research communications
N′-[1-(pyrazin-2-yl)ethylidene]benzohydrazidato}cadmium(II)
of bis{2-hydroxy-aGuangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
*Correspondence e-mail: 191723030@qq.com
In the title complex molecule, [Cd(C13H11N4O2)2], the Cd atom is coordinated in a distorted octahedral geometry by two tridentate ligands synthesized from 2-hydroxybenzohydrazide and 1-(pyrazin-2-yl)ethan-1-one. The molecule has twofold and is isomorphous to its Mn, Co, Ni, Cu and Zn counterparts.
Keywords: crystal structure; cadmium(II) complex; hydrazone derivatives.
CCDC reference: 2051612
1. Chemical context
Aroylhydrazones are competent ligands for various functional coordination compounds. They have the ability of polydentate coordination and are often used as building units of polynuclear magnetic compounds (Huang et al., 2016; Zhang et al., 2010). Aroylhydrazones can exhibit keto–enol and the uncomplexed aroylhydrazone ligand is commonly found in its keto form (Kalinowski et al., 2008; Tai & Feng, 2008). Metal complexes of deprotonated aroylhydrazones have been used in various catalytic and biological applications (Sutradhar et al., 2013; Yang et al., 2019; Yang, Chen et al., 2020). Aroylhydrazones synthesized from arylhydrazides and aromatic aldehydes/ketones with a nitrogen or oxygen atom in the ortho position can coordinate to metals in a tridentate chelating mode (Cindrić et al., 2017; Patel et al., 2018; You et al., 2018), and they have been used as probes and chemosensors for various metal ions. For example, the aroylhydrazone ligand containing a 4-(dimethylamino)phenylpropenyl or benzamide substituent specifically senses Al3+, Cd2+ (Kar et al., 2015) and Ni2+ ions (Manna et al., 2019) through significant changes in their absorption and emission spectroscopic behaviour after complexation with the metal ions. Here, we study the coordination attributes of an aroylhydrazone with cadmium.
2. Structural commentary
In the title complex, the Cd2+ ion possesses a distorted octahedral N4O2 coordination environment, which is generated by the two deprotonated ligands L (Fig. 1). The complex is bisected by a twofold crystallographic axis with the two ligands being equivalent by crystal symmetry. The complex is isomorphous to its Mn, Co, Ni, Cu and Zn counterparts (Yang et al., 2019; Yang, Zhang et al., 2020). The O2—C7 and C7—N1 bond lengths in the title compound are 1.255 (5) Å and 1.355 (5) Å, respectively, indicating that the coordinated ligands are closer to the keto than the enol form, but are slightly more delocalized than in the purely keto tautomeric form as found in the free ligand form of similar aroylhydrazones. The free ligand L has not yet been structurally described, but the equivalent bond distances in e.g. 2-hydroxy-N′-[1-(3-methylpyrazin-2-yl)ethylidene]benzohydrazide, L1, with one more methyl group on pyrazine (Tai & Feng, 2008), were reported as 1.235 and 1.340 Å, respectively.
The ligand in the title complex is close to planar (the mean deviation from the average plane is 0.0763 Å). The largest deviation from planarity is only 0.145 (3) Å, observed for atom C12 of the pyrazine ring. The Cd1 atom is nearly coplanar with each of the two ligands (deviation = 0.316 Å). The dihedral angle between the two ligands is 78.705 (16)°. The oxygen atom O1 of the phenolic group remains protonated, and forms an intramolecular hydrogen bond O1—H1⋯N1 [2.557 (4) Å, 146 (7)°].
The intramolecular hydrogen bond stabilizes the planar geometry of the ligand. The presence of the intramolecular hydrogen bond does also appear to affect the propensity of the metal complex towards crystallization. We found that when the hydroxyl group is in the meta or para position {3-hydroxy-N′-[1-(pyrazin-2-yl)ethylidene]benzohydrazide (L2) or 4-hydroxy-N′-[1-(pyrazin-2-yl)ethylidene]benzohydrazide (L3)}, where no intramolecular hydrogen bond can be formed, crystallization is substantially delayed and a much longer time is required for the complexes to crystallize.
In the isomorphous Mn, Co, Ni, Cu and Zn M(L)2 complexes, the ligands are also close to planar (the mean deviation from the average plane ranges from 0.0608 to 0.0754 Å). In dimethylformamide (DMF)-solvated Ni and Cu complexes of similar ligands L2 {3-hydroxy-N′-[1-(pyrazin-2-yl)ethylidene]benzohydrazide} and L3 {4-hydroxy-N′-[1-(pyrazin-2-yl)ethylidene]benzohydrazide} [M(L2)2]·2(DMF) (M = Ni, Cu and Zn) and [Cu(L3)2]·2(DMF) (M = Ni and Cu), the planarity of the ligands is reduced, with a mean deviation from the average plane between 0.2164 to 0.2290 Å.
In the title complex, the Cd1—N3, Cd1—N2 and Cd1—O2, bond lengths are 2.356 (3), 2.273 (3) and 2.277 (4) Å, respectively, which are close to typical for Cd2+ complexes closely related to the title compound, such as bis{N′-[1-(pyridin-2-yl)ethylidene]benzohydrazidato}cadmium(II) (Sen et al., 2005), bis{2-[2-(pyridin-2-ylmethylene)hydrazine-1-carbonyl]benzenesulfonamide}cadmium(II) (Sousa-Pedrares et al., 2008) and bis[N′-(2-hydroxybenzoyl)picolinohydrazonamide]cadmium(II) (Xu et al., 2014), bis{N′-[di(pyridin-2-yl)methylene]benzohydrazidato}cadmium(II) (Kuriakose et al., 2017) [the range of N—Cd is 2.360 (12)–2.4135 (11) Å, N(middle)—Cd 2.225 (2)–2.295 (2) Å, O—Cd 2.240 (2)–2.358 (10) Å].
The coordination environment of the Cd ion is highly distorted octahedral, caused by the rigidity of the ligand and its small N—N and N—O bite angles of only 69.86 (11) (N3—Cd1—N2) and 69.83 (11)° (N2—Cd1—O2). As a result, the N—Cd—O, N–Cd—N and O—Cd—O angles in the title compound deviate substantially from the values of 180 and 90° expected for an idealized octahedral complex. The trans angles range from 139.07 (10) to 170.63 (17)°, while the cis angles vary between 69.83 (11) and 117.27 (11)°.
Bond distances and angles within the isomorphous series of the Mn, Co, Ni, Cu, Zn, and Cd complexes follow a trend consistent with the metal ion radius (Table 1). Bond lengths first decrease and then increase, with a minimum value for the Ni or Cu complexes, and a maximum for the title cadmium complex as a result of its substantially larger ion radius as the only 4d complex of the series. The trend of the N—M—O angle (within the same ligand) is opposite to that of the metal ion radius, and first increases and then decreases, with the maximum value appearing for the Ni complex (Brines et al., 2007; Reger et al., 2012; Sola et al., 1994; Database of Ionic Radii, 2020). The distortion from octahedral geometry increases with ion radius, and is most pronounced for the title cadmium complex, as can be seen for e.g. the N(mid)—M—N(mid) angles, which range from 172.30 to 174.46° for the 3d complexes, while the value for the 4d Cd complex is 170.63 (17)°.
3. Supramolecular features
Two types of weak intermolecular interactions, C—H⋯N and C—H⋯O hydrogen bonds and π–π stacking and C—H⋯π interactions, have a significant impact on the packing of the complexes in the solid state. Three intermolecular hydrogen bonds (Table 2) are observed in the crystal. Two hydrogen bonds (C10—H10⋯O2ii and C12—H12⋯O1i, symmetry code given in Table 2; Fig. 2a) form a sheet parallel to the crystallographic bc plane. Adjacent sheets of the complex are connected to each other via a weak C4—H4⋯N4iii interaction, forming a three-dimensional network (Table 2 and Fig. 2b). Intermolecular π–π stacking is observed between the pyrazine rings and benzene rings of ligands in neighbouring complexes [the centroid–centroid distance between N3–N4/C9–C12 and C1–C6vi [symmetry code: (vi) x, y − , z − ] is 3.641 (2) Å, with a slippage of 1.252 Å, Fig. 3. Intermolecular interactions between carbon atoms C13 and the π ring of lateral benzene rings and pyrazine rings in neighbouring molecules are found, namely C13—H13B⋯Cg1v [2.71 Å, Cg1 is the centroid of the C1–C6 ring; symmetry code: (v) −x + , y, z − ] and C13–H13A⋯Cg2iv [2.86 Å, Cg2 is the centroid of the N3–N4/C9–C12; symmetry code: (iv) −x + , y, z + ] (Fig. 3).
|
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.41, August 2020; Groom et al., 2016) for metal complexes involving the N′-[1-(pyrazin-2-yl)ethylidene]benzohydrazide ligand resulted in seven related metal complexes with exactly the same ligand. These are the already discussed isomorphous Mn, Co, Ni, Cu and Zn [MII(L)2] complexes (CCDC refcodes: CIZJED for M = Mn, CIZGOK for M = Co, CIZGAW for M = Ni (Yang, Zhang et al., 2020), COYVUK for M = Cu and CIZFUP for M = Zn) (Yang et al., 2019). In all of these complexes, the ligand L acts as a tridentate chelating ligand to generate a distorted octahedral structure with a close to planar ligand. Several complexes of related ligands have been found to be also isomorphous to the above series, crystallizing in the same Aba2 These are a Co and a Zn complex bearing the ligand N′-[1-(pyrazin-2-yl)ethylidene]benzohydrazide (L4, with one less hydroxyl group on benzene) (YELKUY, YELWUK; Tai et al., 2008) as well as four metal complexes involving the ligand 2-hydroxy-N′-[1-(pyridin-2-yl)ethylidene]benzohydrazide (L5, substituted pyrazine group with pyridine group) with M = Cu2+, Ni2+, Zn2+ and Fe2+ [ADEYAK (Dang et al., 2006a); XENFEC (Dang et al., 2006b); HIGPOD (Barbazán et al., 2007); RADDOR (Zhang et al., 2010)].
There are also complexes of ligands L4 and L5 that are not isomorphous to the title complex: complex Cu2(L4)2Cl2 is binuclear, where each Cu centre has two μ-chlorine ligands along with a tridentate coordinated L4 molecule, giving rise to a distorted square-pyramidal coordination environment. It belongs to the triclinic P (YELXAR; Tai et al., 2008). The cobalt complex [Co(L5)2(ClO4)]·0.25(CH3OH) (IGAZAS; Shit et al., 2009) has a nearly ideal octahedral structure in the monoclinic P21/n and the ligands have N—N and N—O bite angles of 81.70 to 83.11°. Cu(L5)Br (HIGPIX; Barbazán et al., 2007) and Cu(L5)(NO3) (YILYEY; You et al., 2018) have roughly square-planar coordination geometries. [Sb(L5)Cl2]·H2O (YILYEY; Abboud et al., 2007) has a square-pyramidal coordination geometry in the monoclinic P21/n Cu2(L5)2Cl2 (NICYOP; Mondal et al., 2013) is a binuclear complex and each Cu centre has a square-pyramidal coordination geometry. It is isomorphic to Cu2(L4)2Cl2. A Zn complex, Zn(L1)2·H2O (XIYNUP; Tai et al., 2008) with the ligand L1 with one more methyl group on pyrazine crystallizes in the monoclinic P21/n The planarity of the ligand is decreased compared to the title complex, and the Zn ion exhibits a distorted octahedral geometry. Also reported are five similar compounds featuring the ligands L2 and L3 with the hydroxyl group in the meta and para positions of the benzene ring, respectively. They crystallize as DMF solvates [M(L2)2]·2(DMF) (DMF = dimethylformamide; M = Ni, Cu and Zn; CIZHIF, CIZGUQ and CIZJAZ) and [Cu(L3)2]·2(DMF) (M = Ni and Cu; CIZHUR and COYWEV) (Yang et al., 2019; Yang, Zhang et al., 2020) in the orthorhombic Pbcn They also feature distorted octahedral structures and the planarity of the ligands is decreased compared to the title compound. All the complexes with the [M(Ligand)2] core are distorted octahedral, and all metal centres have a mer geometry. All ligands L, L1, L2, L3, L4 and L5 are tridentate chelating.
5. Synthesis and crystallization
The title complex and ligand were synthesized according to literature procedures (Yang, Zhang et al., 2020; Yang et al., 2019). The complex was obtained by mixing a solution of the aroylhydrazone (0.02 mmol) in methanol (2 mL) and a solution of Cd(NO3)2·4H2O (0.01 mmol) in water (2 mL). After two weeks of static in a test tube at room temperature, clear light-yellow block-shaped crystals of Cd(L)2 were obtained (5.6 mg, yield 90%) (calculated based on metal ions), m.p. > 543 K. IR (KBr): ν (cm−1) = 1594 s, 1534 s, 1518 s, 1489 s, 1458 s, 1401 w, 1349 s, 1299 s, 1248 m, 1225 m, 1198 m, 1162 m, 1147 s, 1106 w, 1072 s, 1042 m, 1029 m, 910 w, 850 w, 833 w, 786 w, 764 m, 701 m, 662 w, 565 w, 541 w, 492 w, 419 w, 406 w.
6. Refinement
Crystal data, data collection and structure . All C-bound H atoms were placed in calculated positions (Csp2—H = 0.95 Å and Csp3—H = 0.98 Å) and were included in the in a riding-model approximation, with Uiso(H) set to 1.2Ueq(Csp2) and 1.5Ueq(Csp3). The O-bound H atom was located based on a difference-Fourier map and its position was freely refined. It was assigned Uiso(H) = 1.5Ueq(O).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2051612
https://doi.org/10.1107/S2056989021000657/zl5004sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021000657/zl5004Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2020); cell
CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: SHELXP (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).[Cd(C13H11N4O2)2] | Dx = 1.701 Mg m−3 |
Mr = 622.91 | Cu Kα radiation, λ = 1.54178 Å |
Orthorhombic, Aba2 | Cell parameters from 31744 reflections |
a = 12.6654 (1) Å | θ = 2.5–76.5° |
b = 17.63940 (18) Å | µ = 7.64 mm−1 |
c = 10.88800 (11) Å | T = 108 K |
V = 2432.49 (4) Å3 | Block, clear light yellow |
Z = 4 | 0.12 × 0.10 × 0.08 mm |
F(000) = 1256 |
Rigaku Oxford Diffraction XtaLAB Synergy R, DW system, HyPix diffractometer | 2475 independent reflections |
Radiation source: Rotating-anode X-ray tube | 2458 reflections with I > 2σ(I) |
Detector resolution: 10.0000 pixels mm-1 | Rint = 0.038 |
ω scans | θmax = 76.2°, θmin = 5.0° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) | h = −14→15 |
Tmin = 0.519, Tmax = 1.000 | k = −21→22 |
36223 measured reflections | l = −13→13 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.026 | w = 1/[σ2(Fo2) + (0.0473P)2 + 1.8799P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.075 | (Δ/σ)max < 0.001 |
S = 1.20 | Δρmax = 0.72 e Å−3 |
2475 reflections | Δρmin = −0.99 e Å−3 |
182 parameters | Extinction correction: SHELXL (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.00067 (9) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack x determined using 1131 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013). |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.012 (4) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6224 (3) | 0.6694 (2) | 0.9539 (4) | 0.0255 (8) | |
C2 | 0.7242 (3) | 0.6887 (2) | 0.9964 (4) | 0.0322 (9) | |
C3 | 0.7340 (5) | 0.7364 (3) | 1.0986 (5) | 0.0422 (13) | |
H3 | 0.802253 | 0.749817 | 1.127537 | 0.051* | |
C4 | 0.6462 (5) | 0.7642 (2) | 1.1578 (4) | 0.0439 (12) | |
H4 | 0.654329 | 0.795728 | 1.227906 | 0.053* | |
C5 | 0.5452 (5) | 0.7465 (2) | 1.1153 (4) | 0.0399 (11) | |
H5 | 0.484590 | 0.766539 | 1.155165 | 0.048* | |
C6 | 0.5341 (4) | 0.6995 (2) | 1.0149 (4) | 0.0316 (8) | |
H6 | 0.465320 | 0.687281 | 0.986326 | 0.038* | |
C7 | 0.6043 (3) | 0.61456 (19) | 0.8526 (3) | 0.0220 (7) | |
C8 | 0.7448 (4) | 0.5100 (2) | 0.6398 (5) | 0.0240 (9) | |
C9 | 0.7096 (3) | 0.4582 (2) | 0.5418 (4) | 0.0247 (8) | |
C10 | 0.7783 (3) | 0.4270 (2) | 0.4540 (4) | 0.0319 (9) | |
H10 | 0.851195 | 0.439329 | 0.458193 | 0.038* | |
C11 | 0.6425 (4) | 0.3646 (2) | 0.3636 (4) | 0.0365 (10) | |
H11 | 0.616344 | 0.331030 | 0.302482 | 0.044* | |
C12 | 0.5728 (3) | 0.3950 (2) | 0.4482 (4) | 0.0282 (8) | |
H12 | 0.500036 | 0.382194 | 0.443503 | 0.034* | |
C13 | 0.8597 (3) | 0.5252 (3) | 0.6647 (5) | 0.0388 (11) | |
H13A | 0.879522 | 0.502577 | 0.743598 | 0.058* | |
H13B | 0.871828 | 0.580037 | 0.667603 | 0.058* | |
H13C | 0.902554 | 0.502866 | 0.599080 | 0.058* | |
Cd1 | 0.500000 | 0.500000 | 0.68642 (13) | 0.01811 (16) | |
N1 | 0.6931 (3) | 0.58932 (17) | 0.7964 (3) | 0.0236 (6) | |
N2 | 0.6699 (2) | 0.54015 (16) | 0.7035 (3) | 0.0211 (6) | |
N3 | 0.6056 (2) | 0.44157 (17) | 0.5356 (3) | 0.0227 (6) | |
N4 | 0.7454 (4) | 0.3809 (2) | 0.3652 (4) | 0.0398 (9) | |
O1 | 0.8136 (3) | 0.66287 (19) | 0.9425 (3) | 0.0393 (7) | |
H1 | 0.796 (6) | 0.631 (4) | 0.880 (7) | 0.059* | |
O2 | 0.5115 (2) | 0.5951 (2) | 0.8272 (4) | 0.0271 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.031 (2) | 0.0204 (17) | 0.0249 (18) | −0.0051 (13) | −0.0068 (15) | 0.0044 (15) |
C2 | 0.039 (2) | 0.0289 (18) | 0.0291 (19) | −0.0115 (17) | −0.0106 (18) | 0.0059 (16) |
C3 | 0.062 (3) | 0.0319 (18) | 0.032 (2) | −0.019 (2) | −0.020 (2) | 0.004 (2) |
C4 | 0.076 (4) | 0.029 (2) | 0.026 (2) | −0.015 (2) | −0.010 (2) | −0.0013 (17) |
C5 | 0.064 (4) | 0.025 (2) | 0.030 (2) | −0.010 (2) | 0.000 (2) | −0.0017 (18) |
C6 | 0.041 (2) | 0.0249 (19) | 0.028 (2) | −0.0056 (19) | −0.003 (2) | −0.0002 (16) |
C7 | 0.0221 (17) | 0.0225 (16) | 0.0214 (16) | −0.0039 (13) | −0.0030 (14) | 0.0033 (14) |
C8 | 0.014 (2) | 0.0278 (18) | 0.031 (2) | 0.0012 (15) | 0.0002 (18) | 0.0100 (16) |
C9 | 0.0225 (19) | 0.0237 (16) | 0.0279 (18) | 0.0048 (13) | 0.0074 (15) | 0.0079 (14) |
C10 | 0.030 (2) | 0.0273 (18) | 0.038 (2) | 0.0084 (15) | 0.0141 (17) | 0.0076 (17) |
C11 | 0.055 (3) | 0.0276 (19) | 0.027 (2) | 0.0030 (19) | 0.010 (2) | −0.0020 (16) |
C12 | 0.033 (2) | 0.0258 (17) | 0.0261 (17) | −0.0022 (15) | 0.0027 (16) | 0.0024 (16) |
C13 | 0.0136 (18) | 0.045 (2) | 0.058 (3) | −0.0028 (18) | 0.0024 (19) | 0.010 (3) |
Cd1 | 0.0110 (2) | 0.0243 (2) | 0.0190 (2) | −0.00150 (9) | 0.000 | 0.000 |
N1 | 0.0208 (15) | 0.0243 (15) | 0.0256 (15) | −0.0053 (12) | −0.0046 (12) | 0.0016 (12) |
N2 | 0.0155 (14) | 0.0234 (12) | 0.0243 (16) | −0.0022 (11) | 0.0008 (12) | 0.0048 (12) |
N3 | 0.0207 (15) | 0.0243 (14) | 0.0230 (13) | 0.0016 (11) | 0.0039 (12) | 0.0029 (12) |
N4 | 0.049 (2) | 0.0302 (17) | 0.040 (2) | 0.0100 (17) | 0.0206 (18) | 0.0047 (16) |
O1 | 0.0320 (17) | 0.0460 (17) | 0.0399 (16) | −0.0136 (13) | −0.0121 (14) | 0.0016 (15) |
O2 | 0.0208 (14) | 0.0311 (17) | 0.0293 (18) | −0.0023 (10) | −0.0010 (11) | −0.0091 (15) |
C1—C6 | 1.405 (7) | C10—N4 | 1.330 (7) |
C1—C2 | 1.412 (6) | C10—H10 | 0.9500 |
C1—C7 | 1.485 (5) | C11—N4 | 1.335 (7) |
C2—O1 | 1.354 (6) | C11—C12 | 1.385 (6) |
C2—C3 | 1.401 (7) | C11—H11 | 0.9500 |
C3—C4 | 1.375 (8) | C12—N3 | 1.324 (5) |
C3—H3 | 0.9500 | C12—H12 | 0.9500 |
C4—C5 | 1.396 (8) | C13—H13A | 0.9800 |
C4—H4 | 0.9500 | C13—H13B | 0.9800 |
C5—C6 | 1.378 (6) | C13—H13C | 0.9800 |
C5—H5 | 0.9500 | Cd1—N2 | 2.273 (3) |
C6—H6 | 0.9500 | Cd1—N2i | 2.273 (3) |
C7—O2 | 1.255 (5) | Cd1—O2 | 2.277 (4) |
C7—N1 | 1.355 (5) | Cd1—O2i | 2.277 (4) |
C8—N2 | 1.289 (6) | Cd1—N3i | 2.356 (3) |
C8—C9 | 1.475 (7) | Cd1—N3 | 2.356 (3) |
C8—C13 | 1.504 (7) | N1—N2 | 1.365 (4) |
C9—N3 | 1.351 (5) | O1—H1 | 0.90 (8) |
C9—C10 | 1.405 (5) | ||
C6—C1—C2 | 118.7 (4) | N3—C12—H12 | 119.4 |
C6—C1—C7 | 118.4 (4) | C11—C12—H12 | 119.4 |
C2—C1—C7 | 122.8 (4) | C8—C13—H13A | 109.5 |
O1—C2—C3 | 118.2 (4) | C8—C13—H13B | 109.5 |
O1—C2—C1 | 122.7 (4) | H13A—C13—H13B | 109.5 |
C3—C2—C1 | 119.1 (5) | C8—C13—H13C | 109.5 |
C4—C3—C2 | 121.0 (5) | H13A—C13—H13C | 109.5 |
C4—C3—H3 | 119.5 | H13B—C13—H13C | 109.5 |
C2—C3—H3 | 119.5 | N2—Cd1—N2i | 170.63 (17) |
C3—C4—C5 | 120.4 (4) | N2—Cd1—O2 | 69.83 (11) |
C3—C4—H4 | 119.8 | N2i—Cd1—O2 | 103.58 (11) |
C5—C4—H4 | 119.8 | N2—Cd1—O2i | 103.58 (11) |
C6—C5—C4 | 119.4 (5) | N2i—Cd1—O2i | 69.83 (11) |
C6—C5—H5 | 120.3 | O2—Cd1—O2i | 95.4 (2) |
C4—C5—H5 | 120.3 | N2—Cd1—N3i | 117.27 (11) |
C5—C6—C1 | 121.4 (5) | N2i—Cd1—N3i | 69.86 (11) |
C5—C6—H6 | 119.3 | O2—Cd1—N3i | 100.55 (13) |
C1—C6—H6 | 119.3 | O2i—Cd1—N3i | 139.07 (10) |
O2—C7—N1 | 126.0 (3) | N2—Cd1—N3 | 69.86 (11) |
O2—C7—C1 | 119.0 (4) | N2i—Cd1—N3 | 117.27 (11) |
N1—C7—C1 | 114.9 (3) | O2—Cd1—N3 | 139.07 (10) |
N2—C8—C9 | 115.0 (4) | O2i—Cd1—N3 | 100.55 (13) |
N2—C8—C13 | 122.8 (5) | N3i—Cd1—N3 | 91.59 (16) |
C9—C8—C13 | 122.2 (4) | C7—N1—N2 | 111.4 (3) |
N3—C9—C10 | 119.0 (4) | C8—N2—N1 | 120.2 (3) |
N3—C9—C8 | 117.7 (4) | C8—N2—Cd1 | 121.6 (3) |
C10—C9—C8 | 123.2 (4) | N1—N2—Cd1 | 117.5 (2) |
N4—C10—C9 | 122.7 (4) | C12—N3—C9 | 118.5 (3) |
N4—C10—H10 | 118.6 | C12—N3—Cd1 | 126.5 (3) |
C9—C10—H10 | 118.6 | C9—N3—Cd1 | 115.1 (3) |
N4—C11—C12 | 122.1 (4) | C10—N4—C11 | 116.5 (4) |
N4—C11—H11 | 119.0 | C2—O1—H1 | 109 (5) |
C12—C11—H11 | 119.0 | C7—O2—Cd1 | 114.1 (3) |
N3—C12—C11 | 121.2 (4) | ||
C6—C1—C2—O1 | −179.3 (4) | C8—C9—C10—N4 | −179.3 (4) |
C7—C1—C2—O1 | 4.8 (6) | N4—C11—C12—N3 | −0.4 (6) |
C6—C1—C2—C3 | 0.8 (6) | O2—C7—N1—N2 | 1.7 (5) |
C7—C1—C2—C3 | −175.2 (4) | C1—C7—N1—N2 | −179.1 (3) |
O1—C2—C3—C4 | −179.7 (4) | C9—C8—N2—N1 | −179.8 (3) |
C1—C2—C3—C4 | 0.2 (6) | C13—C8—N2—N1 | 1.4 (6) |
C2—C3—C4—C5 | −1.3 (7) | C9—C8—N2—Cd1 | 10.1 (5) |
C3—C4—C5—C6 | 1.3 (6) | C13—C8—N2—Cd1 | −168.8 (3) |
C4—C5—C6—C1 | −0.3 (6) | C7—N1—N2—C8 | −179.7 (3) |
C2—C1—C6—C5 | −0.7 (6) | C7—N1—N2—Cd1 | −9.2 (4) |
C7—C1—C6—C5 | 175.4 (4) | C11—C12—N3—C9 | −1.0 (6) |
C6—C1—C7—O2 | −2.2 (5) | C11—C12—N3—Cd1 | 179.4 (3) |
C2—C1—C7—O2 | 173.7 (4) | C10—C9—N3—C12 | 1.5 (5) |
C6—C1—C7—N1 | 178.6 (3) | C8—C9—N3—C12 | −179.9 (3) |
C2—C1—C7—N1 | −5.5 (5) | C10—C9—N3—Cd1 | −178.8 (3) |
N2—C8—C9—N3 | −6.2 (5) | C8—C9—N3—Cd1 | −0.2 (4) |
C13—C8—C9—N3 | 172.6 (4) | C9—C10—N4—C11 | −0.6 (6) |
N2—C8—C9—C10 | 172.3 (4) | C12—C11—N4—C10 | 1.2 (6) |
C13—C8—C9—C10 | −8.8 (6) | N1—C7—O2—Cd1 | 6.4 (5) |
N3—C9—C10—N4 | −0.8 (6) | C1—C7—O2—Cd1 | −172.7 (3) |
Symmetry code: (i) −x+1, −y+1, z. |
Cg1 and Cg2 are the centroids of the C1–C6 and N3–N4/C9–C12 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···N4ii | 0.95 | 2.47 | 3.349 (6) | 154 |
C10—H10···O2iii | 0.95 | 2.55 | 3.283 (5) | 134 |
C12—H12···O1iv | 0.95 | 2.49 | 3.439 (5) | 174 |
O1—H1···N1 | 0.90 (8) | 1.76 (8) | 2.557 (4) | 146 (7) |
C13—H13A···Cg2v | 0.98 | 2.86 | 3.740 (6) | 149 |
C13—H13B···Cg1vi | 0.98 | 2.71 | 3.592 (6) | 150 |
Symmetry codes: (ii) −x+3/2, y+1/2, z+1; (iii) x+1/2, −y+1, z−1/2; (iv) x−1/2, −y+1, z−1/2; (v) −x+3/2, y, z+1/2; (vi) −x+3/2, y, z−1/2. |
Mn2+ | Co2+ | Ni2+ | Cu2+ | Zn2+ | Cd2+ | |
Ion radius | 0.83 | 0.745 | 0.69 | 0.73 | 0.74 | 0.95 |
M—N | 2.283 | 2.151 | 2.114 | 2.192 | 2.215 | 2.356 |
M—N(mid) | 2.193 | 2.050 | 1.994 | 1.979 | 2.074 | 2.273 |
M—O | 2.148 | 2.102 | 2.097 | 2.130 | 2.125 | 2.278 |
N(mid)—M—N(mid) | 174.46 | 172.30 | 173.86 | 173.64 | 173.97 | 170.63 |
N—M—O (within the same ligand) | 142.08 | 148.53 | 153.95 | 151.98 | 148.84 | 139.07 |
O—M—O | 99.76 | 102.86 | 95.26 | 97.43 | 98.87 | 95.39 |
N(mid)—M—O (within different ligands) | 104.25 | 99.33 | 98.33 | 98.79 | 100.49 | 103.58 |
CSD refcode | CIZJEDa | CIZGOKb | CIZGAWc | COYVUKd | CIZFUPe | 2051612f |
Notes: (a) Yang (2019); (b) Yang (2019); (c) Yang, Zhang et al. (2020); (d) Yang, Zhang et al. (2019); (e) Yang (2019); (f) reference? (year?). |
Acknowledgements
The authors thank Guangzhou University and Zi-Zhou Wang for recording the X-ray crystallographic data for the crystals.
Funding information
Funding for this research was provided by: the National Natural Science Foundation of China (grant No. 41701349); GDAS' Project of Science and Technology Development (grant No. 2020GDASYL-20200103015); Nanyue Talent Fund (grant No. GDIMYET20180205).
References
Abboud, K. A., Palenik, R. C., Palenik, G. J. & Wood, R. M. (2007). Inorg. Chim. Acta, 360, 3642–3646. Web of Science CSD CrossRef CAS Google Scholar
Barbazán, P., Carballo, R. & Vázquez-López, E. M. (2007). CrystEngComm, 9, 668–675. Google Scholar
Brines, L. M., Shearer, J., Fender, J. K., Schweitzer, D., Shoner, S. C., Barnhart, D., Kaminsky, W., Lovell, S. & Kovacs, J. A. (2007). Inorg. Chem. 46, 9267–9277. Web of Science CSD CrossRef PubMed CAS Google Scholar
Cindrić, M., Bjelopetrović, A., Pavlović, G., Damjanović, V., Lovrić, J., Matković-Čalogović, D. & Vrdoljak, V. (2017). New J. Chem. 41, 2425–2435. Google Scholar
Dang, D.-B., Bai, Y. & Duan, C.-Y. (2006a). Acta Cryst. E62, m1567–m1568. CSD CrossRef IUCr Journals Google Scholar
Dang, D.-B., Bai, Y. & Duan, C.-Y. (2006b). Acta Cryst. E62, m2290–m2292. CSD CrossRef IUCr Journals Google Scholar
Database of Ionic Radii (2020). Hosted by the Atomistic Simulation Group in the Materials Department of Imperial College, https://abulafia.mt.ic.ac.uk/shannon/PTABLE.php Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Huang, W., Shen, F.-X., Wu, S.-Q., Liu, L., Wu, D., Zheng, Z., Xu, J., Zhang, M., Huang, X.-C., Jiang, J., Pan, F., Li, Y., Zhu, K. & Sato, O. (2016). Inorg. Chem. 55, 5476–5484. CSD CrossRef CAS PubMed Google Scholar
Kalinowski, D. S., Sharpe, P. C., Bernhardt, P. V. & Richardson, D. R. (2008). J. Med. Chem. 51, 331–344. Web of Science CSD CrossRef PubMed CAS Google Scholar
Kar, C., Samanta, S., Goswami, S., Ramesh, A. & Das, G. (2015). Dalton Trans. 44, 4123–4132. CSD CrossRef CAS PubMed Google Scholar
Kuriakose, D., Aravindakshan, A. A. & Kurup, M. R. P. (2017). Polyhedron, 127, 84–96. CSD CrossRef CAS Google Scholar
Manna, A. K., Chowdhury, S. & Patra, G. K. (2019). Dalton Trans. 48, 12336–12348. CSD CrossRef CAS PubMed Google Scholar
Mondal, S., Naskar, S., Dey, A. K., Sinn, E., Eribal, C., Herron, S. R. & Chattopadhyay, S. K. (2013). Inorg. Chim. Acta, 398, 98–105. Web of Science CSD CrossRef CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Patel, R. N., Singh, Y., Singh, Y. P., Patel, A. K., Patel, N., Singh, R., Butcher, R. J., Jasinski, J. P., Colacio, E. & Palacios, M. A. (2018). New J. Chem. 42, 3112–3136. CSD CrossRef CAS Google Scholar
Reger, D. L., Pascui, A. E., Smith, M. D., Jezierska, J. & Ozarowski, A. (2012). Inorg. Chem. 51, 11820–11836. CSD CrossRef CAS PubMed Google Scholar
Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sen, S., Talukder, P., Rosair, G. & Mitra, S. (2005). Struct. Chem. 16, 605–610. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shit, S., Chakraborty, J., Samanta, B., Slawin, A. M. Z., Gramlich, V. & Mitra, S. (2009). Struct. Chem. 20, 633–642. Web of Science CSD CrossRef CAS Google Scholar
Sola, M., Mestres, J., Duran, M. & Carbo, R. (1994). J. Chem. Inf. Comput. Sci. 34, 1047–1053. CrossRef CAS Google Scholar
Sousa-Pedrares, A., Camiña, N., Romero, J., Durán, M. L., García-Vázquez, J. A. & Sousa, A. (2008). Polyhedron, 27, 3391–3397. Web of Science CSD CrossRef CAS Google Scholar
Sutradhar, M., Kirillova, M. V., Guedes da Silva, M. F. C., Liu, C.-M. & Pombeiro, A. J. L. (2013). Dalton Trans. 42, 16578–16587. Web of Science CSD CrossRef CAS PubMed Google Scholar
Tai, X.-S. & Feng, Y.-M. (2008). Acta Cryst. E64, o707–o707. CSD CrossRef IUCr Journals Google Scholar
Tai, X.-S., Feng, Y.-M. & Zhang, H.-X. (2008). Acta Cryst. E64, m656. CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, S.-P., Yang, F.-L., Zhu, G.-Z., Shi, H.-L. & Li, X.-L. (2014). Polyhedron, 68, 1–9. CSD CrossRef CAS Google Scholar
Yang, P. (2019). CSD Communications (refcodes CIZJED, CIZGOK and CIZFUP). CCDC, Cambridge, England. Google Scholar
Yang, P., Chen, H., Wang, Z.-Z., Zhang, L.-L., Zhang, D.-D., Shi, Q.-S. & Xie, X.-B. (2020). J. Inorg. Biochem. 213, 111248–111248. CSD CrossRef CAS PubMed Google Scholar
Yang, P., Zhang, D.-D., Wang, Z.-Z., Liu, H.-Z., Shi, Q.-S. & Xie, X.-B. (2019). Dalton Trans. 48, 17925–17935. CSD CrossRef CAS PubMed Google Scholar
Yang, P., Zhang, L.-L., Wang, Z.-Z., Zhang, D.-D., Liu, Y.-M., Shi, Q.-S. & Xie, X.-B. (2020). J. Inorg. Biochem. 203, 110919–110919. CSD CrossRef CAS PubMed Google Scholar
You, Z., Yu, H., Li, Z., Zhai, W., Jiang, Y., Li, A., Guo, S., Li, K., Lv, C. & Zhang, C. (2018). Inorg. Chim. Acta, 480, 120–126. CSD CrossRef CAS Google Scholar
Zhang, L., Xu, G.-C., Xu, H.-B., Mereacre, V., Wang, Z.-M., Powell, A. K. & Gao, S. (2010). Dalton Trans. 39, 4856–4868. CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.