duyne, R. P. & Poeppelmeier, K. R. (2014). Inorg. Chem. 53, 221–228.  CrossRef ICSD CAS PubMed Google Scholar
First citationOstroverkhov, V., Petschek, R. G., Singer, K. D. & Twieg, R. J. (2001). Chem. Phys. Lett. 340, 109–115.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTao, X. T., Watanabe, T., Shimoda, S., Zou, D. C., Sato, H. & Miyata, S. (1994). Chem. Mater. 6, 1961–1966.  CrossRef CAS Google Scholar
First citationTao, X. T., Watanabe, T., Zou, D. C., Shimoda, S., Usui, H., Sato, H. & Miyata, S. (1995). J. Polym. Sci. B Polym. Phys. 33, 2205–2210.  CrossRef CAS Google Scholar
First citationYamamoto, H., Katogi, S., Watanabe, T., Sato, H., Miyata, S. & Hosomi, T. (1992). Appl. Phys. Lett. 60, 935–937  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds