research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1,2-bis­­(4-fluoro­phen­yl)-1-hy­dr­oxy-2,3,8-tri­meth­­oxy­acenaphthene: formation of a five-membered intra­molecular O—H⋯O hydrogen-bonded ring

CROSSMARK_Color_square_no_text.svg

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology (TUAT), Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

Edited by L. Van Meervelt, Katholieke Universiteit Leuven, Belgium (Received 6 January 2021; accepted 20 January 2021; online 26 January 2021)

The structure of the title compound, C27H22F2O4, at 193 K has triclinic (P[\overline{1}]) symmetry. The hy­droxy and meth­oxy groups at the 1,2-positions of the acenaphthene core display a cis configuration. Both substituents are involved in the formation of a five-membered intra­molecular O—H⋯O hydrogen-bonded ring. The 4-fluoro­phenyl rings make dihedral angles of 87.02 (7) and 51.86 (8)° with the naphthalene ring system. In the crystal, a pair of non-classical C—H⋯O hydrogen bonds forms centrosymmetric dimeric structures. The dimeric aggregates are linked in the ac plane through non-classical C—H⋯F hydrogen bonds and C—H⋯π interactions.

1. Chemical context

The chemistry of congested aromatic-ring-accumulation compounds has attracted continuous inter­est, especially in non-classical non-covalent bonding inter­actions other than classical hydrogen bonds. Steric factors of these compounds influenced by the presence of exocyclic bonds presumably bring about in-plane and/or out-of-plane deviations from the ordinary geometry of aromatic mol­ecules. Consequently, the mol­ecules undergo geometrical changes to release the strain in the mol­ecular skeleton, which, in turn, modulates the π-electron delocalization. These space–structural characteristics result in an alteration of the reactivity and properties of the near-by moiety of the mol­ecule (Tannaci et al., 2007[Tannaci, J. F., Noji, M., McBee, J. & Tilley, T. D. (2007). J. Org. Chem. 72, 5567-5573.]; Pascal, 2006[Pascal, R. A. (2006). Chem. Rev. 106, 4809-4819.]; Downing et al., 1994[Downing, G. A., Frampton, C. S., MacNicol, D. D. & Mallinson, P. R. (1994). Angew. Chem. Int. Ed. Engl. 33, 1587-1589.]; Biedermann et al., 2001[Biedermann, P. U., Stezowski, J. J. & Agranat, I. (2001). Eur. J. Org. Chem. pp. 15-34.]). From the point of view of such structural properties, the authors have been investigating peri-substituted naphthalene and 1,2-di­substituted acenaphthene compounds, focusing on the mol­ecular structure and packing of the above compounds and their analogues and homologues along with the reaction behaviour, including the formation reaction and the design of novel categories of highly performing and functional organic and polymer materials (Okamoto & Yonezawa, 2015[Okamoto, A. & Yonezawa, N. (2015). J. Syn. Org. Chem. Jpn. 73, 339-360.]).

The authors have found that peri-aroyl­naphthalene compounds are selectively yielded via electrophilic aromatic diaroylation of a naphthalene derivative in the presence of a suitable acidic mediator (Okamoto & Yonezawa, 2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]; Okamoto et al., 2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). In peri-aroyl­naphthalene compounds, probably caused by steric hindrance, the aroyl groups tend to be arranged nearly perpendicular relative to the core naphthalene plane. Bearing this in mind, the authors have continued their crystallographic study of homologous and analogous peri-aroyl­naphthalene compounds for elucidation of the correlation between mol­ecular structure, crystal packing and non-covalent bonding inter­actions. As one of the readily performable reactions of peri-aroylnaphthalene compounds, a Zn-mediated reductive coupling to 1,2-diaryl-1,2-acenaphthenediol has been discovered (Mido et al., 2017[Mido, T., Iitsuka, H., Yokoyama, T., Takahara, G., Ogata, K., Yonezawa, N. & Okamoto, A. (2017). Eur. Chem. Bull. 6, 273-280.], 2020[Mido, T., Iitsuka, H., Kobayashi, M., Noguchi, K., Yonezawa, N. & Okamoto, A. (2020). Chem. Lett. 49, 295-298.]). Herein, the crystal structure of 1,2-bis­(4-fluoro­phen­yl)-1-hy­droxy-2,3,8-tri­meth­oxy­acenaphthene (I)[link], a mono­alk­oxy­l­ated derivative of a pinacol-coupling product, is reported and its structural features are discussed through comparison with homologues.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. This compound consists of an acenaphthene ring system core with a hy­droxy group and a 4-fluoro­phenyl group at the 1-position, a meth­oxy group and a 4-fluoro­phenyl group at the 2-position, and two meth­oxy groups at the 3- and 8-positions. In the title compound, the two 4-fluoro­phenyl groups at the 1,2-positions are located on the same side of the acenaphthene ring system plane (i.e. cis), and the 1-hy­droxy and 2-meth­oxy groups are positioned on the other side. Moreover, the hydrogen atom of the hy­droxy group at the 1-position is located in between the two oxygen atoms (O3 and O4) of the hy­droxy and the meth­oxy groups at the 1,2-positions, with the methyl group oriented away. A puckering analysis (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]; Luger & Bülow, 1983[Luger, P. & Bülow, R. (1983). J. Appl. Cryst. 16, 431-432.]) suggests that the five-membered ring of the acenaphthene core has a half-chair conformation. The positions of the ring substituents can be described as bis­ectional for the hy­droxy group at the 1-position, axial for the 4-fluoro­phenyl group at the 1-position, axial for the meth­oxy group at the 2-position, and bis­ectional for the 4-fluoro­phenyl group at the 2-position (Fig. 2[link]). The two benzene rings of the 4-fluoro­phenyl groups are twisted out of the naphthalene plane (C1–C10) of the acenaphthene ring system. The C19–C24 benzene ring at the 1-position is more heavily tilted compared to the C12–C17 benzene ring at the 2-position, as indicated by the dihedral angles of the best planes through the benzene rings and naphthalene ring system, which are 87.02 (7) and 51.86 (8)°, respectively. The dihedral angle between the two benzene rings is 43.47 (9)°. Furthermore, the C12—C11—C18—C19 torsion angle [31.37 (15)°] indicates a large slippage between the two benzene rings. In addition, the five-membered ring C1,C9,C8,C18,C11 and the naphthalene ring system (C1–C10) are not coplanar, the dihedral angle between their best planes being 7.03 (7)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling and intra­molecular O—H⋯O and C—H⋯π contacts (dashed lines). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Top (left) and side view (right) of the title compound showing the intra­molecular O—H⋯O contact (dashed lines).

An intra­molecular classical O—H⋯O hydrogen bond forming a five-membered cyclic arrangement is observed between hy­droxy group O4—H4 and oxygen atom O3 of the meth­oxy group at the 1- and the 2-positions of the acenaphthene ring system (see Table 1[link]). An intra­molecular C—H⋯π inter­action between hydrogen atom H24 of one of the 4-fluoro­phenyl groups and the acenaphthene ring system is also observed (C24—H24⋯Cg9 = 2.90 Å; Cg9 is the centroid of the acenaphthene ring; see also Table 1[link]). The possibility of intra­molecular classical O—H⋯O hydrogen bond formation as part of a five-membered cyclic arrangement in 1,2-acenaphthenediol was proposed several decades ago by infrared spectroscopy (Moriconi et al., 1959[Moriconi, E. J., O'Connor, W. F., Kuhn, L. P., Keneally, E. A. & Wallenberger, F. T. (1959). J. Am. Chem. Soc. 81, 6472-6477.]; Hayward & Csizmadia, 1963[Hayward, L. D. & Csizmadia, I. G. (1963). Tetrahedron, 19, 2111-2121.]). Trotter and Mak have designed and synthesized cis-1,2-acenaphthenediol (Trotter & Mak, 1963[Trotter, J. & Mak, T. C. W. (1963). Acta Cryst. 16, 1032-1037.]). However, in the crystal structure of the pinacol compound, no effective intra­molecular inter­actions were observed. Instead, inter­molecular O—H⋯O inter­actions align the mol­ecules sequentially to form a chain-like structure in the crystal packing and the formation of intermol­ecular O—H⋯O hydrogen bonds took precedence over an intra­molecular classical O—H⋯O hydrogen bond. In contrast, in the title compound, the hy­droxy and meth­oxy groups are presumably forced to form an intra­molecular hydrogen bond, i.e., the spatial arrangement of the two benzene rings – probably restricted by the meth­oxy groups at the 3,8-positions – inhibits the approach of other mol­ecules.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg5, Cg8 and Cg9 are the centroids of the rings (C1–C4,C9,C10), (C19–C24), (C1–C10) and (C1–C11,C18), respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3 0.83 (3) 2.00 (3) 2.5119 (18) 119 (3)
C24—H24⋯Cg9 0.95 2.90 3.4960 (17) 122
C20—H20⋯O4i 0.95 2.49 3.3554 (17) 151
C4—H4A⋯F1ii 0.95 2.44 3.189 (3) 135
C26—H26CCg2iii 0.95 2.70 3.614 (2) 155
C26—H26CCg8iii 0.95 2.85 3.747 (2) 153
C26—H26CCg9iii 0.95 2.91 3.848 (2) 160
C25—H25BCg5iv 0.95 2.81 3.527 (3) 131
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) x, y, z+1; (iii) [-x, -y+1, -z+2]; (iv) x+1, y, z.

3. Supra­molecular features

In the mol­ecular packing, a pair of non-classical C—H⋯O hydrogen bonds between hydrogen H20 of a 4-fluoro­phenyl group (2-positioned) and oxygen O4 of the hy­droxy group at the 1-position of the acenaphthene unit connects two mol­ecules of the title compound, forming a centrosymmetric dimer [C20—H20⋯O4i, 2.49 Å; symmetry code: (i) −x, 1 − y, 1 − z] (Table 1[link], Fig. 3[link]). The dimers are arranged along the c axis through non-classical C—H⋯F hydrogen bonds between hydrogen atom H4A at the 5-position of the acenaphthene unit and fluorine atom F1 of the 4-fluoro­phenyl group at the 2-position of the acenaphthene ring system [C4—H4A⋯F1, 2.44 Å; symmetry code: (ii) x, y, 1 + z] (Table 1, Fig. 4[link][link]). In addition, three non-classical C—H⋯π hydrogen bonds between the meth­oxy group at the 8-position and the acenaphthene unit [C26—H26CCg2iii, 2.70 Å; C26—H26CCg8iii, 2.85Å; C26—H26CCg9iii, 2.91 Å; symmetry code: (iii) −x, −y + 1, −z + 2; Cg2 and Cg8 are the centroids of the rings (C1–C4,C9,C10) and (C1–C10), respectively] (Fig. 4[link]). The dimer chains are linked by non-classical C—H⋯π hydrogen bonds along the a-axis direction [C25—H25BCg5iv, 2.81 Å; symmetry code: (iv) x + 1, y, z; Cg5 is the centroid of ring (C19–C24)] (Fig. 4[link]).

[Figure 3]
Figure 3
A view of the crystal packing of the title compound, showing the centrosymmetric dimers. The non-classical O—H⋯O hydrogen bonds are shown as dashed lines [symmetry code: (i) −x, −y + 1, −z + 1].
[Figure 4]
Figure 4
A view of the crystal packing of the title compound, showing the arrangement of the dimeric mol­ecular units. Non-classical C—H⋯F, C—H⋯O and C—H⋯π hydrogen bonds are shown as blue, black and orange dashed lines, respectively [symmetry codes: (i) −x, −y + 1, −z + 1; (ii) x, y, z + 1; (iii) −x, −y + 1, −z + 2; (iv) x + 1, y, z; centroids are defined in Table 1[link]].

The asymmetric mol­ecular structure, with only one of the hy­droxy groups meth­oxy­lated, disrupts the spatial alignment observed when both hy­droxy groups inter­act with adjacent mol­ecules, forming chain structures (Trotter & Mak, 1963[Trotter, J. & Mak, T. C. W. (1963). Acta Cryst. 16, 1032-1037.]). Instead of the stabilization energy obtained by forming a chain structure, the title mol­ecules afford the centrosymmetric dimer as the packing motif. The intra­molecular classical O—H⋯OMe hydrogen bond is required to adjust the spatial arrangement for forming centrosymmetric dimers. The non-classical hydrogen-bonding inter­actions connecting the dimeric aggregates contribute to further stabilize the mol­ecular packing.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.41, last update August 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 1,2-disubstituted acenaphthene moiety of the title compound yielded 27 hits. These include compounds with a 1,2-acenaphthenediol moiety and a similar 1,2-diaryl-1,2-acenaphthenediol unit. A search for 1,2-acenaphthenediol and its derivatives gave 18 hits (CSD refcode FILQAV: Tao et al., 2018[Tao, X., Daniliuc, C. G., Knitsch, R., Hansen, M. R., Eckert, H., Lübbesmeyer, M., Studer, A., Kehr, G. & Erker, G. (2018). Chem. Sci. 9, 8011-8018.]; FILQEZ: Tao et al., 2018[Tao, X., Daniliuc, C. G., Knitsch, R., Hansen, M. R., Eckert, H., Lübbesmeyer, M., Studer, A., Kehr, G. & Erker, G. (2018). Chem. Sci. 9, 8011-8018.]; GACWUE: Maghsoodlou et al. 2009[Maghsoodlou, M. T., Hazeri, N., Habibi-Khorassani, S. M., Ziyaadini, M., Marandi, G., Khandan-Barani, K., Ebrahimi, P., Charati, F. R., Sobolev, A. & Makha, M. (2009). J. Heterocycl. Chem. 46, 843-848.]; QIBMIX: Parvez et al. 2001[Parvez, M., Simion, D. V. & Sorensen, T. S. (2001). Acta Cryst. E57, o366-o367.]; HERPIG and HERPOM: Sato et al., 2017[Sato, H., Fukaya, K., Poudel, B. S. & Krische, M. J. (2017). Angew. Chem. Int. Ed. 56, 14667-14671.]; REWGEG: Jimenez et al., 2007[Jimenez, R. P., Parvez, M. & Sutherland, T. C. (2007). Acta Cryst. E63, o504-o505.]; ROCBIU: Plater et al., 1997[Plater, M. J., Schmidt, D. M. & Howie, R. A. (1997). J. Chem. Res. 116, 720.]; TESDIE: Nair et al., 2000[Nair, V., Sheela, K. C., Rath, N. P. & Eigendorf, G. K. (2000). Tetrahedron Lett. 41, 6217-6221.]; UYENET, UYENIX and UYENIX01: Joussot et al., 2016[Joussot, J., Schoenfelder, A., Suffert, J. & Blond, G. (2016). Private Communication (refcodes UYENET, UYENIX and UYENIX01). CCDC, Cambridge, England.]; UYENET01: Joussot et al., 2017[Joussot, J., Schoenfelder, A., Suffert, J. & Blond, G. (2017). Comperes Rendius Chimie, 20, 665-681.]; YIMRIY: Myhill et al., 2018[Myhill, J. A., Wilhelmsen, C. A., Zhang, L. & Morken, J. P. (2018). J. Am. Chem. Soc. 140, 15181-15185.]).

The title compound has a cis-configuration. For 1,2-acenaphthenediol and its derivatives, cis- and trans-configurations are found for 1,2-acenaphthenediol and its dinitrates (ACNAOL: Trotter et al., 1963[Trotter, J. & Mak, T. C. W. (1963). Acta Cryst. 16, 1032-1037.]; ZZZPKU and ZZZIWC: Mak et al., 1963[Mak, T. C. W. & Trotter, J. (1963). Acta Cryst. 16, 324.]; ANADON: Mak et al., 1964[Mak, T. C. W. & Trotter, J. (1964). Acta Cryst. 17, 367-373.]).

A search with a 1,2-diaryl-1,2-acenaphthenediol framework gave nine hits. Among these, three reports are for 1,2-diphenyl-1,2-acenaphthenediol and its clathrates (MOKZER, MOKZIV and MOKZOB: Guo et al., 2000[Guo, W.-S., Guo, F., Deng, F., Tong, J., Liu, Q.-T., Zhang, Y.-L., Wu, T.-Q., Cai, Y.-P., Ma, M.-Y., Cao, S.-L., Cheng, G.-R., Zheng, Q.-T. & Lu, Y. (2000). Huaxue Xuebao (Chin.) (Acta Chim. Sinica), 58, 996.]). In addition we found 1,2-bis­(1′-naphth­yl)-1,2-acenaphthenediol (MOKZUH: Guo et al., 2000[Guo, W.-S., Guo, F., Deng, F., Tong, J., Liu, Q.-T., Zhang, Y.-L., Wu, T.-Q., Cai, Y.-P., Ma, M.-Y., Cao, S.-L., Cheng, G.-R., Zheng, Q.-T. & Lu, Y. (2000). Huaxue Xuebao (Chin.) (Acta Chim. Sinica), 58, 996.]), 1,2-bis­(4-tol­yl)-1,2-acenaphthenediol (CIZTIO: Gatilov et al., 1984[Gatilov, Y. V., Nagi, S. M., Rybalova, T. V. & Borodkin, G. I. (1984). Zh. Strukt. Khim. (Russ. J. Struct. Chem.), 25, 142.]) and 1,2-bis­(4-meth­oxy­phen­yl)-1,2-acenaphthenediol (QARGEW and QATQAE: Suzuki et al., 2005[Suzuki, T., Ichioka, K., Higuchi, H., Kawai, H., Fujiwara, K., Ohkita, M., Tsuji, T. & Takahashi, Y. (2005). J. Org. Chem. 70, 5592-5598.]). Most 1,2-diaryl-1,2-acenaphthenediol derivatives have a trans-configuration, except for one example (MOKZUH). In contrast to the title mol­ecule, these 1,2-diaryl-1,2-acenaphthenediol derivatives have a highly symmetric spatial structure, e.g., the two phenyl groups make dihedral angles with the naphthalene ring system of 85.42 and 82.93° for CIZTIO, 57.05 and 56.83° for QARGEW, 64.18 and 66.06° for QATQAE vs 87.02 (7) and 51.86 (8)° for the title compound. The phenyl rings at the 1,2-positions in these analogues are tilted 20 to 30° from each other, i.e., 22.49° for CIZTIO, 25.88° for QARGEW and 28.10° for QATQAE vs 43.47 (9)° for the title compound.

There are only two reports on 1,2-diaryl-1,2-acenaphthene derivatives with both hy­droxy groups protected, i.e., (S,S,S,S)-1,2-bis­(4-meth­oxy­phen­yl)acenaphthene-1,2-diyl bis­(2-iso­prop­yl-5-methyl­cyclo­hex­yl) bis­(carbonate) (QARGIA: Suz­uki et al., 2005[Suzuki, T., Ichioka, K., Higuchi, H., Kawai, H., Fujiwara, K., Ohkita, M., Tsuji, T. & Takahashi, Y. (2005). J. Org. Chem. 70, 5592-5598.]) and 1,2-(benz­yloxy)-1,2-bis­(4-chloro­phen­yl)-3,8-di­meth­oxy­acenaphthene (AZOPEL: Takada et al., 2011[Takada, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2562-o2563.]). The carbonate analogue (QARGIA) is more similar to 1,2-diaryl-1,2-acenaphthenediol than the title compound, with the dihedral angles between the 4-meth­oxy­phenyl rings and the naphthalene ring system being 60.97 and 54.14° and a dihedral angle between the 4-meth­oxy­phenyl rings of 27.17°. The benzyl-protected analogue (AZOPEL) has two similarities with the title compound. First, the spatial arrangement of the 4-phenyl rings with respect to the naphthalene ring system with similar dihedral angles between the 4-chloro­phenyl rings and the naphthalene unit [85.74 (6) and 57.12 (6)° for AZOPEL, 87.02 (7) and 51.86 (8)° for the title compound]. In addition, the formation of centrosymmetric dimers connected by non-classical C—H⋯π hydrogen bonds is observed in the crystal packing.

No reports were found for 1,2-diaryl-1,2-acenaphthene homologues with one hy­droxy group protected.

5. Synthesis and crystallization

1,2-Bis(4-fluoro­phen­yl)-1-hy­droxy-2,3,8-tri­meth­oxy­acenaph­thene (0.25 mmol, 108.6 mg), K2CO3 (0.25 mmol, 34.55 mg), iodo­methane (0.25 mmol, 35.49 mg) and DMF (0.5 mL) were placed in a 10 mL flask. The reaction mixture was stirred at room temperature for 10 h and then poured into iced water (20 mL). The solution was extracted with CHCl3 and successively washed with 2 M aqueous HCl and brine. The organic layers thus obtained were dried over anhydrous MgSO4. After removal of solvent under reduced pressure, the crude product was obtained (quant.). The cake was crystallized from methanol to give single crystals (isolated yield 64%), m.p. 432–434 K.

1H NMR (CDCl3, 300 MHz) δ 3.22 (s, 3H), 3.73 (s, 3H), 3.79 (s, 3H), 5.05 (s, 1H), 6.48 (dd, 4H, J = 8.40, 8.40 Hz), 6.73 (broad, 4H), 7.21 (d, 1H, J = 8.70 Hz), 7.24 (d, 1H, J = 9.00 Hz), 7.82 (d, 1H, J = 9.00 Hz), 7.88 (d, 1H, J = 9.00 Hz) ppm.

13C NMR (CDCl3, 75 MHz) δ 161.92 (JC–F = 243 Hz), 161.54 (JC–F = 243 Hz), 155.03, 154.46, 141.32, 138.85 (JC–F = 2.90 Hz), 133.05 (JC–F = 2.90 Hz), 128.51, 128.21 (JC–F = 7.88 Hz), 127.20, 127.14 (JC–F = 9.30 Hz), 121.93, 119.67, 114.75, 113.79 (JC–F = 20.7 Hz), 113.67 (JC–F = 22.2 Hz), 113.23, 93.365, 90.248, 56.537, 55.677, 53.440 ppm.

IR (KBr) ν 3488, 2838, 1627, 1601, 1506, 1269, 1224, 1159, 1073, 1048 cm−1.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were located in a difference-Fourier map and were subsequently refined as riding on their carriers, with C—H = 0.95 Å (aromatic) and Uiso(H) = 1.2 Ueq(C). Hydrogen atom O4 was refined freely.

