research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2,2′-{[(2-nitro­benz­yl)aza­nedi­yl]bis­­(propane-3,1-di­yl)}bis­­[1H-iso­indole-1,3(2H)-dione]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Point Loma Nazarene University, San Diego, CA 92106, USA, bCrystallography Facility, The Ohio State University, Columbus, OH 43210, USA, cDepartment of Chemistry, University of California-San Diego, La Jolla, CA 92093, USA, and dDepartment of Chemistry, San Diego Miramar College, San Diego, CA 92126, USA
*Correspondence e-mail: glsmith@sdccd.edu

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 12 November 2020; accepted 28 December 2020; online 8 January 2021)

The structure of the title compound, C29H26N4O6, exhibits a folded conformation with the three arms all on the same side of the tertiary N atom. The two phthalimide units make a dihedral angle of 12.18 (12)° and the dihedral angles between the benzyl plane and the phthalimide units are 68.08 (7) and 67.71 (7)°. The crystal packing features ππ inter­actions.

1. Chemical context

The coordination chemistry of tripodal tetra­mine ligands has been reviewed and includes structures with pendant arms that are symmetric or asymmetric with respect to the presence of aliphatic and aromatic donor atoms (Blackman, 2005[Blackman, A. G. (2005). Polyhedron, 24, 1-39.]). The ligands coordinate transition metals or lanthanide ions using all four nitro­gen donor atoms. Tripodal amines have also been shown to coordinate to anions (Bose et al., 2011[Bose, P., Ravikumar, I. & Ghosh, P. (2011). Inorg. Chem. 50, 10693-10702.]; Bazzicalupi et al., 2009[Bazzicalupi, C., Bencini, A., Bianchi, A., Danesi, A., Giorgi, C. & Valtancoli, B. (2009). Inorg. Chem. 48, 2391-2398.]; Kuswandi et al., 2006[Kuswandi, B., Nuriman, N., Verboom, W. & Reinhoudt, D. N. (2006). Sensors. 6, 978-1017.]). The title compound is an inter­mediate for the synthesis of an asymmetrical tripodal tetra­mine. After removal of the phthalimide protecting groups and reduction of the nitro group, the title compound will become a tripodal ligand with two arms that contain aliphatic nitro­gens and one with an aromatic nitro­gen (Keypour et al., 2008a[Keypour, H., Azadbakht, R. & Khavasi, H. (2008a). Polyhedron, 27, 648-654.],b[Keypour, H., Azadbakht, R., Salehzadeh, S., Khanmohammadi, H., Khavasi, H. & Adams, H. (2008b). Polyhedron, 27, 1631-1638.]). Phthalimide compounds are of inter­est themselves because they have the tendency to exhibit a variety of supra­molecular inter­actions in the solid state. These include nπ, ππ, dipole–dipole, hydrogen bonding, and other supra­molecular inter­actions (Howell et al., 2003[Howell, R. C., Edwards, S. H., Gajadhar-Plummer, A. S., Kahwa, I. A., McPherson, G. L., Mague, J. T., White, A. J. P. & Williams, D. J. (2003). Molecules, 8, 565-592.]; Barrett et al., 1995[Barrett, D. M. Y., Kahwa, I. A., Mague, J. T. & McPherson, G. L. (1995). J. Org. Chem. 60, 5946-5953.]).

[Scheme 1]

2. Structural commentary

In the title compound (Fig. 1[link]), the planes of the two phthalimide units (N1/C1–C8 and N3/C15–C22) make a dihedral angle of 12.18 (12)°. The dihedral angles between the benzyl plane and the phthalimide units are 68.08 (7) and 67.71 (7)°. This orientation creates a cavity around which the three arms are arranged. The bridgehead nitro­gen (N2) is located 2.104 (2) Å away from the plane created by the other three nitro­gen atoms.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 50% probability ellipsoids.

3. Supra­molecular features

The crystal structure consists of centrosymmetrical dimers with off-set ππ stacking between phthalimide groups (N3/C15–C22) running along the c-axis direction (Fig. 2[link]). The centroid–centroid separation is 3.631 (4) Å. A second ππ stacking inter­action is found with one of the arms. The Cg(N1/C1–C8)⋯Cg(N3/C15–C22) centroid–centroid distance is 3.576 (4) Å. There is also a longer centrosymmetric interaction of the nitro benzyl groups (N4/C24–C29) with a distance of 4.694 (5) Å.

[Figure 2]
Figure 2
Mol­ecular packing of the title compound showing the ππ inter­actions (dashed lines).

4. Database survey

A search of the Cambridge Structural Database (version 5.41, update of October 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for related compounds with a phthalimide unit gave 2623 hits. A search for the skeletal structure of N(CH2CH2CH2N)3 resulted in 149 entries. Similar off-set ππ stacking was seen in another compound with two phthalimide groups (REVYUM; Barrett et al., 1995[Barrett, D. M. Y., Kahwa, I. A., Mague, J. T. & McPherson, G. L. (1995). J. Org. Chem. 60, 5946-5953.]). However, it was shown that an intra­molecular hydrogen bond between phthalimide groups resulted in no ππ stacking (VEHRUW; Brycki et al., 2006[Brycki, B., Kowalczyk, I., Werner, J., Borowiak, T. & Wolska, I. (2006). J. Mol. Struct. 791, 137-143.]). More recently, a urea compound with two phthalimides showed ππ stacking and intra­molecular hydrogen bonding (PONZEZ; Medrano et al., 2014[Medrano, F., Lujano, S., Godoy-Alcántar, C. & Tlahuext, H. (2014). Acta Cryst. E70, 373-375.]). Three structures with only one phthalimide group have also shown ππ inter­actions (VIDTUA; Brovarets et al., 2018[Brovarets, V. S., Golovchenko, O. V., Rusanov, E. B. & Rusanova, J. A. (2018). Acta Cryst. E74, 915-917.]; PAVHUR; Yang et al., 2012[Yang, E.-Q., Zhang, J.-T., Cao, X.-P. & Gu, J.-Z. (2012). Acta Cryst. E68, o1636.]; SAGTIF; Shao et al., 2012[Shao, Y., An, D., Zhou, M., Liu, L. & Sun, X.-Q. (2012). Acta Cryst. E68, o173.]). Another compound has been reported that has two phthalimide-protected nitro­gens with two carbon spacers versus three for the title compound, a benzyl group, and a trityl sulfide (WOJSIZ; Flörke et al., 2014[Flörke, U., Neuba, A., Ortmeyer, J. & Henkel, G. (2014). Acta Cryst. E70, o895-o896.]). The dihedral angle between the planes of the phthalimide units is significantly different from the title compound at 77.86 (3)°. The crystal packing of this structure shows hydrogen bonding but not ππ stacking.

5. Synthesis and crystallization

The title compound was prepared by using a previously reported method (Keypour et al., 2008[Keypour, H., Azadbakht, R. & Khavasi, H. (2008a). Polyhedron, 27, 648-654.]a). 3,3′-Diphthal­imido­di­propyl­amine (5.0 g, 13 mmol), 2-nitro­benzyl­chloride (2.6 g, 15 mmol), and potassium carbonate (1.8 g, 13 mmol) were heated at 433 K for one h to give the title compound. Crystals suitable for X-ray analysis were slowly grown from chloro­form.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms were positioned geom­etrically (C—H = 0.95–0.99 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Table 1
Experimental details

Crystal data
Chemical formula C29H26N4O6
Mr 526.54
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 120
a, b, c (Å) 7.8576 (10), 12.3468 (15), 14.1147 (17)
α, β, γ (°) 94.295 (1), 104.603 (1), 101.042 (1)
V3) 1289.6 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.15 × 0.05 × 0.01
 
Data collection
Diffractometer Bruker APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.986, 0.999
No. of measured, independent and observed [I > 2σ(I)] reflections 11940, 4518, 3422
Rint 0.037
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.124, 1.05
No. of reflections 4518
No. of parameters 352
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.22, −0.24
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), and SHELXS97, SHELXL97, and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2,2'-{[(2-Nitrobenzyl)azanediyl}bis(propane-3,1-diyl)}bis[1H-isoindole-1,3(2H)-dione] top
Crystal data top
C29H26N4O6Z = 2
Mr = 526.54F(000) = 552
Triclinic, P1Dx = 1.356 Mg m3
a = 7.8576 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.3468 (15) ÅCell parameters from 4970 reflections
c = 14.1147 (17) Åθ = 2.4–25.4°
α = 94.295 (1)°µ = 0.10 mm1
β = 104.603 (1)°T = 120 K
γ = 101.042 (1)°Plate, colorless
V = 1289.6 (3) Å30.15 × 0.05 × 0.01 mm
Data collection top
Bruker APEX CCD
diffractometer
4518 independent reflections
Radiation source: fine-focus sealed tube3422 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 25.4°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 99
Tmin = 0.986, Tmax = 0.999k = 1414
11940 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0222P)2 + 1.5P]
where P = (Fo2 + 2Fc2)/3
4518 reflections(Δ/σ)max < 0.001
352 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4890 (4)0.8275 (2)0.3635 (2)0.0271 (7)
C20.6627 (4)0.9044 (2)0.3687 (2)0.0243 (6)
C30.7287 (4)1.0141 (2)0.4092 (2)0.0311 (7)
H30.66061.05410.43980.037*
C40.9008 (4)1.0641 (3)0.4031 (2)0.0351 (8)
H40.94971.14010.42920.042*
C51.0010 (4)1.0052 (3)0.3599 (2)0.0337 (8)
H51.11751.04140.35720.040*
C60.9345 (4)0.8945 (3)0.3206 (2)0.0301 (7)
H61.00360.85360.29160.036*
C70.7637 (4)0.8458 (2)0.3253 (2)0.0241 (6)
C80.6567 (4)0.7305 (2)0.2896 (2)0.0245 (6)
C90.3523 (4)0.6256 (2)0.2976 (2)0.0294 (7)
H9A0.31900.61520.36000.035*
H9B0.39990.56060.27960.035*
C100.1841 (4)0.6293 (2)0.2168 (2)0.0256 (6)
H10A0.13770.69520.23350.031*
H10B0.21550.63670.15350.031*
C110.0385 (4)0.5247 (2)0.2048 (2)0.0261 (6)
H11A0.00700.52430.26410.031*
H11B0.06330.52590.14720.031*
C120.1262 (3)0.4048 (2)0.0910 (2)0.0237 (6)
H12A0.18310.47690.07430.028*
H12B0.00560.37940.04340.028*
C130.2396 (4)0.3205 (2)0.0790 (2)0.0264 (7)
H13A0.35720.34170.12970.032*
H13B0.17750.24610.08830.032*
C140.2694 (4)0.3165 (2)0.0232 (2)0.0264 (6)
H14A0.15170.30700.07280.032*
H14B0.34540.38840.02850.032*
C150.5367 (3)0.2414 (2)0.0430 (2)0.0221 (6)
C160.5587 (3)0.1320 (2)0.08339 (19)0.0206 (6)
C170.7090 (3)0.0994 (2)0.0999 (2)0.0252 (6)
H170.82330.14950.08280.030*
C180.6859 (4)0.0095 (3)0.1424 (2)0.0286 (7)
H180.78660.03430.15470.034*
C190.5197 (4)0.0827 (2)0.1672 (2)0.0268 (7)
H190.50790.15640.19690.032*
C200.3687 (4)0.0497 (2)0.1492 (2)0.0256 (6)
H200.25450.09970.16520.031*
C210.3928 (3)0.0578 (2)0.10763 (19)0.0203 (6)
C220.2602 (3)0.1187 (2)0.0827 (2)0.0238 (6)
C230.0218 (3)0.3273 (2)0.2100 (2)0.0238 (6)
H23A0.00680.25680.18720.029*
H23B0.14650.32790.17290.029*
C240.0079 (3)0.3337 (2)0.3192 (2)0.0229 (6)
C250.1560 (4)0.3386 (2)0.3552 (2)0.0284 (7)
H250.26970.33500.30980.034*
C260.1421 (4)0.3485 (3)0.4551 (2)0.0325 (7)
H260.24700.34750.47710.039*
C270.0227 (4)0.3597 (3)0.5233 (2)0.0337 (7)
H270.03180.36800.59200.040*
C280.1741 (4)0.3589 (2)0.4909 (2)0.0282 (7)
H280.28920.36870.53680.034*
C290.1551 (4)0.3436 (2)0.3907 (2)0.0247 (6)
N10.4939 (3)0.72652 (19)0.31379 (17)0.0256 (6)
N20.1039 (3)0.42205 (19)0.19079 (16)0.0217 (5)
N30.3550 (3)0.22716 (19)0.04578 (17)0.0227 (5)
N40.3188 (3)0.3337 (2)0.36090 (19)0.0298 (6)
O10.3652 (3)0.84351 (18)0.39538 (16)0.0375 (5)
O20.6965 (3)0.65364 (18)0.24824 (15)0.0328 (5)
O30.6476 (2)0.32780 (17)0.01314 (15)0.0300 (5)
O40.1007 (2)0.08489 (17)0.09265 (15)0.0315 (5)
O50.4580 (3)0.4043 (2)0.40052 (17)0.0434 (6)
O60.3096 (3)0.25346 (19)0.30131 (17)0.0373 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0285 (15)0.0301 (18)0.0236 (16)0.0078 (13)0.0073 (12)0.0052 (13)
C20.0283 (14)0.0226 (16)0.0236 (16)0.0086 (12)0.0065 (11)0.0071 (12)
C30.0363 (16)0.0261 (18)0.0316 (18)0.0104 (14)0.0071 (13)0.0060 (14)
C40.0416 (18)0.0235 (17)0.0344 (19)0.0016 (14)0.0021 (14)0.0095 (14)
C50.0295 (16)0.0357 (19)0.0338 (18)0.0034 (14)0.0059 (13)0.0110 (15)
C60.0314 (15)0.0358 (19)0.0242 (16)0.0113 (14)0.0054 (12)0.0076 (14)
C70.0290 (14)0.0267 (17)0.0179 (15)0.0086 (12)0.0055 (11)0.0069 (12)
C80.0311 (15)0.0264 (17)0.0195 (15)0.0127 (13)0.0072 (11)0.0069 (13)
C90.0335 (16)0.0239 (17)0.0293 (17)0.0019 (13)0.0086 (12)0.0060 (13)
C100.0308 (15)0.0202 (16)0.0281 (16)0.0076 (12)0.0106 (12)0.0035 (13)
C110.0295 (15)0.0248 (17)0.0275 (16)0.0095 (12)0.0113 (12)0.0047 (13)
C120.0248 (14)0.0283 (17)0.0215 (15)0.0091 (12)0.0092 (11)0.0066 (13)
C130.0275 (15)0.0277 (17)0.0277 (16)0.0106 (12)0.0100 (12)0.0056 (13)
C140.0299 (15)0.0269 (17)0.0273 (16)0.0114 (12)0.0119 (12)0.0057 (13)
C150.0218 (13)0.0268 (17)0.0203 (15)0.0072 (13)0.0081 (11)0.0053 (12)
C160.0189 (13)0.0275 (16)0.0172 (14)0.0078 (11)0.0058 (10)0.0040 (12)
C170.0193 (13)0.0297 (17)0.0288 (16)0.0068 (12)0.0090 (11)0.0056 (13)
C180.0252 (14)0.0369 (19)0.0306 (17)0.0145 (13)0.0129 (12)0.0084 (14)
C190.0307 (15)0.0247 (17)0.0269 (16)0.0096 (12)0.0091 (12)0.0021 (13)
C200.0212 (13)0.0286 (17)0.0255 (16)0.0023 (12)0.0061 (11)0.0028 (13)
C210.0190 (13)0.0275 (17)0.0177 (14)0.0091 (11)0.0073 (10)0.0042 (12)
C220.0197 (14)0.0337 (18)0.0209 (15)0.0094 (12)0.0072 (11)0.0072 (13)
C230.0223 (13)0.0259 (16)0.0232 (15)0.0042 (12)0.0073 (11)0.0032 (12)
C240.0267 (14)0.0184 (15)0.0243 (15)0.0044 (11)0.0084 (11)0.0033 (12)
C250.0251 (14)0.0288 (17)0.0321 (17)0.0066 (12)0.0078 (12)0.0070 (14)
C260.0367 (16)0.0370 (19)0.0336 (18)0.0152 (14)0.0204 (13)0.0100 (15)
C270.0499 (19)0.0323 (19)0.0247 (17)0.0175 (15)0.0135 (14)0.0067 (14)
C280.0316 (15)0.0228 (17)0.0290 (17)0.0078 (13)0.0042 (12)0.0045 (13)
C290.0267 (14)0.0196 (15)0.0307 (17)0.0067 (12)0.0108 (12)0.0062 (13)
N10.0305 (13)0.0226 (14)0.0246 (13)0.0056 (10)0.0090 (10)0.0026 (11)
N20.0239 (11)0.0214 (13)0.0234 (13)0.0076 (10)0.0107 (9)0.0039 (10)
N30.0236 (12)0.0243 (14)0.0245 (13)0.0104 (10)0.0098 (9)0.0045 (10)
N40.0275 (13)0.0311 (16)0.0341 (15)0.0100 (12)0.0096 (11)0.0109 (13)
O10.0348 (12)0.0385 (14)0.0422 (14)0.0066 (10)0.0193 (10)0.0035 (11)
O20.0415 (12)0.0304 (13)0.0296 (12)0.0160 (10)0.0103 (9)0.0012 (10)
O30.0278 (10)0.0280 (12)0.0334 (12)0.0031 (9)0.0098 (9)0.0008 (9)
O40.0189 (10)0.0399 (13)0.0379 (13)0.0071 (9)0.0114 (8)0.0042 (10)
O50.0249 (11)0.0481 (15)0.0528 (15)0.0032 (10)0.0049 (10)0.0100 (12)
O60.0431 (13)0.0379 (14)0.0391 (14)0.0202 (11)0.0168 (10)0.0063 (11)
Geometric parameters (Å, º) top
C1—O11.212 (3)C14—H14B0.9900
C1—N11.396 (4)C15—O31.211 (3)
C1—C21.487 (4)C15—N31.394 (3)
C2—C31.377 (4)C15—C161.485 (4)
C2—C71.388 (4)C16—C171.385 (4)
C3—C41.401 (4)C16—C211.388 (4)
C3—H30.9500C17—C181.390 (4)
C4—C51.384 (4)C17—H170.9500
C4—H40.9500C18—C191.384 (4)
C5—C61.384 (4)C18—H180.9500
C5—H50.9500C19—C201.400 (4)
C6—C71.382 (4)C19—H190.9500
C6—H60.9500C20—C211.369 (4)
C7—C81.486 (4)C20—H200.9500
C8—O21.209 (3)C21—C221.490 (4)
C8—N11.398 (4)C22—O41.211 (3)
C9—N11.464 (3)C22—N31.392 (4)
C9—C101.524 (4)C23—N21.469 (3)
C9—H9A0.9900C23—C241.512 (4)
C9—H9B0.9900C23—H23A0.9900
C10—C111.520 (4)C23—H23B0.9900
C10—H10A0.9900C24—C251.391 (4)
C10—H10B0.9900C24—C291.394 (4)
C11—N21.474 (3)C25—C261.381 (4)
C11—H11A0.9900C25—H250.9500
C11—H11B0.9900C26—C271.380 (4)
C12—N21.467 (3)C26—H260.9500
C12—C131.520 (4)C27—C281.379 (4)
C12—H12A0.9900C27—H270.9500
C12—H12B0.9900C28—C291.379 (4)
C13—C141.517 (4)C28—H280.9500
C13—H13A0.9900C29—N41.474 (4)
C13—H13B0.9900N4—O61.229 (3)
C14—N31.452 (3)N4—O51.234 (3)
C14—H14A0.9900
O1—C1—N1124.5 (3)O3—C15—N3124.6 (3)
O1—C1—C2129.7 (3)O3—C15—C16129.6 (2)
N1—C1—C2105.8 (2)N3—C15—C16105.9 (2)
C3—C2—C7121.3 (3)C17—C16—C21120.9 (3)
C3—C2—C1130.6 (3)C17—C16—C15130.6 (2)
C7—C2—C1108.1 (2)C21—C16—C15108.5 (2)
C2—C3—C4117.0 (3)C16—C17—C18117.3 (3)
C2—C3—H3121.5C16—C17—H17121.3
C4—C3—H3121.5C18—C17—H17121.3
C5—C4—C3121.5 (3)C19—C18—C17121.5 (3)
C5—C4—H4119.3C19—C18—H18119.2
C3—C4—H4119.3C17—C18—H18119.2
C6—C5—C4121.2 (3)C18—C19—C20120.9 (3)
C6—C5—H5119.4C18—C19—H19119.5
C4—C5—H5119.4C20—C19—H19119.5
C7—C6—C5117.3 (3)C21—C20—C19117.1 (2)
C7—C6—H6121.3C21—C20—H20121.5
C5—C6—H6121.3C19—C20—H20121.5
C6—C7—C2121.8 (3)C20—C21—C16122.3 (2)
C6—C7—C8129.9 (3)C20—C21—C22130.1 (2)
C2—C7—C8108.4 (2)C16—C21—C22107.5 (2)
O2—C8—N1125.2 (3)O4—C22—N3124.9 (3)
O2—C8—C7129.1 (3)O4—C22—C21128.9 (3)
N1—C8—C7105.7 (2)N3—C22—C21106.3 (2)
N1—C9—C10112.9 (2)N2—C23—C24110.2 (2)
N1—C9—H9A109.0N2—C23—H23A109.6
C10—C9—H9A109.0C24—C23—H23A109.6
N1—C9—H9B109.0N2—C23—H23B109.6
C10—C9—H9B109.0C24—C23—H23B109.6
H9A—C9—H9B107.8H23A—C23—H23B108.1
C11—C10—C9111.1 (2)C25—C24—C29115.5 (3)
C11—C10—H10A109.4C25—C24—C23121.7 (2)
C9—C10—H10A109.4C29—C24—C23122.6 (2)
C11—C10—H10B109.4C26—C25—C24121.7 (3)
C9—C10—H10B109.4C26—C25—H25119.1
H10A—C10—H10B108.0C24—C25—H25119.1
N2—C11—C10112.6 (2)C27—C26—C25120.7 (3)
N2—C11—H11A109.1C27—C26—H26119.7
C10—C11—H11A109.1C25—C26—H26119.7
N2—C11—H11B109.1C28—C27—C26119.4 (3)
C10—C11—H11B109.1C28—C27—H27120.3
H11A—C11—H11B107.8C26—C27—H27120.3
N2—C12—C13113.8 (2)C27—C28—C29118.7 (3)
N2—C12—H12A108.8C27—C28—H28120.6
C13—C12—H12A108.8C29—C28—H28120.6
N2—C12—H12B108.8C28—C29—C24123.8 (3)
C13—C12—H12B108.8C28—C29—N4116.1 (2)
H12A—C12—H12B107.7C24—C29—N4120.1 (3)
C14—C13—C12109.8 (2)C1—N1—C8112.1 (2)
C14—C13—H13A109.7C1—N1—C9123.7 (2)
C12—C13—H13A109.7C8—N1—C9124.0 (2)
C14—C13—H13B109.7C12—N2—C23111.5 (2)
C12—C13—H13B109.7C12—N2—C11110.5 (2)
H13A—C13—H13B108.2C23—N2—C11109.4 (2)
N3—C14—C13113.3 (2)C22—N3—C15111.8 (2)
N3—C14—H14A108.9C22—N3—C14123.3 (2)
C13—C14—H14A108.9C15—N3—C14124.5 (2)
N3—C14—H14B108.9O6—N4—O5124.3 (3)
C13—C14—H14B108.9O6—N4—C29118.0 (2)
H14A—C14—H14B107.7O5—N4—C29117.7 (3)
 

Acknowledgements

This work was supported by Research Associates, the Point Loma Nazarene University alumni support group.

References

First citationBarrett, D. M. Y., Kahwa, I. A., Mague, J. T. & McPherson, G. L. (1995). J. Org. Chem. 60, 5946–5953.  CSD CrossRef CAS Web of Science Google Scholar
First citationBazzicalupi, C., Bencini, A., Bianchi, A., Danesi, A., Giorgi, C. & Valtancoli, B. (2009). Inorg. Chem. 48, 2391–2398.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBlackman, A. G. (2005). Polyhedron, 24, 1–39.  Web of Science CrossRef CAS Google Scholar
First citationBose, P., Ravikumar, I. & Ghosh, P. (2011). Inorg. Chem. 50, 10693–10702.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBrovarets, V. S., Golovchenko, O. V., Rusanov, E. B. & Rusanova, J. A. (2018). Acta Cryst. E74, 915–917.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrycki, B., Kowalczyk, I., Werner, J., Borowiak, T. & Wolska, I. (2006). J. Mol. Struct. 791, 137–143.  CSD CrossRef CAS Google Scholar
First citationFlörke, U., Neuba, A., Ortmeyer, J. & Henkel, G. (2014). Acta Cryst. E70, o895–o896.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHowell, R. C., Edwards, S. H., Gajadhar-Plummer, A. S., Kahwa, I. A., McPherson, G. L., Mague, J. T., White, A. J. P. & Williams, D. J. (2003). Molecules, 8, 565–592.  CrossRef CAS Google Scholar
First citationKeypour, H., Azadbakht, R. & Khavasi, H. (2008a). Polyhedron, 27, 648–654.  CSD CrossRef CAS Google Scholar
First citationKeypour, H., Azadbakht, R., Salehzadeh, S., Khanmohammadi, H., Khavasi, H. & Adams, H. (2008b). Polyhedron, 27, 1631–1638.  CSD CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKuswandi, B., Nuriman, N., Verboom, W. & Reinhoudt, D. N. (2006). Sensors. 6, 978–1017.  CrossRef CAS Google Scholar
First citationMedrano, F., Lujano, S., Godoy-Alcántar, C. & Tlahuext, H. (2014). Acta Cryst. E70, 373–375.  CSD CrossRef IUCr Journals Google Scholar
First citationShao, Y., An, D., Zhou, M., Liu, L. & Sun, X.-Q. (2012). Acta Cryst. E68, o173.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, E.-Q., Zhang, J.-T., Cao, X.-P. & Gu, J.-Z. (2012). Acta Cryst. E68, o1636.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds