research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,5-Di­methyl­bufo­tenine and 2,5-di­methyl­bufo­teni­dine: novel derivatives of natural tryptamines found in Bufo alvarius toads

CROSSMARK_Color_square_no_text.svg

aUniversity of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA, and bCaaMTech, LLC, 58 East Sunset Way, Suite 209, Issaquah, WA 98027, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by C. Schulzke, Universität Greifswald, Germany (Received 24 December 2020; accepted 22 January 2021; online 29 January 2021)

The solid-state structure of the bufotenine derivative bis­(5-meth­oxy-2,N,N-tri­methyl­tryptammonium) (5-MeO-2-Me-DMT) fumarate (systematic name: bis­{[2-(5-meth­oxy-2-methyl-1H-indol-3-yl)eth­yl]di­methyl­aza­nium} (2E)-but-2-enedioate), 2C14H21N2O+·C4H2O42−, the bufotenidine derivative 5-meth­oxy-2,N,N,N-tetra­methyl­tryptammonium (5-MeO-2-Me-TMT) iodide {systematic name: [2-(5-meth­oxy-2-methyl-1H-indol-3-yl)eth­yl]tri­methyl­aza­nium iodide}, C15H23N2O+·I, and the hydrate of the same {systematic name: [2-(5-meth­oxy-2-methyl-1H-indol-3-yl)eth­yl]tri­methyl­aza­nium iodide monohydrate}, C15H23N2O+·I·H2O, are reported. The structure of 5-MeO-2-Me-DMT fumarate possesses one tryptammonium cation and a half of a fumarate dianion in the asymmetric unit, linked together by N—H⋯O hydrogen bonds in infinite two-dimensional networks parallel to the (101) plane. The structure of 5-MeO-2-Me-TMT iodide possesses one tryptammonium cation and one iodide anion in the asymmetric unit. The ions are linked via N—H⋯I hydrogen bonds, and indoles are coupled in dimers through ππ inter­actions. The hydrate of 5-MeO-2-Me-TMT iodide possesses one tryptammonium cation, one iodide anion and one water mol­ecule in the asymmetric unit. It shows N—H⋯I and O—H⋯I hydrogen bonds that couple the tryptammonium cations into dimers.

1. Chemical context

Bufotenine, the N,N-dimethyl analogue of serotonin, and bufotenidine, the N,N,N-trimethyl analogue of serotonin, were both identified in toad secretions in 1934 (Wieland et al., 1934[Wieland, H., Konz, W. & Mittasch, H. (1934). Justus Liebigs Ann. Chem. 513, 1-25.]). These and other indo­alkyl­amines found in the paratoid glands of Bufo alvarius toads can lead to psychotropic activity in humans and other animals. Bufotenine is believed to have psychedelic properties due to its activity as a serotonin 2A agonist (Egan et al., 2000[Egan, C., Grinde, E., Dupre, A., Roth, B. L., Hake, M., Teitler, M. & Herrick-Davis, K. (2000). Synapse, 35, 144-150.]). Bufotenidine (5-HTQ) is a site-selective serotonin 5-HT3 binder (Glennon et al., 1991[Glennon, R. A., Peroutka, S. J. & Dukat, M. (1991). Serotonin: Molecular Biology, Receptors and Functional Effects, edited by J. R. Fozard & P. R. Saxena, pp. 186-191. Basel: Birkhäuser.]), and has demonstrated paralytic activity in rats (Bhattacharya & Sanyal, 1972[Bhattacharya, S. K. & Sanyal, A. K. (1972). Naturwissenschaften, 59, 650-651.]). The best known psychedelic compound in these secretions is the O-methyl­ated version of bufotenine [5-meth­oxy-N,N-di­methyl­tryptamine (5-MeO-DMT)] (Spencer Jr et al., 1987[Spencer, D. G. Jr, Glaser, T. & Traber, J. (1987). Psychopharmacology, 93, 158-166.]). Known as the `God Mol­ecule', 5-MeO-DMT has been used by humans in religious ceremonies where it is traditionally administered by smoking, or vaporizing the secretions of Bufo alvarius toads. 5-MeO-DMT has also been administered intra­venously, though it is inactive through oral consumption (Weil & Davis, 1994[Weil, A. T. & Davis, W. (1994). J. Ethnopharmacol. 41, 1-8.]).

5-Meth­oxy-2,N,N-tri­methyl­tryptamine (5-MeO-2-Me-DMT, 2,5-dimethyl­bufotenine) was first reported in 1955, and crystallized as its picrate salt in two different forms (Shaw, 1955[Shaw, E. (1955). J. Am. Chem. Soc. 77, 4319-4324.]). A detailed synthesis of the freebase of the compound was reported by Alexander Shulgin, who also described its clinical effects on humans, with psychotropic activity occurring within an hour of oral consumption accompanied by physical stimulation (Shulgin & Shulgin, 2016[Shulgin, A. T. & Shulgin, A. (2016). TiKHAL: The Continuation. Isomerdesign. Available at https://isomerdesign.com/PiHKAL/explore.php?domain=tk&id=5045. Accessed 27 April 2020.]). By contrast, 5-MeO-DMT is not orally active, unless consumed in combination with a mono­amine oxidase inhibitor (MAOI). The methyl­ation of the 2-position provides oral activity in 5-MeO-2-Me-DMT, likely by limiting its decomposition by mono­amine­oxidases, and also appears to reduce activity at the 5-HT2A receptor, making it significantly less active than inhaled 5-MeO-DMT. Bioassays of this compound have shown it to be an agonist for the serotonin 5-HT6 receptor (Ki = 89 nM) (Glennon, et al. 2000[Glennon, R. A., Lee, M., Rangisetty, J. B., Dukat, M., Roth, B. L., Savage, J. E., McBride, A., Rauser, L., Hufeisen, S. & Lee, D. K. H. (2000). J. Med. Chem. 43, 1011-1018.]) and the serotonin 5-HT7 receptor (Ki = 1,120 nM) (Vermeulen, et al. 2003[Vermeulen, E. S., Schmidt, A. W., Sprouse, J. S., Wikström, H. V. & Grol, C. J. (2003). J. Med. Chem. 46, 5365-5374.]).

[Scheme 1]

Herein we report the structure of 5-meth­oxy-2,N,N-tri­methyl­tryptammonium fumarate. We also report the synthesis of 5-meth­oxy-2,N,N,N-tetra­methyl­tryptammonium iodide (a bufotenidine analogue), along with its structure. Lastly, we report the structure of the first solvate of 5-meth­oxy-2,N,N,N-tetra­methyl­tryptammonium iodide as its hydrate.

2. Structural commentary

The asymmetric unit of bis­(5-meth­oxy-2,N,N-tri­methyl­tryptammonium) fumarate contains one tryptammonium cation and one half of a fumarate dianion (Fig. 1[link], left). The cation possesses a near planar unit containing the indole, the methyl and the meth­oxy groups, with mean deviation from planarity of 0.047 Å. The ethyl­amino group is turned away from this plane, with a C2—C9—C10—C11 torsion angle of −95.4 (2)°. The hydrogens of the 2-methyl group carbon (C1) exhibit a rotational disorder over two positions with 50% occupancy. Half of the fumarate is present in the asymmetric unit, with the other half generated by inversion. The dianion is slightly distorted from planarity with an r.m.s. deviation of 0.076 Å. The carboxyl­ate unit is delocalized with C—O distances of 1.222 (3) and 1.225 (2) Å.

[Figure 1]
Figure 1
The mol­ecular structure of bis­(5-MeO-2-Me-DMT) fumarate (left), 5-MeO-2-Me-TMT iodide (center), and 5-MeO-2-Me-TMT iodide hydrate (right), showing the atomic labeling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. Symmetry code: (i) −x, −y, 1 − z.

The asymmetric unit of 5-meth­oxy-2,N,N,N-tetra­methyl­tryptammonium iodide contains one tryptammonium cation and one iodide anion (Fig. 1[link], center). The indole ring, methyl and meth­oxy groups of the cation are near planar, with a mean deviation from planarity of 0.050 Å. The ethyl­ammonium arm is turned away from the plane with a C7—C8—C9—C10 torsion angle of 100.9 (4)°. The asymmetric unit of its hydrate contains one tryptammonium cation, one iodide anion, and one water mol­ecule (Fig. 1[link], right). The tryptammonium cation is very similar to the non-hydrate, with a mean deviation from planarity of 0.043 Å for the indole ring, methyl and meth­oxy groups of the cation, and a C1—C8—C9—C10 torsion angle of 98.0 (2)°. The metrical parameters of the three structures are very similar, with the major difference observed being the elongated N—C(meth­yl) bonds in the quaternary salts.

3. Supra­molecular features

In the structure of 5-MeO-2-Me-DMT fumarate, the ammonium nitro­gen exhibits a bifurcated N—H⋯(O,O) hydrogen bond with the two oxygens of a carboxyl­ate unit, and the indole nitro­gen is involved in an N—H⋯O hydrogen bond with one of the carboxyl­ate oxygens (Table 1[link]). This series of N—H⋯O hydrogen bonds connects the ions together in an infinite two-dimensional network parallel to the (101) plane. The six-membered rings of inversion-related indoles stack with parallel slipped ππ inter­actions [inter­centroid distance = 3.9105 (15) Å, inter­planar distance = 3.7688 (19) Å, and slippage = 1.043 (3) Å]. The packing of 5-MeO-2-Me-DMT fumarate is shown at the top of Fig. 2[link].

Table 1
Hydrogen-bond geometry (Å, °) for bis(5-MeO-2-Me-DMT) fumarate[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.87 (1) 1.95 (1) 2.810 (3) 168 (2)
N2—H2⋯O3i 0.88 (1) 2.18 (2) 2.892 (2) 138 (2)
N2—H2⋯O2i 0.88 (1) 2.00 (1) 2.837 (2) 160 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal packing of bis­(5-MeO-2-Me-DMT) fumarate (top), 5-MeO-2-Me-TMT iodide (center), and 5-MeO-2-Me-TMT iodide hydrate (bottom), all shown along the a axis (OLEX2; Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]). Hydrogen bonds and ππ inter­actions are shown as dashed lines. H atoms not involved in hydrogen bonding are omitted for clarity.

In the structure of 5-MeO-2-Me-TMT iodide, the tryptammonium cation and the iodide anion are held together in the asymmetric unit via N-–H⋯I hydrogen bonds, between the indole nitro­gen and the iodide (Table 2[link]). The six-membered rings of inversion-related indoles stack with parallel slipped ππ inter­actions [inter­centroid distance = 3.716 (3) Å, inter­planar distance = 3.488 (4) Å, and slippage = 1.282 (7) Å] that pair the tryptammonium cations together as dimers in the solid state. The packing of 5-MeO-2-Me-TMT iodide is shown in the center of Fig. 2[link].

Table 2
Hydrogen-bond geometry (Å, °) for 5-MeO-2-Me-TMTiodide [link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯I1 0.86 (1) 2.83 (2) 3.662 (3) 161 (4)

In the structure of the hydrate of 5-MeO-2-Me-TMT iodide, the tryptammonium cation shows an N—H⋯I hydrogen bond between the indole nitro­gen and a symmetry-generated iodide. The water mol­ecule forms O—H⋯I hydrogen bonds with the iodide anion and another symmetry-generated iodide (Table 3[link]). The inter­actions of two water mol­ecules and two iodide anions form diamond-shaped rings with graph-set notation R42(8) (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). The N—H⋯I hydrogen bonds combine with the rings to couple the tryptammonium cations together as dimers. The packing of the hydrate of 5-MeO-2-Me-TMT iodide is shown as the bottom of Fig. 2[link]. In moving from 5-MeO-2-Me-TMT to its hydrate, the N—H⋯I inter­action is elongated as the O—H⋯I inter­actions weaken the amine–halide inter­action.

Table 3
Hydrogen-bond geometry (Å, °) for 5-MeO-2-Me-TMT iodide hydrate[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯I1i 0.89 (1) 2.74 (1) 3.617 (2) 168 (4)
O1W—H1WB⋯I1 0.89 (1) 2.76 (2) 3.618 (2) 164 (4)
N1—H1⋯I1ii 0.86 (1) 2.96 (1) 3.7416 (17) 153 (2)
Symmetry codes: (i) [-x+1, -y+2, -z+1]; (ii) [-x+1, -y+1, -z+1].

4. Database survey

The structure of bufotenine (BUFTEN: Falkenberg, 1972[Falkenberg, G. (1972). Acta Cryst. B28, 3219-3228.]) and its borane adduct (OYOCIQ: Moreira et al., 2015[Moreira, L. A., Murta, M. M., Gatto, C. C., Fagg, C. W. & dos Santos, M. L. (2015). Nat. Prod. Commun. 10, 581-584.]) have been reported. The unit cell of 5-MeO-DMT (QQQAGY: Bergin et al., 1968[Bergin, R., Carlström, D., Falkenberg, G. & Ringertz, H. (1968). Acta Cryst. B24, 882.]) and the single crystal structure of its hydro­chloride (MOTYPT: Falkenberg & Carlström, 1971[Falkenberg, G. & Carlström, D. (1971). Acta Cryst. B27, 411-418.]) are the other two structures reported for naturally occurring tryptamines of toads. The other simple 5-meth­oxy tryptamine whose structure is reported is the synthetic compound, 5-meth­oxy-N,N-di­allyl­tryptamine (5-MeO-DALT) (CCDC 1995802: Chadeayne et al., 2020b[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020b). IUCrData, 5, x200498.]). The only two structures of 2-methyl­tryptamines reported are of the anti­psychotic drug oxypertine (CAGXIR: Léger et al., 1983[Léger, J.-M., Saux, M. & Carpy, A. (1983). Acta Cryst. C39, 1428-1430.]) and its bromide salt (OXYPEB10: Fillers & Hawkinson, 1978[Fillers, J. P. & Hawkinson, S. W. (1978). Acta Cryst. B34, 3613-3615.]), which are used to treat schizophrenia. While the structure of bufotenidine has never been reported, the structure of four quaternary tryptammoniums have, and those are the iodide salts of 4-hy­droxy-N,N,N-tri­methyl­tryptamine (4-HO-TMT) and 4-acet­oxy-N,N,N-tri­methyl­tryptamine (4-AcO-TMT) (XUXFAA and XUXDUS: Chadeayne, Pham, Reid et al., 2020[Chadeayne, A. R., Pham, D. N. K., Reid, B. G., Golen, J. A. & Manke, D. R. (2020). ACS Omega, 5, 16940-16943.]), and N,N-dimethyl-N-n-propyl­tryptammonium (DMPT) and N,N-dimethyl-N-allyl­tryptammonium (DMALT) as their iodide salts (CCDC 2017817 and CCDC 2017818: Chadeayne et al., 2020a[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020a). Acta Cryst. E76, 1357-1360.]).

5. Synthesis and crystallization

Crystals of 5-MeO-2-Me-DMT fumarate suitable for diffraction studies were obtained from the evaporation of a methanol solution of a commercial sample (The Indole Shop). 5-MeO-2-Me-TMT iodide was synthesized when 128 mg of 5-MeO-2-Me-DMT fumarate was dissolved in 6 mL of methanol, and 6 mL of methyl­iodide was added. The mixture was refluxed under an atmosphere of nitro­gen for 12 h. The solvent was removed in vacuo to yield a bright-yellow powder. The powder was washed with diethyl ether to yield 127 mg of a light-yellow powder. The product was recrystallized from methanol and water to yield two different crystalline forms. The product was analyzed by 1H and 13C NMR. 1H NMR (400 MHz, D2O): δ 7.36 (d, J = 8.8 Hz, 1 H, ArH), 7.04 (d, J = 2.3 Hz, 1 H, ArH), 6.88 (dd, J = 8.8, 2.4 Hz, 1 H, ArH), 3.88 (s, 3 H, OCH3), 3.44–3.40 (m, 2 H, CH2), 3.21 (s, 9 H, CH3), 3.16–3.12 (m 2 H, CH2), 2.38 (s, 3 H, CH3). 13C NMR (100 MHz, D2O): δ 152.6 (ArC), 135.1 (ArC), 130.3 (ArC), 127.3 (ArC), 111.6 (ArC), 109.9 (ArC), 103.0 (ArC), 99.9 (ArC), 65.2 (AkC), 55.9 (AkC), 52.4 (AkC), 17.2 (AkC), 10.5 (AkC).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The hydrogen atoms on the indole nitro­gen of each structure (H1) and H2 in the fumarate structure were found from a difference-Fourier map and were refined isotropically, using DFIX restraints with N—H distances of 0.87 (1) Å. Isotropic displacement parameters were set to 1.2Ueq of the parent nitro­gen atom. The hydrogen atoms on the water of the hydrate structure (H1WA, H1WB) were found from a difference-Fourier map and were refined isotropically, using a DFIX restraint with an O—H distance of 0.88 (1) Å. Isotropic displacement parameters were set to 1.5Ueq of the parent oxygen atom. All other hydrogen atoms were placed in calculated positions (C—H = 0.93-0.97 Å). Isotropic displacement parameters were set to 1.2Ueq(C) or 1.5Ueq(C-meth­yl). A certain number of reflections is missing from the data of all three structures. This is likely a beamstop related technical issue which could not be resolved as of yet.

Table 4
Experimental details

  bis(5-MeO-2-Me-DMT) fumarate 5-MeO-2-Me-TMT iodide 5-MeO-2-Me-TMT iodide hydrate
Crystal data
Chemical formula C14H21N2O+·0.5C4H2O42− C15H23N2O+·I C15H23N2O+·I·H2O
Mr 290.35 374.25 392.27
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 297 297 297
a, b, c (Å) 7.7368 (3), 12.1233 (5), 17.5528 (8) 7.5067 (8), 22.657 (3), 10.0894 (11) 10.9091 (10), 14.0910 (11), 11.4029 (10)
β (°) 102.154 (1) 97.225 (4) 100.338 (3)
V3) 1609.47 (12) 1702.4 (3) 1724.4 (3)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.08 1.88 1.86
Crystal size (mm) 0.37 × 0.24 × 0.21 0.43 × 0.20 × 0.03 0.38 × 0.22 × 0.20
 
Data collection
Diffractometer Bruker D8 Venture CMOS Bruker D8 Venture CMOS Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.698, 0.745 0.621, 0.745 0.486, 0.562
No. of measured, independent and observed [I > 2σ(I)] reflections 36409, 3005, 2456 40959, 3207, 2875 40738, 3326, 3051
Rint 0.040 0.029 0.025
(sin θ/λ)max−1) 0.611 0.611 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.157, 1.03 0.028, 0.061, 1.17 0.021, 0.054, 1.10
No. of reflections 3005 3207 3326
No. of parameters 200 180 195
No. of restraints 2 1 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.28 0.46, −0.80 0.40, −0.36
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all structures, data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis{[2-(5-methoxy-2-methyl-1H-indol-3-yl)ethyl]dimethylazanium} 2E)-but-2-enedioate (umd1954c_a) top
Crystal data top
C14H21N2O+·0.5C4H2O42F(000) = 624
Mr = 290.35Dx = 1.198 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.7368 (3) ÅCell parameters from 9878 reflections
b = 12.1233 (5) Åθ = 2.7–25.6°
c = 17.5528 (8) ŵ = 0.08 mm1
β = 102.154 (1)°T = 297 K
V = 1609.47 (12) Å3BLOCK, colourless
Z = 40.37 × 0.24 × 0.21 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
2456 reflections with I > 2σ(I)
φ and ω scansRint = 0.040
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
θmax = 25.7°, θmin = 2.9°
Tmin = 0.698, Tmax = 0.745h = 99
36409 measured reflectionsk = 1414
3005 independent reflectionsl = 2121
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.057 w = 1/[σ2(Fo2) + (0.0672P)2 + 0.6102P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.157(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.28 e Å3
3005 reflectionsΔρmin = 0.28 e Å3
200 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.12 (3)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.3263 (2)0.67305 (13)0.37842 (10)0.0836 (5)
O30.1859 (3)0.14716 (14)0.58082 (10)0.1018 (7)
O20.1411 (3)0.02997 (16)0.66613 (8)0.0945 (6)
N10.2833 (2)0.23477 (15)0.44770 (11)0.0669 (5)
H10.257 (3)0.1984 (18)0.4864 (10)0.080*
N20.7825 (2)0.27124 (16)0.23889 (10)0.0658 (5)
H20.738 (3)0.3232 (15)0.2059 (11)0.079*
C10.3791 (4)0.0682 (2)0.38388 (19)0.0938 (8)
H1A0.3344790.0323170.4245510.141*0.5
H1B0.3134160.0438480.3341050.141*0.5
H1C0.5016650.0500050.3887080.141*0.5
H1D0.4318940.0517960.3403580.141*0.5
H1E0.4529570.0402650.4308040.141*0.5
H1F0.2647080.0341080.3762010.141*0.5
C20.3598 (3)0.19070 (17)0.39056 (13)0.0656 (6)
C30.2816 (2)0.34787 (16)0.44112 (11)0.0560 (5)
C40.2189 (3)0.42778 (19)0.48417 (12)0.0659 (6)
H40.1679790.4086170.5258160.079*
C50.2334 (3)0.53672 (18)0.46408 (13)0.0667 (6)
H50.1933280.5918570.4928900.080*
C60.3078 (3)0.56512 (16)0.40087 (12)0.0605 (5)
C70.3669 (2)0.48565 (16)0.35662 (11)0.0557 (5)
H70.4133990.5053440.3137990.067*
C80.3562 (2)0.37523 (15)0.37691 (10)0.0515 (5)
C90.4050 (2)0.27364 (16)0.34566 (12)0.0574 (5)
C100.4906 (3)0.26084 (19)0.27770 (13)0.0665 (6)
H10A0.4443410.3157050.2384810.080*
H10B0.4642300.1883920.2547370.080*
C110.6900 (3)0.27476 (19)0.30381 (12)0.0651 (6)
H11A0.7144810.3447800.3306610.078*
H11B0.7358420.2167090.3405600.078*
C120.7638 (4)0.1629 (2)0.19843 (16)0.0978 (9)
H12A0.6413020.1495290.1760900.147*
H12B0.8079700.1056470.2351510.147*
H12C0.8299660.1635730.1579070.147*
C130.9701 (3)0.2993 (3)0.26402 (18)0.1124 (12)
H13A0.9811660.3711410.2875910.169*
H13B1.0246910.2994400.2197100.169*
H13C1.0273090.2458020.3012110.169*
C140.2885 (4)0.7581 (2)0.42723 (17)0.0922 (8)
H14A0.3116970.8282920.4060780.138*
H14B0.3616620.7497790.4783350.138*
H14C0.1663210.7542530.4305040.138*
C150.1294 (3)0.05865 (16)0.59833 (10)0.0567 (5)
C160.0335 (3)0.01511 (14)0.53555 (10)0.0530 (5)
H160.0205370.0886780.5482780.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1053 (13)0.0551 (9)0.0918 (11)0.0036 (8)0.0242 (9)0.0046 (8)
O30.1565 (19)0.0704 (10)0.0670 (10)0.0486 (11)0.0027 (10)0.0076 (8)
O20.1179 (14)0.1187 (15)0.0407 (8)0.0287 (11)0.0028 (8)0.0025 (8)
N10.0666 (11)0.0622 (11)0.0717 (11)0.0061 (8)0.0140 (9)0.0090 (8)
N20.0500 (9)0.0853 (13)0.0599 (10)0.0160 (8)0.0066 (7)0.0249 (9)
C10.0986 (19)0.0601 (14)0.121 (2)0.0031 (13)0.0187 (16)0.0006 (14)
C20.0545 (11)0.0587 (11)0.0790 (14)0.0016 (9)0.0032 (10)0.0014 (10)
C30.0470 (9)0.0604 (11)0.0580 (11)0.0049 (8)0.0051 (8)0.0038 (8)
C40.0643 (12)0.0782 (14)0.0570 (11)0.0023 (10)0.0166 (9)0.0029 (10)
C50.0673 (13)0.0677 (13)0.0656 (12)0.0062 (10)0.0149 (10)0.0073 (10)
C60.0561 (11)0.0571 (11)0.0647 (12)0.0013 (8)0.0042 (9)0.0034 (9)
C70.0474 (9)0.0609 (11)0.0575 (11)0.0052 (8)0.0085 (8)0.0019 (8)
C80.0378 (8)0.0581 (10)0.0555 (10)0.0050 (7)0.0027 (7)0.0004 (8)
C90.0421 (9)0.0606 (11)0.0671 (11)0.0022 (8)0.0060 (8)0.0052 (9)
C100.0516 (11)0.0749 (13)0.0711 (13)0.0013 (9)0.0088 (9)0.0118 (10)
C110.0517 (11)0.0813 (14)0.0602 (11)0.0098 (9)0.0067 (9)0.0021 (10)
C120.130 (2)0.0959 (19)0.0772 (16)0.0241 (17)0.0451 (16)0.0052 (14)
C130.0471 (12)0.196 (4)0.0931 (19)0.0094 (16)0.0133 (12)0.017 (2)
C140.106 (2)0.0614 (13)0.1019 (19)0.0060 (13)0.0050 (16)0.0115 (13)
C150.0618 (11)0.0609 (11)0.0447 (10)0.0017 (9)0.0053 (8)0.0072 (8)
C160.0666 (11)0.0443 (9)0.0460 (9)0.0062 (8)0.0074 (8)0.0000 (7)
Geometric parameters (Å, º) top
O1—C61.382 (2)C5—C61.396 (3)
O1—C141.410 (3)C6—C71.375 (3)
O3—C151.222 (2)C7—H70.9300
O2—C151.225 (2)C7—C81.392 (3)
N1—H10.870 (10)C8—C91.431 (3)
N1—C21.375 (3)C9—C101.490 (3)
N1—C31.376 (3)C10—H10A0.9700
N2—H20.876 (10)C10—H10B0.9700
N2—C111.469 (3)C10—C111.523 (3)
N2—C121.485 (3)C11—H11A0.9700
N2—C131.465 (3)C11—H11B0.9700
C1—H1A0.9600C12—H12A0.9600
C1—H1B0.9600C12—H12B0.9600
C1—H1C0.9600C12—H12C0.9600
C1—H1D0.9600C13—H13A0.9600
C1—H1E0.9600C13—H13B0.9600
C1—H1F0.9600C13—H13C0.9600
C1—C21.500 (3)C14—H14A0.9600
C2—C91.368 (3)C14—H14B0.9600
C3—C41.378 (3)C14—H14C0.9600
C3—C81.410 (3)C15—C161.490 (2)
C4—H40.9300C16—C16i1.299 (3)
C4—C51.378 (3)C16—H160.9300
C5—H50.9300
C6—O1—C14118.16 (19)C7—C8—C3119.16 (18)
C2—N1—H1125.5 (17)C7—C8—C9134.02 (18)
C2—N1—C3108.90 (17)C2—C9—C8106.98 (18)
C3—N1—H1124.8 (17)C2—C9—C10126.55 (19)
C11—N2—H2107.6 (16)C8—C9—C10126.46 (18)
C11—N2—C12112.47 (19)C9—C10—H10A109.7
C12—N2—H2109.6 (16)C9—C10—H10B109.7
C13—N2—H2105.0 (16)C9—C10—C11109.91 (17)
C13—N2—C11111.93 (19)H10A—C10—H10B108.2
C13—N2—C12109.9 (2)C11—C10—H10A109.7
H1A—C1—H1B109.5C11—C10—H10B109.7
H1A—C1—H1C109.5N2—C11—C10113.05 (17)
H1B—C1—H1C109.5N2—C11—H11A109.0
H1D—C1—H1E109.5N2—C11—H11B109.0
H1D—C1—H1F109.5C10—C11—H11A109.0
H1E—C1—H1F109.5C10—C11—H11B109.0
C2—C1—H1A109.5H11A—C11—H11B107.8
C2—C1—H1B109.5N2—C12—H12A109.5
C2—C1—H1C109.5N2—C12—H12B109.5
C2—C1—H1D109.5N2—C12—H12C109.5
C2—C1—H1E109.5H12A—C12—H12B109.5
C2—C1—H1F109.5H12A—C12—H12C109.5
N1—C2—C1120.5 (2)H12B—C12—H12C109.5
C9—C2—N1109.64 (18)N2—C13—H13A109.5
C9—C2—C1129.9 (2)N2—C13—H13B109.5
N1—C3—C4130.75 (19)N2—C13—H13C109.5
N1—C3—C8107.66 (18)H13A—C13—H13B109.5
C4—C3—C8121.57 (18)H13A—C13—H13C109.5
C3—C4—H4120.8H13B—C13—H13C109.5
C5—C4—C3118.46 (19)O1—C14—H14A109.5
C5—C4—H4120.8O1—C14—H14B109.5
C4—C5—H5119.7O1—C14—H14C109.5
C4—C5—C6120.6 (2)H14A—C14—H14B109.5
C6—C5—H5119.7H14A—C14—H14C109.5
O1—C6—C5122.99 (19)H14B—C14—H14C109.5
C7—C6—O1115.82 (18)O3—C15—O2122.43 (19)
C7—C6—C5121.19 (19)O3—C15—C16119.32 (17)
C6—C7—H7120.5O2—C15—C16118.16 (18)
C6—C7—C8118.98 (18)C15—C16—H16117.4
C8—C7—H7120.5C16i—C16—C15125.2 (2)
C3—C8—C9106.82 (17)C16i—C16—H16117.4
O1—C6—C7—C8178.56 (17)C3—C8—C9—C10179.36 (17)
O3—C15—C16—C16i17.2 (4)C4—C3—C8—C70.1 (3)
O2—C15—C16—C16i159.4 (3)C4—C3—C8—C9179.39 (17)
N1—C2—C9—C80.7 (2)C4—C5—C6—O1179.70 (19)
N1—C2—C9—C10179.92 (18)C4—C5—C6—C70.6 (3)
N1—C3—C4—C5179.6 (2)C5—C6—C7—C81.7 (3)
N1—C3—C8—C7178.78 (16)C6—C7—C8—C31.4 (3)
N1—C3—C8—C90.70 (19)C6—C7—C8—C9179.32 (18)
C1—C2—C9—C8179.4 (2)C7—C8—C9—C2179.38 (19)
C1—C2—C9—C101.3 (3)C7—C8—C9—C101.3 (3)
C2—N1—C3—C4179.7 (2)C8—C3—C4—C51.2 (3)
C2—N1—C3—C81.2 (2)C8—C9—C10—C1183.8 (2)
C2—C9—C10—C1195.4 (2)C9—C10—C11—N2175.81 (18)
C3—N1—C2—C1180.0 (2)C12—N2—C11—C1063.3 (2)
C3—N1—C2—C91.2 (2)C13—N2—C11—C10172.4 (2)
C3—C4—C5—C60.9 (3)C14—O1—C6—C58.0 (3)
C3—C8—C9—C20.0 (2)C14—O1—C6—C7172.3 (2)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.87 (1)1.95 (1)2.810 (3)168 (2)
N2—H2···O3ii0.88 (1)2.18 (2)2.892 (2)138 (2)
N2—H2···O2ii0.88 (1)2.00 (1)2.837 (2)160 (2)
Symmetry code: (ii) x+1/2, y+1/2, z1/2.
[2-(5-Methoxy-2-methyl-1H-indol-3-yl)ethyl]trimethylazanium iodide (umd2018f_a) top
Crystal data top
C15H23N2O+·IF(000) = 752
Mr = 374.25Dx = 1.460 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.5067 (8) ÅCell parameters from 9773 reflections
b = 22.657 (3) Åθ = 2.9–25.7°
c = 10.0894 (11) ŵ = 1.88 mm1
β = 97.225 (4)°T = 297 K
V = 1702.4 (3) Å3PLATE, colourless
Z = 40.43 × 0.20 × 0.03 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
2875 reflections with I > 2σ(I)
φ and ω scansRint = 0.029
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
θmax = 25.7°, θmin = 2.7°
Tmin = 0.621, Tmax = 0.745h = 98
40959 measured reflectionsk = 2727
3207 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061 w = 1/[σ2(Fo2) + 2.306P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max = 0.001
3207 reflectionsΔρmax = 0.46 e Å3
180 parametersΔρmin = 0.80 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.43011 (3)0.33522 (2)0.91956 (2)0.05592 (9)
O10.1841 (4)0.49375 (15)0.1758 (4)0.1013 (11)
N10.5763 (6)0.39020 (16)0.6094 (3)0.0793 (11)
H10.563 (6)0.3830 (19)0.6915 (17)0.095*
N20.9563 (3)0.31308 (11)0.1516 (3)0.0481 (6)
C10.5377 (4)0.41400 (14)0.3926 (4)0.0538 (8)
C20.4496 (5)0.43986 (15)0.2768 (4)0.0596 (9)
H20.4997190.4385750.1971330.072*
C30.2864 (5)0.46743 (17)0.2829 (5)0.0763 (12)
C40.2127 (6)0.4695 (2)0.4038 (6)0.0954 (18)
H40.1034760.4886050.4062640.114*
C50.2955 (6)0.4446 (2)0.5172 (6)0.0921 (17)
H50.2443980.4463920.5963950.110*
C60.4595 (6)0.41628 (17)0.5120 (4)0.0687 (11)
C70.7278 (6)0.37181 (16)0.5563 (4)0.0676 (10)
C80.7079 (5)0.38575 (14)0.4236 (3)0.0529 (8)
C90.8472 (4)0.37817 (15)0.3310 (3)0.0551 (8)
H9A0.9646630.3755430.3831120.066*
H9B0.8467420.4126340.2739070.066*
C100.8157 (4)0.32358 (13)0.2446 (3)0.0422 (6)
H10A0.6991260.3268780.1915220.051*
H10B0.8122400.2894660.3023240.051*
C111.1387 (4)0.30522 (18)0.2286 (4)0.0657 (10)
H11A1.1728790.3407470.2771010.099*
H11B1.2241490.2968300.1679520.099*
H11C1.1358470.2730380.2902260.099*
C120.9611 (5)0.36360 (16)0.0563 (3)0.0615 (9)
H12A1.0006130.3985940.1049650.092*
H12B0.8430130.3699570.0097500.092*
H12C1.0425950.3546130.0069820.092*
C130.9054 (6)0.25820 (16)0.0735 (4)0.0669 (10)
H13A0.9918670.2506970.0130650.100*
H13B0.7887480.2632190.0236300.100*
H13C0.9028290.2254670.1336260.100*
C140.2614 (7)0.4976 (2)0.0551 (6)0.1045 (17)
H14A0.1759890.5145160.0132540.157*
H14B0.2939590.4588310.0281580.157*
H14C0.3665340.5220460.0684180.157*
C150.8829 (8)0.3443 (2)0.6421 (5)0.1011 (16)
H15A0.9281460.3117420.5953320.152*
H15B0.8439730.3303780.7235830.152*
H15C0.9761820.3730880.6623300.152*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.05627 (14)0.06367 (15)0.05083 (13)0.00004 (11)0.01850 (9)0.00788 (10)
O10.0650 (18)0.091 (2)0.143 (3)0.0200 (17)0.007 (2)0.037 (2)
N10.113 (3)0.077 (2)0.056 (2)0.041 (2)0.040 (2)0.0190 (18)
N20.0462 (14)0.0540 (15)0.0465 (14)0.0096 (12)0.0151 (11)0.0100 (12)
C10.0515 (19)0.0489 (18)0.065 (2)0.0174 (15)0.0235 (16)0.0221 (16)
C20.0524 (19)0.055 (2)0.074 (2)0.0069 (16)0.0175 (17)0.0222 (18)
C30.051 (2)0.062 (2)0.116 (4)0.0094 (18)0.014 (2)0.040 (2)
C40.055 (2)0.083 (3)0.155 (5)0.022 (2)0.041 (3)0.071 (3)
C50.078 (3)0.090 (3)0.122 (4)0.044 (3)0.062 (3)0.066 (3)
C60.074 (3)0.064 (2)0.075 (3)0.035 (2)0.039 (2)0.035 (2)
C70.089 (3)0.056 (2)0.059 (2)0.027 (2)0.016 (2)0.0099 (17)
C80.059 (2)0.0481 (18)0.0541 (19)0.0156 (15)0.0167 (15)0.0122 (15)
C90.0495 (18)0.0537 (19)0.064 (2)0.0099 (15)0.0136 (15)0.0049 (16)
C100.0345 (14)0.0490 (17)0.0465 (16)0.0011 (12)0.0180 (12)0.0028 (13)
C110.0437 (18)0.082 (3)0.073 (2)0.0165 (17)0.0138 (16)0.023 (2)
C120.060 (2)0.072 (2)0.057 (2)0.0108 (17)0.0217 (16)0.0255 (17)
C130.086 (3)0.060 (2)0.057 (2)0.0162 (19)0.0179 (19)0.0047 (17)
C140.091 (4)0.066 (3)0.150 (5)0.013 (3)0.011 (4)0.014 (3)
C150.132 (4)0.096 (4)0.071 (3)0.022 (3)0.006 (3)0.013 (3)
Geometric parameters (Å, º) top
O1—C31.380 (5)C8—C91.497 (4)
O1—C141.416 (6)C9—H9A0.9700
N1—H10.863 (10)C9—H9B0.9700
N1—C61.367 (6)C9—C101.514 (4)
N1—C71.381 (5)C10—H10A0.9700
N2—C101.517 (3)C10—H10B0.9700
N2—C111.497 (4)C11—H11A0.9600
N2—C121.498 (4)C11—H11B0.9600
N2—C131.496 (4)C11—H11C0.9600
C1—C21.397 (5)C12—H12A0.9600
C1—C61.406 (5)C12—H12B0.9600
C1—C81.428 (5)C12—H12C0.9600
C2—H20.9300C13—H13A0.9600
C2—C31.383 (5)C13—H13B0.9600
C3—C41.403 (7)C13—H13C0.9600
C4—H40.9300C14—H14A0.9600
C4—C51.354 (7)C14—H14B0.9600
C5—H50.9300C14—H14C0.9600
C5—C61.396 (6)C15—H15A0.9600
C7—C81.365 (5)C15—H15B0.9600
C7—C151.497 (6)C15—H15C0.9600
C3—O1—C14116.9 (3)C10—C9—H9A109.1
C6—N1—H1129 (3)C10—C9—H9B109.1
C6—N1—C7109.6 (3)N2—C10—H10A108.6
C7—N1—H1121 (3)N2—C10—H10B108.6
C11—N2—C10111.0 (2)C9—C10—N2114.5 (2)
C11—N2—C12109.3 (3)C9—C10—H10A108.6
C12—N2—C10110.6 (2)C9—C10—H10B108.6
C13—N2—C10107.8 (2)H10A—C10—H10B107.6
C13—N2—C11109.3 (3)N2—C11—H11A109.5
C13—N2—C12108.8 (3)N2—C11—H11B109.5
C2—C1—C6119.8 (4)N2—C11—H11C109.5
C2—C1—C8133.4 (3)H11A—C11—H11B109.5
C6—C1—C8106.7 (4)H11A—C11—H11C109.5
C1—C2—H2120.6H11B—C11—H11C109.5
C3—C2—C1118.8 (4)N2—C12—H12A109.5
C3—C2—H2120.6N2—C12—H12B109.5
O1—C3—C2124.7 (4)N2—C12—H12C109.5
O1—C3—C4115.2 (4)H12A—C12—H12B109.5
C2—C3—C4120.1 (5)H12A—C12—H12C109.5
C3—C4—H4119.0H12B—C12—H12C109.5
C5—C4—C3122.1 (4)N2—C13—H13A109.5
C5—C4—H4119.0N2—C13—H13B109.5
C4—C5—H5120.9N2—C13—H13C109.5
C4—C5—C6118.3 (4)H13A—C13—H13B109.5
C6—C5—H5120.9H13A—C13—H13C109.5
N1—C6—C1107.6 (4)H13B—C13—H13C109.5
N1—C6—C5131.4 (4)O1—C14—H14A109.5
C5—C6—C1120.9 (5)O1—C14—H14B109.5
N1—C7—C15121.3 (4)O1—C14—H14C109.5
C8—C7—N1108.5 (4)H14A—C14—H14B109.5
C8—C7—C15130.1 (4)H14A—C14—H14C109.5
C1—C8—C9126.2 (3)H14B—C14—H14C109.5
C7—C8—C1107.6 (3)C7—C15—H15A109.5
C7—C8—C9125.9 (4)C7—C15—H15B109.5
C8—C9—H9A109.1C7—C15—H15C109.5
C8—C9—H9B109.1H15A—C15—H15B109.5
C8—C9—C10112.5 (2)H15A—C15—H15C109.5
H9A—C9—H9B107.8H15B—C15—H15C109.5
O1—C3—C4—C5178.7 (4)C6—C1—C8—C70.3 (4)
N1—C7—C8—C10.1 (4)C6—C1—C8—C9174.2 (3)
N1—C7—C8—C9174.5 (3)C7—N1—C6—C10.6 (4)
C1—C2—C3—O1178.8 (3)C7—N1—C6—C5175.7 (4)
C1—C2—C3—C40.5 (5)C7—C8—C9—C10100.9 (4)
C1—C8—C9—C1085.7 (4)C8—C1—C2—C3175.7 (3)
C2—C1—C6—N1177.4 (3)C8—C1—C6—N10.5 (4)
C2—C1—C6—C50.7 (5)C8—C1—C6—C5176.2 (3)
C2—C1—C8—C7176.6 (3)C8—C9—C10—N2178.5 (3)
C2—C1—C8—C92.1 (6)C11—N2—C10—C960.6 (3)
C2—C3—C4—C50.7 (6)C12—N2—C10—C960.8 (4)
C3—C4—C5—C60.2 (6)C13—N2—C10—C9179.7 (3)
C4—C5—C6—N1176.4 (4)C14—O1—C3—C26.5 (6)
C4—C5—C6—C10.5 (6)C14—O1—C3—C4174.1 (4)
C6—N1—C7—C80.4 (4)C15—C7—C8—C1177.0 (4)
C6—N1—C7—C15177.0 (3)C15—C7—C8—C92.6 (6)
C6—C1—C2—C30.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···I10.86 (1)2.83 (2)3.662 (3)161 (4)
[2-(5-Methoxy-2-methyl-1H-indol-3-yl)ethyl]trimethylazanium iodide monohydrate (umd2009b_a) top
Crystal data top
C15H23N2O+·I·H2OF(000) = 792
Mr = 392.27Dx = 1.511 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.9091 (10) ÅCell parameters from 9808 reflections
b = 14.0910 (11) Åθ = 2.8–26.0°
c = 11.4029 (10) ŵ = 1.86 mm1
β = 100.338 (3)°T = 297 K
V = 1724.4 (3) Å3BLOCK, colourless
Z = 40.38 × 0.22 × 0.20 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
3051 reflections with I > 2σ(I)
φ and ω scansRint = 0.025
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
θmax = 26.1°, θmin = 3.8°
Tmin = 0.486, Tmax = 0.562h = 1313
40738 measured reflectionsk = 1717
3326 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0198P)2 + 0.9135P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.002
3326 reflectionsΔρmax = 0.40 e Å3
195 parametersΔρmin = 0.36 e Å3
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.66404 (2)0.98962 (2)0.30669 (2)0.05629 (7)
O10.06415 (16)0.35370 (12)0.19831 (14)0.0645 (4)
O1W0.3969 (2)0.90251 (15)0.4217 (2)0.0846 (6)
H1WA0.384 (4)0.937 (3)0.483 (2)0.127*
H1WB0.465 (2)0.931 (3)0.407 (4)0.127*
N10.21469 (17)0.25708 (12)0.63123 (17)0.0499 (4)
H10.231 (2)0.2044 (11)0.6685 (19)0.060*
N20.35006 (14)0.65530 (10)0.53057 (13)0.0379 (3)
C10.25645 (18)0.34390 (14)0.67593 (18)0.0445 (4)
C20.14222 (18)0.26828 (13)0.52036 (18)0.0432 (4)
C30.0771 (2)0.20291 (14)0.4425 (2)0.0544 (5)
H30.0786990.1386860.4615200.065*
C40.0105 (2)0.23508 (15)0.3370 (2)0.0551 (5)
H40.0341660.1920970.2838370.066*
C50.00816 (18)0.33197 (15)0.30727 (18)0.0468 (4)
C60.07209 (17)0.39779 (13)0.38389 (17)0.0414 (4)
H60.0704680.4618080.3638180.050*
C70.14001 (16)0.36583 (12)0.49342 (17)0.0378 (4)
C80.21289 (16)0.41246 (13)0.59414 (17)0.0391 (4)
C90.23415 (19)0.51747 (13)0.60723 (19)0.0421 (4)
H9A0.2538280.5336480.6911890.051*
H9B0.1585310.5508530.5725740.051*
C100.33991 (16)0.54890 (12)0.54616 (16)0.0354 (4)
H10A0.4177250.5259250.5921610.042*
H10B0.3291950.5192250.4682260.042*
C110.2417 (2)0.69182 (16)0.4424 (2)0.0589 (6)
H11A0.2547270.7575860.4263760.088*
H11B0.1666860.6850970.4745900.088*
H11C0.2343300.6561690.3697140.088*
C120.3573 (2)0.70577 (15)0.6465 (2)0.0548 (5)
H12A0.3708230.7722330.6354470.082*
H12B0.4250020.6804580.7033900.082*
H12C0.2806150.6971250.6754410.082*
C130.4675 (2)0.67358 (16)0.4820 (2)0.0553 (5)
H13A0.4758640.7404460.4694150.083*
H13B0.4633690.6406060.4077650.083*
H13C0.5380300.6513440.5380020.083*
C140.3351 (2)0.35188 (18)0.7972 (2)0.0608 (6)
H14A0.3138360.4089310.8350090.091*
H14B0.4214380.3538240.7901770.091*
H14C0.3205030.2979930.8443790.091*
C150.0569 (2)0.44733 (19)0.1541 (2)0.0610 (6)
H15A0.1072590.4519670.0760670.092*
H15B0.0280920.4618780.1495380.092*
H15C0.0866530.4914670.2066570.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.05807 (11)0.05975 (11)0.05273 (10)0.01395 (6)0.01446 (7)0.00736 (6)
O10.0638 (10)0.0650 (10)0.0573 (9)0.0043 (8)0.0091 (8)0.0007 (8)
O1W0.1088 (17)0.0667 (12)0.0840 (14)0.0251 (11)0.0323 (12)0.0142 (10)
N10.0541 (10)0.0356 (8)0.0590 (11)0.0022 (7)0.0080 (8)0.0119 (7)
N20.0402 (8)0.0314 (7)0.0412 (8)0.0007 (6)0.0052 (6)0.0012 (6)
C10.0367 (9)0.0451 (10)0.0524 (11)0.0013 (8)0.0102 (8)0.0061 (8)
C20.0436 (10)0.0346 (9)0.0530 (11)0.0008 (8)0.0134 (8)0.0047 (8)
C30.0621 (13)0.0328 (9)0.0699 (14)0.0055 (9)0.0155 (11)0.0010 (9)
C40.0550 (12)0.0449 (11)0.0643 (14)0.0095 (9)0.0076 (10)0.0119 (10)
C50.0408 (10)0.0510 (11)0.0488 (11)0.0003 (8)0.0086 (8)0.0020 (9)
C60.0381 (9)0.0365 (9)0.0507 (11)0.0002 (7)0.0110 (8)0.0038 (8)
C70.0340 (9)0.0328 (9)0.0488 (10)0.0005 (7)0.0135 (8)0.0014 (7)
C80.0358 (9)0.0367 (9)0.0468 (10)0.0016 (7)0.0128 (8)0.0015 (7)
C90.0436 (10)0.0358 (9)0.0493 (11)0.0011 (7)0.0146 (8)0.0033 (8)
C100.0370 (9)0.0282 (8)0.0411 (9)0.0017 (7)0.0074 (7)0.0007 (7)
C110.0586 (13)0.0497 (12)0.0625 (13)0.0088 (10)0.0054 (11)0.0158 (10)
C120.0716 (14)0.0403 (10)0.0530 (12)0.0058 (10)0.0124 (10)0.0114 (9)
C130.0546 (12)0.0456 (11)0.0698 (14)0.0080 (9)0.0220 (11)0.0031 (10)
C140.0528 (13)0.0664 (14)0.0596 (13)0.0004 (11)0.0003 (10)0.0108 (11)
C150.0559 (13)0.0749 (16)0.0513 (12)0.0025 (11)0.0071 (10)0.0113 (11)
Geometric parameters (Å, º) top
O1—C51.381 (3)C7—C81.434 (3)
O1—C151.420 (3)C8—C91.501 (2)
O1W—H1WA0.888 (10)C9—H9A0.9700
O1W—H1WB0.886 (10)C9—H9B0.9700
N1—H10.858 (10)C9—C101.517 (3)
N1—C11.371 (3)C10—H10A0.9700
N1—C21.375 (3)C10—H10B0.9700
N2—C101.516 (2)C11—H11A0.9600
N2—C111.499 (2)C11—H11B0.9600
N2—C121.491 (2)C11—H11C0.9600
N2—C131.506 (2)C12—H12A0.9600
C1—C81.367 (3)C12—H12B0.9600
C1—C141.495 (3)C12—H12C0.9600
C2—C31.384 (3)C13—H13A0.9600
C2—C71.408 (2)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C3—C41.367 (3)C14—H14A0.9600
C4—H40.9300C14—H14B0.9600
C4—C51.406 (3)C14—H14C0.9600
C5—C61.375 (3)C15—H15A0.9600
C6—H60.9300C15—H15B0.9600
C6—C71.407 (3)C15—H15C0.9600
C5—O1—C15117.80 (17)C10—C9—H9A109.4
H1WA—O1W—H1WB99 (4)C10—C9—H9B109.4
C1—N1—H1124.2 (17)N2—C10—C9114.85 (14)
C1—N1—C2109.71 (16)N2—C10—H10A108.6
C2—N1—H1126.1 (17)N2—C10—H10B108.6
C11—N2—C10110.66 (15)C9—C10—H10A108.6
C11—N2—C13108.37 (17)C9—C10—H10B108.6
C12—N2—C10111.16 (14)H10A—C10—H10B107.5
C12—N2—C11109.93 (17)N2—C11—H11A109.5
C12—N2—C13109.35 (16)N2—C11—H11B109.5
C13—N2—C10107.28 (14)N2—C11—H11C109.5
N1—C1—C14120.53 (18)H11A—C11—H11B109.5
C8—C1—N1108.97 (17)H11A—C11—H11C109.5
C8—C1—C14130.49 (19)H11B—C11—H11C109.5
N1—C2—C3131.14 (18)N2—C12—H12A109.5
N1—C2—C7107.29 (17)N2—C12—H12B109.5
C3—C2—C7121.55 (19)N2—C12—H12C109.5
C2—C3—H3120.8H12A—C12—H12B109.5
C4—C3—C2118.35 (19)H12A—C12—H12C109.5
C4—C3—H3120.8H12B—C12—H12C109.5
C3—C4—H4119.4N2—C13—H13A109.5
C3—C4—C5121.18 (19)N2—C13—H13B109.5
C5—C4—H4119.4N2—C13—H13C109.5
O1—C5—C4114.49 (19)H13A—C13—H13B109.5
C6—C5—O1124.38 (19)H13A—C13—H13C109.5
C6—C5—C4121.12 (19)H13B—C13—H13C109.5
C5—C6—H6120.8C1—C14—H14A109.5
C5—C6—C7118.31 (17)C1—C14—H14B109.5
C7—C6—H6120.8C1—C14—H14C109.5
C2—C7—C8106.70 (17)H14A—C14—H14B109.5
C6—C7—C2119.47 (17)H14A—C14—H14C109.5
C6—C7—C8133.83 (17)H14B—C14—H14C109.5
C1—C8—C7107.31 (16)O1—C15—H15A109.5
C1—C8—C9126.88 (18)O1—C15—H15B109.5
C7—C8—C9125.80 (17)O1—C15—H15C109.5
C8—C9—H9A109.4H15A—C15—H15B109.5
C8—C9—H9B109.4H15A—C15—H15C109.5
C8—C9—C10111.03 (15)H15B—C15—H15C109.5
H9A—C9—H9B108.0
O1—C5—C6—C7178.59 (18)C3—C4—C5—C60.6 (3)
N1—C1—C8—C70.1 (2)C4—C5—C6—C70.1 (3)
N1—C1—C8—C9178.83 (17)C5—C6—C7—C21.0 (3)
N1—C2—C3—C4179.1 (2)C5—C6—C7—C8177.98 (19)
N1—C2—C7—C6179.87 (17)C6—C7—C8—C1179.6 (2)
N1—C2—C7—C80.9 (2)C6—C7—C8—C90.8 (3)
C1—N1—C2—C3177.8 (2)C7—C2—C3—C40.5 (3)
C1—N1—C2—C71.0 (2)C7—C8—C9—C1083.5 (2)
C1—C8—C9—C1098.0 (2)C8—C9—C10—N2167.09 (15)
C2—N1—C1—C80.7 (2)C11—N2—C10—C968.4 (2)
C2—N1—C1—C14178.50 (19)C12—N2—C10—C954.1 (2)
C2—C3—C4—C50.3 (3)C13—N2—C10—C9173.61 (16)
C2—C7—C8—C10.5 (2)C14—C1—C8—C7179.0 (2)
C2—C7—C8—C9178.25 (17)C14—C1—C8—C90.3 (3)
C3—C2—C7—C61.2 (3)C15—O1—C5—C4171.0 (2)
C3—C2—C7—C8178.00 (18)C15—O1—C5—C610.2 (3)
C3—C4—C5—O1179.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···I1i0.89 (1)2.74 (1)3.617 (2)168 (4)
O1W—H1WB···I10.89 (1)2.76 (2)3.618 (2)164 (4)
N1—H1···I1ii0.86 (1)2.96 (1)3.7416 (17)153 (2)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

Financial statements and conflict of inter­est: This study was funded by CaaMTech, Inc. ARC reports an ownership inter­est in CaaMTech, Inc., which owns US and worldwide patent applications, covering new tryptamine compounds, compositions, formulations, novel crystalline forms, and methods of making and using the same.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1429086).

References

First citationBergin, R., Carlström, D., Falkenberg, G. & Ringertz, H. (1968). Acta Cryst. B24, 882.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationBhattacharya, S. K. & Sanyal, A. K. (1972). Naturwissenschaften, 59, 650–651.  CrossRef CAS PubMed Google Scholar
First citationBruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020a). Acta Cryst. E76, 1357–1360.  CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020b). IUCrData, 5, x200498.  Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Reid, B. G., Golen, J. A. & Manke, D. R. (2020). ACS Omega, 5, 16940–16943.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEgan, C., Grinde, E., Dupre, A., Roth, B. L., Hake, M., Teitler, M. & Herrick-Davis, K. (2000). Synapse, 35, 144–150.  CrossRef PubMed CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFalkenberg, G. (1972). Acta Cryst. B28, 3219–3228.  CSD CrossRef IUCr Journals Google Scholar
First citationFalkenberg, G. & Carlström, D. (1971). Acta Cryst. B27, 411–418.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFillers, J. P. & Hawkinson, S. W. (1978). Acta Cryst. B34, 3613–3615.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlennon, R. A., Lee, M., Rangisetty, J. B., Dukat, M., Roth, B. L., Savage, J. E., McBride, A., Rauser, L., Hufeisen, S. & Lee, D. K. H. (2000). J. Med. Chem. 43, 1011–1018.  CrossRef PubMed CAS Google Scholar
First citationGlennon, R. A., Peroutka, S. J. & Dukat, M. (1991). Serotonin: Molecular Biology, Receptors and Functional Effects, edited by J. R. Fozard & P. R. Saxena, pp. 186–191. Basel: Birkhäuser.  Google Scholar
First citationLéger, J.-M., Saux, M. & Carpy, A. (1983). Acta Cryst. C39, 1428–1430.  CSD CrossRef IUCr Journals Google Scholar
First citationMoreira, L. A., Murta, M. M., Gatto, C. C., Fagg, C. W. & dos Santos, M. L. (2015). Nat. Prod. Commun. 10, 581–584.  PubMed Google Scholar
First citationShaw, E. (1955). J. Am. Chem. Soc. 77, 4319–4324.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShulgin, A. T. & Shulgin, A. (2016). TiKHAL: The Continuation. Isomerdesign. Available at https://isomerdesign.com/PiHKAL/explore.php?domain=tk&id=5045. Accessed 27 April 2020.  Google Scholar
First citationSpencer, D. G. Jr, Glaser, T. & Traber, J. (1987). Psychopharmacology, 93, 158–166.  CrossRef CAS PubMed Google Scholar
First citationVermeulen, E. S., Schmidt, A. W., Sprouse, J. S., Wikström, H. V. & Grol, C. J. (2003). J. Med. Chem. 46, 5365–5374.  CrossRef PubMed CAS Google Scholar
First citationWeil, A. T. & Davis, W. (1994). J. Ethnopharmacol. 41, 1–8.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWieland, H., Konz, W. & Mittasch, H. (1934). Justus Liebigs Ann. Chem. 513, 1–25.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds