research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystallographic and spectroscopic characterization of 2-[(7-acetyl-4-cyano-6-hy­dr­oxy-1,6-di­methyl-8-phenyl-5,6,7,8-tetra­hydro­isoquinolin-3-yl)sulfan­yl]-N-phenyl­acetamide

aDepartment of Chemistry, Faculty of Science, Sana'a University, Sana'a, Yemen, bDepartment of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, eChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, fChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and gLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
*Correspondence e-mail: shaabankamel@yahoo.com, y.ramli@um5s.net.ma

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 21 December 2020; accepted 11 January 2021; online 15 January 2021)

In the title mol­ecule, C28H27N3O3S, the heterocyclic portion of the tetra­hydro­iso­quinoline unit is planar and an intra­molecular N—H⋯N hydrogen bond and a C—H⋯π(ring) inter­action help to determine the overall conformation. In the crystal, a layer structure with the layers parallel to (10[\overline{1}]) is generated by O—H⋯O and C—H⋯O hydrogen bonds.

1. Chemical context

Tetra­hydro­iso­quinolines exhibit important pharmacological activities including anti­tumor (Scott & Williams, 2002[Scott, J. D. & Williams, R. M. (2002). Chem. Rev. 102, 1669-1730.]), anti­microbial (Bernan et al., 1994[Bernan, V. S., Montenegro, D. A., Korshalla, J. D., Maiese, W. M., Steinberg, D. A. & Greenstein, M. (1994). J. Antibiot. 47, 1417-1424.]), and dopamine­rgic activities (Andujar et al., 2012[Andujar, S., Suvire, F., Berenguer, I., Cabedo, N., Marín, P., Moreno, L., Ivorra, M. D., Cortes, D. & Enriz, R. D. (2012). J. Mol. Model. 18, 419-431.]). They are used as starting materials in the syntheses of pharmacologically active, constrained conformations of N-substituted-2-amino­pyridines as anti­nociceptive agents (Dukat et al., 2004[Dukat, M., Taroua, M., Dahdouh, A., Siripurapu, U., Damaj, M. I., Martin, B. R. & Glennon, R. A. (2004). Bioorg. Med. Chem. Lett. 14, 3651-3654.]) and constrained conformations of nicotine to improve nicotine vaccines (Xu et al., 2002[Xu, R., Dwoskin, L. P., Grinevich, V., Sumithran, S. P. & Crooks, P. A. (2002). Drug Dev. Res. 55, 173-186.]; Meijler et al., 2003[Meijler, M. M., Matsushita, M., Altobell, L. J., Wirsching, P. & Janda, K. D. (2003). J. Am. Chem. Soc. 125, 7164-7165.]; Carroll et al., 2007[Carroll, F. I., Robinson, T. P., Brieaddy, L. E., Atkinson, R. N., Mascarella, S. W., Damaj, M., Martin, B. R. & Navarro, H. A. (2007). J. Med. Chem. 50, 6383-6391.]). These examples demonstrate the utility of the tetra­hydro­iso­quinoline core and why these types of compounds are of great inter­est. In this context, we report here the synthesis and crystal structure of the title compound.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in space group P21/n with one mol­ecule in the asymmetric unit (Fig. 1[link]). The C5/C6/C7/N1/C8/C9 ring is approximately planar (r.m.s. deviation = 0.011 Å) with the largest deviation of 0.020 (1) Å being for atom C6. The best planes through the C10–C15 and C23–C28 rings are inclined to the above plane by 85.19 (6) and 64.22 (7)°, respectively. The orientation of the former ring is due in part to the C20—H20ACg3 (Cg3 is the centroid of the C10–C15 benzene ring) inter­action while the intra­molecular N3—H3A⋯N1 hydrogen bond affects the orientation of the second ring (Table 1[link] and Fig. 1[link]) and places the two rings on the same side of the tetra­hydro­quinoxaline unit. The acetyl group on C2 is in an equatorial position while the hydroxyl group on C3 is axial and these are syn to one another. The C10–C15 ring attached to C1 is close to equatorial and anti with respect to both other subsituents (Fig. 1[link]). Although the O2—H2A hydroxyl group is favorably oriented for forming an intra­molecular hydrogen bond with O1 as has been seen in some related mol­ecules (Mague & Mohamed, 2020[Mague, J. T. & Mohamed, S. K. (2020). Unpublished data.]), the H⋯O distance of ca 2.54 Å is long and a stronger, inter­molecular inter­action is favored (vide infra). A puckering analysis (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) of the C1–C5/C9 ring yielded the following parameters: Q = 0.5267 (13) Å, θ = 128.52 (14)° and φ = 286.46 (18)°. The conformation of this ring approximates an envelope with C3 as the flap.

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C10–C15 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.86 (2) 2.04 (2) 2.8674 (13) 161.9 (19)
N3—H3A⋯N1 0.887 (18) 2.306 (18) 3.1148 (15) 151.6 (15)
C13—H13⋯O2ii 0.94 (2) 2.40 (2) 3.2520 (19) 150.5 (17)
C20—H20ACg3 1.00 (2) 2.975 (19) 3.6866 (16) 128.7 (13)
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 50% probability ellipsoids. The intra­molecular hydrogen bond and C—H⋯π(ring) inter­action are depicted, respectively, by blue and green dashed lines.

3. Supra­molecular features

In the crystal, inversion dimers are formed by O2—H2A⋯O1 hydrogen bonds (Table 1[link]), which results in O1⋯O1i and O1⋯O2i [symmetry code: (i) −x + 1, −y + 1, −z] contacts of 2.8774 (16) and 2.8674 (14) Å (0.16 and 0.17 Å less than the sum of the van der Waals radii), respectively. The dimers are connected by C13—H13⋯O2 hydrogen bonds (Table 1[link]), forming layers parallel to (10[\overline{1}]) (Figs. 2[link] and 3[link]).

[Figure 2]
Figure 2
Packing viewed along the a-axis direction with inter­molecular O—H⋯O and C—H⋯O hydrogen bonds depicted, respectively, by red and black dashed lines.
[Figure 3]
Figure 3
Packing viewed along the b-axis direction with inter­molecular O—H⋯O and C—H⋯O hydrogen bonds depicted, respectively, by red and black dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, updated to December 2020, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found three analogs of the title mol­ecule, one with a methyl group on sulfur (refcode AXUXOH; Dyachenko et al., 2010[Dyachenko, V. D., Sukach, S. M., Dyachenko, A. D., Zubatyuk, R. I. & Shishkin, O. V. (2010). Russ. J. Gen. Chem. 80, 2037-2042.]) and two with a 4-chloro­phenyl group on C1 in place of the phenyl group, one with an ethyl group on sulfur (NAQRIJ; Mague et al., 2017a[Mague, J. T., Mohamed, S. K., Akkurt, M., Bakhite, E. A. & Albayati, M. R. (2017a). IUCrData, 2, x170390.]) and the other with a CH2CO2CH3 group on sulfur (PAWCEY; Mague et al., 2017b[Mague, J. T., Al-Taifi, E. A., Mohamed, S. K., Akkurt, M. & Bakhite, E. A. (2017b). IUCrData, 2, x170868.]). In all three, the acetyl group is equatorial and the hydroxyl group is axial while the phenyl or 4-chloro­phenyl group is close to equatorial, as is the case with the title mol­ecule. The puckering amplitudes of the cyclo­hexene ring in the second and third mol­ecule are, respectively, 0.521 (2) and 0.524 (3) Å, which are essentially the same as in the title mol­ecule. One notable difference between the four mol­ecules is the orientation of the hydroxyl hydrogen. In AXUXOH there is an intra­molecular hydrogen bond with the acetyl group leading to an H⋯O distance of 2.23 Å. In the other three, inter­molecular hydrogen bonding of the hydroxyl group predominates and the intra­molecular H⋯O distances are 2.55, 2.71 and 3.18 Å for the title mol­ecule, PAWCEY and NAQRIJ, respectively.

5. Hirshfeld surface analysis

Hirshfeld surface analysis is an effective means of probing inter­molecular inter­actions (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]), which can be conveniently carried out with Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]). A detailed description of the use of Crystal Explorer 17 and the plots obtained is given by Tan et al. (2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). From the surface mapped over dnorm (Fig. 4[link]a), the sites of the inter­molecular O—H⋯O and C—H⋯O hydrogen bonds can be seen on the left side near the bottom and at the top, respectively. A weaker point of inter­action is at O3 on the lower right of the diagram, which might indicate a weak, inter­molecular C4—H4B⋯O3 hydrogen bond since the O⋯H distance is 2.605 (15) Å. The surfaces mapped over shape-index (Fig. 4[link]b) and curvedness (Fig. 5[link]c) show a relatively flat region over the C23–C28 benzene ring in the latter and a red triangular area over the edge of the ring in the former. This is suggestive of a C—H⋯π(ring) inter­action and can be identified with the C20—H20ACg3 inter­action noted in Section 2. The fingerprint plots derived from the Hirshfeld surface enable the apportionment of the inter­molecular inter­actions into specific sets. Fig. 5[link]a displays the plot for all inter­actions while Fig. 5[link]b–5d show those delineated into H⋯H, H⋯O/O⋯H and H⋯N/N⋯H inter­actions, which constitute 47.3%, 11.8% and 10.6% of the total inter­actions, respectively.

[Figure 4]
Figure 4
The Hirshfeld surface of the title mol­ecule mapped over (a) dnorm, (b) shape-index, and (c) curvedness.
[Figure 5]
Figure 5
Fingerprint plots for the title mol­ecule showing (a) all contacts and those delineated into (b) H⋯H contacts, (c) H⋯O/O⋯H contacts, and (d) H⋯N/N⋯H contacts.

6. Synthesis and crystallization

A mixture of 7-acetyl-4-cyano-1,5-dimethyl-6-hy­droxy-8-phenyl-5,6,7,8-tetra­hydro­iso­quinoline-3(2H)-thione (10 mmol), N-phenyl-2-chloro­acetamide (10 mmol) and sodium acetate trihydrate (1.50 g, 11 mmol) in ethanol (100 mL) was heated under reflux for one hour. The precipitate that formed after standing at room temperature overnight was collected, washed with water, dried in air and then recrystallized from ethanol to afford the title compound in the form of colorless crystals. Yield: 4.00 g, 82%; m. p.: 470-472 K.

7. Spectroscopic characterization

The chemical structure of the compound has also been confirmed using analytical and spectroscopic methods. The FT–IR spectrum shows mainly the characteristic NH peak of the acetamide group at 3277 cm−1 and the C=O bond of the amide group at 1667 cm−1. In addition, characteristic peaks of the precursor are observed: OH at 3522 cm−1, aromatic C—H at 3058 cm−1, aliphatic C—H at 2920, 2970, 2991 cm−1, nitrile at 2217 cm−1 and acetyl at 1694 cm−1, also confirming the structure of the compound.

With regard to the 1H NMR spectrum, several characteristic signals can be clearly attributed to the title compound, such as a doublet of doublets between 4.09 and 4.19 ppm with a coupling constant of 16 Hz due to SCH2 , and a singlet at 10.22 ppm due to NH. In addition, we note the presence of characteristic peaks related to the starting compound: multiplets between 7.17 and 7.29 ppm due to aromatic protons, singlets at 1.28, 1.92, 2.11 and 4.84 ppm referring to a methyl group attached to a pyridine ring, the CH3 of the acetamide group and the hy­droxy group, respectively. The doublets between 7.53–7.55 (J = 8 Hz) and 7.02–7.04 (J = 8 Hz) can be attributed to the aromatic protons.

IR (cm−1): 3522 (OH); 3277 (NH); 3058 (C—H, aromatic); 2920, 2970, 2991 (C—H aliphatic); 2217 (C≡N); 1694 (C=O, acet­yl); 1667 (C=O, amide).

1H NMR (400 MHz, CDCl3): 10.22 (s, 1H, NH); 7.53–7.55 (d, J = 8 Hz, 2H, Ar-H); 7.23–7.29 (m, 4H, Ar-H); 7.17–7.20 (m, 1H, Ar-H); 7.02–7.04 (d, J = 8 Hz, 3H, Ar-H); 4.84 (s, 1H, OH); 4.52–4.54 (d, J = 8 Hz, 1H, CH at C-8); 4.09–4.19 (dd, J = 16 Hz, 2H, SCH2); 3.25–3.29 (d, J = 16 Hz, 1H, CH2); 2.94–2.96 (d, J = 8 Hz, 1H, CH at C-7); 2.89–2.94 (d, J = 20 Hz, 1H, CH2), 2.11 (s, 3H, COCH3); 1.92 (s, 3H, CH3 attached to pyridine ring); 1.28 (s, 3H, CH3).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were independently refined. Twelve reflections were not accessible due to the configuration of the goniometer and the low-temperature attachment.

Table 2
Experimental details

Crystal data
Chemical formula C28H27N3O3S
Mr 485.58
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 12.0487 (4), 13.9821 (5), 15.0239 (5)
β (°) 106.606 (1)
V3) 2425.46 (14)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.47
Crystal size (mm) 0.26 × 0.14 × 0.08
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.79, 0.89
No. of measured, independent and observed [I > 2σ(I)] reflections 18194, 4734, 4284
Rint 0.030
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.083, 1.06
No. of reflections 4734
No. of parameters 425
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.22, −0.21
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT, and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL 2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]), and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL 2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-[(7-Acetyl-4-cyano-6-hydroxy-1,6-dimethyl-8-phenyl-5,6,7,8-tetrahydroisoquinolin-3-yl)sulfanyl]-N-phenylacetamide top
Crystal data top
C28H27N3O3SF(000) = 1024
Mr = 485.58Dx = 1.330 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 12.0487 (4) ÅCell parameters from 9855 reflections
b = 13.9821 (5) Åθ = 4.4–72.5°
c = 15.0239 (5) ŵ = 1.47 mm1
β = 106.606 (1)°T = 150 K
V = 2425.46 (14) Å3Column, colourless
Z = 40.26 × 0.14 × 0.08 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
4734 independent reflections
Radiation source: INCOATEC IµS micro–focus source4284 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.4167 pixels mm-1θmax = 72.4°, θmin = 4.4°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1517
Tmin = 0.79, Tmax = 0.89l = 1718
18194 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032All H-atom parameters refined
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.7971P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4734 reflectionsΔρmax = 0.22 e Å3
425 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL 2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.0039 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.58184 (3)0.71687 (2)0.54963 (2)0.02702 (10)
O10.55415 (10)0.41602 (8)0.04888 (7)0.0389 (3)
O20.43190 (8)0.56327 (6)0.13750 (6)0.02221 (19)
H2A0.4361 (17)0.5558 (14)0.0816 (14)0.053 (5)*
O30.80915 (12)0.76450 (8)0.74784 (7)0.0463 (3)
N10.69752 (9)0.60562 (7)0.46015 (7)0.0226 (2)
N20.29604 (10)0.63554 (10)0.43743 (8)0.0363 (3)
N30.84869 (10)0.64010 (8)0.66349 (8)0.0276 (2)
H3A0.8267 (15)0.6163 (12)0.6064 (12)0.036 (4)*
C10.61831 (10)0.44233 (8)0.24855 (8)0.0192 (2)
H10.6482 (13)0.4819 (11)0.2084 (10)0.024 (4)*
C20.50155 (10)0.40139 (8)0.18906 (8)0.0201 (2)
H20.4796 (12)0.3479 (10)0.2233 (10)0.020 (3)*
C30.40183 (10)0.47505 (8)0.17204 (8)0.0195 (2)
C40.38587 (10)0.49849 (9)0.26679 (8)0.0198 (2)
H4A0.3566 (13)0.4409 (11)0.2914 (10)0.026 (4)*
H4B0.3263 (14)0.5499 (11)0.2593 (11)0.029 (4)*
C50.49669 (10)0.53100 (8)0.33547 (8)0.0184 (2)
C60.49119 (10)0.59248 (8)0.40793 (8)0.0203 (2)
C70.59357 (11)0.63014 (8)0.46686 (8)0.0211 (2)
C80.70418 (10)0.54452 (8)0.39243 (8)0.0217 (2)
C90.60604 (10)0.50545 (8)0.32793 (8)0.0190 (2)
C100.69924 (10)0.35759 (8)0.27879 (8)0.0207 (2)
C110.68696 (11)0.29760 (9)0.34899 (9)0.0260 (3)
H110.6323 (14)0.3128 (12)0.3811 (11)0.031 (4)*
C120.75677 (13)0.21739 (10)0.37340 (11)0.0376 (3)
H120.7497 (16)0.1783 (14)0.4238 (13)0.049 (5)*
C130.83774 (13)0.19569 (10)0.32770 (13)0.0425 (4)
H130.8869 (17)0.1427 (15)0.3467 (14)0.055 (5)*
C140.85014 (13)0.25445 (11)0.25757 (12)0.0401 (4)
H140.9087 (17)0.2423 (14)0.2239 (13)0.048 (5)*
C150.78155 (12)0.33535 (10)0.23292 (10)0.0305 (3)
H150.7883 (16)0.3783 (13)0.1832 (13)0.046 (5)*
C160.51833 (11)0.36283 (9)0.09888 (8)0.0265 (3)
C170.49321 (16)0.25966 (11)0.07668 (11)0.0392 (4)
H17A0.5448 (18)0.2227 (14)0.1245 (14)0.052 (5)*
H17B0.5020 (18)0.2458 (15)0.0139 (15)0.060 (6)*
H17C0.4129 (19)0.2421 (15)0.0793 (14)0.056 (6)*
C180.29017 (12)0.43558 (10)0.10695 (9)0.0268 (3)
H18A0.2702 (14)0.3705 (12)0.1262 (11)0.034 (4)*
H18B0.2960 (14)0.4305 (11)0.0429 (12)0.032 (4)*
H18C0.2254 (14)0.4804 (12)0.1047 (11)0.033 (4)*
C190.38188 (11)0.61752 (9)0.42231 (8)0.0242 (3)
C200.82558 (12)0.52338 (11)0.39007 (11)0.0325 (3)
H20A0.8471 (16)0.4556 (14)0.4093 (13)0.048 (5)*
H20B0.8298 (17)0.5294 (14)0.3262 (14)0.052 (5)*
H20C0.8796 (15)0.5671 (13)0.4323 (12)0.038 (4)*
C210.72565 (13)0.76893 (9)0.58406 (9)0.0289 (3)
H21A0.7616 (15)0.7601 (12)0.5336 (12)0.034 (4)*
H21B0.7122 (14)0.8361 (12)0.5963 (11)0.034 (4)*
C220.79955 (12)0.72541 (9)0.67374 (9)0.0284 (3)
C230.91089 (11)0.57882 (10)0.73536 (9)0.0262 (3)
C240.92081 (13)0.48300 (11)0.71326 (10)0.0331 (3)
H240.8859 (15)0.4621 (13)0.6506 (12)0.039 (4)*
C250.97905 (15)0.41944 (12)0.78136 (12)0.0416 (4)
H250.9834 (17)0.3516 (15)0.7626 (14)0.055 (5)*
C261.02900 (13)0.45021 (12)0.87153 (11)0.0388 (3)
H261.0692 (16)0.4050 (13)0.9198 (13)0.045 (5)*
C271.02052 (13)0.54563 (12)0.89285 (10)0.0351 (3)
H271.0570 (15)0.5694 (13)0.9570 (13)0.044 (5)*
C280.96158 (12)0.61022 (11)0.82593 (9)0.0304 (3)
H280.9531 (14)0.6768 (13)0.8419 (11)0.037 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03021 (18)0.02522 (17)0.02499 (17)0.00004 (12)0.00686 (13)0.00720 (11)
O10.0576 (7)0.0405 (6)0.0222 (5)0.0128 (5)0.0172 (5)0.0055 (4)
O20.0282 (5)0.0208 (4)0.0193 (4)0.0033 (3)0.0096 (3)0.0042 (3)
O30.0735 (8)0.0346 (6)0.0253 (5)0.0090 (5)0.0050 (5)0.0072 (4)
N10.0235 (5)0.0207 (5)0.0229 (5)0.0007 (4)0.0055 (4)0.0007 (4)
N20.0281 (6)0.0549 (8)0.0271 (6)0.0031 (5)0.0096 (5)0.0098 (5)
N30.0293 (6)0.0301 (6)0.0211 (5)0.0012 (5)0.0037 (4)0.0048 (4)
C10.0219 (6)0.0191 (5)0.0182 (5)0.0013 (4)0.0081 (5)0.0023 (4)
C20.0238 (6)0.0189 (5)0.0170 (5)0.0027 (5)0.0050 (5)0.0012 (4)
C30.0219 (6)0.0193 (5)0.0170 (5)0.0019 (4)0.0052 (4)0.0015 (4)
C40.0196 (6)0.0227 (6)0.0176 (5)0.0008 (5)0.0061 (5)0.0006 (4)
C50.0218 (6)0.0169 (5)0.0169 (5)0.0003 (4)0.0062 (4)0.0036 (4)
C60.0223 (6)0.0206 (5)0.0186 (5)0.0018 (5)0.0068 (4)0.0017 (4)
C70.0267 (6)0.0185 (5)0.0182 (5)0.0007 (5)0.0063 (5)0.0019 (4)
C80.0221 (6)0.0198 (5)0.0232 (6)0.0004 (5)0.0066 (5)0.0008 (4)
C90.0220 (6)0.0167 (5)0.0189 (5)0.0011 (4)0.0070 (5)0.0024 (4)
C100.0199 (6)0.0193 (5)0.0218 (6)0.0008 (4)0.0043 (4)0.0026 (4)
C110.0250 (6)0.0261 (6)0.0243 (6)0.0016 (5)0.0028 (5)0.0034 (5)
C120.0354 (8)0.0261 (7)0.0415 (8)0.0009 (6)0.0049 (6)0.0092 (6)
C130.0294 (7)0.0235 (7)0.0632 (10)0.0078 (6)0.0053 (7)0.0087 (7)
C140.0268 (7)0.0372 (8)0.0558 (10)0.0051 (6)0.0109 (7)0.0174 (7)
C150.0273 (7)0.0316 (7)0.0355 (7)0.0020 (5)0.0134 (6)0.0055 (6)
C160.0286 (7)0.0300 (6)0.0183 (6)0.0114 (5)0.0024 (5)0.0000 (5)
C170.0491 (10)0.0322 (7)0.0328 (8)0.0075 (7)0.0062 (7)0.0112 (6)
C180.0248 (7)0.0293 (7)0.0232 (6)0.0008 (5)0.0021 (5)0.0040 (5)
C190.0270 (7)0.0285 (6)0.0171 (5)0.0007 (5)0.0062 (5)0.0035 (5)
C200.0209 (6)0.0347 (8)0.0412 (8)0.0030 (6)0.0075 (6)0.0113 (6)
C210.0362 (7)0.0226 (6)0.0257 (6)0.0055 (5)0.0055 (6)0.0021 (5)
C220.0337 (7)0.0254 (6)0.0245 (6)0.0065 (5)0.0060 (5)0.0031 (5)
C230.0196 (6)0.0333 (7)0.0261 (6)0.0030 (5)0.0071 (5)0.0016 (5)
C240.0313 (7)0.0354 (7)0.0314 (7)0.0014 (6)0.0069 (6)0.0060 (6)
C250.0431 (9)0.0369 (8)0.0443 (9)0.0078 (7)0.0116 (7)0.0006 (7)
C260.0348 (8)0.0468 (9)0.0349 (8)0.0091 (7)0.0101 (6)0.0084 (7)
C270.0294 (7)0.0492 (9)0.0262 (7)0.0012 (6)0.0073 (6)0.0006 (6)
C280.0283 (7)0.0358 (7)0.0263 (7)0.0038 (6)0.0065 (5)0.0032 (5)
Geometric parameters (Å, º) top
S1—C71.7712 (12)C11—H110.945 (17)
S1—C211.8132 (14)C12—C131.378 (2)
O1—C161.2203 (17)C12—H120.957 (19)
O2—C31.4245 (14)C13—C141.378 (3)
O2—H2A0.86 (2)C13—H130.94 (2)
O3—C221.2157 (17)C14—C151.387 (2)
N1—C71.3299 (16)C14—H140.99 (2)
N1—C81.3484 (16)C15—H150.980 (19)
N2—C191.1486 (17)C16—C171.492 (2)
N3—C221.3599 (18)C17—H17A0.96 (2)
N3—C231.4138 (17)C17—H17B1.00 (2)
N3—H3A0.887 (18)C17—H17C1.01 (2)
C1—C101.5192 (16)C18—H18A1.004 (17)
C1—C91.5244 (16)C18—H18B0.987 (17)
C1—C21.5450 (16)C18—H18C0.995 (17)
C1—H10.961 (15)C20—H20A1.00 (2)
C2—C161.5245 (16)C20—H20B0.98 (2)
C2—C31.5473 (16)C20—H20C0.981 (18)
C2—H20.986 (14)C21—C221.5141 (19)
C3—C181.5228 (17)C21—H21A0.982 (18)
C3—C41.5255 (16)C21—H21B0.980 (17)
C4—C51.5056 (16)C23—C241.394 (2)
C4—H4A0.992 (16)C23—C281.3938 (18)
C4—H4B0.999 (16)C24—C251.385 (2)
C5—C91.4006 (16)C24—H240.960 (18)
C5—C61.4034 (16)C25—C261.384 (2)
C6—C71.3995 (17)C25—H251.00 (2)
C6—C191.4374 (17)C26—C271.383 (2)
C8—C91.4074 (17)C26—H260.979 (19)
C8—C201.5026 (18)C27—C281.387 (2)
C10—C111.3882 (18)C27—H270.995 (18)
C10—C151.3949 (18)C28—H280.974 (18)
C11—C121.3869 (19)
C7—S1—C21102.34 (6)C12—C13—H13119.8 (12)
C3—O2—H2A110.0 (13)C13—C14—C15120.26 (14)
C7—N1—C8118.75 (11)C13—C14—H14122.4 (11)
C22—N3—C23126.73 (11)C15—C14—H14117.3 (11)
C22—N3—H3A114.8 (11)C14—C15—C10120.22 (14)
C23—N3—H3A117.3 (11)C14—C15—H15122.0 (11)
C10—C1—C9114.52 (9)C10—C15—H15117.8 (11)
C10—C1—C2106.53 (9)O1—C16—C17122.45 (13)
C9—C1—C2113.03 (10)O1—C16—C2119.45 (12)
C10—C1—H1108.2 (9)C17—C16—C2118.08 (12)
C9—C1—H1107.2 (9)C16—C17—H17A108.0 (12)
C2—C1—H1107.0 (9)C16—C17—H17B109.3 (12)
C16—C2—C1108.36 (10)H17A—C17—H17B112.5 (17)
C16—C2—C3112.49 (9)C16—C17—H17C111.2 (12)
C1—C2—C3112.62 (9)H17A—C17—H17C105.3 (16)
C16—C2—H2108.6 (8)H17B—C17—H17C110.6 (16)
C1—C2—H2108.4 (8)C3—C18—H18A112.6 (9)
C3—C2—H2106.2 (8)C3—C18—H18B110.8 (9)
O2—C3—C18110.48 (10)H18A—C18—H18B107.8 (13)
O2—C3—C4105.48 (9)C3—C18—H18C109.5 (9)
C18—C3—C4110.69 (10)H18A—C18—H18C109.3 (13)
O2—C3—C2111.73 (9)H18B—C18—H18C106.7 (13)
C18—C3—C2111.51 (10)N2—C19—C6177.04 (14)
C4—C3—C2106.72 (9)C8—C20—H20A110.6 (11)
C5—C4—C3112.38 (10)C8—C20—H20B109.3 (11)
C5—C4—H4A109.2 (9)H20A—C20—H20B106.3 (15)
C3—C4—H4A109.1 (9)C8—C20—H20C109.4 (10)
C5—C4—H4B109.1 (9)H20A—C20—H20C109.5 (15)
C3—C4—H4B109.2 (9)H20B—C20—H20C111.7 (15)
H4A—C4—H4B107.7 (12)C22—C21—S1111.32 (9)
C9—C5—C6118.23 (11)C22—C21—H21A111.0 (10)
C9—C5—C4122.55 (10)S1—C21—H21A109.0 (10)
C6—C5—C4119.16 (10)C22—C21—H21B107.8 (10)
C7—C6—C5119.52 (11)S1—C21—H21B104.0 (10)
C7—C6—C19119.54 (11)H21A—C21—H21B113.5 (13)
C5—C6—C19120.94 (11)O3—C22—N3124.57 (13)
N1—C7—C6122.27 (11)O3—C22—C21120.80 (13)
N1—C7—S1119.70 (9)N3—C22—C21114.59 (11)
C6—C7—S1117.97 (9)C24—C23—C28119.47 (13)
N1—C8—C9123.09 (11)C24—C23—N3117.61 (12)
N1—C8—C20114.24 (11)C28—C23—N3122.92 (12)
C9—C8—C20122.65 (11)C25—C24—C23120.04 (14)
C5—C9—C8118.03 (11)C25—C24—H24121.1 (11)
C5—C9—C1120.98 (10)C23—C24—H24118.9 (11)
C8—C9—C1120.87 (10)C26—C25—C24120.68 (15)
C11—C10—C15119.07 (12)C26—C25—H25122.0 (12)
C11—C10—C1119.99 (11)C24—C25—H25117.3 (12)
C15—C10—C1120.82 (11)C27—C26—C25119.10 (14)
C12—C11—C10120.08 (13)C27—C26—H26120.3 (11)
C12—C11—H11120.3 (10)C25—C26—H26120.6 (11)
C10—C11—H11119.6 (10)C26—C27—C28121.13 (14)
C13—C12—C11120.58 (15)C26—C27—H27120.4 (10)
C13—C12—H12120.3 (11)C28—C27—H27118.5 (11)
C11—C12—H12119.1 (12)C27—C28—C23119.57 (14)
C14—C13—C12119.79 (13)C27—C28—H28120.8 (10)
C14—C13—H13120.3 (12)C23—C28—H28119.6 (10)
C10—C1—C2—C1668.29 (11)C20—C8—C9—C12.86 (18)
C9—C1—C2—C16165.08 (9)C10—C1—C9—C5129.80 (11)
C10—C1—C2—C3166.61 (9)C2—C1—C9—C57.55 (15)
C9—C1—C2—C339.99 (13)C10—C1—C9—C854.15 (15)
C16—C2—C3—O271.57 (13)C2—C1—C9—C8176.41 (10)
C1—C2—C3—O251.24 (12)C9—C1—C10—C1149.93 (15)
C16—C2—C3—C1852.61 (14)C2—C1—C10—C1175.80 (13)
C1—C2—C3—C18175.42 (10)C9—C1—C10—C15134.18 (12)
C16—C2—C3—C4173.61 (10)C2—C1—C10—C15100.09 (13)
C1—C2—C3—C463.58 (12)C15—C10—C11—C120.68 (19)
O2—C3—C4—C564.66 (12)C1—C10—C11—C12176.64 (12)
C18—C3—C4—C5175.83 (10)C10—C11—C12—C130.8 (2)
C2—C3—C4—C554.32 (12)C11—C12—C13—C140.5 (2)
C3—C4—C5—C924.80 (15)C12—C13—C14—C150.1 (2)
C3—C4—C5—C6152.52 (10)C13—C14—C15—C100.2 (2)
C9—C5—C6—C73.36 (16)C11—C10—C15—C140.16 (19)
C4—C5—C6—C7174.07 (10)C1—C10—C15—C14176.09 (12)
C9—C5—C6—C19176.81 (11)C1—C2—C16—O157.14 (15)
C4—C5—C6—C195.76 (17)C3—C2—C16—O168.03 (15)
C8—N1—C7—C62.00 (17)C1—C2—C16—C17121.08 (13)
C8—N1—C7—S1175.41 (9)C3—C2—C16—C17113.75 (13)
C5—C6—C7—N13.85 (18)C7—S1—C21—C2298.03 (10)
C19—C6—C7—N1176.32 (11)C23—N3—C22—O35.2 (2)
C5—C6—C7—S1173.60 (9)C23—N3—C22—C21172.63 (12)
C19—C6—C7—S16.23 (15)S1—C21—C22—O396.36 (14)
C21—S1—C7—N113.60 (11)S1—C21—C22—N381.57 (14)
C21—S1—C7—C6163.92 (9)C22—N3—C23—C24158.95 (13)
C7—N1—C8—C90.24 (17)C22—N3—C23—C2820.9 (2)
C7—N1—C8—C20178.81 (11)C28—C23—C24—C251.0 (2)
C6—C5—C9—C81.26 (16)N3—C23—C24—C25178.86 (13)
C4—C5—C9—C8176.08 (10)C23—C24—C25—C260.7 (2)
C6—C5—C9—C1177.42 (10)C24—C25—C26—C270.3 (2)
C4—C5—C9—C10.08 (16)C25—C26—C27—C281.0 (2)
N1—C8—C9—C50.58 (17)C26—C27—C28—C230.6 (2)
C20—C8—C9—C5179.02 (12)C24—C23—C28—C270.4 (2)
N1—C8—C9—C1175.58 (10)N3—C23—C28—C27179.51 (13)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C10–C15 benzene ring.
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1i0.86 (2)2.04 (2)2.8674 (13)161.9 (19)
N3—H3A···N10.887 (18)2.306 (18)3.1148 (15)151.6 (15)
C13—H13···O2ii0.94 (2)2.40 (2)3.2520 (19)150.5 (17)
C20—H20A···Cg31.00 (2)2.975 (19)3.6866 (16)128.7 (13)
Symmetry codes: (i) x+1, y+1, z; (ii) x+3/2, y1/2, z+1/2.
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAndujar, S., Suvire, F., Berenguer, I., Cabedo, N., Marín, P., Moreno, L., Ivorra, M. D., Cortes, D. & Enriz, R. D. (2012). J. Mol. Model. 18, 419–431.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBernan, V. S., Montenegro, D. A., Korshalla, J. D., Maiese, W. M., Steinberg, D. A. & Greenstein, M. (1994). J. Antibiot. 47, 1417–1424.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT, and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarroll, F. I., Robinson, T. P., Brieaddy, L. E., Atkinson, R. N., Mascarella, S. W., Damaj, M., Martin, B. R. & Navarro, H. A. (2007). J. Med. Chem. 50, 6383–6391.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDukat, M., Taroua, M., Dahdouh, A., Siripurapu, U., Damaj, M. I., Martin, B. R. & Glennon, R. A. (2004). Bioorg. Med. Chem. Lett. 14, 3651–3654.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDyachenko, V. D., Sukach, S. M., Dyachenko, A. D., Zubatyuk, R. I. & Shishkin, O. V. (2010). Russ. J. Gen. Chem. 80, 2037–2042.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMague, J. T., Al-Taifi, E. A., Mohamed, S. K., Akkurt, M. & Bakhite, E. A. (2017b). IUCrData, 2, x170868.  Google Scholar
First citationMague, J. T. & Mohamed, S. K. (2020). Unpublished data.  Google Scholar
First citationMague, J. T., Mohamed, S. K., Akkurt, M., Bakhite, E. A. & Albayati, M. R. (2017a). IUCrData, 2, x170390.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMeijler, M. M., Matsushita, M., Altobell, L. J., Wirsching, P. & Janda, K. D. (2003). J. Am. Chem. Soc. 125, 7164–7165.  Web of Science CrossRef PubMed CAS Google Scholar
First citationScott, J. D. & Williams, R. M. (2002). Chem. Rev. 102, 1669–1730.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationXu, R., Dwoskin, L. P., Grinevich, V., Sumithran, S. P. & Crooks, P. A. (2002). Drug Dev. Res. 55, 173–186.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds