research communications
Two coordination compounds of SnCl2 with 4-methylpyridine N-oxide
aInstitute of Chemistry of New Materials, University of Osnabrück, Barbarastr. 7, 49069 Osnabrück, Germany
*Correspondence e-mail: hreuter@uos.de
In the solid-state structures of catena-poly[[dichloridotin(II)]-μ2-(4-methylpyridine N-oxide)-κ2O:O], [SnCl2(C6H7NO)]n, 1, and dichloridobis(4-methylpyridine N-oxide-κO)tin(II), [SnCl2(C6H7NO)2], 2, the bivalent tin atoms reveal a seesaw coordination with both chlorine atoms in equatorial and the molecules in axial positions. While the Sn—Cl distances are almost identical, the Sn—O distances vary significantly as a result of the different bonding modes (μ2 for 1, μ1 for 2) of the 4-methylpyridin-N-oxide molecules, giving rise to a one-dimensional coordination polymer for the 1:1 adduct, 1, and a molecular structure for the 1:2 adduct, 2. The different coordination modes also influence the bonding parameters within the almost planar ligand molecules, mostly expressed in N—O-bond lengthening and endocyclic bond-angle widening at the nitrogen atoms. Additional supramolecular features are found in the of 2 as two adjacent molecules form dimers via additional, weak O⋯Sn interactions.
1. Chemical context
Tin(II) halides, SnHal2, are nominally electron-deficient compounds and therefore strong Lewis acids. Corresponding Lewis acid/Lewis base adducts, however, have been structurally characterized in only small numbers so far. Examples are known with molecules bearing nitrogen [SnCl2·tBuNH2 (Veith et al., 1988)], phosphorus [SnCl2·Ph3P (Lukic et al., 2019); SnHal2·Et3P (Arp et al., 2013)], or sulfur [SnCl2·thiourea (Harrison et al., 1983)] atoms as possible donor atoms, but the most prominent ones are those with oxygen atoms. Triphenylphosphine oxide (TPPO), dimethylsulfoxide (DMSO) and N,N-dimethylformide (DMF) are representative examples for such O-bearing molecules. Typically, the tin(II) dihalides form 1:1 adducts [e.g. SnHal2·DMF with Hal = Cl, Br, I, and SnI2·DMSO (Ozaki et al., 2017)] where the tin(II) atoms in these complexes reach an electron octet by taking up the two donor electrons of the molecule. In the case of 1:2 adducts [e.g. SnF2·2DMSO (Gurnani et al., 2013); SnCl2·2TPPO (Selvaraju et al., 1998); SnCl2·2DMSO (Barbul et al., 2011); SnBr2·2DMSO, SnBr2·2THF, SnBr2·2acetone (Schrenk et al., 2009)] the tin(II) atoms exceed the electron octet as a result of the two additional donor electrons. Both 1:1 and 1:2 compositions of one and the same tin(II) halide with one and the same molecule have been previously reported only for SnI2 with DMSO (Ozaki et al., 2017).
Pyridin-N-oxide, PyNO, and its derivatives such as 4-methylpyridin-N-oxide, MePyNO, are excellent Lewis bases, which act as electron-pair donors via their exocyclic single-bonded oxygen atom in numerous inorganic and organometallic compounds of transition metals [i.e. CdHal2·PyNO with Hal = Cl (Beyeh & Puttreddy, 2015), Hal = I (Sawitzki & von Schnering, 1974), CuCl2·2MePyNO (Johnson & Watson, 1971), Ni(BF4)2·6PyNO (Ingen Schenau et al., 1974), Au(CF3)3·PyNO (Pérez-Bitrián et al., 2017), MoO(O2)2·2MePyNO (Griffith et al., 1994)] as well as of p-block metals [i.e. TlBr3·PyNO (Bermejo et al., 1991); TlBr3·2PyNO (Hiller et al., 1988); TlBrI2·MePyNO (Hiller et al., 1988); SnI4·2PyNO (Wlaźlak et al., 2016), Me2SnCl2·2PyNO (Blom et al., 1969), Ph3SnCl·PyNO (Kumar et al., 2020). With the exception of SbF3·PyNO (Benjamin et al., 2012) and BiI3·PyNO (Wlaźlak et al., 2020), no complexes of low-valent post-transition-metal elements have been crystallographically determined so far.
Here we report the crystal structures of two complexes of MePyNO with tin in viz. SnCl2·MePyNO, 1, and SnCl2·2MePyNO, 2. Both compounds were obtained simultaneously in the same micro-scale experiment from SnCl2 and MePyNO in excess using N,N-dimethylformamide as solvent. As reactions were performed on reaction plates we were able to inspect the progress of the reaction by microscopy, which allowed us to observe the intermediate compound formation as well as to study the crystal growth. No scaling-up experiments were performed but 1 has previously been mentioned in the literature with respect to its elemental analysis, X-ray-powder diffraction and IR data (Kauffman et al., 1977), giving hints of a low symmetric and of three for tin. Mössbauer investigations have been performed by Ichiba et al. (1978).
+II having different compositions,2. Structural commentary
Compound 1 crystallizes in the monoclinic P21/c, and 2 in the orthorhombic Pbcn, each with one formula unit in the and all atoms in general positions. In both compounds, the bivalent tin atoms adopt a seesaw coordination, which results from a μ2-coordination mode of the MePyNO-molecule in 1, giving rise to a one-dimensional coordination polymer along the c axis (Fig. 1) while there are two crystallographically different MePyNO molecules in 2, resulting in a molecular structure (Fig. 2).
Distortion of the pyridine N-oxide ring system as a result of its coordination is established through the C—C [mean values: d(Cortho—Cmeta) = 1.376 (1) Å, d(Cmeta—Cpara) = 1.394 (3) Å] and the N—C bond lengths [mean value: d(N—C) = 1.347 (3) Å], and through the endocyclic bond angles at the different carbon atoms [mean values: Cortho = 120.0 (3)°, Cmeta = 120.8 (2)°, Cpara = 117.1 (2)°] of the almost planar ligand. While these structural parameters are almost identical in both compounds, the N—O bond lengths differ significantly in 1 [1.363 (2) Å] and 2 [1.333 (3)/1.340 (3) Å] as do the endocyclic bond angles [121.9 (1)°, 1; 120.9 (1)°, 2] at the N atom. Both effects result from the different (μ2, μ1) coordination modes of the ligands, which also affect the Sn—O bond lengths that are strongly unsymmetrical [2.280 (1) to 2.733 (2) Å, μ2] in 1, and less unsymmetrical [2.308 (2) to 2.423 (2) Å, μ1] in 2.
Irrespective of the controversial discussion on the hybridization ability of atomic orbitals in the case of the heavier p-block elements (Kutzelnigg, 1984), the formation of four-electron three-center bonds (Rundle, 1963), and on the functionality of the so-called 5s (Dénes et al., 2013) in hypervalent (Musher, 1969) tin(II) compounds, the fourfold coordination sphere around the tin(II) atoms of 1 and 2 can be expressed very well in terms of the VSEPR concept (Gillespie & Hargittai, 1991): its seesaw (ss) coordination results from two equatorially bonded chlorine atoms and two more electronegative and therefore axially located oxygen atoms of the MePyNO.
Differences in Sn—Cl distances are very small [2.4850 (4) and 2.4905 (4) Å, 1; 2.4939 (6) and 2.5068 (6) Å, 2, mean value: 2.494 (9) Å] as are the bond angles [95.73 (1)°, 1; 94.59 (2)°, 2] between them. Somewhat shorter Sn—Cl distances are found in the six crystallographically independent molecules of SnCl2·DMF [d(Sn—Cl)mean = 2.458 (21) Å, 〈(Cl—Sn—Cl) = 92.89 (7)–89.09 (7)°] with a predominant trigonal–pyramidal coordination at tin, while the values in SnCl2·2DMSO [d(Sn—Cl)mean = 2.483 (8) Å, 〈(Cl—Sn—Cl) = 93.86 (7)°] with a symmetrical seesaw coordination are in between.
Axes of the seesaws are bent [161.40 (6)°, 1; 169.66 (6)°, 2] towards the chlorine atoms properly due to electronic repulsion of the axial bonds through the 5s free-electron pairs. The corresponding Sn—O bonds are strongly different in both compounds, but differences are more expressed in 1 [2.280 (1) to 2.733 (1) Å, μ2-O] than in 2 [2.308 (2) to 2.430 (2) Å, μ1-O]. Because of the great [0.453 Å] difference between the two Sn—O bonds in 1, one may suggest a threefold trigonal–pyramidal (tpy) tin(II) coordination instead of a fourfold seesaw (ss) coordination but valence-bond-sum calculations [parameters used: ro(SnII—O) = 1.984 Å, ro(SnII—Cl) = 2.335 Å, b = 0.37; Brese & O'Keefe (1991)] on the tpy coordination result in a bond-valence sum of 1.78 v.u. while the longer Sn—O bond in the ss-coordination contributes 0.13 v.u. to the bond-valence sum (1.91 v.u.). Similar calculations for 2 result in a bond-valence sum of 2.00 v.u., fully consistent with the tin of +II.
3. Supramolecular features
A common feature of many tin(II) compounds is the non-spherical ligand distribution around the divalent tin atom for which the term `hemidirected' has been introduced (Shimoni-Livny et al., 1998). The resulting void in the hemidirected coordination sphere often gives rise to additional more or less weak intermolecular (and intramolecular if appropriate donor atoms are sterically available) interactions with interesting supramolecular features. In case of 1, the formation of a one-dimensional coordination polymer via the μ2-O-atom of the MePyNO molecule can be interpreted in terms of such supramolecular interactions: in this particular case, the hemidirected coordination sphere of a molecular, trigonal–pyramidal SnCl2·MePyNO complex is partially filled through the oxygen atom of a MePyNO molecule of a neighboring building unit. The resulting coordination polymer forms a zigzag chain as all atoms are situated off the crystallographic glide plane at x, 1/4, z (Fig. 3). Between the zigzag chains no further Lewis base/Lewis acid interactions below 3.5 Å are observed, but within the chains a very weak [3.460 (1) Å] attractive interaction is found between Cl2 and Sn1 of two neighboring building units (Fig. 3).
In case of 2 the tin atom of the SnCl2·2MePyNO molecules shows a similar hemidirected coordination sphere. In the solid state, neighboring molecules form dimers via attractive but very weak [3.225 (2) Å] Sn—O interactions. Both molecules of these dimers are related to each other via a crystallographic twofold rotation axis (Fig. 4). Even if the coordination sphere of each tin atom remains unsymmetrical in these dimeric aggregates (Fig. 5), no further intermolecular interactions could be observed below 3.5 Å.
4. Synthesis and crystallization
Both complexes are formed side by side on a reaction plate in the same micro-scale experiment when small amounts (about 100 mg) of SnCl2 (Sigma–Aldrich) and an excess of 4-MePyNO (Alfa Aesar) are overlaid with a few drops of N,N-dimethylformamide (Fluka) as solvent. Compound 1 forms colorless, elongated plates, while 2 crystallizes in the form of small, colorless prisms.
5. Refinement
Crystal data, data collection and structure 1 and 2 are summarized in Table 1. All H atoms were clearly identified in difference-Fourier syntheses but were refined with idealized positions and allowed to ride on their parent carbon atoms with 0.98 Å (–CH3), and 0.95 Å (–CHarom) and with common isotropic temperature factors for all hydrogen atoms of the aromatic rings and methyl groups.
details ofSupporting information
https://doi.org/10.1107/S2056989021000025/wm5593sup1.cif
contains datablocks 1, 2. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989021000025/wm55931sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989021000025/wm55932sup3.hkl
For both structures, data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).[SnCl2(C6H7NO)] | F(000) = 568 |
Mr = 298.72 | Dx = 2.145 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 11.7934 (4) Å | Cell parameters from 9441 reflections |
b = 9.4895 (3) Å | θ = 2.8–28.3° |
c = 8.6170 (3) Å | µ = 3.28 mm−1 |
β = 106.455 (2)° | T = 100 K |
V = 924.86 (5) Å3 | Plate, colourless |
Z = 4 | 0.49 × 0.17 × 0.06 mm |
Bruker APEXII CCD diffractometer | 2132 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.039 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 28.0°, θmin = 3.3° |
Tmin = 0.298, Tmax = 0.817 | h = −15→15 |
86401 measured reflections | k = −12→12 |
2232 independent reflections | l = −11→11 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.013 | H-atom parameters constrained |
wR(F2) = 0.032 | w = 1/[σ2(Fo2) + (0.0134P)2 + 0.6437P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max = 0.003 |
2232 reflections | Δρmax = 0.41 e Å−3 |
103 parameters | Δρmin = −0.49 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sn1 | 0.65817 (2) | 0.77494 (2) | 0.40278 (2) | 0.01249 (4) | |
Cl1 | 0.86766 (3) | 0.70601 (4) | 0.43743 (5) | 0.01738 (8) | |
Cl2 | 0.57006 (3) | 0.57820 (4) | 0.21746 (4) | 0.01829 (8) | |
O1 | 0.65673 (9) | 0.62193 (11) | 0.60614 (13) | 0.0130 (2) | |
N1 | 0.70802 (11) | 0.49228 (13) | 0.61676 (15) | 0.0114 (2) | |
C2 | 0.82254 (13) | 0.47923 (17) | 0.70246 (18) | 0.0142 (3) | |
H2 | 0.8666 | 0.5598 | 0.7501 | 0.021 (2)* | |
C3 | 0.87519 (14) | 0.34877 (17) | 0.72050 (19) | 0.0157 (3) | |
H3 | 0.9558 | 0.3397 | 0.7812 | 0.021 (2)* | |
C4 | 0.81191 (14) | 0.22964 (16) | 0.65083 (19) | 0.0146 (3) | |
C5 | 0.69385 (14) | 0.24895 (17) | 0.5615 (2) | 0.0166 (3) | |
H5 | 0.6482 | 0.1704 | 0.5111 | 0.021 (2)* | |
C6 | 0.64331 (13) | 0.38104 (16) | 0.54603 (18) | 0.0143 (3) | |
H6 | 0.5630 | 0.3934 | 0.4856 | 0.021 (2)* | |
C7 | 0.86871 (15) | 0.08689 (17) | 0.6700 (2) | 0.0215 (3) | |
H71 | 0.9108 | 0.0742 | 0.5880 | 0.051 (4)* | |
H72 | 0.8077 | 0.0141 | 0.6566 | 0.051 (4)* | |
H73 | 0.9247 | 0.0790 | 0.7781 | 0.051 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.01487 (6) | 0.01142 (6) | 0.01145 (6) | 0.00176 (4) | 0.00415 (4) | 0.00048 (4) |
Cl1 | 0.01430 (17) | 0.01858 (18) | 0.01902 (18) | 0.00012 (14) | 0.00435 (14) | 0.00240 (14) |
Cl2 | 0.02132 (18) | 0.01852 (18) | 0.01377 (17) | −0.00592 (15) | 0.00295 (14) | −0.00073 (14) |
O1 | 0.0161 (5) | 0.0100 (5) | 0.0138 (5) | 0.0050 (4) | 0.0055 (4) | 0.0021 (4) |
N1 | 0.0125 (6) | 0.0099 (6) | 0.0120 (6) | 0.0021 (5) | 0.0036 (5) | 0.0018 (5) |
C2 | 0.0134 (7) | 0.0136 (7) | 0.0142 (7) | −0.0013 (6) | 0.0018 (6) | −0.0007 (6) |
C3 | 0.0123 (7) | 0.0157 (7) | 0.0170 (7) | 0.0016 (6) | 0.0008 (6) | 0.0017 (6) |
C4 | 0.0157 (7) | 0.0113 (7) | 0.0163 (7) | 0.0009 (6) | 0.0038 (6) | 0.0012 (6) |
C5 | 0.0145 (7) | 0.0133 (7) | 0.0197 (8) | −0.0025 (6) | 0.0011 (6) | −0.0009 (6) |
C6 | 0.0122 (7) | 0.0146 (7) | 0.0152 (7) | −0.0018 (6) | 0.0023 (6) | 0.0008 (6) |
C7 | 0.0194 (8) | 0.0121 (7) | 0.0300 (9) | 0.0024 (6) | 0.0022 (7) | 0.0006 (7) |
Sn1—O1 | 2.2795 (10) | C3—H3 | 0.9500 |
Sn1—Cl2 | 2.4850 (4) | C4—C5 | 1.399 (2) |
Sn1—Cl1 | 2.4905 (4) | C4—C7 | 1.499 (2) |
O1—N1 | 1.3626 (16) | C5—C6 | 1.378 (2) |
N1—C6 | 1.343 (2) | C5—H5 | 0.9500 |
N1—C2 | 1.3490 (19) | C6—H6 | 0.9500 |
C2—C3 | 1.374 (2) | C7—H71 | 0.9800 |
C2—H2 | 0.9500 | C7—H72 | 0.9800 |
C3—C4 | 1.393 (2) | C7—H73 | 0.9800 |
O1—Sn1—Cl2 | 85.56 (3) | C3—C4—C7 | 121.16 (14) |
O1—Sn1—Cl1 | 87.92 (3) | C5—C4—C7 | 121.53 (14) |
Cl2—Sn1—Cl1 | 95.726 (14) | C6—C5—C4 | 120.54 (15) |
N1—O1—Sn1 | 121.80 (8) | C6—C5—H5 | 119.7 |
C6—N1—C2 | 121.88 (13) | C4—C5—H5 | 119.7 |
C6—N1—O1 | 119.66 (12) | N1—C6—C5 | 119.76 (14) |
C2—N1—O1 | 118.44 (12) | N1—C6—H6 | 120.1 |
N1—C2—C3 | 119.67 (14) | C5—C6—H6 | 120.1 |
N1—C2—H2 | 120.2 | C4—C7—H71 | 109.5 |
C3—C2—H2 | 120.2 | C4—C7—H72 | 109.5 |
C2—C3—C4 | 120.83 (14) | H71—C7—H72 | 109.5 |
C2—C3—H3 | 119.6 | C4—C7—H73 | 109.5 |
C4—C3—H3 | 119.6 | H71—C7—H73 | 109.5 |
C3—C4—C5 | 117.31 (14) | H72—C7—H73 | 109.5 |
[SnCl2(C6H7NO)2] | Dx = 1.807 Mg m−3 |
Mr = 407.84 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbcn | Cell parameters from 9991 reflections |
a = 19.9848 (8) Å | θ = 2.6–27.2° |
b = 10.3723 (3) Å | µ = 2.06 mm−1 |
c = 14.4644 (5) Å | T = 100 K |
V = 2998.30 (18) Å3 | Rod, colourless |
Z = 8 | 0.47 × 0.11 × 0.07 mm |
F(000) = 1600 |
Bruker APEXII CCD diffractometer | 3086 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.090 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 28.0°, θmin = 2.6° |
Tmin = 0.442, Tmax = 0.866 | h = −26→26 |
136234 measured reflections | k = −13→13 |
3626 independent reflections | l = −19→19 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.025 | H-atom parameters constrained |
wR(F2) = 0.064 | w = 1/[σ2(Fo2) + (0.0279P)2 + 2.7839P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.001 |
3626 reflections | Δρmax = 0.81 e Å−3 |
178 parameters | Δρmin = −0.33 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sn1 | 0.55158 (2) | 0.16754 (2) | 0.64760 (2) | 0.02085 (6) | |
Cl1 | 0.55438 (3) | 0.40624 (6) | 0.62730 (4) | 0.02477 (13) | |
Cl2 | 0.66633 (3) | 0.13226 (7) | 0.58237 (5) | 0.03087 (14) | |
O1 | 0.60299 (9) | 0.21147 (17) | 0.79652 (12) | 0.0288 (4) | |
N1 | 0.63657 (10) | 0.31475 (19) | 0.82579 (14) | 0.0218 (4) | |
C12 | 0.62539 (12) | 0.3580 (2) | 0.91192 (17) | 0.0229 (5) | |
H12 | 0.5917 | 0.3191 | 0.9489 | 0.029 (4)* | |
C13 | 0.66263 (11) | 0.4585 (2) | 0.94668 (17) | 0.0231 (5) | |
H13 | 0.6548 | 0.4874 | 1.0081 | 0.029 (4)* | |
C14 | 0.71145 (12) | 0.5186 (2) | 0.89344 (17) | 0.0233 (5) | |
C15 | 0.71995 (11) | 0.4734 (2) | 0.80348 (17) | 0.0242 (5) | |
H15 | 0.7518 | 0.5135 | 0.7641 | 0.029 (4)* | |
C16 | 0.68266 (12) | 0.3714 (2) | 0.77119 (17) | 0.0243 (5) | |
H16 | 0.6894 | 0.3407 | 0.7100 | 0.029 (4)* | |
C17 | 0.75292 (14) | 0.6270 (3) | 0.9311 (2) | 0.0335 (6) | |
H17A | 0.7345 | 0.7095 | 0.9100 | 0.068 (7)* | |
H17B | 0.7991 | 0.6183 | 0.9092 | 0.068 (7)* | |
H17C | 0.7523 | 0.6241 | 0.9989 | 0.068 (7)* | |
O2 | 0.50452 (9) | 0.16530 (16) | 0.50191 (12) | 0.0236 (4) | |
N2 | 0.53989 (9) | 0.18673 (19) | 0.42470 (13) | 0.0193 (4) | |
C22 | 0.57330 (12) | 0.0882 (2) | 0.38493 (17) | 0.0218 (5) | |
H22 | 0.5738 | 0.0058 | 0.4137 | 0.023 (3)* | |
C23 | 0.60658 (11) | 0.1070 (2) | 0.30287 (17) | 0.0236 (5) | |
H23 | 0.6299 | 0.0371 | 0.2753 | 0.023 (3)* | |
C24 | 0.60656 (12) | 0.2270 (2) | 0.25955 (17) | 0.0235 (5) | |
C25 | 0.57304 (13) | 0.3268 (2) | 0.30435 (17) | 0.0230 (5) | |
H25 | 0.5728 | 0.4106 | 0.2778 | 0.023 (3)* | |
C26 | 0.54027 (12) | 0.3055 (2) | 0.38668 (18) | 0.0214 (5) | |
H26 | 0.5179 | 0.3745 | 0.4168 | 0.023 (3)* | |
C27 | 0.64072 (15) | 0.2477 (3) | 0.16818 (19) | 0.0350 (6) | |
H27A | 0.6890 | 0.2567 | 0.1780 | 0.097 (10)* | |
H27B | 0.6233 | 0.3261 | 0.1392 | 0.097 (10)* | |
H27C | 0.6322 | 0.1736 | 0.1278 | 0.097 (10)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.02042 (9) | 0.01901 (10) | 0.02311 (9) | −0.00041 (6) | 0.00035 (6) | 0.00205 (6) |
Cl1 | 0.0277 (3) | 0.0191 (3) | 0.0275 (3) | 0.0016 (2) | 0.0005 (2) | 0.0005 (2) |
Cl2 | 0.0220 (3) | 0.0358 (3) | 0.0348 (3) | 0.0041 (2) | 0.0026 (2) | −0.0067 (3) |
O1 | 0.0351 (10) | 0.0244 (9) | 0.0270 (9) | −0.0098 (8) | −0.0062 (8) | 0.0017 (7) |
N1 | 0.0213 (10) | 0.0195 (10) | 0.0247 (10) | −0.0023 (8) | −0.0028 (8) | 0.0013 (8) |
C12 | 0.0193 (11) | 0.0250 (12) | 0.0243 (12) | 0.0016 (9) | 0.0014 (9) | 0.0039 (9) |
C13 | 0.0218 (11) | 0.0237 (12) | 0.0240 (11) | 0.0028 (9) | 0.0002 (9) | 0.0005 (9) |
C14 | 0.0208 (11) | 0.0191 (12) | 0.0298 (12) | 0.0008 (9) | −0.0008 (10) | 0.0018 (10) |
C15 | 0.0177 (10) | 0.0270 (13) | 0.0280 (12) | −0.0001 (9) | 0.0013 (9) | 0.0066 (10) |
C16 | 0.0213 (11) | 0.0289 (12) | 0.0227 (12) | 0.0016 (10) | 0.0017 (9) | 0.0031 (10) |
C17 | 0.0350 (14) | 0.0257 (13) | 0.0398 (15) | −0.0099 (11) | 0.0013 (12) | −0.0001 (12) |
O2 | 0.0227 (8) | 0.0262 (9) | 0.0218 (8) | −0.0026 (7) | 0.0007 (7) | 0.0017 (7) |
N2 | 0.0184 (9) | 0.0193 (10) | 0.0202 (10) | −0.0010 (7) | −0.0036 (7) | −0.0004 (7) |
C22 | 0.0226 (11) | 0.0149 (11) | 0.0277 (12) | −0.0015 (9) | −0.0062 (9) | −0.0008 (9) |
C23 | 0.0198 (11) | 0.0231 (12) | 0.0278 (12) | 0.0021 (9) | −0.0037 (9) | −0.0066 (10) |
C24 | 0.0189 (11) | 0.0292 (13) | 0.0225 (11) | −0.0031 (10) | −0.0038 (9) | −0.0023 (10) |
C25 | 0.0249 (11) | 0.0177 (11) | 0.0262 (12) | −0.0030 (9) | −0.0031 (10) | 0.0024 (9) |
C26 | 0.0214 (11) | 0.0183 (11) | 0.0246 (11) | 0.0022 (9) | −0.0033 (9) | −0.0007 (9) |
C27 | 0.0352 (14) | 0.0400 (16) | 0.0298 (14) | −0.0019 (13) | 0.0035 (11) | 0.0004 (12) |
Sn1—O2 | 2.3078 (17) | C17—H17B | 0.9800 |
Sn1—O1 | 2.4296 (17) | C17—H17C | 0.9800 |
Sn1—Cl1 | 2.4939 (6) | O2—N2 | 1.340 (3) |
Sn1—Cl2 | 2.5068 (6) | N2—C26 | 1.349 (3) |
O1—N1 | 1.333 (3) | N2—C22 | 1.350 (3) |
N1—C12 | 1.343 (3) | C22—C23 | 1.375 (4) |
N1—C16 | 1.348 (3) | C22—H22 | 0.9500 |
C12—C13 | 1.377 (3) | C23—C24 | 1.393 (4) |
C12—H12 | 0.9500 | C23—H23 | 0.9500 |
C13—C14 | 1.390 (3) | C24—C25 | 1.393 (3) |
C13—H13 | 0.9500 | C24—C27 | 1.503 (4) |
C14—C15 | 1.393 (3) | C25—C26 | 1.377 (4) |
C14—C17 | 1.500 (3) | C25—H25 | 0.9500 |
C15—C16 | 1.376 (3) | C26—H26 | 0.9500 |
C15—H15 | 0.9500 | C27—H27A | 0.9800 |
C16—H16 | 0.9500 | C27—H27B | 0.9800 |
C17—H17A | 0.9800 | C27—H27C | 0.9800 |
O2—Sn1—O1 | 169.66 (6) | C14—C17—H17C | 109.5 |
O2—Sn1—Cl1 | 84.93 (4) | H17A—C17—H17C | 109.5 |
O1—Sn1—Cl1 | 84.76 (4) | H17B—C17—H17C | 109.5 |
O2—Sn1—Cl2 | 91.58 (5) | N2—O2—Sn1 | 122.98 (13) |
O1—Sn1—Cl2 | 88.52 (5) | O2—N2—C26 | 119.6 (2) |
Cl1—Sn1—Cl2 | 94.59 (2) | O2—N2—C22 | 119.37 (19) |
N1—O1—Sn1 | 130.18 (14) | C26—N2—C22 | 121.0 (2) |
O1—N1—C12 | 118.6 (2) | N2—C22—C23 | 120.0 (2) |
O1—N1—C16 | 120.5 (2) | N2—C22—H22 | 120.0 |
C12—N1—C16 | 120.8 (2) | C23—C22—H22 | 120.0 |
N1—C12—C13 | 120.1 (2) | C22—C23—C24 | 121.0 (2) |
N1—C12—H12 | 119.9 | C22—C23—H23 | 119.5 |
C13—C12—H12 | 119.9 | C24—C23—H23 | 119.5 |
C12—C13—C14 | 121.1 (2) | C25—C24—C23 | 117.1 (2) |
C12—C13—H13 | 119.4 | C25—C24—C27 | 121.4 (2) |
C14—C13—H13 | 119.4 | C23—C24—C27 | 121.5 (2) |
C13—C14—C15 | 116.9 (2) | C26—C25—C24 | 120.7 (2) |
C13—C14—C17 | 121.5 (2) | C26—C25—H25 | 119.6 |
C15—C14—C17 | 121.6 (2) | C24—C25—H25 | 119.6 |
C16—C15—C14 | 120.6 (2) | N2—C26—C25 | 120.2 (2) |
C16—C15—H15 | 119.7 | N2—C26—H26 | 119.9 |
C14—C15—H15 | 119.7 | C25—C26—H26 | 119.9 |
N1—C16—C15 | 120.4 (2) | C24—C27—H27A | 109.5 |
N1—C16—H16 | 119.8 | C24—C27—H27B | 109.5 |
C15—C16—H16 | 119.8 | H27A—C27—H27B | 109.5 |
C14—C17—H17A | 109.5 | C24—C27—H27C | 109.5 |
C14—C17—H17B | 109.5 | H27A—C27—H27C | 109.5 |
H17A—C17—H17B | 109.5 | H27B—C27—H27C | 109.5 |
Acknowledgements
We thank the Deutsche Forschungsgemeinschaft and the Government of Lower-Saxony for funding the diffractometer and acknowledge support by Deutsche Forschungsgemeinschaft (DFG) and Open Access Publishing Fund of Osnabrück University.
References
Arp, H., Marschner, C., Baumgartner, J., Zark, P. & Müller, T. (2013). J. Am. Chem. Soc. 135, 7949–7959. Web of Science CSD CrossRef CAS PubMed Google Scholar
Barbul, I., Varga, R. A. & Silvestru, C. (2011). Acta Cryst. E67, m486. Web of Science CSD CrossRef IUCr Journals Google Scholar
Benjamin, S. L., Burt, J., Levason, W., Reid, G. & Webster, M. (2012). J. Fluor. Chem. 135, 108–113. CSD CrossRef CAS Google Scholar
Bermejo, M. R., Castiñeiras, A., Garcia-Vazquez, J. A., Hiller, W. & Strähle, J. (1991). J. Crystallogr. Spectrosc. Res. 21, 93–96. CSD CrossRef CAS Google Scholar
Beyeh, N. K. & Puttreddy, R. (2015). Dalton Trans. 44, 981–9886. CSD CrossRef Google Scholar
Blom, E. A., Penfold, B. R. & Robinson, W. T. (1969). J. Chem. Soc. A, pp. 913–917. CSD CrossRef Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dénes, G., Muntasar, A., Madamba, M. C. & Merazig, H. (2013). Mössbauer Spectroscopy: Applications in Chemistry, Biology, and Nanotechnology, Wiley. Google Scholar
Gillespie, R. J. & Hargittai, I. (1991). The VSEPR Model of Molecular Geometry, Allyn and Bacon, Boston. Google Scholar
Griffith, W. O., Slawin, A. M., Thompson, K. M. & Williams, D. J. (1994). J. Chem. Soc. Chem. Commun. pp. 569–570. CSD CrossRef Google Scholar
Gurnani, C., Hector, A. L., Jager, E., Levason, W., Pugh, D. & Reid, G. (2013). Dalton Trans. 42, 8364–8374. Web of Science CSD CrossRef CAS PubMed Google Scholar
Harrison, P. G., Hylett, B. J. & King, T. J. (1983). Inorg. Chim. Acta, 75, 259–264. CSD CrossRef CAS Google Scholar
Hiller, W., Castiñeiras, A., García-Fernandez, M. E., Bermejo, M. R., Bravo, J. & Sanchez, A. (1988). Z. Naturforsch. Teil B, 43, 132–133. CrossRef CAS Google Scholar
Ichiba, S., Yamada, M. & Negita, H. (1978). Radiochem. Radioanal. Lett. 36, 93–99. CAS Google Scholar
Ingen Schenau, A. D. van, Verschoor, C. G. & Romers, C. (1974). Acta Cryst. B30, 1686–1694. CSD CrossRef IUCr Journals Google Scholar
Johnson, D. R. & Watson, W. H. (1971). Inorg. Chem. 10, 1281–1288. Google Scholar
Kauffman, J. W., Moor, D. H. & Williams, R. J. (1977). J. Inorg. Nucl. Chem. 39, 1165–1167. CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kumar, V., Rodrigue, C. & Bryce, D. L. (2020). Cryst. Growth Des. 20, 2027–2034. CSD CrossRef CAS Google Scholar
Kutzelnigg, W. (1984). Angew. Chem. 96, 262–286. CrossRef CAS Google Scholar
Lukic, D., Naglav, D., Wölper, C. & Schulz, S. (2019). CSD Communication (CCDC1935104). CCDC, Cambridge, England. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Musher, J. L. (1969). Angew. Chem. Int. Ed. 8, 54–68. CrossRef CAS Google Scholar
Ozaki, M., Katsuki, Y., Liu, J., Handa, T., Nishikubo, R., Yakumaru, S., Hashikawa, Y., Murata, Y., Saito, T., Shimakawa, Y., Kanemitsu, Y., Saeki, A. & Wakamiya, A. (2017). ACS Omega, 2, 7016–7021. Web of Science CSD CrossRef CAS PubMed Google Scholar
Pérez-Bitrián, A., Baya, M., Casas, J. M., Falvello, L. R., Martín, A. & Menjón, B. (2017). Chem. Eur. J. 23, 14918–14930. Web of Science PubMed Google Scholar
Rundle, R. E. (1963). J. Am. Chem. Soc. 85, 112–113. CrossRef CAS Web of Science Google Scholar
Sawitzki, G. & von Schnering, H. G. (1974). Chem. Ber. 107, 3266–3274. CSD CrossRef CAS Web of Science Google Scholar
Schrenk, C., Köppe, R., Schellenberg, I., Pöttgen, R. & Schnepf, A. (2009). Z. Anorg. Allg. Chem. 635, 1541–1548. CSD CrossRef CAS Google Scholar
Selvaraju, R., Panchanatheswaran, K. & Parthasarathi, V. (1998). Acta Cryst. C54, 905–906. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shimoni-Livny, L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853–1867. Web of Science CrossRef CAS Google Scholar
Veith, M., Jarczyk, M. & Huch, V. (1988). Chem. Ber. 121, 347–355. CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wlaźlak, E., Macyk, J., Nitek, W. & Szaciłowski, K. (2016). Inorg. Chem. 55, 5935–5945. Web of Science PubMed Google Scholar
Wlaźlak, E., Tłuścik, J. K., Przyczyna, D., Zawal, P. & Szaciłowski, K. (2020). J. Mater. Chem. C, 8, 6136–6148. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.