research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a 1,1-di­butyl-1H,3H-naphtho[1,8-cd][1,2,6]oxastannaborinin-3-ol

CROSSMARK_Color_square_no_text.svg

aLaboratorium für Organische Chemie, ETH Zürich, Zürich, Switzerland
*Correspondence e-mail: peter.chen@org.chem.ethz.ch

Edited by O. Blacque, University of Zürich, Switzerland (Received 13 January 2021; accepted 21 January 2021; online 26 January 2021)

The title oxastannaborininol compound, [Sn(C4H9)2(C10H7BO2)], has been synthesized and crystallized. While heterocycles containing a C–O–B group are common, heterocycles containing an E–O–B unit, where E is an element of the carbon group except for carbon, are rare. In fact, while heterocycles containing Si–O–B units are occasionally reported (although without crystal structures), there are no reports for the corresponding germanium, tin or lead analogues. Herein, the first synthesis and crystal structure of a heterocycle containing an Sn–O–B unit is described. The asymmetric unit contains one mol­ecule showing a notable disorder of the tin atom and the butyl groups. They occupy two sets of positions with site-occupancy factors of 0.295 (6) and 0.705 (6).

1. Chemical context

Both tin and boron organic compounds are widespread reagents for cross-coupling reactions in organic synthesis (Negishi, 2002[Negishi, E. (2002). J. Organomet. Chem. 653, 34-40.]). The combination of tin- and boron-containing groups in one mol­ecule can be advantageous, as they can undergo cross-coupling under different conditions. While the stannyl group easily undergoes transmetalation at elevated temperatures, a boronic acid will not do so with an additional activator, usually a base (Cárdenas, 2003[Cárdenas, D. J. (2003). Angew. Chem. Int. Ed. 42, 384-387.]). However, those groups are not usually connected. The only reported use of esters of stannanols and boronic acids lies in their increased Lewis acidity compared to the free boronic acid (Beckett et al., 1999[Beckett, M. A., Owen, P. & Varma, K. S. (1999). J. Organomet. Chem. 588, 107-112.]). They have been otherwise mentioned only in one publication, although no applications were reported (Murphy et al., 1993[Murphy, D., Sheehan, J. P., Spalding, T. R., Ferguson, G., Lough, A. J. & Gallagher, J. F. (1993). J. Mater. Chem. 3, 1275-1283.]).

Heterocycles containing an E–O–B unit (E = Si, Ge, Sn, Pb) have so far only been reported for silicon (Fig. 1[link]). Benzosiloxaboroles, containing a five-membered ring with an Si–O–B unit, have shown promising properties for medical applications, being strong anti­microbial (Durka et al., 2019[Durka, K., Laudy, A. E., Charzewski, Ł., Urban, M., Stępień, K., Tyski, S., Krzyśko, A. & Luliński, S. (2019). Eur. J. Med. Chem. 171, 11-24.]) and anti­fungal agents (Brzozowska et al., 2015[Brzozowska, A., Ćwik, P., Durka, K., Kliś, T., Laudy, A. E., Luliński, S., Serwatowski, J., Tyski, S., Urban, M. & Wróblewski, W. (2015). Organometallics, 34, 2924-2932.]).

[Figure 1]
Figure 1
Chemical structure of compounds known in the literature that contain a heterocycle with an Si–O–B unit. Compound 2 (Brzozowska et al., 2015[Brzozowska, A., Ćwik, P., Durka, K., Kliś, T., Laudy, A. E., Luliński, S., Serwatowski, J., Tyski, S., Urban, M. & Wróblewski, W. (2015). Organometallics, 34, 2924-2932.]) is a benzosiloxaborole, while compound 3 (Sumida et al., 2018[Sumida, Y., Harada, R., Sumida, T., Hashizume, D. & Hosoya, T. (2018). Chem. Lett. 47, 1251-1254.]) and compound 4 (Su et al., 2018[Su, B. & Hartwig, J. F. (2018). Angew. Chem. Int. Ed. 57, 10163-10167.]) are oxasilaborininols.

Oxasilaboroninols have only been described in two cases. Sumida and co-workers accidentally stumbled upon 3 while trying to synthesize an oxasilole. They showed that both organometallic moieties can be replaced successively through Suzuki–Miyaura and Hiyama coupling (Sumida et al., 2018[Sumida, Y., Harada, R., Sumida, T., Hashizume, D. & Hosoya, T. (2018). Chem. Lett. 47, 1251-1254.]). Su and Hartwig on the other hand synthesized oxasiliaboroninol 4 using ruthenium catalysis (Su et al., 2018[Su, B. & Hartwig, J. F. (2018). Angew. Chem. Int. Ed. 57, 10163-10167.]). In their report, they describe multiple transformations for this product, being able to replace selectively the boronic acid group while leaving a silanol group behind.

[Scheme 1]

2. Structural commentary

The title mol­ecule (1) is a cyclic intra­molecular ester of a boronic acid and a stannanol. The asymmetric unit contains one mol­ecule (Fig. 2[link]). It shows notable disorder of the tin atom and the butyl groups. They occupy two sets of positions with site-occupancy factors of 0.295 (6) and 0.705 (6). It is furthermore planar, pointing towards electron delocalization over almost the whole mol­ecule. The C—C bond lengths in the naphthalene structure are between 1.352 (4) and 1.439 (3) Å. This is in line with the bond lengths in naphthalene ranging from 1.350 to 1.421 Å (Abrahams et al., 1949[Abrahams, S. C., Robertson, J. M. & White, J. G. (1949). Acta Cryst. 2, 233-238.]). The Sn—O bond distance is 2.0041 (17) and 2.040 (3) Å and the Sn—C bond connecting the tin atom to the aromatic ring has a length of 2.151 (6) Å and 2.210 (4) Å, varying due to disorder. The B—C bond has a length of 1.594 (3) Å, the B—O bond lengths are 1.352 (3) Å (B—OSn) and 1.362 (3) Å (B—OH).

[Figure 2]
Figure 2
Crystal structure of the title compound 1. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are drawn as fixed-size spheres with a radius of 0.15 Å. The tin atom and the butyl groups show notable disorder.

3. Supra­molecular features

In the crystal, the mol­ecules form dimers through pairs of hydrogen bonds between the ring oxygen atom and the hydroxyl group with a distance of 2.805 (2) Å between the two involved oxygen atoms (Fig. 3[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.88 (2) 1.93 (2) 2.805 (2) 172 (3)
Symmetry code: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z].
[Figure 3]
Figure 3
Structure of the dimer formed through hydrogen bonding. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are drawn as fixed-size spheres with a radius of 0.15 Å.

4. Database survey

Searching the Cambridge Structural Database (CSD, version 5.41, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), not a single ester of a boronic acid and a stannanol has been crystallized. The same is true for the corresponding germanol and plumbanol derivatives. One ester of a boronic acid and tri­methyl­silanol (5) has been crystallized (Ito et al., 2011[Ito, K., Tamashima, H., Iwasawa, N. & Kusama, H. (2011). J. Am. Chem. Soc. 133, 3716-3719.]). Two additional crystal structures containing the C–B–O–Sn–C motif have been reported. However, in those cases, either the O—Sn bond in 6 (Braunschweig et al., 2017[Braunschweig, H., Dömling, M., Kachel, S., Kelch, H., Kramer, T., Krummenacher, I., Lenczyk, C., Lin, S., Lin, Z., Possiel, C. & Radacki, K. (2017). Chem. Eur. J. 23, 16167-16170.]) or the O—B bond in 7 (Boese et al., 1996[Boese, R., Wrackmeyer, B. & Wagner, K. (1996). CSD Communication (refcode SUSFER; deposition number 1264745). CCDC, Cambridge, England..]) are not covalent, but rather coordinative bonds. Those three mol­ecules are shown in Fig. 4[link].

[Figure 4]
Figure 4
Structures of the compounds with the C–B–O–E–C motif (E = Si, Ge, Sn, Pb) and reported crystal structures. Compound 5 is the only one where this motif is formed by covalent bonds only (Ito et al., 2011[Ito, K., Tamashima, H., Iwasawa, N. & Kusama, H. (2011). J. Am. Chem. Soc. 133, 3716-3719.]), while the compounds 6 (Boese et al., 1996[Boese, R., Wrackmeyer, B. & Wagner, K. (1996). CSD Communication (refcode SUSFER; deposition number 1264745). CCDC, Cambridge, England..]) and 7 (Braunschweig et al., 2017[Braunschweig, H., Dömling, M., Kachel, S., Kelch, H., Kramer, T., Krummenacher, I., Lenczyk, C., Lin, S., Lin, Z., Possiel, C. & Radacki, K. (2017). Chem. Eur. J. 23, 16167-16170.]) contain coordinative bonds.

The CSD lists three stannanols, all of which are triaryl stannanols (Růžička et al., 2013[Růžička, A., Padělková, Z., Švec, P., Pejchal, V., Česlová, L. & Holeček, J. (2013). J. Organomet. Chem. 732, 47-57.]; Barbul et al., 2012[Barbul, I., Varga, R. A. & Silvestru, C. (2012). Rev. Roum. Chim. 57, 313-319.]). For those compounds, the Sn—O bond has a length of 1.981 to 2.057 Å, agreeing with the bond length of 2.0041 (17) Å found for the title compound. The Sn—CAr bond length varies between 2.143 and 2.208 Å, matching the corresponding bond in the title compound.

5. Synthesis and crystallization

8-Iodo-1-naphthyl­boronic acid was prepared according to literature (Katz, 1986[Katz, H. E. (1986). Organometallics, 5, 2308-2311.]). Under argon, 122.6 mg (0.412 mmol, 1 eq.) of 8-iodo-1-naphthyl­boronic acid and 0.13 mL (0.459 mmol, 1.1 eq.) of tri­butyl­tin methoxide were heated to 373 K for 22.5 h; 0.2 mL (0.706 mmol, 1.7 eq.) of tri­butyl­tin methoxide were added and stirring was continued for 21 h at 373 K. Then 0.5 mL (1.764 mmol, 4.3 eq.) of tri­butyl­tin methoxide were added and the mixture was heated to 403 K for an additional 23 h. The mixture was cooled to RT and diluted by the addition of hexane. It was washed with equal volume 1 M aq. NaOH, dried (Na2SO4), filtered and concentrated in vacuo. The residue was purified by column chromatography (pure hexane to hexa­ne:ethyl acetate 1:1) to obtain a yellowish solid that was crystallized by slow evaporation of a solution in 1,2-di­meth­oxy­ethane at 258 K and washed with pentane to obtain 27.3 mg (0.068 mmol, 15%) of colorless crystals suitable for X-ray crystallography.

1H NMR (400 MHz, CDCl3) δ 8.44 (dd, J = 7.0, 1.5 Hz, 1H, H12), 7.93 (dd, J = 8.2, 1.5 Hz, 1H, H10), 7.89 (dd, J = 7.1, 2.6 Hz, 1H, H14), 7.55 (dd, J = 8.1, 7.0 Hz, 1H, H11), 7.51–7.38 (m, 2H, H15 & H16), 4.80–4.37 (s, 1H, OH), 1.67 (dtd, J = 14.3, 7.2, 2.5 Hz, 4H, H2A & H2B & H6A & H6B), 1.47–1.29 (m, 8H H1A & H1B & H3A & H3B & H5A & H5B & H7A & H7B), 0.87 (t, J = 7.3 Hz, 6H H4A & H4B & H4C & H8A & H8B & H8C).

11B NMR (128 MHz, CDCl3) δ 27.22 (s, br, B1).

13C NMR (101 MHz, CDCl3) δ 142.65 (s, C18), 139.20 (s, C13), 137.30 (s, C12), 134.50 (s, C16), 133.78 (s, C17), 132.13 (s, C10), 130.81 (s, C14), 125.86 (s, C11), 124.55 (s, C15), 27.55 (s, C2 & C6), 27.10 (s, C3 & C7), 17.51 (s, C1 & C5), 13.70 (C4 & C8). C9 is not visible due to C–B inter­actions.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Data were collected at 200 K, as a phase transition leads to breaking crystals at lower temperatures. The disordered tin atom and butyl groups were restrained using rigid body (RIGU) restraints with σ for 1–3 distances and 1–2 distances of 0.004 and same-distance (SADI) restrains were applied to equivalent 1,2- and 1,3-distances within the disorder. Ellipsoids of four atoms and their equivalents in the alternate orientation were constrained to be equal (EADP). H atoms were refined with riding coordinates [C—H = 0.93–0.97; Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O, C-meth­yl)] except for the proton involved in the hydrogen bond, which was only lightly restrained with DFIX.

Table 2
Experimental details

Crystal data
Chemical formula [Sn(C4H9)2(C10H7BO2)]
Mr 402.88
Crystal system, space group Monoclinic, C2/c
Temperature (K) 200
a, b, c (Å) 30.1386 (6), 11.2948 (1), 16.4726 (3)
β (°) 139.457 (4)
V3) 3644.9 (2)
Z 8
Radiation type Cu Kα
μ (mm−1) 11.17
Crystal size (mm) 0.26 × 0.13 × 0.02
 
Data collection
Diffractometer Rigaku Oxford Diffraction XtaLAB Synergy, Dualflex, Pilatus 300K
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.234, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 28847, 3923, 3724
Rint 0.033
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.066, 1.08
No. of reflections 3923
No. of parameters 264
No. of restraints 167
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.39
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

1,1-Dibutyl-1H,3H-naphtho[1,8-cd][1,2,6]oxastannaborinin-3-ol top
Crystal data top
[Sn(C4H9)2(C10H7BO2)]F(000) = 1632
Mr = 402.88Dx = 1.468 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
a = 30.1386 (6) ÅCell parameters from 21527 reflections
b = 11.2948 (1) Åθ = 4.5–79.4°
c = 16.4726 (3) ŵ = 11.17 mm1
β = 139.457 (4)°T = 200 K
V = 3644.9 (2) Å3Plate, clear colourless
Z = 80.26 × 0.13 × 0.02 mm
Data collection top
Rigaku Oxford Diffraction XtaLAB Synergy, Dualflex, Pilatus 300K
diffractometer
3724 reflections with I > 2σ(I)
ω scansRint = 0.033
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2018)
θmax = 79.6°, θmin = 4.5°
Tmin = 0.234, Tmax = 1.000h = 3829
28847 measured reflectionsk = 1414
3923 independent reflectionsl = 1720
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.024H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0359P)2 + 2.7329P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3923 reflectionsΔρmax = 0.45 e Å3
264 parametersΔρmin = 0.39 e Å3
167 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.80127 (4)0.57065 (8)0.24979 (9)0.03908 (16)0.705 (6)
O10.75421 (8)0.66412 (13)0.09740 (13)0.0452 (3)
O20.66330 (9)0.77545 (16)0.07920 (16)0.0560 (4)
H20.6923 (15)0.790 (3)0.079 (3)0.084*
C180.65789 (11)0.61897 (17)0.12184 (19)0.0411 (4)
C170.72252 (13)0.56497 (18)0.2265 (2)0.0465 (5)
C90.64190 (11)0.68493 (18)0.02737 (19)0.0427 (4)
C130.60618 (13)0.6048 (2)0.1109 (2)0.0498 (5)
C160.73393 (15)0.5022 (2)0.3129 (3)0.0606 (6)
H160.7763910.4675510.3804390.073*
C120.54116 (13)0.6536 (3)0.0087 (3)0.0628 (6)
H120.5078560.6436130.0020560.075*
C150.68324 (17)0.4895 (3)0.3016 (3)0.0676 (7)
H150.6921740.4473180.3613630.081*
B10.69046 (12)0.7075 (2)0.0188 (2)0.0403 (4)
C140.62094 (16)0.5390 (2)0.2029 (3)0.0609 (6)
H140.5872310.5297010.1953100.073*
C100.57682 (13)0.7313 (2)0.0696 (2)0.0571 (6)
H100.5659600.7753100.1306550.069*
C110.52614 (14)0.7150 (3)0.0803 (3)0.0698 (7)
H110.4826650.7461920.1482280.084*
C70.9197 (5)0.8346 (9)0.5547 (9)0.0641 (11)0.705 (6)
H7A0.9271990.8927150.5227320.077*0.705 (6)
H7B0.9620170.7917530.6217290.077*0.705 (6)
C60.8653 (4)0.7496 (5)0.4523 (7)0.0553 (11)0.705 (6)
H6A0.8232040.7931270.3855090.066*0.705 (6)
H6B0.8574840.6927170.4844750.066*0.705 (6)
C10.8221 (5)0.3983 (7)0.2290 (11)0.0757 (19)0.705 (6)
H1A0.8542110.3574840.3086730.091*0.705 (6)
H1B0.7802020.3526650.1697370.091*0.705 (6)
C50.8825 (3)0.6821 (5)0.3978 (6)0.0555 (11)0.705 (6)
H5A0.9232030.6349590.4629470.067*0.705 (6)
H5B0.8918160.7383150.3677050.067*0.705 (6)
C80.9005 (7)0.8980 (10)0.6062 (8)0.0776 (15)0.705 (6)
H8A0.8559910.9327010.5385910.116*0.705 (6)
H8B0.9332800.9590320.6628450.116*0.705 (6)
H8C0.9000100.8423110.6495440.116*0.705 (6)
C3A0.9362 (9)0.469 (2)0.2939 (13)0.131 (9)0.295 (6)
H3AA0.9809120.4401220.3407060.158*0.295 (6)
H3AB0.9404120.5525610.3131660.158*0.295 (6)
C20.8516 (4)0.4040 (4)0.1841 (8)0.110 (2)0.705 (6)
H2A0.8592310.3240710.1752310.132*0.705 (6)
H2B0.8183920.4410130.1023150.132*0.705 (6)
C40.9615 (5)0.4669 (7)0.2585 (10)0.142 (3)0.705 (6)
H4A0.9436750.5194240.1930750.213*0.705 (6)
H4B0.9621910.3875200.2386230.213*0.705 (6)
H4C1.0070510.4906150.3358340.213*0.705 (6)
C4A0.8861 (8)0.4541 (14)0.1525 (11)0.117 (6)0.295 (6)
H4AA0.8404860.4455600.1094700.176*0.295 (6)
H4AB0.8982990.3848520.1388910.176*0.295 (6)
H4AC0.8884840.5224790.1212780.176*0.295 (6)
C30.9174 (5)0.4718 (7)0.2707 (12)0.149 (5)0.705 (6)
H3A0.9064120.5544160.2646500.179*0.705 (6)
H3B0.9452360.4464320.3549100.179*0.705 (6)
C2A0.9121 (6)0.4051 (10)0.3302 (14)0.091 (4)0.295 (6)
H2AA0.9415940.4263810.4162630.110*0.295 (6)
H2AB0.9198170.3217790.3302020.110*0.295 (6)
C1A0.8408 (11)0.4164 (14)0.261 (3)0.100 (8)0.295 (6)
H1AA0.8338370.3578570.2931320.120*0.295 (6)
H1AB0.8105470.3963190.1739840.120*0.295 (6)
Sn1A0.8101 (2)0.5864 (4)0.2649 (3)0.0696 (7)0.295 (6)
C5A0.8830 (9)0.7164 (16)0.4067 (17)0.0555 (11)0.295 (6)
H5AA0.9267370.6772230.4740240.067*0.295 (6)
H5AB0.8882510.7747270.3712500.067*0.295 (6)
C6A0.8671 (11)0.7814 (15)0.4627 (19)0.0553 (11)0.295 (6)
H6AA0.8275650.8313590.3985530.066*0.295 (6)
H6AB0.8546270.7234690.4862130.066*0.295 (6)
C7A0.9231 (13)0.856 (3)0.574 (2)0.0641 (11)0.295 (6)
H7AA0.9317330.9205160.5478750.077*0.295 (6)
H7AB0.9643340.8088570.6339690.077*0.295 (6)
C8A0.9093 (18)0.908 (3)0.637 (2)0.0776 (15)0.295 (6)
H8AA0.8794340.9748100.5896150.116*0.295 (6)
H8AB0.9515340.9327960.7194330.116*0.295 (6)
H8AC0.8881510.8492410.6409330.116*0.295 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0426 (2)0.0423 (2)0.04336 (19)0.00587 (15)0.03572 (17)0.00775 (15)
O10.0546 (8)0.0530 (8)0.0488 (7)0.0110 (6)0.0450 (7)0.0129 (6)
O20.0562 (9)0.0733 (11)0.0550 (9)0.0151 (8)0.0468 (8)0.0221 (8)
C180.0557 (11)0.0377 (9)0.0490 (10)0.0046 (8)0.0451 (10)0.0059 (8)
C170.0602 (13)0.0475 (11)0.0514 (12)0.0012 (9)0.0478 (11)0.0012 (8)
C90.0521 (11)0.0445 (10)0.0475 (10)0.0001 (8)0.0423 (10)0.0010 (8)
C130.0656 (13)0.0488 (11)0.0632 (13)0.0119 (10)0.0568 (12)0.0116 (10)
C160.0771 (16)0.0629 (15)0.0624 (14)0.0033 (12)0.0587 (14)0.0109 (11)
C120.0598 (14)0.0779 (17)0.0756 (16)0.0075 (12)0.0584 (14)0.0072 (13)
C150.095 (2)0.0702 (16)0.0759 (17)0.0076 (15)0.0759 (17)0.0055 (13)
B10.0510 (12)0.0406 (10)0.0437 (11)0.0022 (9)0.0399 (10)0.0014 (9)
C140.0834 (17)0.0627 (14)0.0767 (16)0.0206 (13)0.0720 (16)0.0132 (13)
C100.0570 (13)0.0690 (15)0.0602 (13)0.0105 (11)0.0486 (12)0.0125 (11)
C110.0553 (14)0.091 (2)0.0741 (17)0.0102 (13)0.0522 (14)0.0107 (15)
C70.084 (2)0.058 (4)0.062 (3)0.003 (2)0.059 (2)0.0001 (19)
C60.0703 (16)0.047 (4)0.066 (2)0.001 (3)0.0567 (16)0.002 (2)
C10.093 (4)0.040 (2)0.132 (5)0.010 (2)0.096 (4)0.012 (3)
C50.0517 (13)0.066 (4)0.0520 (16)0.003 (2)0.0403 (13)0.006 (2)
C80.123 (4)0.062 (3)0.078 (5)0.003 (3)0.084 (5)0.000 (3)
C3A0.094 (10)0.25 (3)0.098 (9)0.067 (13)0.087 (8)0.059 (12)
C20.163 (6)0.063 (3)0.188 (7)0.031 (3)0.157 (6)0.013 (3)
C40.176 (8)0.098 (4)0.244 (11)0.024 (5)0.185 (9)0.019 (6)
C4A0.095 (10)0.087 (9)0.094 (8)0.003 (7)0.050 (8)0.011 (7)
C30.165 (7)0.094 (5)0.291 (13)0.022 (5)0.202 (9)0.007 (6)
C2A0.095 (8)0.061 (6)0.146 (12)0.022 (5)0.099 (9)0.031 (7)
C1A0.124 (13)0.057 (9)0.17 (2)0.030 (9)0.127 (16)0.039 (10)
Sn1A0.0836 (12)0.0915 (15)0.0617 (9)0.0361 (8)0.0630 (9)0.0338 (8)
C5A0.0517 (13)0.066 (4)0.0520 (16)0.003 (2)0.0403 (13)0.006 (2)
C6A0.0703 (16)0.047 (4)0.066 (2)0.001 (3)0.0567 (16)0.002 (2)
C7A0.084 (2)0.058 (4)0.062 (3)0.003 (2)0.059 (2)0.0001 (19)
C8A0.123 (4)0.062 (3)0.078 (5)0.003 (3)0.084 (5)0.000 (3)
Geometric parameters (Å, º) top
Sn1—O12.0041 (17)C8—H8A0.9600
Sn1—C172.098 (3)C8—H8B0.9600
Sn1—C12.151 (6)C8—H8C0.9600
Sn1—C52.110 (5)C3A—H3AA0.9700
O1—B11.352 (3)C3A—H3AB0.9700
O1—Sn1A2.040 (3)C3A—C4A1.546 (13)
O2—H20.882 (18)C3A—C2A1.439 (12)
O2—B11.362 (3)C2—H2A0.9700
C18—C171.427 (3)C2—H2B0.9700
C18—C91.439 (3)C2—C31.501 (9)
C18—C131.435 (3)C4—H4A0.9600
C17—C161.380 (3)C4—H4B0.9600
C17—Sn1A2.210 (4)C4—H4C0.9600
C9—B11.594 (3)C4—C31.489 (8)
C9—C101.382 (3)C4A—H4AA0.9600
C13—C121.401 (4)C4A—H4AB0.9600
C13—C141.422 (4)C4A—H4AC0.9600
C16—H160.9300C3—H3A0.9700
C16—C151.399 (4)C3—H3B0.9700
C12—H120.9300C2A—H2AA0.9700
C12—C111.352 (4)C2A—H2AB0.9700
C15—H150.9300C2A—C1A1.483 (13)
C15—C141.357 (4)C1A—H1AA0.9700
C14—H140.9300C1A—H1AB0.9700
C10—H100.9300C1A—Sn1A2.157 (13)
C10—C111.410 (3)Sn1A—C5A2.154 (12)
C11—H110.9300C5A—H5AA0.9700
C7—H7A0.9700C5A—H5AB0.9700
C7—H7B0.9700C5A—C6A1.513 (12)
C7—C61.500 (6)C6A—H6AA0.9700
C7—C81.521 (7)C6A—H6AB0.9700
C6—H6A0.9700C6A—C7A1.489 (13)
C6—H6B0.9700C7A—H7AA0.9700
C6—C51.535 (6)C7A—H7AB0.9700
C1—H1A0.9700C7A—C8A1.498 (13)
C1—H1B0.9700C8A—H8AA0.9600
C1—C21.530 (9)C8A—H8AB0.9600
C5—H5A0.9700C8A—H8AC0.9600
C5—H5B0.9700
O1—Sn1—C1799.30 (8)H8B—C8—H8C109.5
O1—Sn1—C1107.0 (3)H3AA—C3A—H3AB108.1
O1—Sn1—C5103.2 (2)C4A—C3A—H3AA109.6
C17—Sn1—C1111.7 (2)C4A—C3A—H3AB109.6
C17—Sn1—C5112.8 (2)C2A—C3A—H3AA109.6
C5—Sn1—C1120.1 (3)C2A—C3A—H3AB109.6
B1—O1—Sn1121.92 (13)C2A—C3A—C4A110.4 (11)
B1—O1—Sn1A124.28 (15)C1—C2—H2A108.9
B1—O2—H2113 (2)C1—C2—H2B108.9
C17—C18—C9123.78 (18)H2A—C2—H2B107.7
C17—C18—C13117.34 (19)C3—C2—C1113.2 (7)
C13—C18—C9118.9 (2)C3—C2—H2A108.9
C18—C17—Sn1121.60 (15)C3—C2—H2B108.9
C18—C17—Sn1A122.42 (16)H4A—C4—H4B109.5
C16—C17—Sn1117.84 (19)H4A—C4—H4C109.5
C16—C17—C18120.5 (2)H4B—C4—H4C109.5
C16—C17—Sn1A117.0 (2)C3—C4—H4A109.5
C18—C9—B1127.12 (19)C3—C4—H4B109.5
C10—C9—C18117.46 (19)C3—C4—H4C109.5
C10—C9—B1115.39 (18)C3A—C4A—H4AA109.5
C12—C13—C18120.0 (2)C3A—C4A—H4AB109.5
C12—C13—C14120.3 (2)C3A—C4A—H4AC109.5
C14—C13—C18119.6 (2)H4AA—C4A—H4AB109.5
C17—C16—H16119.2H4AA—C4A—H4AC109.5
C17—C16—C15121.7 (3)H4AB—C4A—H4AC109.5
C15—C16—H16119.2C2—C3—H3A107.0
C13—C12—H12119.5C2—C3—H3B106.9
C11—C12—C13121.0 (2)C4—C3—C2121.5 (9)
C11—C12—H12119.5C4—C3—H3A106.9
C16—C15—H15120.2C4—C3—H3B106.9
C14—C15—C16119.6 (2)H3A—C3—H3B106.7
C14—C15—H15120.2C3A—C2A—H2AA106.9
O1—B1—O2118.44 (18)C3A—C2A—H2AB106.9
O1—B1—C9126.12 (18)C3A—C2A—C1A121.8 (14)
O2—B1—C9115.44 (18)H2AA—C2A—H2AB106.7
C13—C14—H14119.4C1A—C2A—H2AA106.9
C15—C14—C13121.3 (2)C1A—C2A—H2AB106.9
C15—C14—H14119.4C2A—C1A—H1AA108.0
C9—C10—H10118.5C2A—C1A—H1AB108.0
C9—C10—C11123.1 (2)C2A—C1A—Sn1A117.2 (11)
C11—C10—H10118.5H1AA—C1A—H1AB107.2
C12—C11—C10119.6 (3)Sn1A—C1A—H1AA108.0
C12—C11—H11120.2Sn1A—C1A—H1AB108.0
C10—C11—H11120.2O1—Sn1A—C1794.66 (15)
H7A—C7—H7B107.9O1—Sn1A—C1A105.8 (10)
C6—C7—H7A109.2O1—Sn1A—C5A106.7 (7)
C6—C7—H7B109.2C1A—Sn1A—C17110.1 (4)
C6—C7—C8112.1 (6)C5A—Sn1A—C17113.4 (5)
C8—C7—H7A109.2C5A—Sn1A—C1A122.2 (8)
C8—C7—H7B109.2Sn1A—C5A—H5AA108.0
C7—C6—H6A108.7Sn1A—C5A—H5AB108.0
C7—C6—H6B108.7H5AA—C5A—H5AB107.3
C7—C6—C5114.2 (5)C6A—C5A—Sn1A117.2 (11)
H6A—C6—H6B107.6C6A—C5A—H5AA108.0
C5—C6—H6A108.7C6A—C5A—H5AB108.0
C5—C6—H6B108.7C5A—C6A—H6AA108.3
Sn1—C1—H1A109.1C5A—C6A—H6AB108.3
Sn1—C1—H1B109.1H6AA—C6A—H6AB107.4
H1A—C1—H1B107.8C7A—C6A—C5A115.7 (13)
C2—C1—Sn1112.7 (5)C7A—C6A—H6AA108.3
C2—C1—H1A109.1C7A—C6A—H6AB108.3
C2—C1—H1B109.1C6A—C7A—H7AA108.6
Sn1—C5—H5A109.4C6A—C7A—H7AB108.6
Sn1—C5—H5B109.4C6A—C7A—C8A114.7 (14)
C6—C5—Sn1111.2 (4)H7AA—C7A—H7AB107.6
C6—C5—H5A109.4C8A—C7A—H7AA108.6
C6—C5—H5B109.4C8A—C7A—H7AB108.6
H5A—C5—H5B108.0C7A—C8A—H8AA109.5
C7—C8—H8A109.5C7A—C8A—H8AB109.5
C7—C8—H8B109.5C7A—C8A—H8AC109.5
C7—C8—H8C109.5H8AA—C8A—H8AB109.5
H8A—C8—H8B109.5H8AA—C8A—H8AC109.5
H8A—C8—H8C109.5H8AB—C8A—H8AC109.5
Sn1—O1—B1—O2176.60 (15)C13—C18—C17—C160.2 (3)
Sn1—O1—B1—C94.7 (3)C13—C18—C17—Sn1A176.2 (2)
Sn1—C17—C16—C15177.2 (2)C13—C18—C9—B1177.74 (19)
Sn1—C1—C2—C359.5 (9)C13—C18—C9—C100.0 (3)
C18—C17—C16—C150.1 (4)C13—C12—C11—C100.7 (5)
C18—C9—B1—O12.6 (3)C16—C15—C14—C130.6 (4)
C18—C9—B1—O2178.7 (2)C12—C13—C14—C15179.0 (3)
C18—C9—C10—C111.1 (4)B1—C9—C10—C11176.9 (3)
C18—C13—C12—C110.4 (4)C14—C13—C12—C11179.1 (3)
C18—C13—C14—C150.3 (4)C10—C9—B1—O1175.2 (2)
C17—C18—C9—B11.6 (3)C10—C9—B1—O23.6 (3)
C17—C18—C9—C10179.3 (2)C7—C6—C5—Sn1177.6 (7)
C17—C18—C13—C12178.6 (2)C1—C2—C3—C4167.2 (8)
C17—C18—C13—C140.1 (3)C8—C7—C6—C5179.4 (8)
C17—C16—C15—C140.5 (4)C3A—C2A—C1A—Sn1A66 (3)
C9—C18—C17—Sn12.6 (3)C4A—C3A—C2A—C1A49 (3)
C9—C18—C17—C16179.5 (2)Sn1A—O1—B1—O2168.6 (2)
C9—C18—C17—Sn1A4.4 (3)Sn1A—O1—B1—C912.7 (3)
C9—C18—C13—C120.8 (3)Sn1A—C17—C16—C15176.1 (3)
C9—C18—C13—C14179.5 (2)Sn1A—C5A—C6A—C7A170.7 (19)
C9—C10—C11—C121.5 (5)C5A—C6A—C7A—C8A173 (2)
C13—C18—C17—Sn1176.78 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.88 (2)1.93 (2)2.805 (2)172 (3)
Symmetry code: (i) x+3/2, y+3/2, z.
 

Acknowledgements

X-ray services were provided by SMoCC – The Small Mol­ecule Crystallography Center of ETH Zurich. The authors acknowledge Nils Trapp for proof-reading the manuscript.

Funding information

Funding for this research was provided by: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung.

References

First citationAbrahams, S. C., Robertson, J. M. & White, J. G. (1949). Acta Cryst. 2, 233–238.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBarbul, I., Varga, R. A. & Silvestru, C. (2012). Rev. Roum. Chim. 57, 313–319.  CAS Google Scholar
First citationBeckett, M. A., Owen, P. & Varma, K. S. (1999). J. Organomet. Chem. 588, 107–112.  Web of Science CrossRef CAS Google Scholar
First citationBoese, R., Wrackmeyer, B. & Wagner, K. (1996). CSD Communication (refcode SUSFER; deposition number 1264745). CCDC, Cambridge, England..  Google Scholar
First citationBraunschweig, H., Dömling, M., Kachel, S., Kelch, H., Kramer, T., Krummenacher, I., Lenczyk, C., Lin, S., Lin, Z., Possiel, C. & Radacki, K. (2017). Chem. Eur. J. 23, 16167–16170.  CSD CrossRef CAS PubMed Google Scholar
First citationBrzozowska, A., Ćwik, P., Durka, K., Kliś, T., Laudy, A. E., Luliński, S., Serwatowski, J., Tyski, S., Urban, M. & Wróblewski, W. (2015). Organometallics, 34, 2924–2932.  CSD CrossRef CAS Google Scholar
First citationCárdenas, D. J. (2003). Angew. Chem. Int. Ed. 42, 384–387.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDurka, K., Laudy, A. E., Charzewski, Ł., Urban, M., Stępień, K., Tyski, S., Krzyśko, A. & Luliński, S. (2019). Eur. J. Med. Chem. 171, 11–24.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIto, K., Tamashima, H., Iwasawa, N. & Kusama, H. (2011). J. Am. Chem. Soc. 133, 3716–3719.  CSD CrossRef CAS PubMed Google Scholar
First citationKatz, H. E. (1986). Organometallics, 5, 2308–2311.  CrossRef CAS Google Scholar
First citationMurphy, D., Sheehan, J. P., Spalding, T. R., Ferguson, G., Lough, A. J. & Gallagher, J. F. (1993). J. Mater. Chem. 3, 1275–1283.  CSD CrossRef CAS Web of Science Google Scholar
First citationNegishi, E. (2002). J. Organomet. Chem. 653, 34–40.  CrossRef CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRůžička, A., Padělková, Z., Švec, P., Pejchal, V., Česlová, L. & Holeček, J. (2013). J. Organomet. Chem. 732, 47–57.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSu, B. & Hartwig, J. F. (2018). Angew. Chem. Int. Ed. 57, 10163–10167.  CrossRef CAS Google Scholar
First citationSumida, Y., Harada, R., Sumida, T., Hashizume, D. & Hosoya, T. (2018). Chem. Lett. 47, 1251–1254.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds