research communications
Crystallographic and spectroscopic characterization of 2-[(7-acetyl-4-cyano-6-hydroxy-1,6-dimethyl-8-phenyl-5,6,7,8-tetrahydroisoquinolin-3-yl)sulfanyl]-N-phenylacetamide
aDepartment of Chemistry, Faculty of Science, Sana'a University, Sana'a, Yemen, bDepartment of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt, cOndokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, eChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, fChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and gLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
*Correspondence e-mail: shaabankamel@yahoo.com, y.ramli@um5s.net.ma
In the title molecule, C28H27N3O3S, the heterocyclic portion of the tetrahydroisoquinoline unit is planar and an intramolecular N—H⋯N hydrogen bond and a C—H⋯π(ring) interaction help to determine the overall conformation. In the crystal, a layer structure with the layers parallel to (10) is generated by O—H⋯O and C—H⋯O hydrogen bonds.
Keywords: crystal structure; tetrahydroisoquinoline; phenylacetamide; hydrogen bond; C—H⋯π(ring) interaction.
CCDC reference: 2055318
1. Chemical context
Tetrahydroisoquinolines exhibit important pharmacological activities including antitumor (Scott & Williams, 2002), antimicrobial (Bernan et al., 1994), and dopaminergic activities (Andujar et al., 2012). They are used as starting materials in the syntheses of pharmacologically active, constrained conformations of N-substituted-2-aminopyridines as antinociceptive agents (Dukat et al., 2004) and constrained conformations of nicotine to improve nicotine vaccines (Xu et al., 2002; Meijler et al., 2003; Carroll et al., 2007). These examples demonstrate the utility of the tetrahydroisoquinoline core and why these types of compounds are of great interest. In this context, we report here the synthesis and of the title compound.
2. Structural commentary
The title compound crystallizes in P21/n with one molecule in the (Fig. 1). The C5/C6/C7/N1/C8/C9 ring is approximately planar (r.m.s. deviation = 0.011 Å) with the largest deviation of 0.020 (1) Å being for atom C6. The best planes through the C10–C15 and C23–C28 rings are inclined to the above plane by 85.19 (6) and 64.22 (7)°, respectively. The orientation of the former ring is due in part to the C20—H20A⋯Cg3 (Cg3 is the centroid of the C10–C15 benzene ring) interaction while the intramolecular N3—H3A⋯N1 hydrogen bond affects the orientation of the second ring (Table 1 and Fig. 1) and places the two rings on the same side of the tetrahydroquinoxaline unit. The acetyl group on C2 is in an equatorial position while the hydroxyl group on C3 is axial and these are syn to one another. The C10–C15 ring attached to C1 is close to equatorial and anti with respect to both other subsituents (Fig. 1). Although the O2—H2A hydroxyl group is favorably oriented for forming an intramolecular hydrogen bond with O1 as has been seen in some related molecules (Mague & Mohamed, 2020), the H⋯O distance of ca 2.54 Å is long and a stronger, intermolecular interaction is favored (vide infra). A puckering analysis (Cremer & Pople, 1975) of the C1–C5/C9 ring yielded the following parameters: Q = 0.5267 (13) Å, θ = 128.52 (14)° and φ = 286.46 (18)°. The conformation of this ring approximates an envelope with C3 as the flap.
3. Supramolecular features
In the crystal, inversion dimers are formed by O2—H2A⋯O1 hydrogen bonds (Table 1), which results in O1⋯O1i and O1⋯O2i [symmetry code: (i) −x + 1, −y + 1, −z] contacts of 2.8774 (16) and 2.8674 (14) Å (0.16 and 0.17 Å less than the sum of the van der Waals radii), respectively. The dimers are connected by C13—H13⋯O2 hydrogen bonds (Table 1), forming layers parallel to (10) (Figs. 2 and 3).
4. Database survey
A search of the Cambridge Structural Database (CSD, updated to December 2020, Groom et al., 2016) found three analogs of the title molecule, one with a methyl group on sulfur (refcode AXUXOH; Dyachenko et al., 2010) and two with a 4-chlorophenyl group on C1 in place of the phenyl group, one with an ethyl group on sulfur (NAQRIJ; Mague et al., 2017a) and the other with a CH2CO2CH3 group on sulfur (PAWCEY; Mague et al., 2017b). In all three, the acetyl group is equatorial and the hydroxyl group is axial while the phenyl or 4-chlorophenyl group is close to equatorial, as is the case with the title molecule. The puckering amplitudes of the cyclohexene ring in the second and third molecule are, respectively, 0.521 (2) and 0.524 (3) Å, which are essentially the same as in the title molecule. One notable difference between the four molecules is the orientation of the hydroxyl hydrogen. In AXUXOH there is an intramolecular hydrogen bond with the acetyl group leading to an H⋯O distance of 2.23 Å. In the other three, intermolecular hydrogen bonding of the hydroxyl group predominates and the intramolecular H⋯O distances are 2.55, 2.71 and 3.18 Å for the title molecule, PAWCEY and NAQRIJ, respectively.
5. Hirshfeld surface analysis
Hirshfeld surface analysis is an effective means of probing intermolecular interactions (McKinnon et al., 2007; Spackman & Jayatilaka, 2009), which can be conveniently carried out with Crystal Explorer 17 (Turner et al., 2017). A detailed description of the use of Crystal Explorer 17 and the plots obtained is given by Tan et al. (2019). From the surface mapped over dnorm (Fig. 4a), the sites of the intermolecular O—H⋯O and C—H⋯O hydrogen bonds can be seen on the left side near the bottom and at the top, respectively. A weaker point of interaction is at O3 on the lower right of the diagram, which might indicate a weak, intermolecular C4—H4B⋯O3 hydrogen bond since the O⋯H distance is 2.605 (15) Å. The surfaces mapped over shape-index (Fig. 4b) and curvedness (Fig. 5c) show a relatively flat region over the C23–C28 benzene ring in the latter and a red triangular area over the edge of the ring in the former. This is suggestive of a C—H⋯π(ring) interaction and can be identified with the C20—H20A⋯Cg3 interaction noted in Section 2. The fingerprint plots derived from the Hirshfeld surface enable the apportionment of the intermolecular interactions into specific sets. Fig. 5a displays the plot for all interactions while Fig. 5b–5d show those delineated into H⋯H, H⋯O/O⋯H and H⋯N/N⋯H interactions, which constitute 47.3%, 11.8% and 10.6% of the total interactions, respectively.
6. Synthesis and crystallization
A mixture of 7-acetyl-4-cyano-1,5-dimethyl-6-hydroxy-8-phenyl-5,6,7,8-tetrahydroisoquinoline-3(2H)-thione (10 mmol), N-phenyl-2-chloroacetamide (10 mmol) and sodium acetate trihydrate (1.50 g, 11 mmol) in ethanol (100 mL) was heated under reflux for one hour. The precipitate that formed after standing at room temperature overnight was collected, washed with water, dried in air and then recrystallized from ethanol to afford the title compound in the form of colorless crystals. Yield: 4.00 g, 82%; m. p.: 470-472 K.
7. Spectroscopic characterization
The chemical structure of the compound has also been confirmed using analytical and spectroscopic methods. The FT–IR spectrum shows mainly the characteristic NH peak of the acetamide group at 3277 cm−1 and the C=O bond of the amide group at 1667 cm−1. In addition, characteristic peaks of the precursor are observed: OH at 3522 cm−1, aromatic C—H at 3058 cm−1, aliphatic C—H at 2920, 2970, 2991 cm−1, nitrile at 2217 cm−1 and acetyl at 1694 cm−1, also confirming the structure of the compound.
With regard to the 1H NMR spectrum, several characteristic signals can be clearly attributed to the title compound, such as a doublet of doublets between 4.09 and 4.19 ppm with a coupling constant of 16 Hz due to SCH2 , and a singlet at 10.22 ppm due to NH. In addition, we note the presence of characteristic peaks related to the starting compound: multiplets between 7.17 and 7.29 ppm due to aromatic protons, singlets at 1.28, 1.92, 2.11 and 4.84 ppm referring to a methyl group attached to a pyridine ring, the CH3 of the acetamide group and the hydroxy group, respectively. The doublets between 7.53–7.55 (J = 8 Hz) and 7.02–7.04 (J = 8 Hz) can be attributed to the aromatic protons.
IR (cm−1): 3522 (OH); 3277 (NH); 3058 (C—H, aromatic); 2920, 2970, 2991 (C—H aliphatic); 2217 (C≡N); 1694 (C=O, acetyl); 1667 (C=O, amide).
1H NMR (400 MHz, CDCl3): 10.22 (s, 1H, NH); 7.53–7.55 (d, J = 8 Hz, 2H, Ar-H); 7.23–7.29 (m, 4H, Ar-H); 7.17–7.20 (m, 1H, Ar-H); 7.02–7.04 (d, J = 8 Hz, 3H, Ar-H); 4.84 (s, 1H, OH); 4.52–4.54 (d, J = 8 Hz, 1H, CH at C-8); 4.09–4.19 (dd, J = 16 Hz, 2H, SCH2); 3.25–3.29 (d, J = 16 Hz, 1H, CH2); 2.94–2.96 (d, J = 8 Hz, 1H, CH at C-7); 2.89–2.94 (d, J = 20 Hz, 1H, CH2), 2.11 (s, 3H, COCH3); 1.92 (s, 3H, CH3 attached to pyridine ring); 1.28 (s, 3H, CH3).
8. Refinement
Crystal data, data collection and structure . All hydrogen atoms were independently refined. Twelve reflections were not accessible due to the configuration of the goniometer and the low-temperature attachment.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2055318
https://doi.org/10.1107/S2056989021000372/vm2243sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021000372/vm2243Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021000372/vm2243Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL 2018/3 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C28H27N3O3S | F(000) = 1024 |
Mr = 485.58 | Dx = 1.330 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
a = 12.0487 (4) Å | Cell parameters from 9855 reflections |
b = 13.9821 (5) Å | θ = 4.4–72.5° |
c = 15.0239 (5) Å | µ = 1.47 mm−1 |
β = 106.606 (1)° | T = 150 K |
V = 2425.46 (14) Å3 | Column, colourless |
Z = 4 | 0.26 × 0.14 × 0.08 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 4734 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 4284 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.030 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 72.4°, θmin = 4.4° |
ω scans | h = −14→14 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −15→17 |
Tmin = 0.79, Tmax = 0.89 | l = −17→18 |
18194 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | All H-atom parameters refined |
wR(F2) = 0.083 | w = 1/[σ2(Fo2) + (0.0386P)2 + 0.7971P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
4734 reflections | Δρmax = 0.22 e Å−3 |
425 parameters | Δρmin = −0.21 e Å−3 |
0 restraints | Extinction correction: SHELXL 2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: dual | Extinction coefficient: 0.0039 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.58184 (3) | 0.71687 (2) | 0.54963 (2) | 0.02702 (10) | |
O1 | 0.55415 (10) | 0.41602 (8) | 0.04888 (7) | 0.0389 (3) | |
O2 | 0.43190 (8) | 0.56327 (6) | 0.13750 (6) | 0.02221 (19) | |
H2A | 0.4361 (17) | 0.5558 (14) | 0.0816 (14) | 0.053 (5)* | |
O3 | 0.80915 (12) | 0.76450 (8) | 0.74784 (7) | 0.0463 (3) | |
N1 | 0.69752 (9) | 0.60562 (7) | 0.46015 (7) | 0.0226 (2) | |
N2 | 0.29604 (10) | 0.63554 (10) | 0.43743 (8) | 0.0363 (3) | |
N3 | 0.84869 (10) | 0.64010 (8) | 0.66349 (8) | 0.0276 (2) | |
H3A | 0.8267 (15) | 0.6163 (12) | 0.6064 (12) | 0.036 (4)* | |
C1 | 0.61831 (10) | 0.44233 (8) | 0.24855 (8) | 0.0192 (2) | |
H1 | 0.6482 (13) | 0.4819 (11) | 0.2084 (10) | 0.024 (4)* | |
C2 | 0.50155 (10) | 0.40139 (8) | 0.18906 (8) | 0.0201 (2) | |
H2 | 0.4796 (12) | 0.3479 (10) | 0.2233 (10) | 0.020 (3)* | |
C3 | 0.40183 (10) | 0.47505 (8) | 0.17204 (8) | 0.0195 (2) | |
C4 | 0.38587 (10) | 0.49849 (9) | 0.26679 (8) | 0.0198 (2) | |
H4A | 0.3566 (13) | 0.4409 (11) | 0.2914 (10) | 0.026 (4)* | |
H4B | 0.3263 (14) | 0.5499 (11) | 0.2593 (11) | 0.029 (4)* | |
C5 | 0.49669 (10) | 0.53100 (8) | 0.33547 (8) | 0.0184 (2) | |
C6 | 0.49119 (10) | 0.59248 (8) | 0.40793 (8) | 0.0203 (2) | |
C7 | 0.59357 (11) | 0.63014 (8) | 0.46686 (8) | 0.0211 (2) | |
C8 | 0.70418 (10) | 0.54452 (8) | 0.39243 (8) | 0.0217 (2) | |
C9 | 0.60604 (10) | 0.50545 (8) | 0.32793 (8) | 0.0190 (2) | |
C10 | 0.69924 (10) | 0.35759 (8) | 0.27879 (8) | 0.0207 (2) | |
C11 | 0.68696 (11) | 0.29760 (9) | 0.34899 (9) | 0.0260 (3) | |
H11 | 0.6323 (14) | 0.3128 (12) | 0.3811 (11) | 0.031 (4)* | |
C12 | 0.75677 (13) | 0.21739 (10) | 0.37340 (11) | 0.0376 (3) | |
H12 | 0.7497 (16) | 0.1783 (14) | 0.4238 (13) | 0.049 (5)* | |
C13 | 0.83774 (13) | 0.19569 (10) | 0.32770 (13) | 0.0425 (4) | |
H13 | 0.8869 (17) | 0.1427 (15) | 0.3467 (14) | 0.055 (5)* | |
C14 | 0.85014 (13) | 0.25445 (11) | 0.25757 (12) | 0.0401 (4) | |
H14 | 0.9087 (17) | 0.2423 (14) | 0.2239 (13) | 0.048 (5)* | |
C15 | 0.78155 (12) | 0.33535 (10) | 0.23292 (10) | 0.0305 (3) | |
H15 | 0.7883 (16) | 0.3783 (13) | 0.1832 (13) | 0.046 (5)* | |
C16 | 0.51833 (11) | 0.36283 (9) | 0.09888 (8) | 0.0265 (3) | |
C17 | 0.49321 (16) | 0.25966 (11) | 0.07668 (11) | 0.0392 (4) | |
H17A | 0.5448 (18) | 0.2227 (14) | 0.1245 (14) | 0.052 (5)* | |
H17B | 0.5020 (18) | 0.2458 (15) | 0.0139 (15) | 0.060 (6)* | |
H17C | 0.4129 (19) | 0.2421 (15) | 0.0793 (14) | 0.056 (6)* | |
C18 | 0.29017 (12) | 0.43558 (10) | 0.10695 (9) | 0.0268 (3) | |
H18A | 0.2702 (14) | 0.3705 (12) | 0.1262 (11) | 0.034 (4)* | |
H18B | 0.2960 (14) | 0.4305 (11) | 0.0429 (12) | 0.032 (4)* | |
H18C | 0.2254 (14) | 0.4804 (12) | 0.1047 (11) | 0.033 (4)* | |
C19 | 0.38188 (11) | 0.61752 (9) | 0.42231 (8) | 0.0242 (3) | |
C20 | 0.82558 (12) | 0.52338 (11) | 0.39007 (11) | 0.0325 (3) | |
H20A | 0.8471 (16) | 0.4556 (14) | 0.4093 (13) | 0.048 (5)* | |
H20B | 0.8298 (17) | 0.5294 (14) | 0.3262 (14) | 0.052 (5)* | |
H20C | 0.8796 (15) | 0.5671 (13) | 0.4323 (12) | 0.038 (4)* | |
C21 | 0.72565 (13) | 0.76893 (9) | 0.58406 (9) | 0.0289 (3) | |
H21A | 0.7616 (15) | 0.7601 (12) | 0.5336 (12) | 0.034 (4)* | |
H21B | 0.7122 (14) | 0.8361 (12) | 0.5963 (11) | 0.034 (4)* | |
C22 | 0.79955 (12) | 0.72541 (9) | 0.67374 (9) | 0.0284 (3) | |
C23 | 0.91089 (11) | 0.57882 (10) | 0.73536 (9) | 0.0262 (3) | |
C24 | 0.92081 (13) | 0.48300 (11) | 0.71326 (10) | 0.0331 (3) | |
H24 | 0.8859 (15) | 0.4621 (13) | 0.6506 (12) | 0.039 (4)* | |
C25 | 0.97905 (15) | 0.41944 (12) | 0.78136 (12) | 0.0416 (4) | |
H25 | 0.9834 (17) | 0.3516 (15) | 0.7626 (14) | 0.055 (5)* | |
C26 | 1.02900 (13) | 0.45021 (12) | 0.87153 (11) | 0.0388 (3) | |
H26 | 1.0692 (16) | 0.4050 (13) | 0.9198 (13) | 0.045 (5)* | |
C27 | 1.02052 (13) | 0.54563 (12) | 0.89285 (10) | 0.0351 (3) | |
H27 | 1.0570 (15) | 0.5694 (13) | 0.9570 (13) | 0.044 (5)* | |
C28 | 0.96158 (12) | 0.61022 (11) | 0.82593 (9) | 0.0304 (3) | |
H28 | 0.9531 (14) | 0.6768 (13) | 0.8419 (11) | 0.037 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.03021 (18) | 0.02522 (17) | 0.02499 (17) | 0.00004 (12) | 0.00686 (13) | −0.00720 (11) |
O1 | 0.0576 (7) | 0.0405 (6) | 0.0222 (5) | 0.0128 (5) | 0.0172 (5) | 0.0055 (4) |
O2 | 0.0282 (5) | 0.0208 (4) | 0.0193 (4) | 0.0033 (3) | 0.0096 (3) | 0.0042 (3) |
O3 | 0.0735 (8) | 0.0346 (6) | 0.0253 (5) | 0.0090 (5) | 0.0050 (5) | −0.0072 (4) |
N1 | 0.0235 (5) | 0.0207 (5) | 0.0229 (5) | −0.0007 (4) | 0.0055 (4) | −0.0007 (4) |
N2 | 0.0281 (6) | 0.0549 (8) | 0.0271 (6) | 0.0031 (5) | 0.0096 (5) | −0.0098 (5) |
N3 | 0.0293 (6) | 0.0301 (6) | 0.0211 (5) | −0.0012 (5) | 0.0037 (4) | −0.0048 (4) |
C1 | 0.0219 (6) | 0.0191 (5) | 0.0182 (5) | 0.0013 (4) | 0.0081 (5) | 0.0023 (4) |
C2 | 0.0238 (6) | 0.0189 (5) | 0.0170 (5) | 0.0027 (5) | 0.0050 (5) | 0.0012 (4) |
C3 | 0.0219 (6) | 0.0193 (5) | 0.0170 (5) | 0.0019 (4) | 0.0052 (4) | 0.0015 (4) |
C4 | 0.0196 (6) | 0.0227 (6) | 0.0176 (5) | −0.0008 (5) | 0.0061 (5) | 0.0006 (4) |
C5 | 0.0218 (6) | 0.0169 (5) | 0.0169 (5) | 0.0003 (4) | 0.0062 (4) | 0.0036 (4) |
C6 | 0.0223 (6) | 0.0206 (5) | 0.0186 (5) | 0.0018 (5) | 0.0068 (4) | 0.0017 (4) |
C7 | 0.0267 (6) | 0.0185 (5) | 0.0182 (5) | 0.0007 (5) | 0.0063 (5) | 0.0019 (4) |
C8 | 0.0221 (6) | 0.0198 (5) | 0.0232 (6) | −0.0004 (5) | 0.0066 (5) | 0.0008 (4) |
C9 | 0.0220 (6) | 0.0167 (5) | 0.0189 (5) | 0.0011 (4) | 0.0070 (5) | 0.0024 (4) |
C10 | 0.0199 (6) | 0.0193 (5) | 0.0218 (6) | 0.0008 (4) | 0.0043 (4) | −0.0026 (4) |
C11 | 0.0250 (6) | 0.0261 (6) | 0.0243 (6) | 0.0016 (5) | 0.0028 (5) | 0.0034 (5) |
C12 | 0.0354 (8) | 0.0261 (7) | 0.0415 (8) | 0.0009 (6) | −0.0049 (6) | 0.0092 (6) |
C13 | 0.0294 (7) | 0.0235 (7) | 0.0632 (10) | 0.0078 (6) | −0.0053 (7) | −0.0087 (7) |
C14 | 0.0268 (7) | 0.0372 (8) | 0.0558 (10) | 0.0051 (6) | 0.0109 (7) | −0.0174 (7) |
C15 | 0.0273 (7) | 0.0316 (7) | 0.0355 (7) | 0.0020 (5) | 0.0134 (6) | −0.0055 (6) |
C16 | 0.0286 (7) | 0.0300 (6) | 0.0183 (6) | 0.0114 (5) | 0.0024 (5) | 0.0000 (5) |
C17 | 0.0491 (10) | 0.0322 (7) | 0.0328 (8) | 0.0075 (7) | 0.0062 (7) | −0.0112 (6) |
C18 | 0.0248 (7) | 0.0293 (7) | 0.0232 (6) | 0.0008 (5) | 0.0021 (5) | −0.0040 (5) |
C19 | 0.0270 (7) | 0.0285 (6) | 0.0171 (5) | −0.0007 (5) | 0.0062 (5) | −0.0035 (5) |
C20 | 0.0209 (6) | 0.0347 (8) | 0.0412 (8) | −0.0030 (6) | 0.0075 (6) | −0.0113 (6) |
C21 | 0.0362 (7) | 0.0226 (6) | 0.0257 (6) | −0.0055 (5) | 0.0055 (6) | −0.0021 (5) |
C22 | 0.0337 (7) | 0.0254 (6) | 0.0245 (6) | −0.0065 (5) | 0.0060 (5) | −0.0031 (5) |
C23 | 0.0196 (6) | 0.0333 (7) | 0.0261 (6) | −0.0030 (5) | 0.0071 (5) | −0.0016 (5) |
C24 | 0.0313 (7) | 0.0354 (7) | 0.0314 (7) | 0.0014 (6) | 0.0069 (6) | −0.0060 (6) |
C25 | 0.0431 (9) | 0.0369 (8) | 0.0443 (9) | 0.0078 (7) | 0.0116 (7) | −0.0006 (7) |
C26 | 0.0348 (8) | 0.0468 (9) | 0.0349 (8) | 0.0091 (7) | 0.0101 (6) | 0.0084 (7) |
C27 | 0.0294 (7) | 0.0492 (9) | 0.0262 (7) | −0.0012 (6) | 0.0073 (6) | 0.0006 (6) |
C28 | 0.0283 (7) | 0.0358 (7) | 0.0263 (7) | −0.0038 (6) | 0.0065 (5) | −0.0032 (5) |
S1—C7 | 1.7712 (12) | C11—H11 | 0.945 (17) |
S1—C21 | 1.8132 (14) | C12—C13 | 1.378 (2) |
O1—C16 | 1.2203 (17) | C12—H12 | 0.957 (19) |
O2—C3 | 1.4245 (14) | C13—C14 | 1.378 (3) |
O2—H2A | 0.86 (2) | C13—H13 | 0.94 (2) |
O3—C22 | 1.2157 (17) | C14—C15 | 1.387 (2) |
N1—C7 | 1.3299 (16) | C14—H14 | 0.99 (2) |
N1—C8 | 1.3484 (16) | C15—H15 | 0.980 (19) |
N2—C19 | 1.1486 (17) | C16—C17 | 1.492 (2) |
N3—C22 | 1.3599 (18) | C17—H17A | 0.96 (2) |
N3—C23 | 1.4138 (17) | C17—H17B | 1.00 (2) |
N3—H3A | 0.887 (18) | C17—H17C | 1.01 (2) |
C1—C10 | 1.5192 (16) | C18—H18A | 1.004 (17) |
C1—C9 | 1.5244 (16) | C18—H18B | 0.987 (17) |
C1—C2 | 1.5450 (16) | C18—H18C | 0.995 (17) |
C1—H1 | 0.961 (15) | C20—H20A | 1.00 (2) |
C2—C16 | 1.5245 (16) | C20—H20B | 0.98 (2) |
C2—C3 | 1.5473 (16) | C20—H20C | 0.981 (18) |
C2—H2 | 0.986 (14) | C21—C22 | 1.5141 (19) |
C3—C18 | 1.5228 (17) | C21—H21A | 0.982 (18) |
C3—C4 | 1.5255 (16) | C21—H21B | 0.980 (17) |
C4—C5 | 1.5056 (16) | C23—C24 | 1.394 (2) |
C4—H4A | 0.992 (16) | C23—C28 | 1.3938 (18) |
C4—H4B | 0.999 (16) | C24—C25 | 1.385 (2) |
C5—C9 | 1.4006 (16) | C24—H24 | 0.960 (18) |
C5—C6 | 1.4034 (16) | C25—C26 | 1.384 (2) |
C6—C7 | 1.3995 (17) | C25—H25 | 1.00 (2) |
C6—C19 | 1.4374 (17) | C26—C27 | 1.383 (2) |
C8—C9 | 1.4074 (17) | C26—H26 | 0.979 (19) |
C8—C20 | 1.5026 (18) | C27—C28 | 1.387 (2) |
C10—C11 | 1.3882 (18) | C27—H27 | 0.995 (18) |
C10—C15 | 1.3949 (18) | C28—H28 | 0.974 (18) |
C11—C12 | 1.3869 (19) | ||
C7—S1—C21 | 102.34 (6) | C12—C13—H13 | 119.8 (12) |
C3—O2—H2A | 110.0 (13) | C13—C14—C15 | 120.26 (14) |
C7—N1—C8 | 118.75 (11) | C13—C14—H14 | 122.4 (11) |
C22—N3—C23 | 126.73 (11) | C15—C14—H14 | 117.3 (11) |
C22—N3—H3A | 114.8 (11) | C14—C15—C10 | 120.22 (14) |
C23—N3—H3A | 117.3 (11) | C14—C15—H15 | 122.0 (11) |
C10—C1—C9 | 114.52 (9) | C10—C15—H15 | 117.8 (11) |
C10—C1—C2 | 106.53 (9) | O1—C16—C17 | 122.45 (13) |
C9—C1—C2 | 113.03 (10) | O1—C16—C2 | 119.45 (12) |
C10—C1—H1 | 108.2 (9) | C17—C16—C2 | 118.08 (12) |
C9—C1—H1 | 107.2 (9) | C16—C17—H17A | 108.0 (12) |
C2—C1—H1 | 107.0 (9) | C16—C17—H17B | 109.3 (12) |
C16—C2—C1 | 108.36 (10) | H17A—C17—H17B | 112.5 (17) |
C16—C2—C3 | 112.49 (9) | C16—C17—H17C | 111.2 (12) |
C1—C2—C3 | 112.62 (9) | H17A—C17—H17C | 105.3 (16) |
C16—C2—H2 | 108.6 (8) | H17B—C17—H17C | 110.6 (16) |
C1—C2—H2 | 108.4 (8) | C3—C18—H18A | 112.6 (9) |
C3—C2—H2 | 106.2 (8) | C3—C18—H18B | 110.8 (9) |
O2—C3—C18 | 110.48 (10) | H18A—C18—H18B | 107.8 (13) |
O2—C3—C4 | 105.48 (9) | C3—C18—H18C | 109.5 (9) |
C18—C3—C4 | 110.69 (10) | H18A—C18—H18C | 109.3 (13) |
O2—C3—C2 | 111.73 (9) | H18B—C18—H18C | 106.7 (13) |
C18—C3—C2 | 111.51 (10) | N2—C19—C6 | 177.04 (14) |
C4—C3—C2 | 106.72 (9) | C8—C20—H20A | 110.6 (11) |
C5—C4—C3 | 112.38 (10) | C8—C20—H20B | 109.3 (11) |
C5—C4—H4A | 109.2 (9) | H20A—C20—H20B | 106.3 (15) |
C3—C4—H4A | 109.1 (9) | C8—C20—H20C | 109.4 (10) |
C5—C4—H4B | 109.1 (9) | H20A—C20—H20C | 109.5 (15) |
C3—C4—H4B | 109.2 (9) | H20B—C20—H20C | 111.7 (15) |
H4A—C4—H4B | 107.7 (12) | C22—C21—S1 | 111.32 (9) |
C9—C5—C6 | 118.23 (11) | C22—C21—H21A | 111.0 (10) |
C9—C5—C4 | 122.55 (10) | S1—C21—H21A | 109.0 (10) |
C6—C5—C4 | 119.16 (10) | C22—C21—H21B | 107.8 (10) |
C7—C6—C5 | 119.52 (11) | S1—C21—H21B | 104.0 (10) |
C7—C6—C19 | 119.54 (11) | H21A—C21—H21B | 113.5 (13) |
C5—C6—C19 | 120.94 (11) | O3—C22—N3 | 124.57 (13) |
N1—C7—C6 | 122.27 (11) | O3—C22—C21 | 120.80 (13) |
N1—C7—S1 | 119.70 (9) | N3—C22—C21 | 114.59 (11) |
C6—C7—S1 | 117.97 (9) | C24—C23—C28 | 119.47 (13) |
N1—C8—C9 | 123.09 (11) | C24—C23—N3 | 117.61 (12) |
N1—C8—C20 | 114.24 (11) | C28—C23—N3 | 122.92 (12) |
C9—C8—C20 | 122.65 (11) | C25—C24—C23 | 120.04 (14) |
C5—C9—C8 | 118.03 (11) | C25—C24—H24 | 121.1 (11) |
C5—C9—C1 | 120.98 (10) | C23—C24—H24 | 118.9 (11) |
C8—C9—C1 | 120.87 (10) | C26—C25—C24 | 120.68 (15) |
C11—C10—C15 | 119.07 (12) | C26—C25—H25 | 122.0 (12) |
C11—C10—C1 | 119.99 (11) | C24—C25—H25 | 117.3 (12) |
C15—C10—C1 | 120.82 (11) | C27—C26—C25 | 119.10 (14) |
C12—C11—C10 | 120.08 (13) | C27—C26—H26 | 120.3 (11) |
C12—C11—H11 | 120.3 (10) | C25—C26—H26 | 120.6 (11) |
C10—C11—H11 | 119.6 (10) | C26—C27—C28 | 121.13 (14) |
C13—C12—C11 | 120.58 (15) | C26—C27—H27 | 120.4 (10) |
C13—C12—H12 | 120.3 (11) | C28—C27—H27 | 118.5 (11) |
C11—C12—H12 | 119.1 (12) | C27—C28—C23 | 119.57 (14) |
C14—C13—C12 | 119.79 (13) | C27—C28—H28 | 120.8 (10) |
C14—C13—H13 | 120.3 (12) | C23—C28—H28 | 119.6 (10) |
C10—C1—C2—C16 | −68.29 (11) | C20—C8—C9—C1 | −2.86 (18) |
C9—C1—C2—C16 | 165.08 (9) | C10—C1—C9—C5 | −129.80 (11) |
C10—C1—C2—C3 | 166.61 (9) | C2—C1—C9—C5 | −7.55 (15) |
C9—C1—C2—C3 | 39.99 (13) | C10—C1—C9—C8 | 54.15 (15) |
C16—C2—C3—O2 | −71.57 (13) | C2—C1—C9—C8 | 176.41 (10) |
C1—C2—C3—O2 | 51.24 (12) | C9—C1—C10—C11 | 49.93 (15) |
C16—C2—C3—C18 | 52.61 (14) | C2—C1—C10—C11 | −75.80 (13) |
C1—C2—C3—C18 | 175.42 (10) | C9—C1—C10—C15 | −134.18 (12) |
C16—C2—C3—C4 | 173.61 (10) | C2—C1—C10—C15 | 100.09 (13) |
C1—C2—C3—C4 | −63.58 (12) | C15—C10—C11—C12 | 0.68 (19) |
O2—C3—C4—C5 | −64.66 (12) | C1—C10—C11—C12 | 176.64 (12) |
C18—C3—C4—C5 | 175.83 (10) | C10—C11—C12—C13 | −0.8 (2) |
C2—C3—C4—C5 | 54.32 (12) | C11—C12—C13—C14 | 0.5 (2) |
C3—C4—C5—C9 | −24.80 (15) | C12—C13—C14—C15 | 0.1 (2) |
C3—C4—C5—C6 | 152.52 (10) | C13—C14—C15—C10 | −0.2 (2) |
C9—C5—C6—C7 | 3.36 (16) | C11—C10—C15—C14 | −0.16 (19) |
C4—C5—C6—C7 | −174.07 (10) | C1—C10—C15—C14 | −176.09 (12) |
C9—C5—C6—C19 | −176.81 (11) | C1—C2—C16—O1 | −57.14 (15) |
C4—C5—C6—C19 | 5.76 (17) | C3—C2—C16—O1 | 68.03 (15) |
C8—N1—C7—C6 | 2.00 (17) | C1—C2—C16—C17 | 121.08 (13) |
C8—N1—C7—S1 | −175.41 (9) | C3—C2—C16—C17 | −113.75 (13) |
C5—C6—C7—N1 | −3.85 (18) | C7—S1—C21—C22 | −98.03 (10) |
C19—C6—C7—N1 | 176.32 (11) | C23—N3—C22—O3 | 5.2 (2) |
C5—C6—C7—S1 | 173.60 (9) | C23—N3—C22—C21 | −172.63 (12) |
C19—C6—C7—S1 | −6.23 (15) | S1—C21—C22—O3 | −96.36 (14) |
C21—S1—C7—N1 | 13.60 (11) | S1—C21—C22—N3 | 81.57 (14) |
C21—S1—C7—C6 | −163.92 (9) | C22—N3—C23—C24 | 158.95 (13) |
C7—N1—C8—C9 | 0.24 (17) | C22—N3—C23—C28 | −20.9 (2) |
C7—N1—C8—C20 | 178.81 (11) | C28—C23—C24—C25 | 1.0 (2) |
C6—C5—C9—C8 | −1.26 (16) | N3—C23—C24—C25 | −178.86 (13) |
C4—C5—C9—C8 | 176.08 (10) | C23—C24—C25—C26 | −0.7 (2) |
C6—C5—C9—C1 | −177.42 (10) | C24—C25—C26—C27 | −0.3 (2) |
C4—C5—C9—C1 | −0.08 (16) | C25—C26—C27—C28 | 1.0 (2) |
N1—C8—C9—C5 | −0.58 (17) | C26—C27—C28—C23 | −0.6 (2) |
C20—C8—C9—C5 | −179.02 (12) | C24—C23—C28—C27 | −0.4 (2) |
N1—C8—C9—C1 | 175.58 (10) | N3—C23—C28—C27 | 179.51 (13) |
Cg3 is the centroid of the C10–C15 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···O1i | 0.86 (2) | 2.04 (2) | 2.8674 (13) | 161.9 (19) |
N3—H3A···N1 | 0.887 (18) | 2.306 (18) | 3.1148 (15) | 151.6 (15) |
C13—H13···O2ii | 0.94 (2) | 2.40 (2) | 3.2520 (19) | 150.5 (17) |
C20—H20A···Cg3 | 1.00 (2) | 2.975 (19) | 3.6866 (16) | 128.7 (13) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+3/2, y−1/2, −z+1/2. |
Funding information
The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Andujar, S., Suvire, F., Berenguer, I., Cabedo, N., Marín, P., Moreno, L., Ivorra, M. D., Cortes, D. & Enriz, R. D. (2012). J. Mol. Model. 18, 419–431. Web of Science CrossRef CAS PubMed Google Scholar
Bernan, V. S., Montenegro, D. A., Korshalla, J. D., Maiese, W. M., Steinberg, D. A. & Greenstein, M. (1994). J. Antibiot. 47, 1417–1424. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT, and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Carroll, F. I., Robinson, T. P., Brieaddy, L. E., Atkinson, R. N., Mascarella, S. W., Damaj, M., Martin, B. R. & Navarro, H. A. (2007). J. Med. Chem. 50, 6383–6391. Web of Science CrossRef PubMed CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dukat, M., Taroua, M., Dahdouh, A., Siripurapu, U., Damaj, M. I., Martin, B. R. & Glennon, R. A. (2004). Bioorg. Med. Chem. Lett. 14, 3651–3654. Web of Science CrossRef PubMed CAS Google Scholar
Dyachenko, V. D., Sukach, S. M., Dyachenko, A. D., Zubatyuk, R. I. & Shishkin, O. V. (2010). Russ. J. Gen. Chem. 80, 2037–2042. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Mague, J. T., Al-Taifi, E. A., Mohamed, S. K., Akkurt, M. & Bakhite, E. A. (2017b). IUCrData, 2, x170868. Google Scholar
Mague, J. T. & Mohamed, S. K. (2020). Unpublished data. Google Scholar
Mague, J. T., Mohamed, S. K., Akkurt, M., Bakhite, E. A. & Albayati, M. R. (2017a). IUCrData, 2, x170390. Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Meijler, M. M., Matsushita, M., Altobell, L. J., Wirsching, P. & Janda, K. D. (2003). J. Am. Chem. Soc. 125, 7164–7165. Web of Science CrossRef PubMed CAS Google Scholar
Scott, J. D. & Williams, R. M. (2002). Chem. Rev. 102, 1669–1730. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia. Google Scholar
Xu, R., Dwoskin, L. P., Grinevich, V., Sumithran, S. P. & Crooks, P. A. (2002). Drug Dev. Res. 55, 173–186. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.