research communications
R,4aS)-2-methyl-5,8-dioxo-6-phenyl-4a,5,6,7,7a,8-hexahydro-4H-furo[2,3-f]isoindole-4-carboxylate
and Hirshfeld surface analysis of ethyl (4aDepartment of Organic Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russian Federation, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and cDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: bkajaya@yahoo.com
In the title compound, C20H19NO5, the central six-membered ring has a slightly distorted half-chair conformation, with puckering parameters of QT = 0.3387 (11) Å, θ = 49.11 (19)° and φ = 167.3 (2)°. The conformation of the fused pyrrolidine ring is that of an envelope. Molecules are connected by intermolecular C—H⋯O hydrogen bonds, C—H⋯π interactions and π–π stacking interactions [centroid-to-centroid distance = 3.9536 (11) Å, with a slippage of 2.047 Å], forming a three-dimensional network. The most important contributions to the surface contacts are from H⋯H (46.3%), O⋯H/H⋯O (31.5%) and C⋯H/H⋯C (17.3%) interactions, as concluded from a Hirshfeld surface analysis.
Keywords: crystal structure; six-membered ring; pyrrolidine ring; furan ring; Hirshfeld analysis; IMDAV reaction.
CCDC reference: 2053210
1. Chemical context
This work is a continuation of Diels–Alder reaction studies on vinylarene systems, previously carried out for the tandem acylation/[4 + 2] cycloaddition between 3-(aryl)allylamines and maleic et al., 2020). Previously, our group carried out a domino-sequence reaction involving acylation/IMDAV/aromatization steps, which led to the target furo- and thieno[2,3-f]isoindoles (Zubkov et al., 2016; Horak et al., 2015, 2017; Nadirova et al., 2020).
or acryloyl chlorides as an example of an IMDAV (the acronym for Intra Molecular Diels–Alder Vinylarene) reaction. An IMDAV reaction is a useful tool for the one-step synthesis of benzofurans, indoles and benzothiophenes annulated with other carbo- and heterocycles (KrishnaThe present communication is devoted to another IMDAV reaction involving an oxidation step. We report here the first case of a three-component IMDAV/oxidation reaction between 3-(furyl)allylamine (1), ethylfumaroyl chloride (2) and oxygen. Unlike many other reactions, this process does not stop at the furo[2,3-f]isoindole (4) formation but is continued by an oxidation step yielding the 8-oxofuro[2,3-f]isoindole (5) (Fig. 1). The intramolecular [4 + 2] cycloaddition/oxidation sequence occurs under reflux conditions of the reaction mixture in benzene as a solvent and in ambient atmosphere; after standard purification procedures the title compound (5) was isolated in low yield.
Weak intermolecular interactions, e.g. hydrogen, halogen, chalcogen, pnictogen, tetrel and triel bonding, as well as agostic, anagostic, π–π stacking, n–π*, π-cation and π-anion interactions, play an important role in synthesis, catalysis, crystal engineering, or molecular recognition (Afkhami et al., 2017; Asadov et al., 2016; Gurbanov et al., 2017, 2018; Karmakar et al., 2017; Kopylovich et al., 2011a,b; Ma et al., 2017a,b; Maharramov et al., 2018; Mahmoudi et al., 2017, 2019; Mahmudov et al., 2010, 2020; Mizar et al., 2012; Sutradhar et al., 2015). Herein, we highlight the role of weak interactions in the structural features of 5.
2. Structural commentary
In the molecule of the title compound 5 (Fig. 2), the central six-membered ring (C1/C4–C6/C9–C10) has a slightly distorted half-chair conformation, with puckering parameters (Cremer & Pople, 1975) of QT = 0.3387 (11) Å, θ = 49.11 (19)° and φ = 167.3 (2)°. The fused pyrrolidine ring (N1/C6–C9) adopts an with the C9 atom as the flap [the puckering parameters are Q(2) = 0.3634 (11) Å and φ(2) = 289.63 (17)°], while the fused furan ring (O1/C1–C4) is essentially planar [r.m.s. deviation = 0.001 Å]. All bond lengths and angles in the title compound (5) are comparable to the closely related compound (3aR,4R,4aS,9aR)-4-hydroxyperhydrofuro(2,3-f)indolizin-7(2H)-one (CSD refcode SIBJET; Švorc et al., 2007).
3. Supramolecular features
In the 5, molecules are linked by two kinds of C—H⋯π interactions (Table 1). The first one is between an aromatic H atom (H14) of the phenyl group (C11–C16) and the centroid of the O1/C1–C4 furan ring (Cg1) of an adjacent molecule, and the second one is between the methine H atom (H6) of the fused pyrrolidine ring (N1/C6–C9) and the centroid of the C11–C16 phenyl ring (Cg4) of another adjacent molecule (Fig. 3).
ofIn addition, there is a π–π stacking interaction [Cg4⋯Cg4i = 3.9536 (11) Å; symmetry code: (i) 2 − x, 1 − y, 1 − z], with a rather large slippage of 2.047 Å (Fig. 3).
The final three-dimensional network structure is completed by C—H⋯O hydrogen bonding (Fig. 4) between a phenyl H atom and the furan O atom (C14—H14⋯O1i), between a methyl H atom and the carbonyl O atom (C17—H17A⋯O4ii and C17—H17B⋯O2iii), and between a methyl H atom and a methylene H atom and the furan O atom (C17—H17C⋯O1iv and C19—H19B⋯O1v). Numerical details of the hydrogen-bonding interactions as well as symmetry codes are given in Table 1.
4. Hirshfeld surface analysis
Hirshfeld surfaces and their associated two-dimensional fingerprint plots (McKinnon et al., 2007) were used to quantify the various intermolecular interactions, and were generated using CrystalExplorer17 (Turner et al., 2017). The shorter and longer contacts are indicated as red and blue spots on the Hirshfeld surfaces, and contacts with distances equal to the sum of the van der Waals radii are represented as white spots. Hirshfeld surfaces of the title compound 5 mapped over the normalized distance, dnorm, using a standard surface resolution with a fixed colour scale of −0.2980 (red) to 1.4527 a.u. (blue) are illustrated in Fig. 5a. The shape-index of the Hirshfeld surface is a tool for visualizing the π–π stacking by the presence of adjacent red and blue triangles. The plot of the Hirshfeld surface mapped over shape-index shown in Fig. 5b clearly suggests that π–π interactions in (5) are significant.
Various intermolecular contacts are collated in Table 2. Associated two-dimensional fingerprint plots together with their percentage contributions are shown in Fig. 6. The crystal packing is dominated by H⋯H contacts, representing van der Waals interactions (46.3% contribution to the overall surface), followed by O⋯H/H⋯O and C⋯H/H⋯C interactions, which contribute 31.5% and 17.3%, respectively. All other contacts have a minor contribution to the crystal packing.
|
5. Database survey
A search of the Cambridge Crystallographic Database (CSD version 5.40, update of September 2019; Groom et al., 2016) yielded five entries closely related to 5, viz. 2,4,6-triphenyl-7a,8-dihydro-4H-furo[2,3-f]isoindole-5,7(4aH,6H)-dione (CSD refcode JOGYIP; Zhou et al., 2014), (4R*,4aR*,7aS*)-5-oxo-6-phenyl-4a,5,6,7,7a,8-hexahydro-4H-furo[2,3-f]isoindole-4-carboxylic acid (LESXIS; Horak et al., 2013), 6-benzyl-2,4,4a-trimethyl-5-oxo-4a,5,6,7,7a,8-hexahydro-4H-furo[2,3-f]isoindole-4-carboxylic acid (QAFSUO; Zubkov et al., 2016), 6-benzyl-4-methyl-5-oxo-4a,5,6,7,7a,8-hexahydro-4H-furo[2,3-f]isoindole-4-carboxylic acid (QAFTAV; Zubkov et al., 2016) and 6-allyl-5-oxo-4a,5,6,7,7a,8-hexahydro-4H-furo[2,3-f]isoindole-4-carboxylic acid (QUKPAP; Horak et al., 2015).
In the P), the packing is stabilized by C—H⋯O intermolecular contacts, C—H⋯π interactions and π–π stacking interactions, forming a three-dimensional network.
of JOGYIP (space groupIn the Pbca), the contains two molecules with similar bond lengths and angles. In both molecules, the conformation of the cyclohexene ring is that of a half-chair, while the pyrrolidinone ring adopts an with the γ-carbon atom of the α-pyrrolidinone ring as the flap. In the crystal, O—H⋯O hydrogen bonds between the carboxylic and carbonyl groups link alternate independent molecules into chains propagating parallel to the b-axis direction. The crystal packing also features weak C—H⋯π interactions.
of LESXIS (In the crystal structures of QAFSUO (P21/c) and QAFTAV (P21/n), the three-dimensional packings are stabilized by O—H⋯O intermolecular bonds, C—H⋯O intermolecular contacts and C—H⋯π interactions.
The P21/c) comprises two similar molecules, A and B, of the same The only considerable difference concerns the conformation of the allyl group. The five-membered isoindole rings adopt envelope conformations, whereas the six-membered rings are half-chair-puckered. The carboxyl hydrogen atoms are involved in strong hydrogen-bond formation with the carbonyl atoms of neighboring molecules, giving rise to (A⋯B⋯)n chains.
of QUKPAP (In the five structures, the different groups bonded to the central twelve-membered ring systems account for the distinct intermolecular interactions in the crystals.
6. Synthesis and crystallization
Ethyl 2-methyl-5,8-dioxo-6-phenyl-4a,5,6,7,7a,8-hexahydro-4H-furo[2,3-f]isoindole-4-carboxylate (5) was synthesized according to a previously reported method (Zubkov et al., 2016; Nadirova et al., 2020): A solution of ethyl fumaroyl chloride (2; 3.6 g, 22.5 mmol) in benzene (25 ml) was added dropwise to a mixture of N-[(2E)-3-(5-methylfuran-2-yl)prop-2-en-1-yl]aniline (1; 3.2 g, 15.0 mmol) with triethylamine (4.2 ml, 30 mmol) in benzene (25 ml). The mixture was heated under reflux for 6 h. The mixture was then cooled to r.t. and poured into water (200 ml). The organic layer was separated, the aqueous layer was extracted with AcOEt (3 × 50 ml). The organic layers were combined and dried over anhydrous MgSO4. The extract was evaporated under reduced pressure, and the residue was crystallized at 279 K within a few days. The resulting light-beige crystals were filtered off and washed with diethyl ether (3 × 10 ml). Yield 1.4 g (26%). M.p. = 437–439 K. IR (KBr), ν (cm−1): 1736, 1704, 1665. 1H NMR (CDCl3, 600.2 MHz, 301 K): δ = 7.55 (dd, 2H, HAr, J = 7.6, J = 2.0), 7.34 (td, 2H, HAr, J = 7.6, J = 2.0), 7.14 (td, 1H, HAr, J = 7.6, J = 2.0), 6.32 (s, 1H, H3), 4.56 (s, 1H, H4), 4.43 (dd, 1H, H-7a, J = 8.5, J = 2.0), 4.27–4.17 (m, 2H, OCH2), 4.05 (ddd, 1H, H-7B, J = 2.0, J = 6.5), 3.76 (dd, 1H, H-4a, J = 1.7, J = 8.5), 3.51 (td, 1H, H-7A, J = 2.0, J = 6.5), 2.39 (d, 3H, CH3, J = 1.5), 1.30 (td, 3H, CH2CH3, J = 2.2, J = 7.2). 13C NMR (CDCl3, 150.9 MHz, 301 K): δ = 181.4, 170.9, 170.5 (CO, CO2, NCO), 160.9, 145.3, 138.7, 136.9, 128.8 (2C), 124.9, 119.8 (2C), 109.8, 62.0, 49.4, 45.4, 41.8, 38.7, 14.1 (CH3), 14.0 (CH3). MS (APCI): m/z = 354 [M + H]+.
7. Refinement
Crystal data, data collection and structure . H atoms bound to C atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.95–1.00 Å and Uiso(H) = 1.2 or 1.5Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2053210
https://doi.org/10.1107/S2056989020016801/wm5592sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989020016801/wm5592Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989020016801/wm5592Isup3.cml
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C20H19NO5 | Z = 2 |
Mr = 353.36 | F(000) = 372 |
Triclinic, P1 | Dx = 1.338 Mg m−3 |
a = 8.8100 (18) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.9182 (16) Å | Cell parameters from 9941 reflections |
c = 11.165 (2) Å | θ = 2.6–30.6° |
α = 81.205 (7)° | µ = 0.10 mm−1 |
β = 70.657 (6)° | T = 120 K |
γ = 72.642 (4)° | Prism, light beige |
V = 877.0 (3) Å3 | 0.2 × 0.2 × 0.2 mm |
Bruker APEXII CCD diffractometer | 5332 independent reflections |
Radiation source: sealed tube | 4669 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
ω and φ scans | θmax = 30.6°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −12→12 |
Tmin = 0.659, Tmax = 0.746 | k = −14→14 |
19857 measured reflections | l = −15→15 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.125 | w = 1/[σ2(Fo2) + (0.0747P)2 + 0.2272P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
5332 reflections | Δρmax = 0.53 e Å−3 |
237 parameters | Δρmin = −0.18 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.49262 (11) | 0.82060 (9) | 0.82393 (8) | 0.01800 (17) | |
C2 | 0.52219 (12) | 0.77526 (10) | 1.01557 (9) | 0.01914 (18) | |
C3 | 0.41740 (12) | 0.69939 (10) | 1.01089 (9) | 0.02056 (18) | |
H3 | 0.367401 | 0.639266 | 1.077116 | 0.025* | |
C4 | 0.39835 (11) | 0.72876 (9) | 0.88651 (9) | 0.01857 (17) | |
C5 | 0.29588 (12) | 0.68264 (10) | 0.82451 (9) | 0.02036 (18) | |
H5 | 0.297539 | 0.581687 | 0.852768 | 0.024* | |
C6 | 0.37337 (12) | 0.69298 (10) | 0.67917 (9) | 0.01928 (17) | |
H6 | 0.289113 | 0.686876 | 0.639739 | 0.023* | |
C7 | 0.52879 (12) | 0.57073 (10) | 0.63456 (9) | 0.02000 (18) | |
C8 | 0.56409 (13) | 0.76769 (10) | 0.49121 (9) | 0.02031 (18) | |
H8A | 0.508910 | 0.774189 | 0.425593 | 0.024* | |
H8B | 0.650611 | 0.820227 | 0.458834 | 0.024* | |
C9 | 0.43715 (12) | 0.82351 (9) | 0.61653 (9) | 0.01886 (17) | |
H9 | 0.343898 | 0.902634 | 0.599506 | 0.023* | |
C10 | 0.52459 (12) | 0.87442 (9) | 0.69242 (9) | 0.01830 (17) | |
C11 | 0.78337 (12) | 0.53580 (10) | 0.44672 (9) | 0.01931 (18) | |
C12 | 0.84407 (13) | 0.58679 (11) | 0.32111 (10) | 0.0241 (2) | |
H12 | 0.786842 | 0.676487 | 0.292163 | 0.029* | |
C13 | 0.98773 (14) | 0.50692 (13) | 0.23836 (11) | 0.0308 (2) | |
H13 | 1.028278 | 0.541994 | 0.153099 | 0.037* | |
C14 | 1.07198 (14) | 0.37572 (13) | 0.28046 (12) | 0.0321 (2) | |
H14 | 1.169324 | 0.320347 | 0.223866 | 0.039* | |
C15 | 1.01305 (14) | 0.32603 (11) | 0.40575 (11) | 0.0283 (2) | |
H15 | 1.071538 | 0.236753 | 0.434436 | 0.034* | |
C16 | 0.87003 (13) | 0.40465 (10) | 0.48986 (10) | 0.02336 (19) | |
H16 | 0.831446 | 0.369962 | 0.575521 | 0.028* | |
C17 | 0.59178 (14) | 0.78967 (11) | 1.11582 (10) | 0.0247 (2) | |
H17A | 0.711689 | 0.780661 | 1.078853 | 0.037* | |
H17B | 0.573698 | 0.715273 | 1.183471 | 0.037* | |
H17C | 0.535888 | 0.882592 | 1.151301 | 0.037* | |
C18 | 0.11631 (12) | 0.77419 (11) | 0.87182 (10) | 0.02347 (19) | |
C19 | −0.08020 (14) | 0.98413 (12) | 0.82766 (12) | 0.0312 (2) | |
H19A | −0.098723 | 1.029690 | 0.906094 | 0.037* | |
H19B | −0.166938 | 0.933475 | 0.843495 | 0.037* | |
C20 | −0.08800 (16) | 1.09358 (14) | 0.71871 (14) | 0.0416 (3) | |
H20A | −0.064035 | 1.046628 | 0.640874 | 0.062* | |
H20B | −0.005259 | 1.146023 | 0.706811 | 0.062* | |
H20C | −0.199768 | 1.159291 | 0.737594 | 0.062* | |
N1 | 0.63587 (10) | 0.61915 (8) | 0.52807 (8) | 0.01870 (16) | |
O1 | 0.56926 (8) | 0.85082 (7) | 0.90205 (6) | 0.01874 (14) | |
O2 | 0.55020 (10) | 0.45051 (8) | 0.68426 (8) | 0.02855 (17) | |
O3 | 0.61486 (10) | 0.95404 (8) | 0.64330 (7) | 0.02436 (16) | |
O4 | 0.01858 (11) | 0.75061 (11) | 0.97188 (8) | 0.0372 (2) | |
O5 | 0.08563 (9) | 0.88584 (8) | 0.79139 (8) | 0.02685 (17) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0213 (4) | 0.0180 (4) | 0.0169 (4) | −0.0062 (3) | −0.0084 (3) | 0.0004 (3) |
C2 | 0.0218 (4) | 0.0193 (4) | 0.0156 (4) | −0.0045 (3) | −0.0065 (3) | 0.0010 (3) |
C3 | 0.0240 (4) | 0.0211 (4) | 0.0172 (4) | −0.0079 (3) | −0.0070 (3) | 0.0024 (3) |
C4 | 0.0204 (4) | 0.0182 (4) | 0.0183 (4) | −0.0059 (3) | −0.0071 (3) | −0.0001 (3) |
C5 | 0.0216 (4) | 0.0207 (4) | 0.0210 (4) | −0.0082 (3) | −0.0077 (3) | 0.0001 (3) |
C6 | 0.0212 (4) | 0.0191 (4) | 0.0201 (4) | −0.0062 (3) | −0.0088 (3) | −0.0009 (3) |
C7 | 0.0228 (4) | 0.0182 (4) | 0.0220 (4) | −0.0068 (3) | −0.0095 (3) | −0.0008 (3) |
C8 | 0.0277 (4) | 0.0163 (4) | 0.0171 (4) | −0.0030 (3) | −0.0101 (3) | 0.0005 (3) |
C9 | 0.0232 (4) | 0.0170 (4) | 0.0176 (4) | −0.0040 (3) | −0.0093 (3) | 0.0000 (3) |
C10 | 0.0229 (4) | 0.0151 (4) | 0.0170 (4) | −0.0041 (3) | −0.0075 (3) | 0.0000 (3) |
C11 | 0.0215 (4) | 0.0192 (4) | 0.0208 (4) | −0.0050 (3) | −0.0105 (3) | −0.0031 (3) |
C12 | 0.0258 (5) | 0.0264 (5) | 0.0212 (4) | −0.0049 (4) | −0.0105 (4) | −0.0015 (3) |
C13 | 0.0279 (5) | 0.0398 (6) | 0.0237 (5) | −0.0050 (4) | −0.0082 (4) | −0.0059 (4) |
C14 | 0.0254 (5) | 0.0362 (6) | 0.0333 (6) | −0.0004 (4) | −0.0091 (4) | −0.0128 (5) |
C15 | 0.0256 (5) | 0.0238 (5) | 0.0377 (6) | −0.0007 (4) | −0.0156 (4) | −0.0073 (4) |
C16 | 0.0258 (5) | 0.0203 (4) | 0.0273 (5) | −0.0041 (3) | −0.0140 (4) | −0.0019 (3) |
C17 | 0.0318 (5) | 0.0269 (5) | 0.0200 (4) | −0.0102 (4) | −0.0133 (4) | 0.0021 (3) |
C18 | 0.0220 (4) | 0.0282 (5) | 0.0236 (4) | −0.0104 (4) | −0.0081 (3) | −0.0012 (4) |
C19 | 0.0214 (5) | 0.0308 (5) | 0.0354 (6) | −0.0035 (4) | −0.0043 (4) | −0.0008 (4) |
C20 | 0.0310 (6) | 0.0337 (6) | 0.0474 (7) | −0.0021 (5) | −0.0057 (5) | 0.0073 (5) |
N1 | 0.0232 (4) | 0.0154 (3) | 0.0183 (3) | −0.0037 (3) | −0.0092 (3) | 0.0003 (3) |
O1 | 0.0228 (3) | 0.0200 (3) | 0.0160 (3) | −0.0080 (2) | −0.0081 (2) | 0.0012 (2) |
O2 | 0.0321 (4) | 0.0176 (3) | 0.0336 (4) | −0.0080 (3) | −0.0081 (3) | 0.0041 (3) |
O3 | 0.0334 (4) | 0.0215 (3) | 0.0213 (3) | −0.0130 (3) | −0.0090 (3) | 0.0028 (3) |
O4 | 0.0260 (4) | 0.0512 (5) | 0.0276 (4) | −0.0097 (4) | −0.0042 (3) | 0.0070 (4) |
O5 | 0.0211 (3) | 0.0244 (4) | 0.0303 (4) | −0.0051 (3) | −0.0040 (3) | 0.0017 (3) |
C1—C4 | 1.3712 (12) | C11—C12 | 1.3987 (14) |
C1—O1 | 1.3775 (11) | C11—C16 | 1.4023 (13) |
C1—C10 | 1.4478 (12) | C11—N1 | 1.4156 (12) |
C2—C3 | 1.3712 (13) | C12—C13 | 1.3906 (15) |
C2—O1 | 1.3736 (11) | C12—H12 | 0.9500 |
C2—C17 | 1.4849 (13) | C13—C14 | 1.3904 (17) |
C3—C4 | 1.4294 (13) | C13—H13 | 0.9500 |
C3—H3 | 0.9500 | C14—C15 | 1.3893 (18) |
C4—C5 | 1.5035 (13) | C14—H14 | 0.9500 |
C5—C18 | 1.5305 (14) | C15—C16 | 1.3897 (15) |
C5—C6 | 1.5385 (14) | C15—H15 | 0.9500 |
C5—H5 | 1.0000 | C16—H16 | 0.9500 |
C6—C7 | 1.5282 (14) | C17—H17A | 0.9800 |
C6—C9 | 1.5420 (13) | C17—H17B | 0.9800 |
C6—H6 | 1.0000 | C17—H17C | 0.9800 |
C7—O2 | 1.2239 (12) | C18—O4 | 1.2031 (13) |
C7—N1 | 1.3737 (12) | C18—O5 | 1.3356 (13) |
C8—N1 | 1.4734 (12) | C19—O5 | 1.4587 (13) |
C8—C9 | 1.5316 (13) | C19—C20 | 1.5066 (18) |
C8—H8A | 0.9900 | C19—H19A | 0.9900 |
C8—H8B | 0.9900 | C19—H19B | 0.9900 |
C9—C10 | 1.5369 (13) | C20—H20A | 0.9800 |
C9—H9 | 1.0000 | C20—H20B | 0.9800 |
C10—O3 | 1.2289 (12) | C20—H20C | 0.9800 |
C4—C1—O1 | 110.30 (8) | C12—C11—N1 | 118.92 (8) |
C4—C1—C10 | 128.08 (8) | C16—C11—N1 | 121.42 (9) |
O1—C1—C10 | 121.47 (8) | C13—C12—C11 | 120.37 (10) |
C3—C2—O1 | 110.50 (8) | C13—C12—H12 | 119.8 |
C3—C2—C17 | 133.13 (9) | C11—C12—H12 | 119.8 |
O1—C2—C17 | 116.36 (8) | C14—C13—C12 | 119.97 (11) |
C2—C3—C4 | 106.32 (8) | C14—C13—H13 | 120.0 |
C2—C3—H3 | 126.8 | C12—C13—H13 | 120.0 |
C4—C3—H3 | 126.8 | C15—C14—C13 | 119.64 (10) |
C1—C4—C3 | 106.46 (8) | C15—C14—H14 | 120.2 |
C1—C4—C5 | 121.28 (8) | C13—C14—H14 | 120.2 |
C3—C4—C5 | 132.22 (8) | C14—C15—C16 | 121.15 (10) |
C4—C5—C18 | 107.45 (8) | C14—C15—H15 | 119.4 |
C4—C5—C6 | 109.46 (8) | C16—C15—H15 | 119.4 |
C18—C5—C6 | 113.92 (8) | C15—C16—C11 | 119.18 (10) |
C4—C5—H5 | 108.6 | C15—C16—H16 | 120.4 |
C18—C5—H5 | 108.6 | C11—C16—H16 | 120.4 |
C6—C5—H5 | 108.6 | C2—C17—H17A | 109.5 |
C7—C6—C5 | 111.40 (8) | C2—C17—H17B | 109.5 |
C7—C6—C9 | 102.38 (7) | H17A—C17—H17B | 109.5 |
C5—C6—C9 | 118.72 (8) | C2—C17—H17C | 109.5 |
C7—C6—H6 | 107.9 | H17A—C17—H17C | 109.5 |
C5—C6—H6 | 107.9 | H17B—C17—H17C | 109.5 |
C9—C6—H6 | 107.9 | O4—C18—O5 | 124.84 (10) |
O2—C7—N1 | 126.77 (9) | O4—C18—C5 | 123.54 (10) |
O2—C7—C6 | 125.30 (9) | O5—C18—C5 | 111.55 (8) |
N1—C7—C6 | 107.91 (8) | O5—C19—C20 | 106.88 (9) |
N1—C8—C9 | 102.56 (7) | O5—C19—H19A | 110.3 |
N1—C8—H8A | 111.3 | C20—C19—H19A | 110.3 |
C9—C8—H8A | 111.3 | O5—C19—H19B | 110.3 |
N1—C8—H8B | 111.3 | C20—C19—H19B | 110.3 |
C9—C8—H8B | 111.3 | H19A—C19—H19B | 108.6 |
H8A—C8—H8B | 109.2 | C19—C20—H20A | 109.5 |
C8—C9—C10 | 109.49 (8) | C19—C20—H20B | 109.5 |
C8—C9—C6 | 102.03 (7) | H20A—C20—H20B | 109.5 |
C10—C9—C6 | 114.13 (7) | C19—C20—H20C | 109.5 |
C8—C9—H9 | 110.3 | H20A—C20—H20C | 109.5 |
C10—C9—H9 | 110.3 | H20B—C20—H20C | 109.5 |
C6—C9—H9 | 110.3 | C7—N1—C11 | 126.27 (8) |
O3—C10—C1 | 123.57 (9) | C7—N1—C8 | 111.65 (8) |
O3—C10—C9 | 121.65 (8) | C11—N1—C8 | 121.13 (8) |
C1—C10—C9 | 114.77 (8) | C2—O1—C1 | 106.42 (7) |
C12—C11—C16 | 119.66 (9) | C18—O5—C19 | 116.94 (8) |
Cg1 and Cg4 are the centroids of the furan (O1/C1–C4) and phenyl (C11–C16) rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14···O1i | 0.95 | 2.53 | 3.4766 (16) | 172 |
C17—H17A···O4ii | 0.98 | 2.51 | 3.4913 (18) | 176 |
C17—H17B···O2iii | 0.98 | 2.31 | 3.2441 (15) | 159 |
C17—H17C···O1iv | 0.98 | 2.57 | 3.4232 (14) | 145 |
C19—H19B···O1v | 0.99 | 2.54 | 3.5181 (17) | 168 |
C6—H6···Cg4vi | 1.00 | 2.71 | 3.5892 (14) | 146 |
C14—H14···Cg1i | 0.95 | 2.93 | 3.8320 (16) | 159 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+2; (iv) −x+1, −y+2, −z+2; (v) x−1, y, z; (vi) −x+1, −y+1, −z+1. |
Contact | Distance | Symmetry operation |
H17A···O4 | 2.51 | 1 + x, y, z; |
H14···O1 | 2.53 | 2 - x, 1 - y, 1 - z; |
H17C···O1 | 2.57 | 1 - x, 2 - y, 2 - z; |
H17B···O2 | 2.31 | 1 - x, 1 - y, 2 - z; |
H8A···O3 | 2.69 | 1 - x, 2 - y, 1 - z; |
O4···H13 | 2.67 | -1 + x, y, 1 + z; |
H20C···C3 | 3.09 | -x, 2 - y, 2 - z; |
H6···C16 | 2.72 | 1 - x, 1 - y, 1 - z; |
H17B···H12 | 2.47 | x, y, 1 + z; |
H20C···H16 | 2.56 | -1 + x, 1 + y, z. |
Funding information
The authors are grateful to the Ministry of Education and Science of the Russian Federation [award No. 075–03-2020–223 (FSSF-2020–0017)] for financial support of this research.
References
Afkhami, F. A., Khandar, A. A., Mahmoudi, G., Maniukiewicz, W., Gurbanov, A. V., Zubkov, F. I., Şahin, O., Yesilel, O. Z. & Frontera, A. (2017). CrystEngComm, 19, 1389–1399. Web of Science CSD CrossRef CAS Google Scholar
Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfact. Deterg. 19, 145–153. Web of Science CrossRef CAS Google Scholar
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, M. F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27. CSD CrossRef CAS Google Scholar
Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Zaytsev, V. P., Mertsalov, D. F., Babkina, M. N., Nikitina, E. V., Lis, T., Kinzhybalo, V., Matiychuk, V. S., Zubkov, F. I., Varlamov, A. V. & Obushak, M. D. (2015). Tetrahedron Lett. 56, 4499–4501. Web of Science CSD CrossRef CAS Google Scholar
Horak, Y. I., Lytvyn, R. Z., Laba, Y.-O. V., Homza, Y. V., Zaytsev, V. P., Nadirova, M. A., Nikanorova, T. V., Zubkov, F. I., Varlamov, A. V. & Obushak, M. D. (2017). Tetrahedron Lett. 58, 4103–4106. CSD CrossRef CAS Google Scholar
Horak, Y. I., Lytvyn, R. Z., Zubkov, F. I., Nikitina, E. V., Homza, Y. V., Lis, T., Kinzhybalo, V. & Obushak, M. D. (2013). Acta Cryst. E69, o273–o274. CSD CrossRef IUCr Journals Google Scholar
Karmakar, A., Rúbio, G. M. D. M., Paul, A., Guedes da Silva, M. F. C., Mahmudov, K. T., Guseinov, F. I., Carabineiro, S. A. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 8649–8657. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011a). Inorg. Chim. Acta, 374, 175–180. Web of Science CSD CrossRef CAS Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011b). Chem. Commun. 47, 7248–7250. Web of Science CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Krishna, G., Grudinin, D. G., Nikitina, E. V. & Zubkov, F. I. (2020). Synthesis (submitted). Google Scholar
Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23. Web of Science CSD CrossRef CAS Google Scholar
Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigm. 159, 135–141. CrossRef CAS Google Scholar
Mahmoudi, G., Dey, L., Chowdhury, H., Bauza, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017). Inorg. Chim. Acta, 461, 192–205. CSD CrossRef CAS Google Scholar
Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Mirslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117. CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938. Web of Science CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313. Web of Science CSD CrossRef Google Scholar
Nadirova, M. A., Laba, Y.-O. V., Zaytsev, V. P., Sokolova, J. S., Pokazeev, K. M., Anokhina, V. A., Khrustalev, V. N., Horak, Y. I., Lytvyn, R. Z., Siczek, M., Kinzhybalo, V., Zubavichus, Y. V., Kuznetsov, M. L., Obushak, M. D. & Zubkov, F. I. (2020). Synthesis, 52, 2196–2223. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, M. F. C., Mahmudov, K. T., Liu, C.-M. & Pombeiro, A. J. L. (2015). Eur. J. Inorg. Chem. pp. 3959–3969. CSD CrossRef Google Scholar
Švorc, Ľ., Vrábel, V., Kožíšek, J., Marchalín, Š. & Žúžiová, J. (2007). Acta Cryst. E63, o1452–o1454. Web of Science CSD CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Zhou, L., Zhang, M., Li, W. & Zhang, J. (2014). Angew. Chem. Int. Ed. 53, 6542–6545. CSD CrossRef CAS Google Scholar
Zubkov, F. I., Zaytsev, V. P., Mertsalov, D. F., Nikitina, E. V., Horak, Y. I., Lytvyn, R. Z., Homza, Y. V., Obushak, M. D., Dorovatovskii, P. V., Khrustalev, V. N. & Varlamov, A. V. (2016). Tetrahedron, 72, 2239–2253. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.