Table 2
Experimental details

Crystal data
Chemical formula C27H22F2O4
Mr 448.44
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 193
a, b, c (Å) 10.14886 (18), 11.1827 (2), 11.6411 (2)
α, β, γ (°) 66.724 (1), 77.693 (1), 63.613 (1)
V3) 1086.07 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.86
Crystal size (mm) 0.8 × 0.35 × 0.1
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.542, 0.918
No. of measured, independent and observed [I > 2σ(I)] reflections 40472, 3919, 3743
Rint 0.063
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.115, 1.06
No. of reflections 3919
No. of parameters 306
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.21
Computer programs: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]), SIR2014 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: SIR2014 (Burla et al., 2007); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1,2-Bis(4-fluorophenyl)-1-hydroxy-2,3,8-trimethoxyacenaphthene top
Crystal data top
C27H22F2O4Z = 2
Mr = 448.44F(000) = 468
Triclinic, P1Dx = 1.371 Mg m3
a = 10.14886 (18) ÅCu Kα radiation, λ = 1.54187 Å
b = 11.1827 (2) ÅCell parameters from 15130 reflections
c = 11.6411 (2) Åθ = 4.1–68.2°
α = 66.724 (1)°µ = 0.86 mm1
β = 77.693 (1)°T = 193 K
γ = 63.613 (1)°Plate, colourless
V = 1086.07 (4) Å30.8 × 0.35 × 0.1 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3743 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.063
ω scansθmax = 68.2°, θmin = 4.1°
Absorption correction: numerical
(NUMABS; Higashi, 1999)
h = 1112
Tmin = 0.542, Tmax = 0.918k = 1313
40472 measured reflectionsl = 1314
3919 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0586P)2 + 0.398P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.115(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.32 e Å3
3919 reflectionsΔρmin = 0.21 e Å3
306 parametersExtinction correction: SHELXL2018/3 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0290 (13)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.54395 (13)0.19439 (16)0.30239 (12)0.0761 (4)
F20.10156 (14)0.08720 (11)0.63826 (10)0.0606 (3)
O10.58174 (13)0.24840 (15)0.78038 (13)0.0578 (4)
O20.16964 (13)0.39006 (15)0.92690 (12)0.0557 (3)
O30.21992 (11)0.51843 (10)0.68218 (9)0.0355 (3)
O40.00974 (11)0.48709 (11)0.68032 (9)0.0355 (3)
C10.33402 (16)0.28835 (15)0.83979 (13)0.0348 (3)
C20.47642 (18)0.23756 (17)0.87338 (17)0.0443 (4)
C30.5048 (2)0.18063 (19)1.00327 (19)0.0563 (5)
H30.6035350.1406401.0269870.068*
C40.3953 (2)0.18154 (19)1.09462 (17)0.0547 (5)
H4A0.4187390.1451061.1798680.066*
C50.1206 (2)0.25049 (19)1.14585 (15)0.0533 (5)
H50.1308720.2210411.2331680.064*
C60.0160 (2)0.30589 (19)1.10192 (15)0.0504 (4)
H60.0993210.3179311.1587710.060*
C70.03631 (18)0.34594 (17)0.97319 (14)0.0410 (4)
C80.08404 (16)0.33506 (14)0.89067 (13)0.0325 (3)
C90.22314 (17)0.28432 (15)0.93596 (13)0.0352 (3)
C100.2480 (2)0.23577 (16)1.06408 (14)0.0451 (4)
C110.25998 (15)0.36839 (14)0.71479 (13)0.0298 (3)
C120.33911 (15)0.32035 (15)0.60487 (13)0.0315 (3)
C130.44715 (17)0.18364 (16)0.62201 (15)0.0389 (3)
H130.4737770.1191680.7043390.047*
C140.51608 (18)0.14074 (19)0.52049 (18)0.0483 (4)
H140.5911210.0481810.5320170.058*
C150.47354 (18)0.2349 (2)0.40290 (17)0.0498 (4)
C160.36465 (19)0.3690 (2)0.38148 (15)0.0475 (4)
H160.3351720.4308940.2990570.057*
C170.29898 (16)0.41139 (17)0.48419 (14)0.0382 (3)
H170.2250340.5046440.4715340.046*
C180.09992 (14)0.35988 (14)0.75182 (12)0.0293 (3)
C190.09615 (14)0.23884 (14)0.72425 (12)0.0289 (3)
C200.06485 (16)0.26136 (15)0.60484 (13)0.0343 (3)
H200.0424760.3528590.5424560.041*
C210.06587 (18)0.15193 (17)0.57558 (14)0.0403 (4)
H210.0442050.1675740.4940820.048*
C220.09894 (18)0.02068 (16)0.66732 (15)0.0411 (4)
C230.12865 (18)0.00576 (16)0.78620 (15)0.0428 (4)
H230.1499170.0974290.8480940.051*
C240.12699 (16)0.10486 (15)0.81439 (13)0.0356 (3)
H240.1472740.0883520.8965800.043*
C250.7328 (2)0.1777 (3)0.8115 (3)0.0758 (7)
H25A0.7511220.2220330.8606430.091*
H25B0.7954640.1851820.7344810.091*
H25C0.7553340.0772560.8606690.091*
C260.2991 (2)0.4337 (2)1.00169 (19)0.0586 (5)
H26A0.3043480.3507821.0722450.070*
H26B0.3854040.4784650.9511980.070*
H26C0.2972450.5020431.0334440.070*
C270.33921 (18)0.56172 (17)0.65522 (16)0.0439 (4)
H27A0.3938860.5211620.7309910.053*
H27B0.3005900.6656570.6267040.053*
H27C0.4050550.5280520.5894610.053*
H40.010 (3)0.553 (3)0.677 (2)0.068 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0604 (7)0.1262 (11)0.0743 (8)0.0387 (7)0.0184 (6)0.0758 (8)
F20.0874 (8)0.0489 (6)0.0625 (6)0.0347 (6)0.0005 (6)0.0285 (5)
O10.0283 (6)0.0732 (8)0.0771 (9)0.0168 (6)0.0053 (6)0.0335 (7)
O20.0382 (7)0.0851 (9)0.0588 (7)0.0323 (6)0.0186 (5)0.0413 (7)
O30.0335 (5)0.0294 (5)0.0434 (6)0.0157 (4)0.0060 (4)0.0127 (4)
O40.0296 (5)0.0296 (5)0.0409 (6)0.0073 (4)0.0062 (4)0.0086 (4)
C10.0348 (8)0.0331 (7)0.0382 (8)0.0130 (6)0.0062 (6)0.0124 (6)
C20.0350 (8)0.0431 (8)0.0583 (10)0.0117 (7)0.0108 (7)0.0209 (7)
C30.0528 (11)0.0467 (9)0.0707 (12)0.0089 (8)0.0329 (9)0.0188 (8)
C40.0758 (13)0.0452 (9)0.0445 (9)0.0216 (9)0.0256 (9)0.0084 (7)
C50.0902 (14)0.0503 (10)0.0277 (7)0.0393 (10)0.0033 (8)0.0118 (7)
C60.0710 (12)0.0550 (10)0.0382 (8)0.0397 (9)0.0172 (8)0.0222 (7)
C70.0479 (9)0.0438 (8)0.0409 (8)0.0272 (7)0.0111 (7)0.0203 (7)
C80.0371 (8)0.0320 (7)0.0318 (7)0.0181 (6)0.0022 (6)0.0113 (5)
C90.0440 (8)0.0304 (7)0.0334 (7)0.0175 (6)0.0037 (6)0.0094 (6)
C100.0682 (11)0.0370 (8)0.0346 (8)0.0246 (8)0.0123 (7)0.0075 (6)
C110.0269 (7)0.0278 (6)0.0334 (7)0.0116 (5)0.0005 (5)0.0090 (5)
C120.0256 (7)0.0362 (7)0.0364 (7)0.0160 (6)0.0027 (5)0.0140 (6)
C130.0345 (8)0.0370 (8)0.0478 (8)0.0144 (6)0.0003 (6)0.0178 (6)
C140.0366 (8)0.0517 (9)0.0687 (11)0.0154 (7)0.0028 (8)0.0377 (9)
C150.0387 (9)0.0788 (12)0.0558 (10)0.0300 (9)0.0116 (7)0.0461 (9)
C160.0409 (9)0.0744 (12)0.0370 (8)0.0315 (8)0.0033 (6)0.0216 (8)
C170.0289 (7)0.0464 (8)0.0377 (8)0.0158 (6)0.0018 (6)0.0136 (6)
C180.0257 (7)0.0291 (6)0.0294 (7)0.0103 (5)0.0008 (5)0.0074 (5)
C190.0220 (6)0.0314 (7)0.0315 (7)0.0108 (5)0.0004 (5)0.0096 (5)
C200.0345 (7)0.0357 (7)0.0315 (7)0.0161 (6)0.0003 (5)0.0086 (6)
C210.0445 (9)0.0480 (9)0.0342 (7)0.0222 (7)0.0007 (6)0.0169 (6)
C220.0430 (9)0.0382 (8)0.0495 (9)0.0191 (7)0.0036 (7)0.0222 (7)
C230.0472 (9)0.0303 (7)0.0461 (9)0.0146 (6)0.0064 (7)0.0075 (6)
C240.0361 (8)0.0343 (7)0.0346 (7)0.0137 (6)0.0059 (6)0.0084 (6)
C250.0308 (10)0.0853 (15)0.1151 (19)0.0114 (9)0.0110 (10)0.0478 (14)
C260.0476 (10)0.0519 (10)0.0647 (11)0.0186 (8)0.0220 (9)0.0228 (9)
C270.0444 (9)0.0433 (8)0.0531 (9)0.0272 (7)0.0110 (7)0.0207 (7)
Geometric parameters (Å, º) top
F1—C151.3637 (18)C12—C171.386 (2)
F2—C221.3640 (17)C13—H130.9500
O1—C21.359 (2)C13—C141.383 (2)
O1—C251.428 (2)C14—H140.9500
O2—C71.368 (2)C14—C151.370 (3)
O2—C261.414 (2)C15—C161.372 (3)
O3—C111.4425 (16)C16—H160.9500
O3—C271.4273 (18)C16—C171.387 (2)
O4—C181.4166 (16)C17—H170.9500
O4—H40.84 (2)C18—C191.5269 (18)
C1—C21.378 (2)C19—C201.3917 (19)
C1—C91.411 (2)C19—C241.3872 (19)
C1—C111.5239 (19)C20—H200.9500
C2—C31.427 (3)C20—C211.389 (2)
C3—H30.9500C21—H210.9500
C3—C41.364 (3)C21—C221.372 (2)
C4—H4A0.9500C22—C231.367 (2)
C4—C101.407 (3)C23—H230.9500
C5—H50.9500C23—C241.392 (2)
C5—C61.362 (3)C24—H240.9500
C5—C101.419 (3)C25—H25A0.9800
C6—H60.9500C25—H25B0.9800
C6—C71.417 (2)C25—H25C0.9800
C7—C81.375 (2)C26—H26A0.9800
C8—C91.401 (2)C26—H26B0.9800
C8—C181.5133 (18)C26—H26C0.9800
C9—C101.408 (2)C27—H27A0.9800
C11—C121.5141 (19)C27—H27B0.9800
C11—C181.6248 (18)C27—H27C0.9800
C12—C131.393 (2)
C2—O1—C25119.03 (16)F1—C15—C16118.41 (17)
C7—O2—C26118.84 (14)C14—C15—C16122.98 (15)
C27—O3—C11116.01 (11)C15—C16—H16121.1
C18—O4—H4106.2 (16)C15—C16—C17117.80 (16)
C2—C1—C9118.08 (14)C17—C16—H16121.1
C2—C1—C11133.46 (14)C12—C17—C16121.32 (15)
C9—C1—C11108.01 (12)C12—C17—H17119.3
O1—C2—C1117.94 (15)C16—C17—H17119.3
O1—C2—C3123.50 (15)O4—C18—C8114.24 (11)
C1—C2—C3118.53 (16)O4—C18—C11110.16 (10)
C2—C3—H3118.8O4—C18—C19106.73 (11)
C4—C3—C2122.39 (16)C8—C18—C11101.96 (10)
C4—C3—H3118.8C8—C18—C19112.03 (11)
C3—C4—H4A119.6C19—C18—C11111.78 (10)
C3—C4—C10120.78 (15)C20—C19—C18119.58 (12)
C10—C4—H4A119.6C24—C19—C18121.77 (12)
C6—C5—H5119.3C24—C19—C20118.63 (13)
C6—C5—C10121.46 (15)C19—C20—H20119.5
C10—C5—H5119.3C21—C20—C19120.95 (13)
C5—C6—H6119.3C21—C20—H20119.5
C5—C6—C7121.39 (16)C20—C21—H21120.8
C7—C6—H6119.3C22—C21—C20118.35 (14)
O2—C7—C6123.20 (14)C22—C21—H21120.8
O2—C7—C8117.86 (14)F2—C22—C21118.38 (14)
C8—C7—C6118.89 (16)F2—C22—C23118.95 (14)
C7—C8—C9119.25 (13)C23—C22—C21122.66 (14)
C7—C8—C18131.42 (14)C22—C23—H23120.8
C9—C8—C18109.19 (12)C22—C23—C24118.42 (14)
C8—C9—C1112.86 (12)C24—C23—H23120.8
C8—C9—C10123.07 (15)C19—C24—C23120.98 (14)
C10—C9—C1124.07 (15)C19—C24—H24119.5
C4—C10—C5128.23 (15)C23—C24—H24119.5
C4—C10—C9116.01 (16)O1—C25—H25A109.5
C9—C10—C5115.74 (16)O1—C25—H25B109.5
O3—C11—C1109.27 (11)O1—C25—H25C109.5
O3—C11—C12110.59 (11)H25A—C25—H25B109.5
O3—C11—C18101.39 (10)H25A—C25—H25C109.5
C1—C11—C18102.50 (10)H25B—C25—H25C109.5
C12—C11—C1118.16 (11)O2—C26—H26A109.5
C12—C11—C18113.41 (11)O2—C26—H26B109.5
C13—C12—C11121.58 (13)O2—C26—H26C109.5
C17—C12—C11119.66 (12)H26A—C26—H26B109.5
C17—C12—C13118.69 (14)H26A—C26—H26C109.5
C12—C13—H13119.6H26B—C26—H26C109.5
C14—C13—C12120.74 (15)O3—C27—H27A109.5
C14—C13—H13119.6O3—C27—H27B109.5
C13—C14—H14120.8O3—C27—H27C109.5
C15—C14—C13118.43 (16)H27A—C27—H27B109.5
C15—C14—H14120.8H27A—C27—H27C109.5
F1—C15—C14118.61 (17)H27B—C27—H27C109.5
F1—C15—C16—C17176.86 (14)C9—C1—C11—O387.60 (13)
F2—C22—C23—C24179.41 (14)C9—C1—C11—C12144.84 (12)
O1—C2—C3—C4174.48 (16)C9—C1—C11—C1819.37 (14)
O2—C7—C8—C9177.25 (13)C9—C8—C18—O4137.95 (12)
O2—C7—C8—C181.9 (2)C9—C8—C18—C1119.14 (13)
O3—C11—C12—C13148.52 (13)C9—C8—C18—C19100.53 (13)
O3—C11—C12—C1734.66 (17)C10—C5—C6—C72.6 (3)
O3—C11—C18—O431.44 (13)C11—C1—C2—O15.4 (3)
O3—C11—C18—C890.22 (11)C11—C1—C2—C3172.69 (15)
O3—C11—C18—C19149.93 (10)C11—C1—C9—C88.32 (16)
O4—C18—C19—C2034.99 (16)C11—C1—C9—C10171.21 (13)
O4—C18—C19—C24146.74 (13)C11—C12—C13—C14178.65 (13)
C1—C2—C3—C43.5 (3)C11—C12—C17—C16177.26 (13)
C1—C9—C10—C43.6 (2)C11—C18—C19—C2085.53 (14)
C1—C9—C10—C5175.15 (14)C11—C18—C19—C2492.74 (15)
C1—C11—C12—C1321.59 (19)C12—C11—C18—O487.12 (13)
C1—C11—C12—C17161.59 (13)C12—C11—C18—C8151.21 (11)
C1—C11—C18—O4144.36 (11)C12—C11—C18—C1931.37 (15)
C1—C11—C18—C822.70 (12)C12—C13—C14—C151.3 (2)
C1—C11—C18—C1997.14 (12)C13—C12—C17—C160.3 (2)
C2—C1—C9—C8178.37 (13)C13—C14—C15—F1178.26 (14)
C2—C1—C9—C102.1 (2)C13—C14—C15—C160.8 (3)
C2—C1—C11—O384.26 (19)C14—C15—C16—C172.2 (3)
C2—C1—C11—C1243.3 (2)C15—C16—C17—C121.6 (2)
C2—C1—C11—C18168.77 (16)C17—C12—C13—C141.8 (2)
C2—C3—C4—C101.9 (3)C18—C8—C9—C17.86 (16)
C3—C4—C10—C5177.04 (17)C18—C8—C9—C10172.60 (13)
C3—C4—C10—C91.6 (2)C18—C11—C12—C1398.36 (15)
C5—C6—C7—O2174.01 (15)C18—C11—C12—C1778.45 (15)
C5—C6—C7—C83.3 (2)C18—C19—C20—C21177.64 (13)
C6—C5—C10—C4179.75 (16)C18—C19—C24—C23177.47 (13)
C6—C5—C10—C91.2 (2)C19—C20—C21—C220.2 (2)
C6—C7—C8—C90.3 (2)C20—C19—C24—C230.8 (2)
C6—C7—C8—C18175.57 (14)C20—C21—C22—F2179.28 (13)
C7—C8—C9—C1175.85 (13)C20—C21—C22—C231.0 (2)
C7—C8—C9—C103.7 (2)C21—C22—C23—C240.8 (3)
C7—C8—C18—O446.4 (2)C22—C23—C24—C190.1 (2)
C7—C8—C18—C11165.18 (15)C24—C19—C20—C210.7 (2)
C7—C8—C18—C1975.15 (19)C25—O1—C2—C1170.50 (16)
C8—C9—C10—C4176.89 (14)C25—O1—C2—C311.5 (3)
C8—C9—C10—C54.3 (2)C26—O2—C7—C617.1 (2)
C8—C18—C19—C20160.74 (12)C26—O2—C7—C8165.49 (14)
C8—C18—C19—C2420.99 (18)C27—O3—C11—C166.72 (15)
C9—C1—C2—O1176.62 (13)C27—O3—C11—C1264.99 (15)
C9—C1—C2—C31.5 (2)C27—O3—C11—C18174.44 (11)
Hydrogen-bond geometry (Å, º) top
Cg2, Cg5, Cg8 and Cg9 are the centroids of the rings (C1–C4,C9,C10), (C19–C24), (C1–C10) and (C1–C8,C10,C11,C18), respectively.
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.83 (3)2.00 (3)2.5119 (18)119 (3)
C24—H24···Cg90.952.903.4960 (17)122
C20—H20···O4i0.952.493.3554 (17)151
C4—H4A···F1ii0.952.443.189 (3)135
C26—H26C···Cg2iii0.952.703.614 (2)155
C26—H26C···Cg8iii0.952.853.747 (2)153
C26—H26C···Cg9iii0.952.913.848 (2)160
C25—H25B···Cg5iv0.952.813.527 (3)131
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z+1; (iii) x, y+1, z+2; (iv) x+1, y, z.
 

Acknowledgements

The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for technical advice.

Funding information

This work was supported by JSPS KAKENHI Grant No. JP20K05473.

References

First citationBiedermann, P. U., Stezowski, J. J. & Agranat, I. (2001). Eur. J. Org. Chem. pp. 15–34.  CrossRef Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDowning, G. A., Frampton, C. S., MacNicol, D. D. & Mallinson, P. R. (1994). Angew. Chem. Int. Ed. Engl. 33, 1587–1589.  CSD CrossRef Web of Science Google Scholar
First citationGatilov, Y. V., Nagi, S. M., Rybalova, T. V. & Borodkin, G. I. (1984). Zh. Strukt. Khim. (Russ. J. Struct. Chem.), 25, 142.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuo, W.-S., Guo, F., Deng, F., Tong, J., Liu, Q.-T., Zhang, Y.-L., Wu, T.-Q., Cai, Y.-P., Ma, M.-Y., Cao, S.-L., Cheng, G.-R., Zheng, Q.-T. & Lu, Y. (2000). Huaxue Xuebao (Chin.) (Acta Chim. Sinica), 58, 996.  Google Scholar
First citationHayward, L. D. & Csizmadia, I. G. (1963). Tetrahedron, 19, 2111–2121.  CrossRef CAS Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJimenez, R. P., Parvez, M. & Sutherland, T. C. (2007). Acta Cryst. E63, o504–o505.  CSD CrossRef IUCr Journals Google Scholar
First citationJoussot, J., Schoenfelder, A., Suffert, J. & Blond, G. (2016). Private Communication (refcodes UYENET, UYENIX and UYENIX01). CCDC, Cambridge, England.  Google Scholar
First citationJoussot, J., Schoenfelder, A., Suffert, J. & Blond, G. (2017). Comperes Rendius Chimie, 20, 665-681.  CSD CrossRef CAS Google Scholar
First citationLuger, P. & Bülow, R. (1983). J. Appl. Cryst. 16, 431–432.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMaghsoodlou, M. T., Hazeri, N., Habibi-Khorassani, S. M., Ziyaadini, M., Marandi, G., Khandan-Barani, K., Ebrahimi, P., Charati, F. R., Sobolev, A. & Makha, M. (2009). J. Heterocycl. Chem. 46, 843–848.  CSD CrossRef CAS Google Scholar
First citationMak, T. C. W. & Trotter, J. (1963). Acta Cryst. 16, 324.  CSD CrossRef IUCr Journals Google Scholar
First citationMak, T. C. W. & Trotter, J. (1964). Acta Cryst. 17, 367–373.  CSD CrossRef IUCr Journals Google Scholar
First citationMido, T., Iitsuka, H., Kobayashi, M., Noguchi, K., Yonezawa, N. & Okamoto, A. (2020). Chem. Lett. 49, 295–298.  CrossRef CAS Google Scholar
First citationMido, T., Iitsuka, H., Yokoyama, T., Takahara, G., Ogata, K., Yonezawa, N. & Okamoto, A. (2017). Eur. Chem. Bull. 6, 273–280.  CrossRef CAS Google Scholar
First citationMoriconi, E. J., O'Connor, W. F., Kuhn, L. P., Keneally, E. A. & Wallenberger, F. T. (1959). J. Am. Chem. Soc. 81, 6472–6477.  CrossRef CAS Google Scholar
First citationMyhill, J. A., Wilhelmsen, C. A., Zhang, L. & Morken, J. P. (2018). J. Am. Chem. Soc. 140, 15181–15185.  CSD CrossRef CAS PubMed Google Scholar
First citationNair, V., Sheela, K. C., Rath, N. P. & Eigendorf, G. K. (2000). Tetrahedron Lett. 41, 6217–6221.  CSD CrossRef CAS Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2015). J. Syn. Org. Chem. Jpn. 73, 339–360.  Web of Science CrossRef CAS Google Scholar
First citationParvez, M., Simion, D. V. & Sorensen, T. S. (2001). Acta Cryst. E57, o366–o367.  CSD CrossRef IUCr Journals Google Scholar
First citationPascal, R. A. (2006). Chem. Rev. 106, 4809–4819.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPlater, M. J., Schmidt, D. M. & Howie, R. A. (1997). J. Chem. Res. 116, 720.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSato, H., Fukaya, K., Poudel, B. S. & Krische, M. J. (2017). Angew. Chem. Int. Ed. 56, 14667–14671.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuzuki, T., Ichioka, K., Higuchi, H., Kawai, H., Fujiwara, K., Ohkita, M., Tsuji, T. & Takahashi, Y. (2005). J. Org. Chem. 70, 5592–5598.  CSD CrossRef PubMed CAS Google Scholar
First citationTakada, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2562–o2563.  CSD CrossRef IUCr Journals Google Scholar
First citationTannaci, J. F., Noji, M., McBee, J. & Tilley, T. D. (2007). J. Org. Chem. 72, 5567–5573.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTao, X., Daniliuc, C. G., Knitsch, R., Hansen, M. R., Eckert, H., Lübbesmeyer, M., Studer, A., Kehr, G. & Erker, G. (2018). Chem. Sci. 9, 8011–8018.  CSD CrossRef CAS PubMed Google Scholar
First citationTrotter, J. & Mak, T. C. W. (1963). Acta Cryst. 16, 1032–1037.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds