research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Two coordination compounds of SnCl2 with 4-methyl­pyridine N-oxide

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemistry of New Materials, University of Osnabrück, Barbarastr. 7, 49069 Osnabrück, Germany
*Correspondence e-mail: hreuter@uos.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 8 December 2020; accepted 1 January 2021; online 8 January 2021)

In the solid-state structures of catena-poly[[di­chlorido­tin(II)]-μ2-(4-methyl­pyridine N-oxide)-κ2O:O], [SnCl2(C6H7NO)]n, 1, and di­chlorido­bis­(4-methyl­pyridine N-oxide-κO)tin(II), [SnCl2(C6H7NO)2], 2, the bivalent tin atoms reveal a seesaw coordination with both chlorine atoms in equatorial and the Lewis base mol­ecules in axial positions. While the Sn—Cl distances are almost identical, the Sn—O distances vary significantly as a result of the different bonding modes (μ2 for 1, μ1 for 2) of the 4-methyl­pyridin-N-oxide mol­ecules, giving rise to a one-dimensional coordination polymer for the 1:1 adduct, 1, and a mol­ecular structure for the 1:2 adduct, 2. The different coordination modes also influence the bonding parameters within the almost planar ligand mol­ecules, mostly expressed in N—O-bond lengthening and endocyclic bond-angle widening at the nitro­gen atoms. Additional supra­molecular features are found in the crystal structure of 2 as two adjacent mol­ecules form dimers via additional, weak O⋯Sn inter­actions.

1. Chemical context

Tin(II) halides, SnHal2, are nominally electron-deficient compounds and therefore strong Lewis acids. Corresponding Lewis acid/Lewis base adducts, however, have been structurally characterized in only small numbers so far. Examples are known with Lewis base mol­ecules bearing nitro­gen [SnCl2·tBuNH2 (Veith et al., 1988[Veith, M., Jarczyk, M. & Huch, V. (1988). Chem. Ber. 121, 347-355.])], phospho­rus [SnCl2·Ph3P (Lukic et al., 2019[Lukic, D., Naglav, D., Wölper, C. & Schulz, S. (2019). CSD Communication (CCDC1935104). CCDC, Cambridge, England.]); SnHal2·Et3P (Arp et al., 2013[Arp, H., Marschner, C., Baumgartner, J., Zark, P. & Müller, T. (2013). J. Am. Chem. Soc. 135, 7949-7959.])], or sulfur [SnCl2·thio­urea (Harrison et al., 1983[Harrison, P. G., Hylett, B. J. & King, T. J. (1983). Inorg. Chim. Acta, 75, 259-264.])] atoms as possible donor atoms, but the most prominent ones are those with oxygen atoms. Tri­phenyl­phosphine oxide (TPPO), di­methyl­sulfoxide (DMSO) and N,N-di­methyl­formide (DMF) are representative examples for such O-bearing Lewis base mol­ecules. Typically, the tin(II) dihalides form 1:1 adducts [e.g. SnHal2·DMF with Hal = Cl, Br, I, and SnI2·DMSO (Ozaki et al., 2017[Ozaki, M., Katsuki, Y., Liu, J., Handa, T., Nishikubo, R., Yakumaru, S., Hashikawa, Y., Murata, Y., Saito, T., Shimakawa, Y., Kanemitsu, Y., Saeki, A. & Wakamiya, A. (2017). ACS Omega, 2, 7016-7021.])] where the tin(II) atoms in these complexes reach an electron octet by taking up the two donor electrons of the Lewis base mol­ecule. In the case of 1:2 adducts [e.g. SnF2·2DMSO (Gurnani et al., 2013[Gurnani, C., Hector, A. L., Jager, E., Levason, W., Pugh, D. & Reid, G. (2013). Dalton Trans. 42, 8364-8374.]); SnCl2·2TPPO (Selvaraju et al., 1998[Selvaraju, R., Panchanatheswaran, K. & Parthasarathi, V. (1998). Acta Cryst. C54, 905-906.]); SnCl2·2DMSO (Barbul et al., 2011[Barbul, I., Varga, R. A. & Silvestru, C. (2011). Acta Cryst. E67, m486.]); SnBr2·2DMSO, SnBr2·2THF, SnBr2·2acetone (Schrenk et al., 2009[Schrenk, C., Köppe, R., Schellenberg, I., Pöttgen, R. & Schnepf, A. (2009). Z. Anorg. Allg. Chem. 635, 1541-1548.])] the tin(II) atoms exceed the electron octet as a result of the two additional donor electrons. Both 1:1 and 1:2 compositions of one and the same tin(II) halide with one and the same Lewis base mol­ecule have been previously reported only for SnI2 with DMSO (Ozaki et al., 2017[Ozaki, M., Katsuki, Y., Liu, J., Handa, T., Nishikubo, R., Yakumaru, S., Hashikawa, Y., Murata, Y., Saito, T., Shimakawa, Y., Kanemitsu, Y., Saeki, A. & Wakamiya, A. (2017). ACS Omega, 2, 7016-7021.]).

Pyridin-N-oxide, PyNO, and its derivatives such as 4-methyl­pyridin-N-oxide, MePyNO, are excellent Lewis bases, which act as electron-pair donors via their exocyclic single-bonded oxygen atom in numerous inorganic and organometallic compounds of transition metals [i.e. CdHal2·PyNO with Hal = Cl (Beyeh & Puttreddy, 2015[Beyeh, N. K. & Puttreddy, R. (2015). Dalton Trans. 44, 981-9886.]), Hal = I (Sawitzki & von Schnering, 1974[Sawitzki, G. & von Schnering, H. G. (1974). Chem. Ber. 107, 3266-3274.]), CuCl2·2MePyNO (Johnson & Watson, 1971[Johnson, D. R. & Watson, W. H. (1971). Inorg. Chem. 10, 1281-1288.]), Ni(BF4)2·6PyNO (Ingen Schenau et al., 1974[Ingen Schenau, A. D. van, Verschoor, C. G. & Romers, C. (1974). Acta Cryst. B30, 1686-1694.]), Au(CF3)3·PyNO (Pérez-Bitrián et al., 2017[Pérez-Bitrián, A., Baya, M., Casas, J. M., Falvello, L. R., Martín, A. & Menjón, B. (2017). Chem. Eur. J. 23, 14918-14930.]), MoO(O2)2·2MePyNO (Griffith et al., 1994[Griffith, W. O., Slawin, A. M., Thompson, K. M. & Williams, D. J. (1994). J. Chem. Soc. Chem. Commun. pp. 569-570.])] as well as of p-block metals [i.e. TlBr3·PyNO (Bermejo et al., 1991[Bermejo, M. R., Castiñeiras, A., Garcia-Vazquez, J. A., Hiller, W. & Strähle, J. (1991). J. Crystallogr. Spectrosc. Res. 21, 93-96.]); TlBr3·2PyNO (Hiller et al., 1988[Hiller, W., Castiñeiras, A., García-Fernandez, M. E., Bermejo, M. R., Bravo, J. & Sanchez, A. (1988). Z. Naturforsch. Teil B, 43, 132-133.]); TlBrI2·MePyNO (Hiller et al., 1988[Hiller, W., Castiñeiras, A., García-Fernandez, M. E., Bermejo, M. R., Bravo, J. & Sanchez, A. (1988). Z. Naturforsch. Teil B, 43, 132-133.]); SnI4·2PyNO (Wlaźlak et al., 2016[Wlaźlak, E., Macyk, J., Nitek, W. & Szaciłowski, K. (2016). Inorg. Chem. 55, 5935-5945.]), Me2SnCl2·2PyNO (Blom et al., 1969[Blom, E. A., Penfold, B. R. & Robinson, W. T. (1969). J. Chem. Soc. A, pp. 913-917.]), Ph3SnCl·PyNO (Kumar et al., 2020[Kumar, V., Rodrigue, C. & Bryce, D. L. (2020). Cryst. Growth Des. 20, 2027-2034.]). With the exception of SbF3·PyNO (Benjamin et al., 2012[Benjamin, S. L., Burt, J., Levason, W., Reid, G. & Webster, M. (2012). J. Fluor. Chem. 135, 108-113.]) and BiI3·PyNO (Wlaźlak et al., 2020[Wlaźlak, E., Tłuścik, J. K., Przyczyna, D., Zawal, P. & Szaciłowski, K. (2020). J. Mater. Chem. C, 8, 6136-6148.]), no complexes of low-valent post-transition-metal elements have been crystallographically determined so far.

[Scheme 1]

Here we report the crystal structures of two complexes of MePyNO with tin in oxidation state +II having different compositions, viz. SnCl2·MePyNO, 1, and SnCl2·2MePyNO, 2. Both compounds were obtained simultaneously in the same micro-scale experiment from SnCl2 and MePyNO in excess using N,N-di­methyl­formamide as solvent. As reactions were performed on reaction plates we were able to inspect the progress of the reaction by microscopy, which allowed us to observe the inter­mediate compound formation as well as to study the crystal growth. No scaling-up experiments were performed but 1 has previously been mentioned in the literature with respect to its elemental analysis, X-ray-powder diffraction and IR data (Kauffman et al., 1977[Kauffman, J. W., Moor, D. H. & Williams, R. J. (1977). J. Inorg. Nucl. Chem. 39, 1165-1167.]), giving hints of a low symmetric crystal system and coordination number of three for tin. Mössbauer investigations have been performed by Ichiba et al. (1978[Ichiba, S., Yamada, M. & Negita, H. (1978). Radiochem. Radioanal. Lett. 36, 93-99.]).

2. Structural commentary

Compound 1 crystallizes in the monoclinic space group P21/c, and 2 in the ortho­rhom­bic space group Pbcn, each with one formula unit in the asymmetric unit and all atoms in general positions. In both compounds, the bivalent tin atoms adopt a seesaw coordination, which results from a μ2-coordination mode of the MePyNO-mol­ecule in 1, giving rise to a one-dimensional coordination polymer along the c axis (Fig. 1[link]) while there are two crystallographically different MePyNO mol­ecules in 2, resulting in a mol­ecular structure (Fig. 2[link]).

[Figure 1]
Figure 1
The asymmetric unit of SnCl2·MePyNO, 1, with the atom-numbering scheme; with the exception of the hydrogen atoms (which are shown as spheres with arbitrary radius) all atoms are drawn with displacement ellipsoids at the 40% probability level; longer Sn—O bonds expanding the coordination sphere of the tin(II) atom from three, trigonal–pyramidal, to four, seesaw, are drawn as dashed sticks.
[Figure 2]
Figure 2
The asymmetric unit of SnCl2·2MePyNO, 2, with the atom-numbering scheme; with exception of the hydrogen atoms (which are shown as spheres with arbitrary radius) all atoms are drawn with displacement ellipsoids at the 40% probability level.

Distortion of the pyridine N-oxide ring system as a result of its coordination is established through the C—C [mean values: d(Cortho—Cmeta) = 1.376 (1) Å, d(Cmeta—Cpara) = 1.394 (3) Å] and the N—C bond lengths [mean value: d(N—C) = 1.347 (3) Å], and through the endocyclic bond angles at the different carbon atoms [mean values: Cortho = 120.0 (3)°, Cmeta = 120.8 (2)°, Cpara = 117.1 (2)°] of the almost planar ligand. While these structural parameters are almost identical in both compounds, the N—O bond lengths differ significantly in 1 [1.363 (2) Å] and 2 [1.333 (3)/1.340 (3) Å] as do the endocyclic bond angles [121.9 (1)°, 1; 120.9 (1)°, 2] at the N atom. Both effects result from the different (μ2, μ1) coordination modes of the ligands, which also affect the Sn—O bond lengths that are strongly unsymmetrical [2.280 (1) to 2.733 (2) Å, μ2] in 1, and less unsymmetrical [2.308 (2) to 2.423 (2) Å, μ1] in 2.

Irrespective of the controversial discussion on the hybrid­ization ability of atomic orbitals in the case of the heavier p-block elements (Kutzelnigg, 1984[Kutzelnigg, W. (1984). Angew. Chem. 96, 262-286.]), the formation of four-electron three-center bonds (Rundle, 1963[Rundle, R. E. (1963). J. Am. Chem. Soc. 85, 112-113.]), and on the functionality of the so-called 5s lone electron pair (Dénes et al., 2013[Dénes, G., Muntasar, A., Madamba, M. C. & Merazig, H. (2013). Mössbauer Spectroscopy: Applications in Chemistry, Biology, and Nanotechnology, Wiley.]) in hypervalent (Musher, 1969[Musher, J. L. (1969). Angew. Chem. Int. Ed. 8, 54-68.]) tin(II) compounds, the fourfold coordination sphere around the tin(II) atoms of 1 and 2 can be expressed very well in terms of the VSEPR concept (Gillespie & Hargittai, 1991[Gillespie, R. J. & Hargittai, I. (1991). The VSEPR Model of Molecular Geometry, Allyn and Bacon, Boston.]): its seesaw (ss) coordination results from two equatorially bonded chlorine atoms and two more electronegative and therefore axially located oxygen atoms of the Lewis base, MePyNO.

Differences in Sn—Cl distances are very small [2.4850 (4) and 2.4905 (4) Å, 1; 2.4939 (6) and 2.5068 (6) Å, 2, mean value: 2.494 (9) Å] as are the bond angles [95.73 (1)°, 1; 94.59 (2)°, 2] between them. Somewhat shorter Sn—Cl distances are found in the six crystallographically independent mol­ecules of SnCl2·DMF [d(Sn—Cl)mean = 2.458 (21) Å, 〈(Cl—Sn—Cl) = 92.89 (7)–89.09 (7)°] with a predominant trigonal–pyramidal coordination at tin, while the values in SnCl2·2DMSO [d(Sn—Cl)mean = 2.483 (8) Å, 〈(Cl—Sn—Cl) = 93.86 (7)°] with a symmetrical seesaw coordination are in between.

Axes of the seesaws are bent [161.40 (6)°, 1; 169.66 (6)°, 2] towards the chlorine atoms properly due to electronic repulsion of the axial bonds through the 5s free-electron pairs. The corresponding Sn—O bonds are strongly different in both compounds, but differences are more expressed in 1 [2.280 (1) to 2.733 (1) Å, μ2-O] than in 2 [2.308 (2) to 2.430 (2) Å, μ1-O]. Because of the great [0.453 Å] difference between the two Sn—O bonds in 1, one may suggest a threefold trigonal–pyramidal (tpy) tin(II) coordination instead of a fourfold seesaw (ss) coordination but valence-bond-sum calculations [parameters used: ro(SnII—O) = 1.984 Å, ro(SnII—Cl) = 2.335 Å, b = 0.37; Brese & O'Keefe (1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.])] on the tpy coord­ination result in a bond-valence sum of 1.78 v.u. while the longer Sn—O bond in the ss-coordination contributes 0.13 v.u. to the bond-valence sum (1.91 v.u.). Similar calculations for 2 result in a bond-valence sum of 2.00 v.u., fully consistent with the tin oxidation state of +II.

3. Supra­molecular features

A common feature of many tin(II) compounds is the non-spherical ligand distribution around the divalent tin atom for which the term `hemidirected' has been introduced (Shimoni-Livny et al., 1998[Shimoni-Livny, L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853-1867.]). The resulting void in the hemidirected coordination sphere often gives rise to additional more or less weak inter­molecular (and intra­molecular if appropriate Lewis base donor atoms are sterically available) inter­actions with inter­esting supra­molecular features. In case of 1, the formation of a one-dimensional coordination polymer via the μ2-O-atom of the MePyNO mol­ecule can be inter­preted in terms of such supra­molecular inter­actions: in this particular case, the hemidirected coordination sphere of a mol­ecular, trigonal–pyramidal SnCl2·MePyNO complex is partially filled through the oxygen atom of a MePyNO mol­ecule of a neighboring building unit. The resulting coordination polymer forms a zigzag chain as all atoms are situated off the crystallographic glide plane at x, 1/4, z (Fig. 3[link]). Between the zigzag chains no further Lewis base/Lewis acid inter­actions below 3.5 Å are observed, but within the chains a very weak [3.460 (1) Å] attractive inter­action is found between Cl2 and Sn1 of two neighboring building units (Fig. 3[link]).

[Figure 3]
Figure 3
Ball-and-stick model of the one-dimensional coordination polymer of 1 viewed parallel to the glide plane (blue line); symmetry codes used to generate equivalent atoms: (′) x, [{3\over 2}] − y, [{1\over 2}] + z; ('') x, [{3\over 2}] − y, −[{1\over 2}] + z.

In case of 2 the tin atom of the SnCl2·2MePyNO mol­ecules shows a similar hemidirected coordination sphere. In the solid state, neighboring mol­ecules form dimers via attractive but very weak [3.225 (2) Å] Sn—O inter­actions. Both mol­ecules of these dimers are related to each other via a crystallographic twofold rotation axis (Fig. 4[link]). Even if the coordination sphere of each tin atom remains unsymmetrical in these dimeric aggregates (Fig. 5[link]), no further inter­molecular inter­actions could be observed below 3.5 Å.

[Figure 4]
Figure 4
Ball-and-stick model of the dimeric aggregates found in the crystal structure of 2 looking down the crystallographic twofold rotation axis marked in red; additional Sn—O distances are indicated by dashed sticks in gray [symmetry codes used to generate equivalent atoms marked ′: 1 − x, y, [{3\over 2}] − z.]
[Figure 5]
Figure 5
Space-filling model of the dimeric aggregates found in the crystal structure of 2 looking down into the voids on the backside of the tin atoms; color code used: Cl = green, O = red, N = blue, C = black, H = gray, Sn = yellow.

4. Synthesis and crystallization

Both complexes are formed side by side on a reaction plate in the same micro-scale experiment when small amounts (about 100 mg) of SnCl2 (Sigma–Aldrich) and an excess of 4-MePyNO (Alfa Aesar) are overlaid with a few drops of N,N-di­methyl­formamide (Fluka) as solvent. Compound 1 forms colorless, elongated plates, while 2 crystallizes in the form of small, colorless prisms.

5. Refinement

Crystal data, data collection and structure refinement details of 1 and 2 are summarized in Table 1[link]. All H atoms were clearly identified in difference-Fourier syntheses but were refined with idealized positions and allowed to ride on their parent carbon atoms with 0.98 Å (–CH3), and 0.95 Å (–CHarom) and with common isotropic temperature factors for all hydrogen atoms of the aromatic rings and methyl groups.

Table 1
Experimental details

  1 2
Crystal data
Chemical formula [SnCl2(C6H7NO)] [SnCl2(C6H7NO)2]
Mr 298.72 407.84
Crystal system, space group Monoclinic, P21/c Orthorhombic, Pbcn
Temperature (K) 100 100
a, b, c (Å) 11.7934 (4), 9.4895 (3), 8.6170 (3) 19.9848 (8), 10.3723 (3), 14.4644 (5)
α, β, γ (°) 90, 106.455 (2), 90 90, 90, 90
V3) 924.86 (5) 2998.30 (18)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 3.28 2.06
Crystal size (mm) 0.49 × 0.17 × 0.06 0.47 × 0.11 × 0.07
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.298, 0.817 0.442, 0.866
No. of measured, independent and observed [I > 2σ(I)] reflections 86401, 2232, 2132 136234, 3626, 3086
Rint 0.039 0.090
(sin θ/λ)max−1) 0.661 0.660
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.013, 0.032, 1.12 0.025, 0.064, 1.10
No. of reflections 2232 3626
No. of parameters 103 178
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.49 0.81, −0.33
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

catena-Poly[[dichloridotin(II)]-µ2-(4-methylpyridine N-oxide)-κ2O:O] (1) top
Crystal data top
[SnCl2(C6H7NO)]F(000) = 568
Mr = 298.72Dx = 2.145 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.7934 (4) ÅCell parameters from 9441 reflections
b = 9.4895 (3) Åθ = 2.8–28.3°
c = 8.6170 (3) ŵ = 3.28 mm1
β = 106.455 (2)°T = 100 K
V = 924.86 (5) Å3Plate, colourless
Z = 40.49 × 0.17 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
2132 reflections with I > 2σ(I)
φ and ω scansRint = 0.039
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.0°, θmin = 3.3°
Tmin = 0.298, Tmax = 0.817h = 1515
86401 measured reflectionsk = 1212
2232 independent reflectionsl = 1111
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.013H-atom parameters constrained
wR(F2) = 0.032 w = 1/[σ2(Fo2) + (0.0134P)2 + 0.6437P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.003
2232 reflectionsΔρmax = 0.41 e Å3
103 parametersΔρmin = 0.49 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.65817 (2)0.77494 (2)0.40278 (2)0.01249 (4)
Cl10.86766 (3)0.70601 (4)0.43743 (5)0.01738 (8)
Cl20.57006 (3)0.57820 (4)0.21746 (4)0.01829 (8)
O10.65673 (9)0.62193 (11)0.60614 (13)0.0130 (2)
N10.70802 (11)0.49228 (13)0.61676 (15)0.0114 (2)
C20.82254 (13)0.47923 (17)0.70246 (18)0.0142 (3)
H20.86660.55980.75010.021 (2)*
C30.87519 (14)0.34877 (17)0.72050 (19)0.0157 (3)
H30.95580.33970.78120.021 (2)*
C40.81191 (14)0.22964 (16)0.65083 (19)0.0146 (3)
C50.69385 (14)0.24895 (17)0.5615 (2)0.0166 (3)
H50.64820.17040.51110.021 (2)*
C60.64331 (13)0.38104 (16)0.54603 (18)0.0143 (3)
H60.56300.39340.48560.021 (2)*
C70.86871 (15)0.08689 (17)0.6700 (2)0.0215 (3)
H710.91080.07420.58800.051 (4)*
H720.80770.01410.65660.051 (4)*
H730.92470.07900.77810.051 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01487 (6)0.01142 (6)0.01145 (6)0.00176 (4)0.00415 (4)0.00048 (4)
Cl10.01430 (17)0.01858 (18)0.01902 (18)0.00012 (14)0.00435 (14)0.00240 (14)
Cl20.02132 (18)0.01852 (18)0.01377 (17)0.00592 (15)0.00295 (14)0.00073 (14)
O10.0161 (5)0.0100 (5)0.0138 (5)0.0050 (4)0.0055 (4)0.0021 (4)
N10.0125 (6)0.0099 (6)0.0120 (6)0.0021 (5)0.0036 (5)0.0018 (5)
C20.0134 (7)0.0136 (7)0.0142 (7)0.0013 (6)0.0018 (6)0.0007 (6)
C30.0123 (7)0.0157 (7)0.0170 (7)0.0016 (6)0.0008 (6)0.0017 (6)
C40.0157 (7)0.0113 (7)0.0163 (7)0.0009 (6)0.0038 (6)0.0012 (6)
C50.0145 (7)0.0133 (7)0.0197 (8)0.0025 (6)0.0011 (6)0.0009 (6)
C60.0122 (7)0.0146 (7)0.0152 (7)0.0018 (6)0.0023 (6)0.0008 (6)
C70.0194 (8)0.0121 (7)0.0300 (9)0.0024 (6)0.0022 (7)0.0006 (7)
Geometric parameters (Å, º) top
Sn1—O12.2795 (10)C3—H30.9500
Sn1—Cl22.4850 (4)C4—C51.399 (2)
Sn1—Cl12.4905 (4)C4—C71.499 (2)
O1—N11.3626 (16)C5—C61.378 (2)
N1—C61.343 (2)C5—H50.9500
N1—C21.3490 (19)C6—H60.9500
C2—C31.374 (2)C7—H710.9800
C2—H20.9500C7—H720.9800
C3—C41.393 (2)C7—H730.9800
O1—Sn1—Cl285.56 (3)C3—C4—C7121.16 (14)
O1—Sn1—Cl187.92 (3)C5—C4—C7121.53 (14)
Cl2—Sn1—Cl195.726 (14)C6—C5—C4120.54 (15)
N1—O1—Sn1121.80 (8)C6—C5—H5119.7
C6—N1—C2121.88 (13)C4—C5—H5119.7
C6—N1—O1119.66 (12)N1—C6—C5119.76 (14)
C2—N1—O1118.44 (12)N1—C6—H6120.1
N1—C2—C3119.67 (14)C5—C6—H6120.1
N1—C2—H2120.2C4—C7—H71109.5
C3—C2—H2120.2C4—C7—H72109.5
C2—C3—C4120.83 (14)H71—C7—H72109.5
C2—C3—H3119.6C4—C7—H73109.5
C4—C3—H3119.6H71—C7—H73109.5
C3—C4—C5117.31 (14)H72—C7—H73109.5
Dichloridobis(4-methylpyridine N-oxide-κO)tin(II) (2) top
Crystal data top
[SnCl2(C6H7NO)2]Dx = 1.807 Mg m3
Mr = 407.84Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 9991 reflections
a = 19.9848 (8) Åθ = 2.6–27.2°
b = 10.3723 (3) ŵ = 2.06 mm1
c = 14.4644 (5) ÅT = 100 K
V = 2998.30 (18) Å3Rod, colourless
Z = 80.47 × 0.11 × 0.07 mm
F(000) = 1600
Data collection top
Bruker APEXII CCD
diffractometer
3086 reflections with I > 2σ(I)
φ and ω scansRint = 0.090
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 28.0°, θmin = 2.6°
Tmin = 0.442, Tmax = 0.866h = 2626
136234 measured reflectionsk = 1313
3626 independent reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0279P)2 + 2.7839P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3626 reflectionsΔρmax = 0.81 e Å3
178 parametersΔρmin = 0.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.55158 (2)0.16754 (2)0.64760 (2)0.02085 (6)
Cl10.55438 (3)0.40624 (6)0.62730 (4)0.02477 (13)
Cl20.66633 (3)0.13226 (7)0.58237 (5)0.03087 (14)
O10.60299 (9)0.21147 (17)0.79652 (12)0.0288 (4)
N10.63657 (10)0.31475 (19)0.82579 (14)0.0218 (4)
C120.62539 (12)0.3580 (2)0.91192 (17)0.0229 (5)
H120.59170.31910.94890.029 (4)*
C130.66263 (11)0.4585 (2)0.94668 (17)0.0231 (5)
H130.65480.48741.00810.029 (4)*
C140.71145 (12)0.5186 (2)0.89344 (17)0.0233 (5)
C150.71995 (11)0.4734 (2)0.80348 (17)0.0242 (5)
H150.75180.51350.76410.029 (4)*
C160.68266 (12)0.3714 (2)0.77119 (17)0.0243 (5)
H160.68940.34070.71000.029 (4)*
C170.75292 (14)0.6270 (3)0.9311 (2)0.0335 (6)
H17A0.73450.70950.91000.068 (7)*
H17B0.79910.61830.90920.068 (7)*
H17C0.75230.62410.99890.068 (7)*
O20.50452 (9)0.16530 (16)0.50191 (12)0.0236 (4)
N20.53989 (9)0.18673 (19)0.42470 (13)0.0193 (4)
C220.57330 (12)0.0882 (2)0.38493 (17)0.0218 (5)
H220.57380.00580.41370.023 (3)*
C230.60658 (11)0.1070 (2)0.30287 (17)0.0236 (5)
H230.62990.03710.27530.023 (3)*
C240.60656 (12)0.2270 (2)0.25955 (17)0.0235 (5)
C250.57304 (13)0.3268 (2)0.30435 (17)0.0230 (5)
H250.57280.41060.27780.023 (3)*
C260.54027 (12)0.3055 (2)0.38668 (18)0.0214 (5)
H260.51790.37450.41680.023 (3)*
C270.64072 (15)0.2477 (3)0.16818 (19)0.0350 (6)
H27A0.68900.25670.17800.097 (10)*
H27B0.62330.32610.13920.097 (10)*
H27C0.63220.17360.12780.097 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02042 (9)0.01901 (10)0.02311 (9)0.00041 (6)0.00035 (6)0.00205 (6)
Cl10.0277 (3)0.0191 (3)0.0275 (3)0.0016 (2)0.0005 (2)0.0005 (2)
Cl20.0220 (3)0.0358 (3)0.0348 (3)0.0041 (2)0.0026 (2)0.0067 (3)
O10.0351 (10)0.0244 (9)0.0270 (9)0.0098 (8)0.0062 (8)0.0017 (7)
N10.0213 (10)0.0195 (10)0.0247 (10)0.0023 (8)0.0028 (8)0.0013 (8)
C120.0193 (11)0.0250 (12)0.0243 (12)0.0016 (9)0.0014 (9)0.0039 (9)
C130.0218 (11)0.0237 (12)0.0240 (11)0.0028 (9)0.0002 (9)0.0005 (9)
C140.0208 (11)0.0191 (12)0.0298 (12)0.0008 (9)0.0008 (10)0.0018 (10)
C150.0177 (10)0.0270 (13)0.0280 (12)0.0001 (9)0.0013 (9)0.0066 (10)
C160.0213 (11)0.0289 (12)0.0227 (12)0.0016 (10)0.0017 (9)0.0031 (10)
C170.0350 (14)0.0257 (13)0.0398 (15)0.0099 (11)0.0013 (12)0.0001 (12)
O20.0227 (8)0.0262 (9)0.0218 (8)0.0026 (7)0.0007 (7)0.0017 (7)
N20.0184 (9)0.0193 (10)0.0202 (10)0.0010 (7)0.0036 (7)0.0004 (7)
C220.0226 (11)0.0149 (11)0.0277 (12)0.0015 (9)0.0062 (9)0.0008 (9)
C230.0198 (11)0.0231 (12)0.0278 (12)0.0021 (9)0.0037 (9)0.0066 (10)
C240.0189 (11)0.0292 (13)0.0225 (11)0.0031 (10)0.0038 (9)0.0023 (10)
C250.0249 (11)0.0177 (11)0.0262 (12)0.0030 (9)0.0031 (10)0.0024 (9)
C260.0214 (11)0.0183 (11)0.0246 (11)0.0022 (9)0.0033 (9)0.0007 (9)
C270.0352 (14)0.0400 (16)0.0298 (14)0.0019 (13)0.0035 (11)0.0004 (12)
Geometric parameters (Å, º) top
Sn1—O22.3078 (17)C17—H17B0.9800
Sn1—O12.4296 (17)C17—H17C0.9800
Sn1—Cl12.4939 (6)O2—N21.340 (3)
Sn1—Cl22.5068 (6)N2—C261.349 (3)
O1—N11.333 (3)N2—C221.350 (3)
N1—C121.343 (3)C22—C231.375 (4)
N1—C161.348 (3)C22—H220.9500
C12—C131.377 (3)C23—C241.393 (4)
C12—H120.9500C23—H230.9500
C13—C141.390 (3)C24—C251.393 (3)
C13—H130.9500C24—C271.503 (4)
C14—C151.393 (3)C25—C261.377 (4)
C14—C171.500 (3)C25—H250.9500
C15—C161.376 (3)C26—H260.9500
C15—H150.9500C27—H27A0.9800
C16—H160.9500C27—H27B0.9800
C17—H17A0.9800C27—H27C0.9800
O2—Sn1—O1169.66 (6)C14—C17—H17C109.5
O2—Sn1—Cl184.93 (4)H17A—C17—H17C109.5
O1—Sn1—Cl184.76 (4)H17B—C17—H17C109.5
O2—Sn1—Cl291.58 (5)N2—O2—Sn1122.98 (13)
O1—Sn1—Cl288.52 (5)O2—N2—C26119.6 (2)
Cl1—Sn1—Cl294.59 (2)O2—N2—C22119.37 (19)
N1—O1—Sn1130.18 (14)C26—N2—C22121.0 (2)
O1—N1—C12118.6 (2)N2—C22—C23120.0 (2)
O1—N1—C16120.5 (2)N2—C22—H22120.0
C12—N1—C16120.8 (2)C23—C22—H22120.0
N1—C12—C13120.1 (2)C22—C23—C24121.0 (2)
N1—C12—H12119.9C22—C23—H23119.5
C13—C12—H12119.9C24—C23—H23119.5
C12—C13—C14121.1 (2)C25—C24—C23117.1 (2)
C12—C13—H13119.4C25—C24—C27121.4 (2)
C14—C13—H13119.4C23—C24—C27121.5 (2)
C13—C14—C15116.9 (2)C26—C25—C24120.7 (2)
C13—C14—C17121.5 (2)C26—C25—H25119.6
C15—C14—C17121.6 (2)C24—C25—H25119.6
C16—C15—C14120.6 (2)N2—C26—C25120.2 (2)
C16—C15—H15119.7N2—C26—H26119.9
C14—C15—H15119.7C25—C26—H26119.9
N1—C16—C15120.4 (2)C24—C27—H27A109.5
N1—C16—H16119.8C24—C27—H27B109.5
C15—C16—H16119.8H27A—C27—H27B109.5
C14—C17—H17A109.5C24—C27—H27C109.5
C14—C17—H17B109.5H27A—C27—H27C109.5
H17A—C17—H17B109.5H27B—C27—H27C109.5
 

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft and the Government of Lower-Saxony for funding the diffractometer and acknowledge support by Deutsche Forschungsgemeinschaft (DFG) and Open Access Publishing Fund of Osnabrück University.

References

First citationArp, H., Marschner, C., Baumgartner, J., Zark, P. & Müller, T. (2013). J. Am. Chem. Soc. 135, 7949–7959.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBarbul, I., Varga, R. A. & Silvestru, C. (2011). Acta Cryst. E67, m486.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBenjamin, S. L., Burt, J., Levason, W., Reid, G. & Webster, M. (2012). J. Fluor. Chem. 135, 108–113.  CSD CrossRef CAS Google Scholar
First citationBermejo, M. R., Castiñeiras, A., Garcia-Vazquez, J. A., Hiller, W. & Strähle, J. (1991). J. Crystallogr. Spectrosc. Res. 21, 93–96.  CSD CrossRef CAS Google Scholar
First citationBeyeh, N. K. & Puttreddy, R. (2015). Dalton Trans. 44, 981–9886.  CSD CrossRef Google Scholar
First citationBlom, E. A., Penfold, B. R. & Robinson, W. T. (1969). J. Chem. Soc. A, pp. 913–917.  CSD CrossRef Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDénes, G., Muntasar, A., Madamba, M. C. & Merazig, H. (2013). Mössbauer Spectroscopy: Applications in Chemistry, Biology, and Nanotechnology, Wiley.  Google Scholar
First citationGillespie, R. J. & Hargittai, I. (1991). The VSEPR Model of Molecular Geometry, Allyn and Bacon, Boston.  Google Scholar
First citationGriffith, W. O., Slawin, A. M., Thompson, K. M. & Williams, D. J. (1994). J. Chem. Soc. Chem. Commun. pp. 569–570.  CSD CrossRef Google Scholar
First citationGurnani, C., Hector, A. L., Jager, E., Levason, W., Pugh, D. & Reid, G. (2013). Dalton Trans. 42, 8364–8374.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHarrison, P. G., Hylett, B. J. & King, T. J. (1983). Inorg. Chim. Acta, 75, 259–264.  CSD CrossRef CAS Google Scholar
First citationHiller, W., Castiñeiras, A., García-Fernandez, M. E., Bermejo, M. R., Bravo, J. & Sanchez, A. (1988). Z. Naturforsch. Teil B, 43, 132–133.  CrossRef CAS Google Scholar
First citationIchiba, S., Yamada, M. & Negita, H. (1978). Radiochem. Radioanal. Lett. 36, 93–99.  CAS Google Scholar
First citationIngen Schenau, A. D. van, Verschoor, C. G. & Romers, C. (1974). Acta Cryst. B30, 1686–1694.  CSD CrossRef IUCr Journals Google Scholar
First citationJohnson, D. R. & Watson, W. H. (1971). Inorg. Chem. 10, 1281–1288.  Google Scholar
First citationKauffman, J. W., Moor, D. H. & Williams, R. J. (1977). J. Inorg. Nucl. Chem. 39, 1165–1167.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKumar, V., Rodrigue, C. & Bryce, D. L. (2020). Cryst. Growth Des. 20, 2027–2034.  CSD CrossRef CAS Google Scholar
First citationKutzelnigg, W. (1984). Angew. Chem. 96, 262–286.  CrossRef CAS Google Scholar
First citationLukic, D., Naglav, D., Wölper, C. & Schulz, S. (2019). CSD Communication (CCDC1935104). CCDC, Cambridge, England.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMusher, J. L. (1969). Angew. Chem. Int. Ed. 8, 54–68.  CrossRef CAS Google Scholar
First citationOzaki, M., Katsuki, Y., Liu, J., Handa, T., Nishikubo, R., Yakumaru, S., Hashikawa, Y., Murata, Y., Saito, T., Shimakawa, Y., Kanemitsu, Y., Saeki, A. & Wakamiya, A. (2017). ACS Omega, 2, 7016–7021.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationPérez-Bitrián, A., Baya, M., Casas, J. M., Falvello, L. R., Martín, A. & Menjón, B. (2017). Chem. Eur. J. 23, 14918–14930.  Web of Science PubMed Google Scholar
First citationRundle, R. E. (1963). J. Am. Chem. Soc. 85, 112–113.  CrossRef CAS Web of Science Google Scholar
First citationSawitzki, G. & von Schnering, H. G. (1974). Chem. Ber. 107, 3266–3274.  CSD CrossRef CAS Web of Science Google Scholar
First citationSchrenk, C., Köppe, R., Schellenberg, I., Pöttgen, R. & Schnepf, A. (2009). Z. Anorg. Allg. Chem. 635, 1541–1548.  CSD CrossRef CAS Google Scholar
First citationSelvaraju, R., Panchanatheswaran, K. & Parthasarathi, V. (1998). Acta Cryst. C54, 905–906.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShimoni-Livny, L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem. 37, 1853–1867.  Web of Science CrossRef CAS Google Scholar
First citationVeith, M., Jarczyk, M. & Huch, V. (1988). Chem. Ber. 121, 347–355.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWlaźlak, E., Macyk, J., Nitek, W. & Szaciłowski, K. (2016). Inorg. Chem. 55, 5935–5945.  Web of Science PubMed Google Scholar
First citationWlaźlak, E., Tłuścik, J. K., Przyczyna, D., Zawal, P. & Szaciłowski, K. (2020). J. Mater. Chem. C, 8, 6136–6148.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds