research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­{2-hy­dr­oxy-N′-[1-(pyrazin-2-yl)ethyl­­idene]benzohydrazidato}cadmium(II)

CROSSMARK_Color_square_no_text.svg

aGuangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China
*Correspondence e-mail: 191723030@qq.com

Edited by M. Zeller, Purdue University, USA (Received 5 January 2021; accepted 19 January 2021; online 22 January 2021)

In the title complex mol­ecule, [Cd(C13H11N4O2)2], the Cd atom is coordinated in a distorted octa­hedral geometry by two tridentate ligands synthesized from 2-hy­droxy­benzohydrazide and 1-(pyrazin-2-yl)ethan-1-one. The mol­ecule has twofold crystallographic symmetry and is isomorphous to its Mn, Co, Ni, Cu and Zn counterparts.

1. Chemical context

Aroylhydrazones are competent ligands for various functional coordination compounds. They have the ability of polydentate coordination and are often used as building units of polynuclear magnetic compounds (Huang et al., 2016[Huang, W., Shen, F.-X., Wu, S.-Q., Liu, L., Wu, D., Zheng, Z., Xu, J., Zhang, M., Huang, X.-C., Jiang, J., Pan, F., Li, Y., Zhu, K. & Sato, O. (2016). Inorg. Chem. 55, 5476-5484.]; Zhang et al., 2010[Zhang, L., Xu, G.-C., Xu, H.-B., Mereacre, V., Wang, Z.-M., Powell, A. K. & Gao, S. (2010). Dalton Trans. 39, 4856-4868.]). Aroylhydrazones can exhibit keto–enol tautomerism, and the uncomplexed aroylhydrazone ligand is commonly found in its keto form (Kalinowski et al., 2008[Kalinowski, D. S., Sharpe, P. C., Bernhardt, P. V. & Richardson, D. R. (2008). J. Med. Chem. 51, 331-344.]; Tai & Feng, 2008[Tai, X.-S. & Feng, Y.-M. (2008). Acta Cryst. E64, o707-o707.]). Metal complexes of deprotonated aroylhydrazones have been used in various catalytic and biological applications (Sutradhar et al., 2013[Sutradhar, M., Kirillova, M. V., Guedes da Silva, M. F. C., Liu, C.-M. & Pombeiro, A. J. L. (2013). Dalton Trans. 42, 16578-16587.]; Yang et al., 2019[Yang, P., Zhang, D.-D., Wang, Z.-Z., Liu, H.-Z., Shi, Q.-S. & Xie, X.-B. (2019). Dalton Trans. 48, 17925-17935.]; Yang, Chen et al., 2020[Yang, P., Chen, H., Wang, Z.-Z., Zhang, L.-L., Zhang, D.-D., Shi, Q.-S. & Xie, X.-B. (2020). J. Inorg. Biochem. 213, 111248-111248.]). Aroylhydrazones synthesized from aryl­hydrazides and aromatic aldehydes/ketones with a nitro­gen or oxygen atom in the ortho position can coordinate to metals in a tridentate chelating mode (Cindrić et al., 2017[Cindrić, M., Bjelopetrović, A., Pavlović, G., Damjanović, V., Lovrić, J., Matković-Čalogović, D. & Vrdoljak, V. (2017). New J. Chem. 41, 2425-2435.]; Patel et al., 2018[Patel, R. N., Singh, Y., Singh, Y. P., Patel, A. K., Patel, N., Singh, R., Butcher, R. J., Jasinski, J. P., Colacio, E. & Palacios, M. A. (2018). New J. Chem. 42, 3112-3136.]; You et al., 2018[You, Z., Yu, H., Li, Z., Zhai, W., Jiang, Y., Li, A., Guo, S., Li, K., Lv, C. & Zhang, C. (2018). Inorg. Chim. Acta, 480, 120-126.]), and they have been used as probes and chemosensors for various metal ions. For example, the aroylhydrazone ligand containing a 4-(di­methyl­amino)­phenylprop­enyl or benzamide substituent specifically senses Al3+, Cd2+ (Kar et al., 2015[Kar, C., Samanta, S., Goswami, S., Ramesh, A. & Das, G. (2015). Dalton Trans. 44, 4123-4132.]) and Ni2+ ions (Manna et al., 2019[Manna, A. K., Chowdhury, S. & Patra, G. K. (2019). Dalton Trans. 48, 12336-12348.]) through significant changes in their absorption and emission spectroscopic behaviour after complexation with the metal ions. Here, we study the coord­ination attributes of an aroylhydrazone with cadmium.

[Scheme 1]

2. Structural commentary

In the title complex, the Cd2+ ion possesses a distorted octa­hedral N4O2 coordination environment, which is generated by the two deprotonated ligands L (Fig. 1[link]). The complex is bis­ected by a twofold crystallographic axis with the two ligands being equivalent by crystal symmetry. The complex is isomorphous to its Mn, Co, Ni, Cu and Zn counterparts (Yang et al., 2019[Yang, P., Zhang, D.-D., Wang, Z.-Z., Liu, H.-Z., Shi, Q.-S. & Xie, X.-B. (2019). Dalton Trans. 48, 17925-17935.]; Yang, Zhang et al., 2020[Yang, P., Zhang, L.-L., Wang, Z.-Z., Zhang, D.-D., Liu, Y.-M., Shi, Q.-S. & Xie, X.-B. (2020). J. Inorg. Biochem. 203, 110919-110919.]). The O2—C7 and C7—N1 bond lengths in the title compound are 1.255 (5) Å and 1.355 (5) Å, respectively, indicating that the coordinated ligands are closer to the keto than the enol form, but are slightly more delocalized than in the purely keto tautomeric form as found in the free ligand form of similar aroylhydrazones. The free ligand L has not yet been structurally described, but the equivalent bond distances in e.g. 2-hy­droxy-N′-[1-(3-methyl­pyrazin-2-yl)ethyl­idene]benzohydrazide, L1, with one more methyl group on pyrazine (Tai & Feng, 2008[Tai, X.-S. & Feng, Y.-M. (2008). Acta Cryst. E64, o707-o707.]), were reported as 1.235 and 1.340 Å, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of [Cd(C13H11N4O2)2] with displacement ellipsoids at the 30% probability level. Symmetry code: (xi) −x + 1, −y + 1, z.

The ligand in the title complex is close to planar (the mean deviation from the average plane is 0.0763 Å). The largest deviation from planarity is only 0.145 (3) Å, observed for atom C12 of the pyrazine ring. The Cd1 atom is nearly coplanar with each of the two ligands (deviation = 0.316 Å). The dihedral angle between the two ligands is 78.705 (16)°. The oxygen atom O1 of the phenolic group remains protonated, and forms an intra­molecular hydrogen bond O1—H1⋯N1 [2.557 (4) Å, 146 (7)°].

The intra­molecular hydrogen bond stabilizes the planar geometry of the ligand. The presence of the intra­molecular hydrogen bond does also appear to affect the propensity of the metal complex towards crystallization. We found that when the hydroxyl group is in the meta or para position {3-hy­droxy-N′-[1-(pyrazin-2-yl)ethyl­idene]benzohydrazide (L2) or 4-hy­droxy-N′-[1-(pyrazin-2-yl)ethyl­idene]benzohydrazide (L3)}, where no intra­molecular hydrogen bond can be formed, crystallization is substanti­ally delayed and a much longer time is required for the complexes to crystallize.

In the isomorphous Mn, Co, Ni, Cu and Zn M(L)2 complexes, the ligands are also close to planar (the mean deviation from the average plane ranges from 0.0608 to 0.0754 Å). In di­methyl­formamide (DMF)-solvated Ni and Cu complexes of similar ligands L2 {3-hy­droxy-N′-[1-(pyrazin-2-yl)ethyl­idene]benzohydrazide} and L3 {4-hy­droxy-N′-[1-(pyr­az­in-2-yl)ethyl­idene]benzohydrazide} [M(L2)2]·2(DMF) (M = Ni, Cu and Zn) and [Cu(L3)2]·2(DMF) (M = Ni and Cu), the planarity of the ligands is reduced, with a mean deviation from the average plane between 0.2164 to 0.2290 Å.

In the title complex, the Cd1—N3, Cd1—N2 and Cd1—O2, bond lengths are 2.356 (3), 2.273 (3) and 2.277 (4) Å, respectively, which are close to typical for Cd2+ complexes closely related to the title compound, such as bis­{N′-[1-(pyridin-2-yl)ethyl­idene]benzohydrazidato}cadmium(II) (Sen et al., 2005[Sen, S., Talukder, P., Rosair, G. & Mitra, S. (2005). Struct. Chem. 16, 605-610.]), bis­{2-[2-(pyridin-2-yl­methyl­ene)hydrazine-1-carbon­yl]benzene­sulfonamide}­cadmium(II) (Sousa-Pedrares et al., 2008[Sousa-Pedrares, A., Camiña, N., Romero, J., Durán, M. L., García-Vázquez, J. A. & Sousa, A. (2008). Polyhedron, 27, 3391-3397.]) and bis­[N′-(2-hy­droxy­benzo­yl)picolino­hydra­zon­am­ide]­cadmium(II) (Xu et al., 2014[Xu, S.-P., Yang, F.-L., Zhu, G.-Z., Shi, H.-L. & Li, X.-L. (2014). Polyhedron, 68, 1-9.]), bis­{N′-[di(pyridin-2-yl)methyl­ene]benzohydrazidato}cadmium(II) (Kuriakose et al., 2017[Kuriakose, D., Aravindakshan, A. A. & Kurup, M. R. P. (2017). Polyhedron, 127, 84-96.]) [the range of N—Cd is 2.360 (12)–2.4135 (11) Å, N(middle)—Cd 2.225 (2)–2.295 (2) Å, O—Cd 2.240 (2)–2.358 (10) Å].

The coordination environment of the Cd ion is highly distorted octa­hedral, caused by the rigidity of the ligand and its small N—N and N—O bite angles of only 69.86 (11) (N3—Cd1—N2) and 69.83 (11)° (N2—Cd1—O2). As a result, the N—Cd—O, N–Cd—N and O—Cd—O angles in the title compound deviate substanti­ally from the values of 180 and 90° expected for an idealized octa­hedral complex. The trans angles range from 139.07 (10) to 170.63 (17)°, while the cis angles vary between 69.83 (11) and 117.27 (11)°.

Bond distances and angles within the isomorphous series of the Mn, Co, Ni, Cu, Zn, and Cd complexes follow a trend consistent with the metal ion radius (Table 1[link]). Bond lengths first decrease and then increase, with a minimum value for the Ni or Cu complexes, and a maximum for the title cadmium complex as a result of its substanti­ally larger ion radius as the only 4d complex of the series. The trend of the N—M—O angle (within the same ligand) is opposite to that of the metal ion radius, and first increases and then decreases, with the maximum value appearing for the Ni complex (Brines et al., 2007[Brines, L. M., Shearer, J., Fender, J. K., Schweitzer, D., Shoner, S. C., Barnhart, D., Kaminsky, W., Lovell, S. & Kovacs, J. A. (2007). Inorg. Chem. 46, 9267-9277.]; Reger et al., 2012[Reger, D. L., Pascui, A. E., Smith, M. D., Jezierska, J. & Ozarowski, A. (2012). Inorg. Chem. 51, 11820-11836.]; Sola et al., 1994[Sola, M., Mestres, J., Duran, M. & Carbo, R. (1994). J. Chem. Inf. Comput. Sci. 34, 1047-1053.]; Database of Ionic Radii, 2020[Database of Ionic Radii (2020). Hosted by the Atomistic Simulation Group in the Materials Department of Imperial College, https://abulafia.mt.ic.ac.uk/shannon/PTABLE.php]). The distortion from octa­hedral geometry increases with ion radius, and is most pronounced for the title cadmium complex, as can be seen for e.g. the N(mid)—M—N(mid) angles, which range from 172.30 to 174.46° for the 3d complexes, while the value for the 4d Cd complex is 170.63 (17)°.

Table 1
Comparative analysis of ion radius and the bond lengths and bond angles of coordination polyhedra (Å, °)

  Mn2+ Co2+ Ni2+ Cu2+ Zn2+ Cd2+
Ion radius 0.83 0.745 0.69 0.73 0.74 0.95
M—N 2.283 2.151 2.114 2.192 2.215 2.356
M—N(mid) 2.193 2.050 1.994 1.979 2.074 2.273
M—O 2.148 2.102 2.097 2.130 2.125 2.277
N(mid)—M—N(mid) 174.46 172.30 173.86 173.64 173.97 170.63
N—M—O (within the same ligand) 142.08 148.53 153.95 151.98 148.84 139.07
O—M—O 99.76 102.86 95.26 97.43 98.87 95.39
N(mid)—M—O (within different ligands) 104.25 99.33 98.33 98.79 100.49 103.58
CSD refcode CIZJEDa CIZGOKb CIZGAWc COYVUKd CIZFUPe 2051612f
Notes: (a) Yang (2019[Yang, P. (2019). CSD Communications (refcodes CIZJED, CIZGOK and CIZFUP). CCDC, Cambridge, England.]); (b) Yang (2019[Yang, P. (2019). CSD Communications (refcodes CIZJED, CIZGOK and CIZFUP). CCDC, Cambridge, England.]); (c) Yang, Zhang et al. (2020[Yang, P., Zhang, L.-L., Wang, Z.-Z., Zhang, D.-D., Liu, Y.-M., Shi, Q.-S. & Xie, X.-B. (2020). J. Inorg. Biochem. 203, 110919-110919.]); (d) Yang, Zhang et al. (2019[Yang, P., Zhang, D.-D., Wang, Z.-Z., Liu, H.-Z., Shi, Q.-S. & Xie, X.-B. (2019). Dalton Trans. 48, 17925-17935.]); (e) Yang (2019[Yang, P. (2019). CSD Communications (refcodes CIZJED, CIZGOK and CIZFUP). CCDC, Cambridge, England.]); (f) this work.

3. Supra­molecular features

Two types of weak inter­molecular inter­actions, C—H⋯N and C—H⋯O hydrogen bonds and ππ stacking and C—H⋯π inter­actions, have a significant impact on the packing of the complexes in the solid state. Three inter­molecular hydrogen bonds (Table 2[link]) are observed in the crystal. Two hydrogen bonds (C10—H10⋯O2ii and C12—H12⋯O1i, symmetry code given in Table 2[link]; Fig. 2[link]a) form a sheet parallel to the crystallographic bc plane. Adjacent sheets of the complex are connected to each other via a weak C4—H4⋯N4iii inter­action, forming a three-dimensional network (Table 2[link] and Fig. 2[link]b). Inter­molecular ππ stacking is observed between the pyrazine rings and benzene rings of ligands in neighbouring complexes [the centroid–centroid distance between N3–N4/C9–C12 and C1–C6vi [symmetry code: (vi) x, y − [{1\over 2}], z − [{1\over 2}]] is 3.641 (2) Å, with a slippage of 1.252 Å, Fig. 3[link]. Inter­molecular inter­actions between carbon atoms C13 and the π ring of lateral benzene rings and pyrazine rings in neighbouring mol­ecules are found, namely C13—H13BCg1v [2.71 Å, Cg1 is the centroid of the C1–C6 ring; symmetry code: (v) −x + [{3\over 2}], y, z − [{1\over 2}]] and C13–H13ACg2iv [2.86 Å, Cg2 is the centroid of the N3–N4/C9–C12; symmetry code: (iv) −x + [{3\over 2}], y, z + [{1\over 2}]] (Fig. 3[link]).

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and N3–N4/C9–C12 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯N4i 0.95 2.47 3.349 (6) 154
C10—H10⋯O2ii 0.95 2.55 3.283 (5) 134
C12—H12⋯O1iii 0.95 2.49 3.439 (5) 174
O1—H1⋯N1 0.90 (8) 1.76 (8) 2.557 (4) 146 (7)
C13—H13ACg2iv 0.98 2.86 3.740 (6) 149
C13—H13BCg1v 0.98 2.71 3.592 (6) 150
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z+1]; (ii) [x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y, z+{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, y, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of the title compound showing the O—H⋯O and C—H⋯N hydrogen bonds. For clarity, another symmetrical ligand coordinated with metal center has been omitted. Symmetry codes: (ii) x + [{1\over 2}], −y + 1, z − [{1\over 2}]; (iii) x − [{1\over 2}], −y + 1, z − [{1\over 2}]; (vii) x + [{1\over 2}], −y + 1, z + [{1\over 2}]; (viii) x − [{1\over 2}], −y + 1, z + [{1\over 2}]; (ix) x, y, z − 1; (x) x, y, z + 1.
[Figure 3]
Figure 3
(a) Crystal packing of the title compound showing the C—H⋯π and ππ inter­actions. For clarity, the second ligand at each metal centre has been omitted. Symmetry codes: (iv) x, y − [{1\over 2}], z − [{1\over 2}]; (v) −x + [{3\over 2}], y, z − [{1\over 2}]; (vi) −x + [{3\over 2}], y, z + [{1\over 2}]. (b) View down [100].

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.41, August 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for metal complexes involving the N′-[1-(pyrazin-2-yl)ethyl­idene]benzohydrazide ligand resulted in seven related metal complexes with exactly the same ligand. These are the already discussed isomorphous Mn, Co, Ni, Cu and Zn [MII(L)2] complexes (CCDC refcodes: CIZJED for M = Mn, CIZGOK for M = Co, CIZGAW for M = Ni (Yang, Zhang et al., 2020[Yang, P., Zhang, L.-L., Wang, Z.-Z., Zhang, D.-D., Liu, Y.-M., Shi, Q.-S. & Xie, X.-B. (2020). J. Inorg. Biochem. 203, 110919-110919.]), COYVUK for M = Cu and CIZFUP for M = Zn) (Yang et al., 2019[Yang, P., Zhang, D.-D., Wang, Z.-Z., Liu, H.-Z., Shi, Q.-S. & Xie, X.-B. (2019). Dalton Trans. 48, 17925-17935.]). In all of these complexes, the ligand L acts as a tridentate chelating ligand to generate a distorted octa­hedral structure with a close to planar ligand. Several complexes of related ligands have been found to be also isomorphous to the above series, crystallizing in the same Aba2 space group. These are a Co and a Zn complex bearing the ligand N′-[1-(pyrazin-2-yl)ethyl­idene]benzohydrazide (L4, with one less hydroxyl group on benzene) (YELKUY, YELWUK; Tai et al., 2008[Tai, X.-S., Feng, Y.-M. & Zhang, H.-X. (2008). Acta Cryst. E64, m656.]) as well as four metal complexes involving the ligand 2-hy­droxy-N′-[1-(pyridin-2-yl)ethyl­idene]benzohydrazide (L5, substituted pyrazine group with pyridine group) with M = Cu2+, Ni2+, Zn2+ and Fe2+ [ADEYAK (Dang et al., 2006a[Dang, D.-B., Bai, Y. & Duan, C.-Y. (2006a). Acta Cryst. E62, m1567-m1568.]); XENFEC (Dang et al., 2006b[Dang, D.-B., Bai, Y. & Duan, C.-Y. (2006b). Acta Cryst. E62, m2290-m2292.]); HIGPOD (Barbazán et al., 2007[Barbazán, P., Carballo, R. & Vázquez-López, E. M. (2007). CrystEngComm, 9, 668-675.]); RADDOR (Zhang et al., 2010[Zhang, L., Xu, G.-C., Xu, H.-B., Mereacre, V., Wang, Z.-M., Powell, A. K. & Gao, S. (2010). Dalton Trans. 39, 4856-4868.])].

There are also complexes of ligands L4 and L5 that are not isomorphous to the title complex: complex Cu2(L4)2Cl2 is binuclear, where each Cu centre has two μ-chlorine ligands along with a tridentate coordinated L4 mol­ecule, giving rise to a distorted square-pyramidal coordination environment. It belongs to the triclinic P[\overline{1}] space group (YELXAR; Tai et al., 2008[Tai, X.-S., Feng, Y.-M. & Zhang, H.-X. (2008). Acta Cryst. E64, m656.]). The cobalt complex [Co(L5)2(ClO4)]·0.25(CH3OH) (IGAZAS; Shit et al., 2009[Shit, S., Chakraborty, J., Samanta, B., Slawin, A. M. Z., Gramlich, V. & Mitra, S. (2009). Struct. Chem. 20, 633-642.]) has a nearly ideal octa­hedral structure in the monoclinic P21/n space group, and the ligands have N—N and N—O bite angles of 81.70 to 83.11°. Cu(L5)Br (HIGPIX; Barbazán et al., 2007[Barbazán, P., Carballo, R. & Vázquez-López, E. M. (2007). CrystEngComm, 9, 668-675.]) and Cu(L5)(NO3) (YILYEY; You et al., 2018[You, Z., Yu, H., Li, Z., Zhai, W., Jiang, Y., Li, A., Guo, S., Li, K., Lv, C. & Zhang, C. (2018). Inorg. Chim. Acta, 480, 120-126.]) have roughly square-planar coordination geometries. [Sb(L5)Cl2]·H2O (YILYEY; Abboud et al., 2007[Abboud, K. A., Palenik, R. C., Palenik, G. J. & Wood, R. M. (2007). Inorg. Chim. Acta, 360, 3642-3646.]) has a square-pyramidal coordination geometry in the monoclinic P21/n space group. Cu2(L5)2Cl2 (NICYOP; Mondal et al., 2013[Mondal, S., Naskar, S., Dey, A. K., Sinn, E., Eribal, C., Herron, S. R. & Chattopadhyay, S. K. (2013). Inorg. Chim. Acta, 398, 98-105.]) is a binuclear complex and each Cu centre has a square-pyramidal coordination geometry. It is isomorphic to Cu2(L4)2Cl2. A Zn complex, Zn(L1)2·H2O (XIYNUP; Tai et al., 2008[Tai, X.-S., Feng, Y.-M. & Zhang, H.-X. (2008). Acta Cryst. E64, m656.]) with the ligand L1 with one more methyl group on pyrazine crystallizes in the monoclinic P21/n space group. The planarity of the ligand is decreased compared to the title complex, and the Zn ion exhibits a distorted octa­hedral geometry. Also reported are five similar compounds featuring the ligands L2 and L3 with the hydroxyl group in the meta and para positions of the benzene ring, respectively. They crystallize as DMF solvates [M(L2)2]·2(DMF) (DMF = di­methyl­formamide; M = Ni, Cu and Zn; CIZHIF, CIZGUQ and CIZJAZ) and [Cu(L3)2]·2(DMF) (M = Ni and Cu; CIZHUR and COYWEV) (Yang et al., 2019[Yang, P., Zhang, D.-D., Wang, Z.-Z., Liu, H.-Z., Shi, Q.-S. & Xie, X.-B. (2019). Dalton Trans. 48, 17925-17935.]; Yang, Zhang et al., 2020[Yang, P., Zhang, L.-L., Wang, Z.-Z., Zhang, D.-D., Liu, Y.-M., Shi, Q.-S. & Xie, X.-B. (2020). J. Inorg. Biochem. 203, 110919-110919.]) in the ortho­rhom­bic Pbcn space group. They also feature distorted octa­hedral structures and the planarity of the ligands is decreased compared to the title compound. All the complexes with the [M(Ligand)2] core are distorted octa­hedral, and all metal centres have a mer geometry. All ligands L, L1, L2, L3, L4 and L5 are tridentate chelating.

5. Synthesis and crystallization

The title complex and ligand were synthesized according to literature procedures (Yang, Zhang et al., 2020[Yang, P., Zhang, L.-L., Wang, Z.-Z., Zhang, D.-D., Liu, Y.-M., Shi, Q.-S. & Xie, X.-B. (2020). J. Inorg. Biochem. 203, 110919-110919.]; Yang et al., 2019[Yang, P., Zhang, D.-D., Wang, Z.-Z., Liu, H.-Z., Shi, Q.-S. & Xie, X.-B. (2019). Dalton Trans. 48, 17925-17935.]). The complex was obtained by mixing a solution of the aroylhydrazone (0.02 mmol) in methanol (2 mL) and a solution of Cd(NO3)2·4H2O (0.01 mmol) in water (2 mL). After two weeks of static volatilization in a test tube at room temperature, clear light-yellow block-shaped crystals of Cd(L)2 were obtained (5.6 mg, yield 90%) (calculated based on metal ions), m.p. > 543 K. IR (KBr): ν (cm−1) = 1594 s, 1534 s, 1518 s, 1489 s, 1458 s, 1401 w, 1349 s, 1299 s, 1248 m, 1225 m, 1198 m, 1162 m, 1147 s, 1106 w, 1072 s, 1042 m, 1029 m, 910 w, 850 w, 833 w, 786 w, 764 m, 701 m, 662 w, 565 w, 541 w, 492 w, 419 w, 406 w.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C-bound H atoms were placed in calculated positions (Csp2—H = 0.95 Å and Csp3—H = 0.98 Å) and were included in the refinement in a riding-model approximation, with Uiso(H) set to 1.2Ueq(Csp2) and 1.5Ueq(Csp3). The O-bound H atom was located based on a difference-Fourier map and its position was freely refined. It was assigned Uiso(H) = 1.5Ueq(O).

Table 3
Experimental details

Crystal data
Chemical formula [Cd(C13H11N4O2)2]
Mr 622.91
Crystal system, space group Orthorhombic, Aba2
Temperature (K) 108
a, b, c (Å) 12.6654 (1), 17.63940 (18), 10.88800 (11)
V3) 2432.49 (4)
Z 4
Radiation type Cu Kα
μ (mm−1) 7.64
Crystal size (mm) 0.12 × 0.10 × 0.08
 
Data collection
Diffractometer Rigaku Oxford Diffraction XtaLAB Synergy R, DW system, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.519, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 36223, 2475, 2458
Rint 0.038
(sin θ/λ)max−1) 0.630
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.075, 1.20
No. of reflections 2475
No. of parameters 182
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.72, −0.99
Absolute structure Flack x determined using 1131 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]).
Absolute structure parameter −0.012 (4)
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS and SHELXP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2020); cell refinement: CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: SHELXP (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis{2-hydroxy-N'-[1-(pyrazin-2-yl)ethylidene]benzohydrazidato}cadmium(II) top
Crystal data top
[Cd(C13H11N4O2)2]Dx = 1.701 Mg m3
Mr = 622.91Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Aba2Cell parameters from 31744 reflections
a = 12.6654 (1) Åθ = 2.5–76.5°
b = 17.63940 (18) ŵ = 7.64 mm1
c = 10.88800 (11) ÅT = 108 K
V = 2432.49 (4) Å3Block, clear light yellow
Z = 40.12 × 0.10 × 0.08 mm
F(000) = 1256
Data collection top
Rigaku Oxford Diffraction XtaLAB Synergy R, DW system, HyPix
diffractometer
2475 independent reflections
Radiation source: Rotating-anode X-ray tube2458 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.038
ω scansθmax = 76.2°, θmin = 5.0°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 1415
Tmin = 0.519, Tmax = 1.000k = 2122
36223 measured reflectionsl = 1313
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0473P)2 + 1.8799P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max < 0.001
S = 1.20Δρmax = 0.72 e Å3
2475 reflectionsΔρmin = 0.99 e Å3
182 parametersExtinction correction: SHELXL (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00067 (9)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 1131 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013).
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.012 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6224 (3)0.6694 (2)0.9539 (4)0.0255 (8)
C20.7242 (3)0.6887 (2)0.9964 (4)0.0322 (9)
C30.7340 (5)0.7364 (3)1.0986 (5)0.0422 (13)
H30.8022530.7498171.1275370.051*
C40.6462 (5)0.7642 (2)1.1578 (4)0.0439 (12)
H40.6543290.7957281.2279060.053*
C50.5452 (5)0.7465 (2)1.1153 (4)0.0399 (11)
H50.4845900.7665391.1551650.048*
C60.5341 (4)0.6995 (2)1.0149 (4)0.0316 (8)
H60.4653200.6872810.9863260.038*
C70.6043 (3)0.61456 (19)0.8526 (3)0.0220 (7)
C80.7448 (4)0.5100 (2)0.6398 (5)0.0240 (9)
C90.7096 (3)0.4582 (2)0.5418 (4)0.0247 (8)
C100.7783 (3)0.4270 (2)0.4540 (4)0.0319 (9)
H100.8511950.4393290.4581930.038*
C110.6425 (4)0.3646 (2)0.3636 (4)0.0365 (10)
H110.6163440.3310300.3024820.044*
C120.5728 (3)0.3950 (2)0.4482 (4)0.0282 (8)
H120.5000360.3821940.4435030.034*
C130.8597 (3)0.5252 (3)0.6647 (5)0.0388 (11)
H13A0.8795220.5025770.7435980.058*
H13B0.8718280.5800370.6676030.058*
H13C0.9025540.5028660.5990800.058*
Cd10.5000000.5000000.68642 (13)0.01811 (16)
N10.6931 (3)0.58932 (17)0.7964 (3)0.0236 (6)
N20.6699 (2)0.54015 (16)0.7035 (3)0.0211 (6)
N30.6056 (2)0.44157 (17)0.5356 (3)0.0227 (6)
N40.7454 (4)0.3809 (2)0.3652 (4)0.0398 (9)
O10.8136 (3)0.66287 (19)0.9425 (3)0.0393 (7)
H10.796 (6)0.631 (4)0.880 (7)0.059*
O20.5115 (2)0.5951 (2)0.8272 (4)0.0271 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.031 (2)0.0204 (17)0.0249 (18)0.0051 (13)0.0068 (15)0.0044 (15)
C20.039 (2)0.0289 (18)0.0291 (19)0.0115 (17)0.0106 (18)0.0059 (16)
C30.062 (3)0.0319 (18)0.032 (2)0.019 (2)0.020 (2)0.004 (2)
C40.076 (4)0.029 (2)0.026 (2)0.015 (2)0.010 (2)0.0013 (17)
C50.064 (4)0.025 (2)0.030 (2)0.010 (2)0.000 (2)0.0017 (18)
C60.041 (2)0.0249 (19)0.028 (2)0.0056 (19)0.003 (2)0.0002 (16)
C70.0221 (17)0.0225 (16)0.0214 (16)0.0039 (13)0.0030 (14)0.0033 (14)
C80.014 (2)0.0278 (18)0.031 (2)0.0012 (15)0.0002 (18)0.0100 (16)
C90.0225 (19)0.0237 (16)0.0279 (18)0.0048 (13)0.0074 (15)0.0079 (14)
C100.030 (2)0.0273 (18)0.038 (2)0.0084 (15)0.0141 (17)0.0076 (17)
C110.055 (3)0.0276 (19)0.027 (2)0.0030 (19)0.010 (2)0.0020 (16)
C120.033 (2)0.0258 (17)0.0261 (17)0.0022 (15)0.0027 (16)0.0024 (16)
C130.0136 (18)0.045 (2)0.058 (3)0.0028 (18)0.0024 (19)0.010 (3)
Cd10.0110 (2)0.0243 (2)0.0190 (2)0.00150 (9)0.0000.000
N10.0208 (15)0.0243 (15)0.0256 (15)0.0053 (12)0.0046 (12)0.0016 (12)
N20.0155 (14)0.0234 (12)0.0243 (16)0.0022 (11)0.0008 (12)0.0048 (12)
N30.0207 (15)0.0243 (14)0.0230 (13)0.0016 (11)0.0039 (12)0.0029 (12)
N40.049 (2)0.0302 (17)0.040 (2)0.0100 (17)0.0206 (18)0.0047 (16)
O10.0320 (17)0.0460 (17)0.0399 (16)0.0136 (13)0.0121 (14)0.0016 (15)
O20.0208 (14)0.0311 (17)0.0293 (18)0.0023 (10)0.0010 (11)0.0091 (15)
Geometric parameters (Å, º) top
C1—C61.405 (7)C10—N41.330 (7)
C1—C21.412 (6)C10—H100.9500
C1—C71.485 (5)C11—N41.335 (7)
C2—O11.354 (6)C11—C121.385 (6)
C2—C31.401 (7)C11—H110.9500
C3—C41.375 (8)C12—N31.324 (5)
C3—H30.9500C12—H120.9500
C4—C51.396 (8)C13—H13A0.9800
C4—H40.9500C13—H13B0.9800
C5—C61.378 (6)C13—H13C0.9800
C5—H50.9500Cd1—N22.273 (3)
C6—H60.9500Cd1—N2i2.273 (3)
C7—O21.255 (5)Cd1—O22.277 (4)
C7—N11.355 (5)Cd1—O2i2.277 (4)
C8—N21.289 (6)Cd1—N3i2.356 (3)
C8—C91.475 (7)Cd1—N32.356 (3)
C8—C131.504 (7)N1—N21.365 (4)
C9—N31.351 (5)O1—H10.90 (8)
C9—C101.405 (5)
C6—C1—C2118.7 (4)N3—C12—H12119.4
C6—C1—C7118.4 (4)C11—C12—H12119.4
C2—C1—C7122.8 (4)C8—C13—H13A109.5
O1—C2—C3118.2 (4)C8—C13—H13B109.5
O1—C2—C1122.7 (4)H13A—C13—H13B109.5
C3—C2—C1119.1 (5)C8—C13—H13C109.5
C4—C3—C2121.0 (5)H13A—C13—H13C109.5
C4—C3—H3119.5H13B—C13—H13C109.5
C2—C3—H3119.5N2—Cd1—N2i170.63 (17)
C3—C4—C5120.4 (4)N2—Cd1—O269.83 (11)
C3—C4—H4119.8N2i—Cd1—O2103.58 (11)
C5—C4—H4119.8N2—Cd1—O2i103.58 (11)
C6—C5—C4119.4 (5)N2i—Cd1—O2i69.83 (11)
C6—C5—H5120.3O2—Cd1—O2i95.4 (2)
C4—C5—H5120.3N2—Cd1—N3i117.27 (11)
C5—C6—C1121.4 (5)N2i—Cd1—N3i69.86 (11)
C5—C6—H6119.3O2—Cd1—N3i100.55 (13)
C1—C6—H6119.3O2i—Cd1—N3i139.07 (10)
O2—C7—N1126.0 (3)N2—Cd1—N369.86 (11)
O2—C7—C1119.0 (4)N2i—Cd1—N3117.27 (11)
N1—C7—C1114.9 (3)O2—Cd1—N3139.07 (10)
N2—C8—C9115.0 (4)O2i—Cd1—N3100.55 (13)
N2—C8—C13122.8 (5)N3i—Cd1—N391.59 (16)
C9—C8—C13122.2 (4)C7—N1—N2111.4 (3)
N3—C9—C10119.0 (4)C8—N2—N1120.2 (3)
N3—C9—C8117.7 (4)C8—N2—Cd1121.6 (3)
C10—C9—C8123.2 (4)N1—N2—Cd1117.5 (2)
N4—C10—C9122.7 (4)C12—N3—C9118.5 (3)
N4—C10—H10118.6C12—N3—Cd1126.5 (3)
C9—C10—H10118.6C9—N3—Cd1115.1 (3)
N4—C11—C12122.1 (4)C10—N4—C11116.5 (4)
N4—C11—H11119.0C2—O1—H1109 (5)
C12—C11—H11119.0C7—O2—Cd1114.1 (3)
N3—C12—C11121.2 (4)
C6—C1—C2—O1179.3 (4)C8—C9—C10—N4179.3 (4)
C7—C1—C2—O14.8 (6)N4—C11—C12—N30.4 (6)
C6—C1—C2—C30.8 (6)O2—C7—N1—N21.7 (5)
C7—C1—C2—C3175.2 (4)C1—C7—N1—N2179.1 (3)
O1—C2—C3—C4179.7 (4)C9—C8—N2—N1179.8 (3)
C1—C2—C3—C40.2 (6)C13—C8—N2—N11.4 (6)
C2—C3—C4—C51.3 (7)C9—C8—N2—Cd110.1 (5)
C3—C4—C5—C61.3 (6)C13—C8—N2—Cd1168.8 (3)
C4—C5—C6—C10.3 (6)C7—N1—N2—C8179.7 (3)
C2—C1—C6—C50.7 (6)C7—N1—N2—Cd19.2 (4)
C7—C1—C6—C5175.4 (4)C11—C12—N3—C91.0 (6)
C6—C1—C7—O22.2 (5)C11—C12—N3—Cd1179.4 (3)
C2—C1—C7—O2173.7 (4)C10—C9—N3—C121.5 (5)
C6—C1—C7—N1178.6 (3)C8—C9—N3—C12179.9 (3)
C2—C1—C7—N15.5 (5)C10—C9—N3—Cd1178.8 (3)
N2—C8—C9—N36.2 (5)C8—C9—N3—Cd10.2 (4)
C13—C8—C9—N3172.6 (4)C9—C10—N4—C110.6 (6)
N2—C8—C9—C10172.3 (4)C12—C11—N4—C101.2 (6)
C13—C8—C9—C108.8 (6)N1—C7—O2—Cd16.4 (5)
N3—C9—C10—N40.8 (6)C1—C7—O2—Cd1172.7 (3)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and N3–N4/C9–C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···N4ii0.952.473.349 (6)154
C10—H10···O2iii0.952.553.283 (5)134
C12—H12···O1iv0.952.493.439 (5)174
O1—H1···N10.90 (8)1.76 (8)2.557 (4)146 (7)
C13—H13A···Cg2v0.982.863.740 (6)149
C13—H13B···Cg1vi0.982.713.592 (6)150
Symmetry codes: (ii) x+3/2, y+1/2, z+1; (iii) x+1/2, y+1, z1/2; (iv) x1/2, y+1, z1/2; (v) x+3/2, y, z+1/2; (vi) x+3/2, y, z1/2.
Comparative analysis of ion radius and the bond lengths and bond angles of coordination polyhedra (Å, °) top
Mn2+Co2+Ni2+Cu2+Zn2+Cd2+
Ion radius0.830.7450.690.730.740.95
M—N2.2832.1512.1142.1922.2152.356
M—N(mid)2.1932.0501.9941.9792.0742.273
M—O2.1482.1022.0972.1302.1252.278
N(mid)—M—N(mid)174.46172.30173.86173.64173.97170.63
N—M—O (within the same ligand)142.08148.53153.95151.98148.84139.07
O—M—O99.76102.8695.2697.4398.8795.39
N(mid)—M—O (within different ligands)104.2599.3398.3398.79100.49103.58
CSD refcodeCIZJEDaCIZGOKbCIZGAWcCOYVUKdCIZFUPe2051612f
Notes: (a) Yang (2019); (b) Yang (2019); (c) Yang, Zhang et al. (2020); (d) Yang, Zhang et al. (2019); (e) Yang (2019); (f) reference? (year?).
 

Acknowledgements

The authors thank Guangzhou University and Zi-Zhou Wang for recording the X-ray crystallographic data for the crystals.

Funding information

Funding for this research was provided by: the National Natural Science Foundation of China (grant No. 41701349); GDAS' Project of Science and Technology Development (grant No. 2020GDASYL-20200103015); Nanyue Talent Fund (grant No. GDIMYET20180205).

References

First citationAbboud, K. A., Palenik, R. C., Palenik, G. J. & Wood, R. M. (2007). Inorg. Chim. Acta, 360, 3642–3646.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarbazán, P., Carballo, R. & Vázquez-López, E. M. (2007). CrystEngComm, 9, 668–675.  Google Scholar
First citationBrines, L. M., Shearer, J., Fender, J. K., Schweitzer, D., Shoner, S. C., Barnhart, D., Kaminsky, W., Lovell, S. & Kovacs, J. A. (2007). Inorg. Chem. 46, 9267–9277.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCindrić, M., Bjelopetrović, A., Pavlović, G., Damjanović, V., Lovrić, J., Matković-Čalogović, D. & Vrdoljak, V. (2017). New J. Chem. 41, 2425–2435.  Google Scholar
First citationDang, D.-B., Bai, Y. & Duan, C.-Y. (2006a). Acta Cryst. E62, m1567–m1568.  CSD CrossRef IUCr Journals Google Scholar
First citationDang, D.-B., Bai, Y. & Duan, C.-Y. (2006b). Acta Cryst. E62, m2290–m2292.  CSD CrossRef IUCr Journals Google Scholar
First citationDatabase of Ionic Radii (2020). Hosted by the Atomistic Simulation Group in the Materials Department of Imperial College, https://abulafia.mt.ic.ac.uk/shannon/PTABLE.php  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuang, W., Shen, F.-X., Wu, S.-Q., Liu, L., Wu, D., Zheng, Z., Xu, J., Zhang, M., Huang, X.-C., Jiang, J., Pan, F., Li, Y., Zhu, K. & Sato, O. (2016). Inorg. Chem. 55, 5476–5484.  CSD CrossRef CAS PubMed Google Scholar
First citationKalinowski, D. S., Sharpe, P. C., Bernhardt, P. V. & Richardson, D. R. (2008). J. Med. Chem. 51, 331–344.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKar, C., Samanta, S., Goswami, S., Ramesh, A. & Das, G. (2015). Dalton Trans. 44, 4123–4132.  CSD CrossRef CAS PubMed Google Scholar
First citationKuriakose, D., Aravindakshan, A. A. & Kurup, M. R. P. (2017). Polyhedron, 127, 84–96.  CSD CrossRef CAS Google Scholar
First citationManna, A. K., Chowdhury, S. & Patra, G. K. (2019). Dalton Trans. 48, 12336–12348.  CSD CrossRef CAS PubMed Google Scholar
First citationMondal, S., Naskar, S., Dey, A. K., Sinn, E., Eribal, C., Herron, S. R. & Chattopadhyay, S. K. (2013). Inorg. Chim. Acta, 398, 98–105.  Web of Science CSD CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPatel, R. N., Singh, Y., Singh, Y. P., Patel, A. K., Patel, N., Singh, R., Butcher, R. J., Jasinski, J. P., Colacio, E. & Palacios, M. A. (2018). New J. Chem. 42, 3112–3136.  CSD CrossRef CAS Google Scholar
First citationReger, D. L., Pascui, A. E., Smith, M. D., Jezierska, J. & Ozarowski, A. (2012). Inorg. Chem. 51, 11820–11836.  CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSen, S., Talukder, P., Rosair, G. & Mitra, S. (2005). Struct. Chem. 16, 605–610.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShit, S., Chakraborty, J., Samanta, B., Slawin, A. M. Z., Gramlich, V. & Mitra, S. (2009). Struct. Chem. 20, 633–642.  Web of Science CSD CrossRef CAS Google Scholar
First citationSola, M., Mestres, J., Duran, M. & Carbo, R. (1994). J. Chem. Inf. Comput. Sci. 34, 1047–1053.  CrossRef CAS Google Scholar
First citationSousa-Pedrares, A., Camiña, N., Romero, J., Durán, M. L., García-Vázquez, J. A. & Sousa, A. (2008). Polyhedron, 27, 3391–3397.  Web of Science CSD CrossRef CAS Google Scholar
First citationSutradhar, M., Kirillova, M. V., Guedes da Silva, M. F. C., Liu, C.-M. & Pombeiro, A. J. L. (2013). Dalton Trans. 42, 16578–16587.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationTai, X.-S. & Feng, Y.-M. (2008). Acta Cryst. E64, o707–o707.  CSD CrossRef IUCr Journals Google Scholar
First citationTai, X.-S., Feng, Y.-M. & Zhang, H.-X. (2008). Acta Cryst. E64, m656.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, S.-P., Yang, F.-L., Zhu, G.-Z., Shi, H.-L. & Li, X.-L. (2014). Polyhedron, 68, 1–9.  CSD CrossRef CAS Google Scholar
First citationYang, P. (2019). CSD Communications (refcodes CIZJED, CIZGOK and CIZFUP). CCDC, Cambridge, England.  Google Scholar
First citationYang, P., Chen, H., Wang, Z.-Z., Zhang, L.-L., Zhang, D.-D., Shi, Q.-S. & Xie, X.-B. (2020). J. Inorg. Biochem. 213, 111248–111248.  CSD CrossRef CAS PubMed Google Scholar
First citationYang, P., Zhang, D.-D., Wang, Z.-Z., Liu, H.-Z., Shi, Q.-S. & Xie, X.-B. (2019). Dalton Trans. 48, 17925–17935.  CSD CrossRef CAS PubMed Google Scholar
First citationYang, P., Zhang, L.-L., Wang, Z.-Z., Zhang, D.-D., Liu, Y.-M., Shi, Q.-S. & Xie, X.-B. (2020). J. Inorg. Biochem. 203, 110919–110919.  CSD CrossRef CAS PubMed Google Scholar
First citationYou, Z., Yu, H., Li, Z., Zhai, W., Jiang, Y., Li, A., Guo, S., Li, K., Lv, C. & Zhang, C. (2018). Inorg. Chim. Acta, 480, 120–126.  CSD CrossRef CAS Google Scholar
First citationZhang, L., Xu, G.-C., Xu, H.-B., Mereacre, V., Wang, Z.-M., Powell, A. K. & Gao, S. (2010). Dalton Trans. 39, 4856–4868.  CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds