research communications
of [3,10-bis(4-fluorophenethyl)-1,3,5,8,10,12-hexaazacyclotetradecane]nickel(II) diperchlorate
aDepartment of Chemistry Education, Sunchon National University, 255 Jungang-ro, Sunchon, 57922, South Korea, and bPolymerization Manufacturing Technology Research Team, Lotte Chemicals, 334-27 Yeosu Sandan-ro, Yeosu, 59616, South Korea
*Correspondence e-mail: chkwak@sunchon.ac.kr
The square-planar nickel(II) title complex, [Ni(C24H36F2N6)](ClO4)2 or [NiL](ClO4)2 (L = 3,10-bis(4-fluorophenethyl)-1,3,5,8,10,12-hexaazacyclotetradecane) was synthesized by a one-pot reaction of template condensation and its X-ray was determined. The nickel(II) ion lies close by a twofold axis and the complex displays whole-molecule disorder. Ligand L, a hexaazacyclotetradecane ring having 4-fluorophenethyl side chains attached to uncoordinated nitrogen atoms, adopts a trans III (R,R,S,S) configuration. The average Ni—N bond distance is 1.934 (9) Å, which is quite similar to those of other nickel(II) complexes with similar ligands. The nickel(II) ion is located 0.051 (7) Å above the least-squares plane through the four coordinated N atoms. The average C—N bond distance and C—N—C angle involving uncoordinated nitrogen atoms are 1.425 (12) Å and 118.0 (9)°, respectively, indicating a significant contribution of sp2 for these N atoms. The intermolecular N—H⋯O, C—H⋯O/F hydrogen bonds of the complex form a network structure, which looks like a seamless floral lace pattern.
Keywords: crystal structure; whole-molecule disorder; 3,10-bis(4-fluorophenethyl)-1,3,5,8,10,12-hexaazacyclotetradecane; 4-fluorophenethyl side chain; nickel(II) complex; trans-III configuration.
CCDC reference: 2053166
1. Chemical context
A metal template condensation reaction with formaldehyde and appropriate via selective routes (Salavati-Niasari & Davar, 2006; Salavati-Niasari & Najafian, 2003; Suh, 1996). The introduction of pendant arms into polyazamacrocyclic ligands has, sometimes, changed the structural and chemical properties of the complexes considerably (Hermann et al., 2008; Jee et al., 2003; Alexander, 1995; Kang et al., 1995). The information derived from polyazamacrocyclic complexes containing pendant arms helps in the understanding of apical effects in the biological behavior of tetraazamacrocyclic metalloenzymes having a square-planar geometry (Liang & Sadler, 2004; Costamagna et al., 2000). Furthermore, the donor atoms in the pendant arms of these macrocyclic complexes can be coordinated to another metal ion or participate in hydrogen bonding. Consequently, these complexes can be applied in the field of supramolecular chemistry or metal–organic frameworks. In the nickel(II) complex 8-(pyridin-4-ylmethyl)-1,3,6,8,10,13,15-heptaazatricyclo[13.1.1.113,15]octadecane, intermolecular hydrogen bonding between the nitrogen of the pendant pyridine and coordinated water produces a one-dimensional chain structure (Jee et al., 2003). In particular, many supramolecular studies including metal–organic frameworks using complexes of 3,10-bis(alkyl)-1,3,5,8,10,12-hexaazacyclotetradecane-type ligands are available because they can be obtained by easy synthetic routes using metal template reactions (Min & Suh, 2001; Kang et al., 1999; Suh et al., 1994). The nickel(II) complex of 3,10-bis(2-cyanoethyl)-1,3,5,8,10,12-hexaazacyclotetradecane produces a coordination polymer with each nickel(II) ion in the macrocycle units coordinating to two nitrile pendant groups of neighboring macrocycles (Suh et al., 1994). In the nickel(II) complex of 3,10-bis(pyridin-4-ylmethyl)-1,3,5,8,10,12-hexaazacyclotetradecane, hydrogen-bonding interactions between nitrogen atoms in pendant pyridine rings, structural water molecules and hydrogen atoms of the secondary amine of the macrocycle link the macrocyclic complexes, resulting in a two-dimensional network (Min & Suh, 2001). In addition, many studies on metal–organic frameworks have been performed using complexes of 3,10-bis(alkyl)-1,3,5,8,10,12-hexaazacyclotetradecane-type ligands (Jeoung et al., 2019; Stackhouse & Ma, 2018; Lee & Moon, 2018; Lin et al., 2014). In this communication, we report the preparation of a new nickel(II) complex [NiL](ClO4)2, where L is a 3,10-bis(alkyl)-1,3,5,8,10,12-hexaazacyclotetradecane ligand having 4-fluorophenethyl pendant arms at positions 3 and 10, and its structural characterization by single-crystal X-ray crystallography.
is a useful method for the synthesis of saturated polyazamacrocyclic complexes. It often produces new macrocyclic complexes in one-pot reactions with high yield2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. Both the complex and perchlorate anion display disorder. The NiII ion lies close by a special position (twofold axis) and the [NiL]2+ complex occurs in two orientations with fixed occupancies of 0.50. The of this whole-molecule disorder needed additional restraints (see Refinement section). The occupancies of the disordered perchlorate ion are 0.795 (7) and 0.205 (7). The nickel(II) ion is coordinated to the four nitrogens N2, N3, N2′ and N3′, and the complex has a square-planar coordination geometry. The 14-membered ring skeleton adopts the thermodynamically most stable trans-III configuration with R,R,S,S of the four coordinated nitrogen atoms (Barefield, 2010). The ligand L of the complex has two 4-fluorophenethyl pendant arms attached to the two uncoordinated nitrogens (N1 and N1′) of the 14-membered 1,3,5,8,10,12-hexaazacyclotetradecane ring skeleton. The 4-fluorophenethyl pendants are positioned above and below the square coordination plane. The six-membered chelate rings adopt a chair conformation and the five-membered chelate rings assume a gauche conformation.
Selected bond distances and angles are listed in Table 1. The average Ni—N bond distance of 1.934 (9) Å is quite similar to those in square-planar nickel(II) complexes of various other related 14-membered polyaza macrocycles (Kang et al., 1999; Suh et al., 1998; Suh et al., 1996). The bite angles of five-membered chelates are 86.5 (2)° for N2—Ni1—N2′ and 86.6 (3)° for N3—Ni1—N3′, respectively and those of six-membered chelates are 93.7 (4)° for N2—Ni1—N3 and 93.0 (4)° for N2′—Ni1—N3′, respectively. The four coordinating nitrogen atoms (N2, N3, N2′ and N3′) are almost co-planar (r.m.s. deviation 0.010 Å). The nickel(II) ion is located 0.051 (7) Å above this least-squares plane showing a slightly square-pyramidal distortion. The N—C bond distances involving the uncoordinated bridgehead nitrogens (N1 and N1′) range from 1.398 (11) Å (N1—C1) to 1.481 (10) Å (N1′—C5′) and the average N—C bond distance is 1.425 (12) Å, which is significantly shorter than the other N—C single bond distances. Furthermore, the C—N—C bond angles involving these bridgehead nitrogens range from 115.5 (7)° (C1—N1—C2) to 120.1 (8)° (C1′—N1′—C5′) and the average bond angle is 118.0 (9)°, which is distinctly larger than the ideal tetrahedral angle. These results indicate a significant contribution of sp2 of the bridgehead nitrogen atoms (N1 and N1′) (Min & Suh, 2001; Kang et al., 1999).
|
3. Supramolecular features
There are several N—H⋯A (A = O) as well as C—H⋯A (A = O or F) hydrogen bonds in the crystal packing of [NiL](ClO4)2. Hydrogen-bonding interactions between N—H or C—H groups of the ligand L and perchlorate oxygen atoms are summarized in Table 2 and illustrated in Fig. 2. In addition, fluorine atom F1 in one of the pendant phenyl groups of the macrocycle is involved in an intermolecular interaction with hydrogen H4A of a neighboring molecule (Table 2 and Fig. 3). The other fluorine atom, F1′, takes part in a weaker hydrogen-bonding interaction with H4′A of a neighboring molecule [H4A⋯F1′ = 2.62 Å, C4′⋯F1′ = 3.312 (17) Å and C4′—H4′A⋯F1′ = 128.4 (8)°]. These interactions form a chain structure extending in the [01] direction (Fig. 3). All of these intermolecular hydrogen-bonding interactions lead to a network structure resembling a seamless floral lace pattern (Fig. 4).
4. Database survey
An Access Structures search of the Cambridge Structural Database (CSD, via CCDC Access Structures, December 2020; Groom et al., 2016) resulted in 97 structures of complexes of 3,10-bis(alkyl)-1,3,5,8,10,12-hexaazacyclotetradecane derivatives and 13 structures of complexes of 1,8-bis(alkyl)-1,3,6,8,10,13-hexaazacyclotetradecane (different of the ligand). However, no results were found for the 3,10-bis(4-fluorophenethyl)-1,3,5,8,10,12-hexaazacyclotetradecane structure.
In addition, 92 structures containing the 1,3,5,8,10,12-hexaazacyclotetradecane skeleton were found during a SciFinder search, but again no results were found containing the title complex. Most are classified as octahedral complexes, while only a few cases are square-planar nickel(II) complexes. The Ni—N bond distances are 1.931 (2)–1.934 (3) Å in the nickel(II) complex of 3,10-bis(2-aminoethyl)-1,3,5,8,10,12-hexaazacyclotetradecane (Kang et al., 1999), 1.934 Å in the nickel(II) complex of 3,10-dibenzyl-1,3,5,8,10,12-hexaazacyclotetradecane (Min & Suh, 2001), and 1.933 (3)–1.936 (3) Å in 1,8-dimethyl-1,3,6,8,10,13-hexaazacyclotetradecane (Benkada et al., 2020), similar to those of the square-planar nickel(II) complexes of various other related 14-membered polyaza macrocycles. The Ni—N distances of 1.933 (4)–1.944 (4) Å in the nickel(II) complex of 1,8-dipentyl-1,3,6,8,10,13-hexaazacyclotetradecane (Park et al., 2015) and the average Ni—N bond distance of 1.941 (6) Å in the nickel(II) complex of 3,10-bis(α-methylnaphthyl)-1,3,5,8,10,12-hexaazacyclotetradecane (Min et al., 2013) are a little longer than those of analogous complexes. However, the Ni—N distances of 1.927 (4)–1.932 (4) Å in the nickel(II) complex of 3,10-bis(2-thiophenemethyl)-1,3,5,8,10,12-hexaazacyclotetradecane (Su et al., 2007) and 1.926 (1)–1.928 (1) Å in that of 3,10-bis(2-hydroxyethyl)-1,3,5,8,10,12-hexaazacyclotetradecane (Kim et al., 2002) are somewhat shorter than those of analogous complexes. In all these nickel(II) complexes of 3,10-bis(alkyl)-1,3,5,8,10,12-hexaazacyclotetradecane analogues, the nickel(II) ion is situated on an inversion center, except for the nickel(II) complex of 3,10-bis(α-methylnaphthyl)-1,3,5,8,10,12-hexaazacyclotetradecane, which does not have an inversion center due to the chiral pendants of the macrocyclic ligand (Min et al., 2013). The nickel (II) ion is exactly in the least-squares plane through the four coordinating nitrogen atoms.
5. Synthesis and crystallization
A well-known one-pot reaction of template condensation was used for the preparation of the title complex (Salavati-Niasari & Rezai-Adaryani, 2004; Min & Suh, 2001; Kang et al., 1999). 98% Ethylenediamine (1.1 ml, 16mmol), 99% 4-fluorophenethylamine (2.1 ml, 16 mmol), and 95% paraformaldehyde (1.44 g, 48 mmol) were slowly added to a stirred solution of 98% nickel(II) acetate tetrahydrate (2.0 g, 8.0 mmol) in 50 ml of methanol. The solution was heated under reflux for 24 h and then cooled to room temperature. The solution was filtered, concentrated HClO4 was added to the filtrate, adjusting pH of the solution to 4, and it was kept in a refrigerator until a yellow-colored precipitate was formed. The product was filtered, washed with methanol, and dried in air. Single crystals for X-ray crystallography were obtained by recrystallization from hot water.
6. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.93 Å (CH, aromatic), 0.97 Å (CH2) and N—H = 0.98 Å (NH2), and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.2Ueq(N)].
details are summarized in Table 3
|
The SHELXL: (1) occupancy factors were set at 0.50, (2) the two chemically equivalent halves of the complex were restrained to be similar using the `SAME' command, (3) the fluorinated benzene rings were given a weak `FLAT' restraint, (4) Ni1 required a strong `ISOR' restraint and (5) displacement factors for atom pairs related about the special position were constrained to be equal (EADP).
of the whole-molecule disorder employed the following constraints and restraints inThe perchlorate anion is disordered over two sets of atomic sites with occupancy ratios of 0.795 (7):0.205 (7).
Supporting information
CCDC reference: 2053166
https://doi.org/10.1107/S2056989020016795/vm2242sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020016795/vm2242Isup2.hkl
Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX (Farrugia, 2012).[Ni(C24H36F2N6)](ClO4)2 | F(000) = 1464 |
Mr = 704.20 | Dx = 1.583 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 16.9910 (12) Å | Cell parameters from 3600 reflections |
b = 15.5187 (11) Å | θ = 1.8–28.3° |
c = 13.8864 (9) Å | µ = 0.91 mm−1 |
β = 126.189 (1)° | T = 173 K |
V = 2955.1 (4) Å3 | Block, yellow |
Z = 4 | 0.40 × 0.35 × 0.20 mm |
Bruker SMART CCD area detector diffractometer | Rint = 0.083 |
phi and ω scans | θmax = 28.3°, θmin = 2.0° |
9357 measured reflections | h = −21→19 |
3400 independent reflections | k = −19→18 |
2737 reflections with I > 2σ(I) | l = −18→15 |
Refinement on F2 | 492 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.068 | H-atom parameters constrained |
wR(F2) = 0.159 | w = 1/[σ2(Fo2) + (0.0449P)2 + 12.0119P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max < 0.001 |
3400 reflections | Δρmax = 0.88 e Å−3 |
282 parameters | Δρmin = −0.63 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.50831 (10) | 0.37625 (4) | 0.25924 (13) | 0.0174 (2)* | 0.5 |
F1 | 0.0633 (8) | 0.3851 (12) | 0.5651 (8) | 0.071 (3) | 0.5 |
N1 | 0.2930 (6) | 0.3576 (6) | 0.2078 (8) | 0.0457 (18) | 0.5 |
N2 | 0.4195 (8) | 0.4599 (6) | 0.2494 (14) | 0.0285 (16) | 0.5 |
H2 | 0.440274 | 0.471036 | 0.330822 | 0.034* | 0.5 |
N3 | 0.4422 (6) | 0.2796 (5) | 0.2689 (8) | 0.0315 (17) | 0.5 |
H3 | 0.464913 | 0.275912 | 0.352038 | 0.038* | 0.5 |
C1 | 0.3129 (7) | 0.4353 (7) | 0.1751 (11) | 0.0438 (19) | 0.5 |
H1A | 0.276898 | 0.481023 | 0.180846 | 0.053* | 0.5 |
H1B | 0.289042 | 0.431370 | 0.092254 | 0.053* | 0.5 |
C2 | 0.3322 (7) | 0.2838 (6) | 0.1930 (9) | 0.0407 (18) | 0.5 |
H2A | 0.307538 | 0.280024 | 0.109821 | 0.049* | 0.5 |
H2B | 0.308648 | 0.233687 | 0.210625 | 0.049* | 0.5 |
C3 | 0.4317 (10) | 0.5416 (7) | 0.2027 (12) | 0.043 (2) | 0.5 |
H3A | 0.398839 | 0.537629 | 0.117278 | 0.052* | 0.5 |
H3B | 0.404620 | 0.589837 | 0.218621 | 0.052* | 0.5 |
C4 | 0.4734 (8) | 0.1987 (5) | 0.2428 (11) | 0.042 (2) | 0.5 |
H4A | 0.462776 | 0.149576 | 0.277068 | 0.050* | 0.5 |
H4B | 0.436522 | 0.190069 | 0.157356 | 0.050* | 0.5 |
C5 | 0.2772 (7) | 0.3584 (7) | 0.3011 (9) | 0.043 (2) | 0.5 |
H5A | 0.324764 | 0.396071 | 0.365491 | 0.051* | 0.5 |
H5B | 0.286668 | 0.300782 | 0.333287 | 0.051* | 0.5 |
C6 | 0.1754 (10) | 0.3892 (15) | 0.2521 (13) | 0.0436 (17) | 0.5 |
H6A | 0.169116 | 0.448576 | 0.226476 | 0.052* | 0.5 |
H6B | 0.129079 | 0.355294 | 0.181870 | 0.052* | 0.5 |
C7 | 0.1472 (8) | 0.3846 (10) | 0.3366 (10) | 0.0368 (12) | 0.5 |
C8 | 0.1429 (10) | 0.3083 (10) | 0.3863 (11) | 0.048 (3) | 0.5 |
H8 | 0.157393 | 0.256297 | 0.366611 | 0.057* | 0.5 |
C9 | 0.1173 (10) | 0.3085 (10) | 0.4650 (11) | 0.054 (3) | 0.5 |
H9 | 0.119223 | 0.257617 | 0.501639 | 0.065* | 0.5 |
C10 | 0.0891 (15) | 0.3847 (12) | 0.4885 (15) | 0.0519 (18) | 0.5 |
C11 | 0.0973 (19) | 0.4610 (12) | 0.447 (2) | 0.046 (2) | 0.5 |
H11 | 0.084266 | 0.512687 | 0.469261 | 0.055* | 0.5 |
C12 | 0.126 (2) | 0.4599 (11) | 0.371 (2) | 0.039 (2) | 0.5 |
H12 | 0.130349 | 0.512186 | 0.342290 | 0.047* | 0.5 |
F1' | 0.9281 (8) | 0.3557 (11) | −0.0646 (8) | 0.071 (3) | 0.5 |
N1' | 0.7183 (6) | 0.3953 (6) | 0.3006 (8) | 0.0457 (18) | 0.5 |
N2' | 0.5718 (8) | 0.4730 (6) | 0.2422 (15) | 0.0315 (17) | 0.5 |
H2' | 0.548837 | 0.474605 | 0.158805 | 0.038* | 0.5 |
N3' | 0.5922 (6) | 0.2927 (5) | 0.2582 (8) | 0.0285 (16) | 0.5 |
H3' | 0.570787 | 0.286557 | 0.175710 | 0.034* | 0.5 |
C1' | 0.6818 (7) | 0.4693 (6) | 0.3192 (10) | 0.0407 (18) | 0.5 |
H1'A | 0.706114 | 0.519692 | 0.303050 | 0.049* | 0.5 |
H1'B | 0.706349 | 0.471549 | 0.402388 | 0.049* | 0.5 |
C2' | 0.6995 (7) | 0.3171 (7) | 0.3348 (10) | 0.0438 (19) | 0.5 |
H2'A | 0.722435 | 0.321528 | 0.417275 | 0.053* | 0.5 |
H2'B | 0.736204 | 0.271471 | 0.330180 | 0.053* | 0.5 |
C3' | 0.5385 (10) | 0.5534 (7) | 0.2658 (12) | 0.042 (2) | 0.5 |
H3'A | 0.551526 | 0.603098 | 0.234804 | 0.050* | 0.5 |
H3'B | 0.571198 | 0.561228 | 0.350715 | 0.050* | 0.5 |
C4' | 0.5786 (8) | 0.2082 (5) | 0.2969 (10) | 0.043 (2) | 0.5 |
H4'A | 0.600078 | 0.161811 | 0.270542 | 0.052* | 0.5 |
H4'B | 0.616559 | 0.206027 | 0.383173 | 0.052* | 0.5 |
C5' | 0.7323 (7) | 0.3938 (7) | 0.2050 (9) | 0.043 (2) | 0.5 |
H5'A | 0.695637 | 0.440331 | 0.149100 | 0.051* | 0.5 |
H5'B | 0.708406 | 0.339732 | 0.161773 | 0.051* | 0.5 |
C6' | 0.8384 (11) | 0.4037 (15) | 0.2587 (14) | 0.0436 (17) | 0.5 |
H6'A | 0.874819 | 0.360440 | 0.320403 | 0.052* | 0.5 |
H6'B | 0.860033 | 0.459795 | 0.296500 | 0.052* | 0.5 |
C7' | 0.8622 (8) | 0.3952 (10) | 0.1701 (10) | 0.0368 (12) | 0.5 |
C8' | 0.8807 (9) | 0.3129 (9) | 0.1490 (10) | 0.039 (2) | 0.5 |
H8' | 0.875962 | 0.266112 | 0.187145 | 0.047* | 0.5 |
C9' | 0.9059 (10) | 0.2994 (10) | 0.0724 (11) | 0.046 (2) | 0.5 |
H9' | 0.923553 | 0.245074 | 0.062804 | 0.055* | 0.5 |
C10' | 0.9039 (15) | 0.3693 (11) | 0.0113 (15) | 0.0519 (18) | 0.5 |
C11' | 0.893 (2) | 0.4515 (12) | 0.034 (2) | 0.054 (3) | 0.5 |
H11' | 0.902900 | 0.497780 | −0.000650 | 0.065* | 0.5 |
C12' | 0.868 (2) | 0.4641 (12) | 0.112 (2) | 0.048 (3) | 0.5 |
H12' | 0.854488 | 0.519427 | 0.124343 | 0.057* | 0.5 |
Cl1 | 0.6115 (4) | 0.3604 (3) | 0.5699 (5) | 0.0469 (4) | 0.795 (7) |
O1 | 0.6801 (6) | 0.3549 (5) | 0.6978 (5) | 0.082 (3) | 0.795 (7) |
O2 | 0.5813 (5) | 0.2776 (4) | 0.5188 (5) | 0.102 (2) | 0.795 (7) |
O3 | 0.6555 (5) | 0.3981 (6) | 0.5233 (6) | 0.113 (3) | 0.795 (7) |
O4 | 0.5284 (5) | 0.4091 (5) | 0.5368 (6) | 0.089 (2) | 0.795 (7) |
Cl1' | 0.6086 (16) | 0.3675 (13) | 0.5680 (19) | 0.0469 (4) | 0.205 (7) |
O1' | 0.6497 (18) | 0.3241 (14) | 0.6781 (19) | 0.049 (4) | 0.205 (7) |
O2' | 0.6325 (17) | 0.3288 (16) | 0.4980 (16) | 0.074 (4) | 0.205 (7) |
O3' | 0.6267 (19) | 0.4551 (13) | 0.574 (2) | 0.097 (6) | 0.205 (7) |
O4' | 0.5058 (15) | 0.3669 (16) | 0.5057 (19) | 0.067 (4) | 0.205 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.074 (3) | 0.112 (11) | 0.060 (2) | 0.010 (4) | 0.0571 (19) | 0.004 (3) |
N1 | 0.035 (2) | 0.063 (6) | 0.054 (3) | −0.001 (2) | 0.034 (2) | 0.005 (3) |
N2 | 0.034 (3) | 0.030 (3) | 0.034 (3) | 0.007 (2) | 0.028 (3) | 0.006 (3) |
N3 | 0.037 (3) | 0.031 (3) | 0.039 (4) | −0.003 (3) | 0.029 (3) | −0.002 (3) |
C1 | 0.031 (3) | 0.057 (5) | 0.049 (4) | 0.012 (3) | 0.026 (3) | 0.011 (4) |
C2 | 0.038 (3) | 0.050 (4) | 0.043 (4) | −0.014 (3) | 0.029 (3) | −0.007 (3) |
C3 | 0.067 (6) | 0.031 (3) | 0.060 (6) | 0.013 (3) | 0.054 (5) | 0.010 (3) |
C4 | 0.073 (7) | 0.022 (3) | 0.062 (6) | −0.003 (3) | 0.057 (6) | −0.001 (3) |
C5 | 0.033 (3) | 0.061 (8) | 0.045 (3) | −0.001 (3) | 0.028 (2) | 0.002 (3) |
C6 | 0.032 (4) | 0.066 (6) | 0.040 (3) | −0.003 (4) | 0.025 (3) | −0.003 (5) |
C7 | 0.029 (2) | 0.052 (3) | 0.033 (2) | 0.003 (5) | 0.020 (2) | −0.002 (4) |
C8 | 0.045 (6) | 0.053 (4) | 0.046 (7) | 0.009 (4) | 0.027 (6) | 0.010 (4) |
C9 | 0.051 (7) | 0.073 (5) | 0.041 (7) | 0.000 (5) | 0.029 (6) | 0.011 (5) |
C10 | 0.041 (3) | 0.086 (6) | 0.041 (2) | 0.010 (6) | 0.031 (2) | 0.008 (5) |
C11 | 0.036 (5) | 0.068 (4) | 0.032 (5) | 0.007 (4) | 0.020 (5) | −0.003 (4) |
C12 | 0.036 (5) | 0.052 (4) | 0.028 (5) | 0.003 (4) | 0.019 (4) | 0.003 (4) |
F1' | 0.074 (3) | 0.112 (11) | 0.060 (2) | 0.010 (4) | 0.0571 (19) | 0.004 (3) |
N1' | 0.035 (2) | 0.063 (6) | 0.054 (3) | −0.001 (2) | 0.034 (2) | 0.005 (3) |
N2' | 0.037 (3) | 0.031 (3) | 0.039 (4) | −0.003 (3) | 0.029 (3) | −0.002 (3) |
N3' | 0.034 (3) | 0.030 (3) | 0.034 (3) | 0.007 (2) | 0.028 (3) | 0.006 (3) |
C1' | 0.038 (3) | 0.050 (4) | 0.043 (4) | −0.014 (3) | 0.029 (3) | −0.007 (3) |
C2' | 0.031 (3) | 0.057 (5) | 0.049 (4) | 0.012 (3) | 0.026 (3) | 0.011 (4) |
C3' | 0.073 (7) | 0.022 (3) | 0.062 (6) | −0.003 (3) | 0.057 (6) | −0.001 (3) |
C4' | 0.067 (6) | 0.031 (3) | 0.060 (6) | 0.013 (3) | 0.054 (5) | 0.010 (3) |
C5' | 0.033 (3) | 0.061 (8) | 0.045 (3) | −0.001 (3) | 0.028 (2) | 0.002 (3) |
C6' | 0.032 (4) | 0.066 (6) | 0.040 (3) | −0.003 (4) | 0.025 (3) | −0.003 (5) |
C7' | 0.029 (2) | 0.052 (3) | 0.033 (2) | 0.003 (5) | 0.020 (2) | −0.002 (4) |
C8' | 0.036 (5) | 0.052 (4) | 0.028 (5) | 0.003 (4) | 0.019 (4) | 0.003 (4) |
C9' | 0.036 (5) | 0.068 (4) | 0.032 (5) | 0.007 (4) | 0.020 (5) | −0.003 (4) |
C10' | 0.041 (3) | 0.086 (6) | 0.041 (2) | 0.010 (6) | 0.031 (2) | 0.008 (5) |
C11' | 0.051 (7) | 0.073 (5) | 0.041 (7) | 0.000 (5) | 0.029 (6) | 0.011 (5) |
C12' | 0.045 (6) | 0.053 (4) | 0.046 (7) | 0.009 (4) | 0.027 (6) | 0.010 (4) |
Cl1 | 0.0583 (8) | 0.0582 (11) | 0.0380 (6) | 0.0229 (7) | 0.0361 (6) | 0.0149 (7) |
O1 | 0.089 (5) | 0.116 (6) | 0.038 (3) | 0.058 (4) | 0.035 (3) | 0.014 (3) |
O2 | 0.119 (5) | 0.063 (3) | 0.077 (4) | 0.015 (3) | 0.032 (3) | 0.012 (3) |
O3 | 0.113 (5) | 0.162 (6) | 0.094 (4) | −0.035 (4) | 0.077 (4) | 0.015 (4) |
O4 | 0.081 (4) | 0.108 (5) | 0.062 (4) | 0.056 (4) | 0.033 (3) | 0.010 (3) |
Cl1' | 0.0583 (8) | 0.0582 (11) | 0.0380 (6) | 0.0229 (7) | 0.0361 (6) | 0.0149 (7) |
O1' | 0.068 (8) | 0.052 (8) | 0.050 (7) | 0.028 (6) | 0.047 (6) | 0.017 (6) |
O2' | 0.093 (8) | 0.095 (9) | 0.039 (6) | 0.040 (8) | 0.042 (6) | 0.016 (7) |
O3' | 0.108 (9) | 0.081 (8) | 0.084 (8) | 0.002 (7) | 0.046 (7) | 0.013 (6) |
O4' | 0.073 (7) | 0.093 (9) | 0.050 (7) | 0.007 (7) | 0.044 (5) | 0.008 (7) |
Ni1—N3 | 1.925 (7) | N1'—C1' | 1.400 (11) |
Ni1—N2 | 1.933 (9) | N1'—C2' | 1.408 (12) |
Ni1—N3' | 1.934 (7) | N1'—C5' | 1.481 (10) |
Ni1—N2' | 1.943 (9) | N2'—C3' | 1.484 (10) |
F1—C10 | 1.370 (10) | N2'—C1' | 1.510 (11) |
N1—C1 | 1.398 (11) | N2'—H2' | 0.9800 |
N1—C2 | 1.401 (11) | N3'—C4' | 1.486 (10) |
N1—C5 | 1.469 (10) | N3'—C2' | 1.519 (12) |
N2—C3 | 1.495 (11) | N3'—H3' | 0.9800 |
N2—C1 | 1.511 (11) | C1'—H1'A | 0.9700 |
N2—H2 | 0.9800 | C1'—H1'B | 0.9700 |
N3—C4 | 1.488 (9) | C2'—H2'A | 0.9700 |
N3—C2 | 1.511 (12) | C2'—H2'B | 0.9700 |
N3—H3 | 0.9800 | C3'—H3'A | 0.9700 |
C1—H1A | 0.9700 | C3'—H3'B | 0.9700 |
C1—H1B | 0.9700 | C4'—H4'A | 0.9700 |
C2—H2A | 0.9700 | C4'—H4'B | 0.9700 |
C2—H2B | 0.9700 | C5'—C6' | 1.498 (12) |
C3—C3' | 1.489 (13) | C5'—H5'A | 0.9700 |
C3—H3A | 0.9700 | C5'—H5'B | 0.9700 |
C3—H3B | 0.9700 | C6'—C7' | 1.510 (10) |
C4—C4' | 1.482 (17) | C6'—H6'A | 0.9700 |
C4—H4A | 0.9700 | C6'—H6'B | 0.9700 |
C4—H4B | 0.9700 | C7'—C12' | 1.380 (11) |
C5—C6 | 1.515 (11) | C7'—C8' | 1.387 (11) |
C5—H5A | 0.9700 | C8'—C9' | 1.377 (11) |
C5—H5B | 0.9700 | C8'—H8' | 0.9300 |
C6—C7 | 1.509 (10) | C9'—C10' | 1.366 (12) |
C6—H6A | 0.9700 | C9'—H9' | 0.9300 |
C6—H6B | 0.9700 | C10'—C11' | 1.351 (12) |
C7—C8 | 1.393 (11) | C11'—C12' | 1.395 (12) |
C7—C12 | 1.394 (11) | C11'—H11' | 0.9300 |
C8—C9 | 1.394 (12) | C12'—H12' | 0.9300 |
C8—H8 | 0.9300 | Cl1—O3 | 1.376 (7) |
C9—C10 | 1.385 (12) | Cl1—O2 | 1.410 (7) |
C9—H9 | 0.9300 | Cl1—O4 | 1.418 (6) |
C10—C11 | 1.357 (12) | Cl1—O1 | 1.440 (6) |
C11—C12 | 1.396 (11) | Cl1'—O3' | 1.386 (17) |
C11—H11 | 0.9300 | Cl1'—O2' | 1.392 (17) |
C12—H12 | 0.9300 | Cl1'—O4' | 1.420 (17) |
F1'—C10' | 1.356 (10) | Cl1'—O1' | 1.421 (16) |
N2—Ni1—N3 | 93.7 (4) | C3'—N2'—C1' | 110.4 (9) |
N3—Ni1—N3' | 86.6 (3) | C3'—N2'—Ni1 | 108.1 (8) |
N2—Ni1—N3' | 176.4 (4) | C1'—N2'—Ni1 | 115.4 (8) |
N3—Ni1—N2' | 177.5 (5) | C3'—N2'—H2' | 107.5 |
N2—Ni1—N2' | 86.5 (2) | C1'—N2'—H2' | 107.5 |
N3'—Ni1—N2' | 93.0 (4) | Ni1—N2'—H2' | 107.5 |
C1—N1—C2 | 115.5 (7) | C4'—N3'—C2' | 110.2 (8) |
C1—N1—C5 | 118.9 (9) | C4'—N3'—Ni1 | 108.5 (6) |
C2—N1—C5 | 119.1 (8) | C2'—N3'—Ni1 | 114.4 (6) |
C3—N2—C1 | 109.6 (9) | C4'—N3'—H3' | 107.9 |
C3—N2—Ni1 | 107.3 (7) | C2'—N3'—H3' | 107.9 |
C1—N2—Ni1 | 116.7 (7) | Ni1—N3'—H3' | 107.9 |
C3—N2—H2 | 107.6 | N1'—C1'—N2' | 113.4 (8) |
C1—N2—H2 | 107.6 | N1'—C1'—H1'A | 108.9 |
Ni1—N2—H2 | 107.6 | N2'—C1'—H1'A | 108.9 |
C4—N3—C2 | 109.7 (7) | N1'—C1'—H1'B | 108.9 |
C4—N3—Ni1 | 109.6 (5) | N2'—C1'—H1'B | 108.9 |
C2—N3—Ni1 | 116.8 (6) | H1'A—C1'—H1'B | 107.7 |
C4—N3—H3 | 106.7 | N1'—C2'—N3' | 113.3 (7) |
C2—N3—H3 | 106.7 | N1'—C2'—H2'A | 108.9 |
Ni1—N3—H3 | 106.7 | N3'—C2'—H2'A | 108.9 |
N1—C1—N2 | 114.7 (8) | N1'—C2'—H2'B | 108.9 |
N1—C1—H1A | 108.6 | N3'—C2'—H2'B | 108.9 |
N2—C1—H1A | 108.6 | H2'A—C2'—H2'B | 107.7 |
N1—C1—H1B | 108.6 | N2'—C3'—C3 | 105.0 (11) |
N2—C1—H1B | 108.6 | N2'—C3'—H3'A | 110.8 |
H1A—C1—H1B | 107.6 | C3—C3'—H3'A | 110.8 |
N1—C2—N3 | 115.7 (7) | N2'—C3'—H3'B | 110.8 |
N1—C2—H2A | 108.4 | C3—C3'—H3'B | 110.8 |
N3—C2—H2A | 108.4 | H3'A—C3'—H3'B | 108.8 |
N1—C2—H2B | 108.4 | C4—C4'—N3' | 107.6 (8) |
N3—C2—H2B | 108.4 | C4—C4'—H4'A | 110.2 |
H2A—C2—H2B | 107.4 | N3'—C4'—H4'A | 110.2 |
C3'—C3—N2 | 106.4 (10) | C4—C4'—H4'B | 110.2 |
C3'—C3—H3A | 110.4 | N3'—C4'—H4'B | 110.2 |
N2—C3—H3A | 110.4 | H4'A—C4'—H4'B | 108.5 |
C3'—C3—H3B | 110.4 | N1'—C5'—C6' | 109.6 (8) |
N2—C3—H3B | 110.4 | N1'—C5'—H5'A | 109.8 |
H3A—C3—H3B | 108.6 | C6'—C5'—H5'A | 109.8 |
C4'—C4—N3 | 106.8 (8) | N1'—C5'—H5'B | 109.8 |
C4'—C4—H4A | 110.4 | C6'—C5'—H5'B | 109.8 |
N3—C4—H4A | 110.4 | H5'A—C5'—H5'B | 108.2 |
C4'—C4—H4B | 110.4 | C5'—C6'—C7' | 114.0 (8) |
N3—C4—H4B | 110.4 | C5'—C6'—H6'A | 108.7 |
H4A—C4—H4B | 108.6 | C7'—C6'—H6'A | 108.7 |
N1—C5—C6 | 111.1 (8) | C5'—C6'—H6'B | 108.7 |
N1—C5—H5A | 109.4 | C7'—C6'—H6'B | 108.7 |
C6—C5—H5A | 109.4 | H6'A—C6'—H6'B | 107.6 |
N1—C5—H5B | 109.4 | C12'—C7'—C8' | 119.1 (9) |
C6—C5—H5B | 109.4 | C12'—C7'—C6' | 123.8 (11) |
H5A—C5—H5B | 108.0 | C8'—C7'—C6' | 117.1 (11) |
C7—C6—C5 | 116.0 (8) | C9'—C8'—C7' | 121.1 (10) |
C7—C6—H6A | 108.3 | C9'—C8'—H8' | 119.4 |
C5—C6—H6A | 108.3 | C7'—C8'—H8' | 119.4 |
C7—C6—H6B | 108.3 | C10'—C9'—C8' | 117.0 (10) |
C5—C6—H6B | 108.3 | C10'—C9'—H9' | 121.5 |
H6A—C6—H6B | 107.4 | C8'—C9'—H9' | 121.5 |
C8—C7—C12 | 116.1 (9) | C11'—C10'—F1' | 118.1 (11) |
C8—C7—C6 | 124.0 (11) | C11'—C10'—C9' | 124.3 (10) |
C12—C7—C6 | 119.9 (11) | F1'—C10'—C9' | 116.8 (12) |
C7—C8—C9 | 121.1 (11) | C10'—C11'—C12' | 117.2 (13) |
C7—C8—H8 | 119.4 | C10'—C11'—H11' | 121.4 |
C9—C8—H8 | 119.4 | C12'—C11'—H11' | 121.4 |
C10—C9—C8 | 119.9 (11) | C7'—C12'—C11' | 120.5 (13) |
C10—C9—H9 | 120.0 | C7'—C12'—H12' | 119.8 |
C8—C9—H9 | 120.0 | C11'—C12'—H12' | 119.8 |
C11—C10—F1 | 118.8 (12) | O3—Cl1—O2 | 106.7 (6) |
C11—C10—C9 | 120.7 (10) | O3—Cl1—O4 | 109.5 (6) |
F1—C10—C9 | 120.1 (11) | O2—Cl1—O4 | 109.0 (6) |
C10—C11—C12 | 118.4 (12) | O3—Cl1—O1 | 109.6 (6) |
C10—C11—H11 | 120.8 | O2—Cl1—O1 | 110.9 (5) |
C12—C11—H11 | 120.8 | O4—Cl1—O1 | 110.9 (5) |
C7—C12—C11 | 123.4 (12) | O3'—Cl1'—O2' | 108.4 (19) |
C7—C12—H12 | 118.3 | O3'—Cl1'—O4' | 101.1 (17) |
C11—C12—H12 | 118.3 | O2'—Cl1'—O4' | 109.5 (18) |
C1'—N1'—C2' | 115.6 (7) | O3'—Cl1'—O1' | 116.9 (18) |
C1'—N1'—C5' | 120.1 (8) | O2'—Cl1'—O1' | 112.8 (18) |
C2'—N1'—C5' | 118.5 (9) | O4'—Cl1'—O1' | 107.4 (18) |
C2—N1—C1—N2 | −64.3 (13) | C5'—N1'—C1'—N2' | 86.6 (11) |
C5—N1—C1—N2 | 87.3 (12) | C3'—N2'—C1'—N1' | −179.4 (10) |
C3—N2—C1—N1 | 177.6 (10) | Ni1—N2'—C1'—N1' | 57.6 (13) |
Ni1—N2—C1—N1 | 55.4 (13) | C1'—N1'—C2'—N3' | 67.6 (12) |
C1—N1—C2—N3 | 63.7 (12) | C5'—N1'—C2'—N3' | −85.8 (10) |
C5—N1—C2—N3 | −87.7 (11) | C4'—N3'—C2'—N1' | 178.0 (8) |
C4—N3—C2—N1 | −179.3 (8) | Ni1—N3'—C2'—N1' | −59.5 (10) |
Ni1—N3—C2—N1 | −53.9 (10) | C1'—N2'—C3'—C3 | −169.8 (8) |
C1—N2—C3—C3' | −170.4 (8) | Ni1—N2'—C3'—C3 | −42.7 (11) |
Ni1—N2—C3—C3' | −42.7 (11) | N2—C3—C3'—N2' | 55.7 (7) |
C2—N3—C4—C4' | 166.7 (7) | N3—C4—C4'—N3' | −49.6 (8) |
Ni1—N3—C4—C4' | 37.3 (9) | C2'—N3'—C4'—C4 | 165.1 (7) |
C1—N1—C5—C6 | 78.6 (14) | Ni1—N3'—C4'—C4 | 39.3 (9) |
C2—N1—C5—C6 | −130.9 (14) | C1'—N1'—C5'—C6' | 103.5 (13) |
N1—C5—C6—C7 | 174.2 (12) | C2'—N1'—C5'—C6' | −104.4 (13) |
C5—C6—C7—C8 | −61.5 (16) | N1'—C5'—C6'—C7' | 174.9 (12) |
C5—C6—C7—C12 | 117 (2) | C5'—C6'—C7'—C12' | 93 (2) |
C12—C7—C8—C9 | 0.7 (16) | C5'—C6'—C7'—C8' | −88.0 (15) |
C6—C7—C8—C9 | 179.3 (10) | C12'—C7'—C8'—C9' | 1.0 (16) |
C7—C8—C9—C10 | 4 (2) | C6'—C7'—C8'—C9' | −178.0 (10) |
C8—C9—C10—C11 | −8 (2) | C7'—C8'—C9'—C10' | −5.3 (19) |
C8—C9—C10—F1 | 179.6 (14) | C8'—C9'—C10'—C11' | 10 (3) |
F1—C10—C11—C12 | 179 (2) | C8'—C9'—C10'—F1' | −179.6 (13) |
C9—C10—C11—C12 | 6 (3) | F1'—C10'—C11'—C12' | 180 (2) |
C8—C7—C12—C11 | −3 (3) | C9'—C10'—C11'—C12' | −11 (3) |
C6—C7—C12—C11 | 178.8 (18) | C8'—C7'—C12'—C11' | −1 (3) |
C10—C11—C12—C7 | −1 (4) | C6'—C7'—C12'—C11' | 177.8 (18) |
C2'—N1'—C1'—N2' | −66.3 (12) | C10'—C11'—C12'—C7' | 6 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O4 | 0.98 | 2.51 | 3.355 (17) | 144 |
N2—H2···O4i | 0.98 | 2.44 | 3.260 (16) | 141 |
N2′—H2′···O4ii | 0.98 | 2.43 | 3.332 (18) | 152 |
N2′—H2′···O4iii | 0.98 | 2.36 | 3.089 (17) | 131 |
N3—H3···O2 | 0.98 | 1.97 | 2.819 (11) | 144 |
N3′—H3′···O2ii | 0.98 | 2.40 | 3.186 (11) | 137 |
C1′—H1′A···O1iii | 0.97 | 2.31 | 3.198 (13) | 151 |
C1—H1B···O3ii | 0.97 | 2.35 | 3.156 (16) | 140 |
C1′—H1′B···O3 | 0.97 | 2.56 | 3.309 (15) | 134 |
C2—H2B···O1iv | 0.97 | 2.50 | 3.394 (16) | 154 |
C3—H3B···O1i | 0.97 | 2.48 | 3.35 (2) | 149 |
C2′—H2′B···O1v | 0.97 | 2.58 | 3.551 (16) | 175 |
C4—H4A···F1vi | 0.97 | 2.54 | 3.341 (19) | 140 |
C3′—H3′A···O4iii | 0.97 | 2.54 | 3.136 (17) | 119 |
C4′—H4′B···O2 | 0.97 | 2.54 | 3.239 (14) | 129 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y, −z+1/2; (iii) x, −y+1, z−1/2; (iv) x−1/2, −y+1/2, z−1/2; (v) −x+3/2, −y+1/2, −z+1; (vi) −x+1/2, −y+1/2, −z+1. |
Acknowledgements
The authors thank the Center for Research Faculties, Kyungsang National University, Jinju, South Korea, for the X-ray crystallographic data collection.
References
Alexander, V. (1995). Chem. Rev. 95, 273–342. CrossRef CAS Web of Science Google Scholar
Barefield, E. K. (2010). Coord. Chem. Rev. 254, 1607–1627. CAS Google Scholar
Benkada, A., Näther, C. & Bensch, W. (2020). Z. Anorg. Allg. Chem. 646, 1352–1358. CSD CrossRef CAS Google Scholar
Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Costamagna, J., Ferraudi, G., Matsuhiro, B., Campos-Vallette, M., Canales, J., Villagrán, M., Vargas, J. & Aguirre, M. J. (2000). Coord. Chem. Rev. 196, 125–164. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hermann, P., Kotek, J., Kubíček, V. & Lukeš, I. (2008). Dalton Trans. pp. 3027–3047. Web of Science CrossRef Google Scholar
Jee, J. E., Kim, Y. M., Lee, S. S., Park, K. M. & Kwak, C. H. (2003). Inorg. Chem. Commun. 6, 946–949. CSD CrossRef CAS Google Scholar
Jeoung, S., Lee, S., Lee, J. H., Lee, S., Choe, W., Moon, D. & Moon, H. R. (2019). Chem. Commun. 55, 8832–8835. CSD CrossRef CAS Google Scholar
Kang, S. G., Kim, M.-S., Choi, J. S., Whang, D. & Kim, K. (1995). J. Chem. Soc. Dalton Trans. pp. 363–366. CSD CrossRef Google Scholar
Kang, S. G., Ryu, K., Jung, S. K. & Kim, J. (1999). Inorg. Chim. Acta, 293, 140–146. CSD CrossRef CAS Google Scholar
Kim, J. C., Lough, A. J. & Kim, H. (2002). Inorg. Chem. Commun. 5, 771–776. CSD CrossRef CAS Google Scholar
Lee, J. H. & Moon, H. R. (2018). J. Incl Phenom. Macrocycl Chem. 92, 237–249. CrossRef CAS Google Scholar
Liang, X. & Sadler, P. J. (2004). Chem. Soc. Rev. 33, 246–266. CrossRef PubMed CAS Google Scholar
Lin, Z. J., Lü, J., Hong, M. & Cao, R. (2014). Chem. Soc. Rev. 43, 5867–5895. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Min, K. S., Park, M. J. & Ryoo, J. J. (2013). Chirality, 25, 54–58. CSD CrossRef CAS PubMed Google Scholar
Min, K. S. & Suh, M. P. (2001). Chem. Eur. J. 7, 303–313. Web of Science CSD CrossRef PubMed CAS Google Scholar
Park, J. H., Jeong, A. R., Hastuti, D. K. A. K., Jeong, M. J. & Min, K. S. (2015). J. Incl Phenom. Macrocycl Chem. 82, 153–162. Web of Science CSD CrossRef CAS Google Scholar
Salavati-Niasari, M. & Davar, F. (2006). Inorg. Chem. Commun. 9, 175–179. CAS Google Scholar
Salavati-Niasari, M. & Najafian, H. (2003). Polyhedron, 22, 2633–2638. CAS Google Scholar
Salavati-Niasari, M. & Rezai-Adaryani, M. (2004). Polyhedron, 23, 1325–1331. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165. Web of Science CrossRef CAS Google Scholar
Su, Y. H., Liu, J., Li, J. & Si, X. Z. (2007). J. Mol. Struct. 837, 257–262. CSD CrossRef CAS Google Scholar
Suh, M. P. (1996). Adv. Inorg. Chem. 44, 93–146. CrossRef Google Scholar
Suh, M. P., Han, M. Y., Lee, J. H., Min, K. S. & Hyeon, C. (1998). J. Am. Chem. Soc. 120, 3819–3820. CSD CrossRef CAS Google Scholar
Suh, M. P., Kim, I. S., Shim, B. Y., Hong, D. & Yoon, T.-S. (1996). Inorg. Chem. 35, 3595–3598. CSD CrossRef CAS Google Scholar
Suh, M. P., Shim, B. Y. & Yoon, T.-S. (1994). Inorg. Chem. 33, 5509–5514. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.