research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3,14-di­ethyl-2,6,13,17-tetra­azoniatri­cyclo­[16.4.0.07,12]do­cosane tetra­chloride tetra­hydrate from synchrotron X-ray data

CROSSMARK_Color_square_no_text.svg

aBeamline Department, Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 25 January 2021; accepted 28 January 2021; online 29 January 2021)

The crystal structure of the hydrated title salt, C22H48N44+·4Cl·4H2O (C22H48N4 = H4L = 3,14-diethyl-2,6,13,17-tetra­azoniatri­cyclo­[16.4.0.07,12]doco­sa­ne), has been determined using synchrotron radiation at 220 K. The structure determination reveals that protonation has occurred at all four amine N atoms. The asymmetric unit comprises one half of the macrocyclic cation (completed by crystallographic inversion symmetry), two chloride anions and two water mol­ecules. The macrocyclic ring of the tetra­cation adopts an exodentate (3,4,3,4)-D conformation. The crystal structure is stabilized by inter­molecular hydrogen bonds involving the macrocycle N—H groups and water O—H groups as donors, and the O atoms of the water mol­ecules and chloride anions as acceptors, giving rise to a three-dimensional network.

1. Chemical context

In recent years, derivatives of 1,4,8,11-tetra­aza­cyclo­tetra­decane (cyclam) have been found to exhibit anti-HIV effects (Ronconi & Sadler, 2007[Ronconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633-1648.]; Ross et al., 2012[Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408-6418.]) and to stimulate the activity of stem cells from bone marrow (De Clercq, 2010[De Clercq, E. (2010). J. Med. Chem. 53, 1438-1450.]). The conformation of the macrocyclic ligand, the orientations of the N—H bonds and crystal packing forces in respective metal complexes are very important factors for CXCR4 chemokine receptor recognition. Therefore, knowledge of the conformations and crystal-packing features of complexes containing cyclam derivatives has become important in the development of new highly effective anti-HIV drugs that specifically target alternative events in the HIV replicative cycle. The macrocycle 3,14-diethyl-2,6,13,17-tetra­aza­tri­cyclo(16.4.0.07,12)docosane (C22H44N4, L) contains a cyclam backbone with two cyclo­hexane subunits. Ethyl groups are also attached to the 3 and 14 carbon atoms of the propyl chains that bridge opposite pairs of N atoms in the mol­ecule. The macrocycle L is a strongly basic amine capable of forming the dication C22H46N42+ or even the tetra­cation C22H48N44+ in which all of the N—H bonds are generally available for hydrogen-bond formation. It is known that the neutral macrocycle and its dication adopt an endodentate conformation along the centre of the macrocyclic cavity. The stabilization of such an endo conformation can be attributed to strong intra­molecular N—H⋯N hydrogen bonds. Unlike the free macrocycle and its dication, the tetra­cation adopts an exodentate conformation. Furthermore, the 14-membered cyclam moiety of the tetra­cation can adopt four exodentate (3,4,3,4)-(AD) conformations (Meyer et al., 1998[Meyer, M., Dahaoui-Gindrey, V., Lecomte, C. & Guilard, R. (1998). Coord. Chem. Rev. 178-180, 1313-1405.]; Nowicka et al., 2012[Nowicka, B., Reczyński, M., Nitek, W. & Sieklucka, B. (2012). Polyhedron, 47, 73-78.]). Previously, the syntheses and crystal structures of the related compounds (C22H44N4)·NaClO4 (Aree et al., 2018[Aree, T., Hong, Y. P. & Choi, J.-H. (2018). J. Mol. Struct. 1163, 86-93.]), [C22H46N4](ClO4)2 (Aree et al., 2018[Aree, T., Hong, Y. P. & Choi, J.-H. (2018). J. Mol. Struct. 1163, 86-93.]), [C22H46N4]Cl2·4H2O (Moon et al., 2013[Moon, D., Subhan, M. A. & Choi, J.-H. (2013). Acta Cryst. E69, o1620.]) and [C22H46N4](NO3)2·2H2O (Moon et al., 2019[Moon, D., Jeon, S., Ryoo, K. S. & Choi, J.-H. (2019). Acta Cryst. E75, 921-924.]) have been reported. However, there is no report of a compound with the 3,14-diethyl-2,6,13,17-tetra­azoniatri­cyclo­(16.4.0.07,12)docosane cation and any counter-anions. As another contribution to our research on this macrocyclic compound family, we report here the preparation of a new tetra­cationic compound [C22H48N4]Cl4·4H2O, (I)[link], as the hydrated tetra­chloride salt and its structural characterization by synchrotron single-crystal X-ray diffraction.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link] along with the atom-numbering scheme. The organic cation lies across a crystallographic inversion centre and hence the asymmetric unit consists of one half of the cationic macrocycle, of two chloride anions and two solvent water mol­ecules. Within the centrosymmetric tetra­protonated amine unit C22H48N44+, the C—C and N—C bond lengths range from 1.5208 (19) to 1.5431 (16) Å and from 1.5076 (15) to 1.5247 (15) Å, respectively; the range of N—C—C and C—N—C angles is 107.08 (9) to 111.72 (10)° and 116.40 (9) to 117.87 (9)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], drawn with displacement ellipsoids at the 50% probability level. Dashed lines represent hydrogen-bonding inter­actions; primed atoms are related by the symmetry operation (−x + 1, −y + 1, −z + 1).

The four N atoms of the macrocycle are coplanar, and the two ethyl substituents are anti with respect to the macrocyclic plane as a result of the mol­ecular inversion symmetry. The six-membered cyclo­hexane ring is in its stable chair conformation. The cyclam moiety of the tetra­cation adopts an exodentate rectangular (3,4,3,4)-D conformation, which differs from the endodentate conformation of the free macrocycle or the dication (Aree et al., 2018[Aree, T., Hong, Y. P. & Choi, J.-H. (2018). J. Mol. Struct. 1163, 86-93.]; Moon et al., 2013[Moon, D., Subhan, M. A. & Choi, J.-H. (2013). Acta Cryst. E69, o1620.]). Only two of the four nitro­gen atoms, N2 and N2′ [symmetry code: (') −x + 1, −y + 1, −z + 1] are located at the corners of the macrocyclic square. The other two corner positions are occupied by carbon atoms C2 and C2′. Thus, the remaining two nitro­gen atoms, N1 and N1′ are components of the hydro­carbon side chain. Inter­estingly, the exo-[3,4,3,4]-D conformation of (I)[link] also differs from the exo-[3,4,3,4]-B conformation of [H4TMC](CrO3Cl)2Cl2 (TMC = 1,4,8,11-tetra­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane; Moon & Choi, 2020a[Moon, D. & Choi, J.-H. (2020a). Acta Cryst. E76, 523-526.]), and the exo-[3,4,3,4]-C conformation of [H4TMC](ClO4)2Cl2 (Moon & Choi, 2020b[Moon, D. & Choi, J.-H. (2020b). Acta Cryst. E76, 324-327.]) or (H4cyclam)[Cr2O7]2·H2O (Moon & Choi, 2017[Moon, D. & Choi, J.-H. (2017). Acta Cryst. E73, 755-758.]). The detailed understanding and insight into the crystal packing and conformation may be helpful in the development of new anti-HIV drugs.

3. Supra­molecular features

Extensive O—H⋯Cl, N—H⋯Cl and N—H⋯O hydrogen-bonding inter­actions occur in the crystal structure (Table 1[link]). All of the chloride anions and the O atoms of the water mol­ecules serve as hydrogen-bond acceptors. The organic C22H48N44+ cation is linked to four water mol­ecules via N—H⋯O hydrogen bonds whereas the O—H⋯Cl hydrogen bonds link the chloride anions to neighbouring water mol­ecules. In addition, neighbouring organic cations are inter­connected to chloride anions via several N—H⋯Cl hydrogen bonds. An extensive array of these contacts generates a three-dimensional network of mol­ecules. The crystal packing of (I)[link] viewed perpendicular to the ab plane is shown in Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯Cl2 0.92 (1) 2.25 (1) 3.1616 (11) 172 (1)
O1—H2O1⋯Cl1 0.92 (1) 2.17 (1) 3.0746 (11) 169 (1)
O2—H1O2⋯Cl2i 0.92 (1) 2.34 (1) 3.2518 (15) 172 (2)
O2—H2O2⋯Cl2ii 0.91 (1) 2.26 (1) 3.1622 (12) 173 (2)
N1—H1A⋯Cl1iii 0.90 2.22 3.1072 (12) 169
N1—H1B⋯O1 0.90 1.92 2.7740 (15) 157
N2—H2A⋯O2 0.90 1.91 2.7716 (14) 161
N2—H2B⋯Cl2iv 0.90 2.45 3.3357 (12) 167
Symmetry codes: (i) [x-1, y, z-1]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, -y+1, -z+2]; (iv) [x, y, z-1].
[Figure 2]
Figure 2
The crystal packing in (I)[link], viewed perpendicular to the ab plane. Dashed lines represent O—H⋯Cl (pink), N—H⋯O (cyan), and N—H⋯Cl (yellow) hydrogen-bonding inter­actions, respectively. For clarity, C-bound H atoms have been omitted.

4. Database survey

A search of the Cambridge Structural Database (CSD; version 5.42, November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed five matches for organic compounds containing the macrocycles (C22H44N4), C22H46N42+ or C22H48N44+. The crystal structures of (C22H44N4)·NaClO4 (Aree et al., 2018[Aree, T., Hong, Y. P. & Choi, J.-H. (2018). J. Mol. Struct. 1163, 86-93.]), [C22H46N4](ClO4)2 (Aree et al., 2018[Aree, T., Hong, Y. P. & Choi, J.-H. (2018). J. Mol. Struct. 1163, 86-93.]), [C22H46N4]Cl2·4H2O (Moon et al., 2013[Moon, D., Subhan, M. A. & Choi, J.-H. (2013). Acta Cryst. E69, o1620.]) and [C22H46N4](NO3)2·2H2O (Moon et al., 2019[Moon, D., Jeon, S., Ryoo, K. S. & Choi, J.-H. (2019). Acta Cryst. E75, 921-924.]) have been reported previously. All bond lengths and angles within the tetra­cation C22H48N44+ in (I)[link] are similar to those found in the database structures.

Until now, no crystal structure of a compound with the tetra­cation C22H48N44+ and any counter-anion has been deposited.

5. Synthesis and crystallization

Ethyl vinyl ketone (97%), trans-1,2-cyclo­hexa­nedi­amine (99%) and copper(II) chloride dihydrate (99%) were purchased from Sigma–Aldrich and were used as received. All other chemicals were of analytical reagent grade. The solvents were of reagent grade and purified by usual methods. As a starting material, the 3,14-diethyl-2,6,13,17-tetra­aza­tri­cyclo(16.4.0.07,12)docosane macrocycle L was prepared according to a published procedure (Lim et al., 2006[Lim, J. H., Kang, J. S., Kim, H. C., Koh, E. K. & Hong, C. S. (2006). Inorg. Chem. 45, 7821-7827.]). A solution of L (0.091 g, 0.25 mmol) in water (10 mL) was added dropwise to a stirred solution of CuCl2·2H2O (0.085 g, 0.5 mmol) in water (15 mL). The solution was heated for 1 h at 373 K. After cooling to 298 K, the pH was adjusted to 3.0 by 1.0 M HCl. The solution was filtered and left at room temperature. A mixture of colourless, red and violet crystals formed from the solution over the next few days. The product mixture was added to a 30 ml MeOH–acetone (1:2 v:v) solution under stirring, and the stirring was continued for 30 min at 298 K. The red and violet compounds were manually removed, and block-like colorless single crystals of (I)[link] suitable for X-ray analysis were obtained by filtration.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C- and N-bound H atoms in the complex were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.97–0.99 Å, and with an N—H distance of 0.90 Å with Uiso(H) values of 1.2 and 1.5Ueq of the parent atoms, respectively. O-bound H atoms of the water mol­ecules were located in a difference-Fourier map, and the O—H distances and the H—O—H angles were restrained using DFIX and DANG constraints (0.94 and 1.55 Å, respectively).

Table 2
Experimental details

Crystal data
Chemical formula C22H48N44+·4Cl·4H2O
Mr 582.50
Crystal system, space group Monoclinic, P21/n
Temperature (K) 220
a, b, c (Å) 7.6550 (15), 23.533 (5), 8.3130 (17)
β (°) 102.45 (3)
V3) 1462.3 (5)
Z 2
Radiation type Synchrotron, λ = 0.610 Å
μ (mm−1) 0.29
Crystal size (mm) 0.08 × 0.07 × 0.04
 
Data collection
Diffractometer Rayonix MX225HS CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.])
Tmin, Tmax 0.868, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 14961, 4016, 3517
Rint 0.038
(sin θ/λ)max−1) 0.693
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.105, 1.09
No. of reflections 4016
No. of parameters 167
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.22
Computer programs: PAL BL2D-SMDC (Shin et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL3000sm (Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski et al., 2003); data reduction: HKL3000sm (Otwinowski et al., 2003); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

3,14-Diethyl-2,6,13,17-tetraazoniatricyclo[16.4.0.07,12]docosane tetrachloride tetrahydrate top
Crystal data top
C22H48N44+·4Cl·4H2OF(000) = 632
Mr = 582.50Dx = 1.323 Mg m3
Monoclinic, P21/nSynchrotron radiation, λ = 0.610 Å
a = 7.6550 (15) ÅCell parameters from 50732 reflections
b = 23.533 (5) Åθ = 0.4–33.7°
c = 8.3130 (17) ŵ = 0.28 mm1
β = 102.45 (3)°T = 220 K
V = 1462.3 (5) Å3Block, colorless
Z = 20.08 × 0.07 × 0.04 mm
Data collection top
Rayonix MX225HS CCD area detector
diffractometer
3517 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.038
ω scanθmax = 25.0°, θmin = 1.5°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm Scalepack; Otwinowski et al., 2003)
h = 1010
Tmin = 0.868, Tmax = 1.000k = 3232
14961 measured reflectionsl = 1111
4016 independent reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.2081P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
4016 reflectionsΔρmax = 0.41 e Å3
167 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.71371 (4)0.51779 (2)1.23367 (4)0.02947 (10)
Cl20.80805 (4)0.29797 (2)1.26093 (4)0.03510 (10)
O10.82713 (14)0.41203 (4)1.06447 (12)0.0341 (2)
H1O10.822 (2)0.3768 (4)1.1119 (19)0.041*
H2O10.792 (2)0.4405 (5)1.1271 (18)0.041*
O20.21622 (14)0.29355 (5)0.47672 (14)0.0405 (2)
H1O20.1034 (16)0.2916 (8)0.4106 (19)0.049*
H2O20.233 (2)0.2681 (6)0.5609 (16)0.049*
N10.68792 (13)0.46398 (4)0.76471 (12)0.0234 (2)
H1A0.5765350.4737330.7730540.028*
H1B0.7289000.4384970.8446680.028*
N20.49393 (13)0.36101 (4)0.42080 (12)0.0239 (2)
H2A0.4093390.3344080.4202410.029*
H2B0.5889740.3433950.3957240.029*
C10.74209 (15)0.56567 (5)0.68089 (15)0.0247 (2)
H1C0.7130360.5514030.5674930.030*
H1D0.8405690.5928810.6893200.030*
C20.80442 (16)0.51617 (5)0.79715 (16)0.0255 (2)
H2C0.9261510.5057820.7889040.031*
H2D0.8094750.5288370.9103660.031*
C30.67631 (15)0.43519 (5)0.60043 (14)0.0232 (2)
H30.6226100.4620090.5117580.028*
C40.86023 (16)0.41738 (5)0.57551 (15)0.0270 (2)
H4A0.8481640.4012940.4649270.032*
H4B0.9374350.4509400.5834760.032*
C50.94712 (16)0.37373 (6)0.70283 (17)0.0307 (3)
H5A0.9687650.3908410.8128220.037*
H5B1.0628410.3623170.6807860.037*
C60.82840 (18)0.32133 (6)0.69882 (17)0.0325 (3)
H6A0.8812230.2962190.7904890.039*
H6B0.8250260.3005290.5960630.039*
C70.63628 (17)0.33618 (5)0.71111 (16)0.0288 (3)
H7A0.5621680.3019860.6871450.035*
H7B0.6369100.3475510.8246450.035*
C80.55016 (15)0.38374 (5)0.59487 (14)0.0237 (2)
H80.4414390.3966780.6305830.028*
C90.42198 (15)0.40325 (5)0.28341 (14)0.0240 (2)
H90.5162850.4319900.2828030.029*
C100.38798 (17)0.37228 (5)0.11758 (15)0.0285 (2)
H10A0.3610970.4008480.0299360.034*
H10B0.4990990.3532890.1076740.034*
C110.2386 (2)0.32840 (6)0.08671 (18)0.0371 (3)
H11A0.2598080.3006030.1749460.056*
H11B0.2358810.3094710.0174590.056*
H11C0.1249520.3471330.0829580.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02435 (15)0.02771 (17)0.04097 (18)0.00112 (10)0.01724 (12)0.00061 (11)
Cl20.03364 (17)0.03180 (18)0.04254 (19)0.00500 (12)0.01410 (14)0.00293 (12)
O10.0398 (5)0.0299 (5)0.0361 (5)0.0030 (4)0.0156 (4)0.0005 (4)
O20.0314 (5)0.0430 (6)0.0482 (6)0.0074 (4)0.0111 (4)0.0115 (5)
N10.0220 (4)0.0202 (5)0.0305 (5)0.0007 (3)0.0112 (4)0.0001 (4)
N20.0223 (4)0.0193 (4)0.0322 (5)0.0009 (3)0.0107 (4)0.0002 (4)
C10.0242 (5)0.0191 (5)0.0339 (6)0.0003 (4)0.0134 (4)0.0003 (4)
C20.0227 (5)0.0204 (5)0.0343 (6)0.0008 (4)0.0083 (4)0.0021 (4)
C30.0229 (5)0.0199 (5)0.0290 (5)0.0017 (4)0.0106 (4)0.0011 (4)
C40.0250 (5)0.0241 (5)0.0361 (6)0.0028 (4)0.0161 (5)0.0031 (5)
C50.0240 (5)0.0294 (6)0.0410 (6)0.0034 (5)0.0123 (5)0.0023 (5)
C60.0343 (6)0.0239 (6)0.0400 (7)0.0035 (5)0.0097 (5)0.0025 (5)
C70.0299 (6)0.0224 (6)0.0352 (6)0.0038 (4)0.0096 (5)0.0036 (5)
C80.0224 (5)0.0210 (5)0.0304 (5)0.0019 (4)0.0114 (4)0.0011 (4)
C90.0229 (5)0.0203 (5)0.0312 (5)0.0006 (4)0.0114 (4)0.0017 (4)
C100.0292 (6)0.0284 (6)0.0310 (6)0.0044 (5)0.0133 (5)0.0006 (5)
C110.0415 (7)0.0312 (7)0.0381 (7)0.0035 (6)0.0077 (6)0.0063 (6)
Geometric parameters (Å, º) top
O1—H1O10.924 (9)C4—C51.5213 (18)
O1—H2O10.922 (9)C4—H4A0.9800
O2—H1O20.919 (9)C4—H4B0.9800
O2—H2O20.910 (9)C5—C61.5279 (19)
N1—C21.5076 (15)C5—H5A0.9800
N1—C31.5099 (15)C5—H5B0.9800
N1—H1A0.9000C6—C71.5364 (18)
N1—H1B0.9000C6—H6A0.9800
N2—C81.5155 (16)C6—H6B0.9800
N2—C91.5247 (15)C7—C81.5318 (17)
N2—H2A0.9000C7—H7A0.9800
N2—H2B0.9000C7—H7B0.9800
C1—C21.5231 (17)C8—H80.9900
C1—C9i1.5366 (16)C9—C101.5312 (17)
C1—H1C0.9800C9—H90.9900
C1—H1D0.9800C10—C111.5208 (19)
C2—H2C0.9800C10—H10A0.9800
C2—H2D0.9800C10—H10B0.9800
C3—C41.5253 (16)C11—H11A0.9700
C3—C81.5431 (16)C11—H11B0.9700
C3—H30.9900C11—H11C0.9700
H1O1—O1—H2O1111.5 (13)C6—C5—H5A109.4
H1O2—O2—H2O2112.6 (15)C4—C5—H5B109.4
C2—N1—C3116.40 (9)C6—C5—H5B109.4
C2—N1—H1A108.2H5A—C5—H5B108.0
C3—N1—H1A108.2C5—C6—C7112.85 (11)
C2—N1—H1B108.2C5—C6—H6A109.0
C3—N1—H1B108.2C7—C6—H6A109.0
H1A—N1—H1B107.3C5—C6—H6B109.0
C8—N2—C9117.87 (9)C7—C6—H6B109.0
C8—N2—H2A107.8H6A—C6—H6B107.8
C9—N2—H2A107.8C8—C7—C6114.35 (10)
C8—N2—H2B107.8C8—C7—H7A108.7
C9—N2—H2B107.8C6—C7—H7A108.7
H2A—N2—H2B107.2C8—C7—H7B108.7
C2—C1—C9i113.50 (10)C6—C7—H7B108.7
C2—C1—H1C108.9H7A—C7—H7B107.6
C9i—C1—H1C108.9N2—C8—C7109.85 (10)
C2—C1—H1D108.9N2—C8—C3110.65 (9)
C9i—C1—H1D108.9C7—C8—C3111.90 (10)
H1C—C1—H1D107.7N2—C8—H8108.1
N1—C2—C1114.66 (10)C7—C8—H8108.1
N1—C2—H2C108.6C3—C8—H8108.1
C1—C2—H2C108.6N2—C9—C10109.14 (9)
N1—C2—H2D108.6N2—C9—C1i110.12 (9)
C1—C2—H2D108.6C10—C9—C1i114.39 (10)
H2C—C2—H2D107.6N2—C9—H9107.6
N1—C3—C4111.72 (10)C10—C9—H9107.6
N1—C3—C8107.08 (9)C1i—C9—H9107.6
C4—C3—C8111.74 (10)C11—C10—C9116.80 (10)
N1—C3—H3108.7C11—C10—H10A108.1
C4—C3—H3108.7C9—C10—H10A108.1
C8—C3—H3108.7C11—C10—H10B108.1
C5—C4—C3111.65 (10)C9—C10—H10B108.1
C5—C4—H4A109.3H10A—C10—H10B107.3
C3—C4—H4A109.3C10—C11—H11A109.5
C5—C4—H4B109.3C10—C11—H11B109.5
C3—C4—H4B109.3H11A—C11—H11B109.5
H4A—C4—H4B108.0C10—C11—H11C109.5
C4—C5—C6111.17 (11)H11A—C11—H11C109.5
C4—C5—H5A109.4H11B—C11—H11C109.5
C3—N1—C2—C163.32 (13)C6—C7—C8—N276.17 (13)
C9i—C1—C2—N174.65 (13)C6—C7—C8—C347.14 (14)
C2—N1—C3—C457.74 (13)N1—C3—C8—N2165.93 (9)
C2—N1—C3—C8179.62 (9)C4—C3—C8—N271.44 (12)
N1—C3—C4—C562.83 (13)N1—C3—C8—C771.22 (12)
C8—C3—C4—C557.11 (13)C4—C3—C8—C751.41 (13)
C3—C4—C5—C657.11 (13)C8—N2—C9—C10175.45 (9)
C4—C5—C6—C752.02 (14)C8—N2—C9—C1i58.20 (12)
C5—C6—C7—C847.89 (15)N2—C9—C10—C1167.17 (13)
C9—N2—C8—C7174.08 (9)C1i—C9—C10—C1156.69 (15)
C9—N2—C8—C350.04 (12)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···Cl20.92 (1)2.25 (1)3.1616 (11)172 (1)
O1—H2O1···Cl10.92 (1)2.17 (1)3.0746 (11)169 (1)
O2—H1O2···Cl2ii0.92 (1)2.34 (1)3.2518 (15)172 (2)
O2—H2O2···Cl2iii0.91 (1)2.26 (1)3.1622 (12)173 (2)
N1—H1A···Cl1iv0.902.223.1072 (12)169
N1—H1B···O10.901.922.7740 (15)157
N2—H2A···O20.901.912.7716 (14)161
N2—H2B···Cl2v0.902.453.3357 (12)167
Symmetry codes: (ii) x1, y, z1; (iii) x1/2, y+1/2, z1/2; (iv) x+1, y+1, z+2; (v) x, y, z1.
 

Acknowledgements

The X-ray crystallography experiment at the PLS-II BL2D-SMC beamline was supported in part by MSIT and POSTECH.

Funding information

This work was supported by a Research Grant of Andong National University.

References

First citationAree, T., Hong, Y. P. & Choi, J.-H. (2018). J. Mol. Struct. 1163, 86–93.  Web of Science CSD CrossRef CAS Google Scholar
First citationDe Clercq, E. (2010). J. Med. Chem. 53, 1438–1450.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLim, J. H., Kang, J. S., Kim, H. C., Koh, E. K. & Hong, C. S. (2006). Inorg. Chem. 45, 7821–7827.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMeyer, M., Dahaoui-Gindrey, V., Lecomte, C. & Guilard, R. (1998). Coord. Chem. Rev. 178–180, 1313–1405.  Web of Science CrossRef CAS Google Scholar
First citationMoon, D. & Choi, J.-H. (2017). Acta Cryst. E73, 755–758.  CrossRef IUCr Journals Google Scholar
First citationMoon, D. & Choi, J.-H. (2020a). Acta Cryst. E76, 523–526.  CrossRef IUCr Journals Google Scholar
First citationMoon, D. & Choi, J.-H. (2020b). Acta Cryst. E76, 324–327.  CrossRef IUCr Journals Google Scholar
First citationMoon, D., Jeon, S., Ryoo, K. S. & Choi, J.-H. (2019). Acta Cryst. E75, 921–924.  CrossRef IUCr Journals Google Scholar
First citationMoon, D., Subhan, M. A. & Choi, J.-H. (2013). Acta Cryst. E69, o1620.  CSD CrossRef IUCr Journals Google Scholar
First citationNowicka, B., Reczyński, M., Nitek, W. & Sieklucka, B. (2012). Polyhedron, 47, 73–78.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRonconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633–1648.  Web of Science CrossRef CAS Google Scholar
First citationRoss, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408–6418.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds