research communications
H,3H-naphtho[1,8-cd][1,2,6]oxastannaborinin-3-ol
of a 1,1-dibutyl-1aLaboratorium für Organische Chemie, ETH Zürich, Zürich, Switzerland
*Correspondence e-mail: peter.chen@org.chem.ethz.ch
The title oxastannaborininol compound, [Sn(C4H9)2(C10H7BO2)], has been synthesized and crystallized. While heterocycles containing a C–O–B group are common, heterocycles containing an E–O–B unit, where E is an element of the carbon group except for carbon, are rare. In fact, while heterocycles containing Si–O–B units are occasionally reported (although without crystal structures), there are no reports for the corresponding germanium, tin or lead analogues. Herein, the first synthesis and of a heterocycle containing an Sn–O–B unit is described. The contains one molecule showing a notable disorder of the tin atom and the butyl groups. They occupy two sets of positions with site-occupancy factors of 0.295 (6) and 0.705 (6).
Keywords: crystal structure; boron; tin; heterocycle; stannaborininol.
CCDC reference: 2057745
1. Chemical context
Both tin and boron organic compounds are widespread reagents for cross-coupling reactions in organic synthesis (Negishi, 2002). The combination of tin- and boron-containing groups in one molecule can be advantageous, as they can undergo cross-coupling under different conditions. While the stannyl group easily undergoes transmetalation at elevated temperatures, a boronic acid will not do so with an additional activator, usually a base (Cárdenas, 2003). However, those groups are not usually connected. The only reported use of of stannanols and lies in their increased compared to the free boronic acid (Beckett et al., 1999). They have been otherwise mentioned only in one publication, although no applications were reported (Murphy et al., 1993).
Heterocycles containing an E–O–B unit (E = Si, Ge, Sn, Pb) have so far only been reported for silicon (Fig. 1). Benzosiloxaboroles, containing a five-membered ring with an Si–O–B unit, have shown promising properties for medical applications, being strong antimicrobial (Durka et al., 2019) and antifungal agents (Brzozowska et al., 2015).
Oxasilaboroninols have only been described in two cases. Sumida and co-workers accidentally stumbled upon 3 while trying to synthesize an oxasilole. They showed that both organometallic moieties can be replaced successively through Suzuki–Miyaura and Hiyama coupling (Sumida et al., 2018). Su and Hartwig on the other hand synthesized oxasiliaboroninol 4 using ruthenium catalysis (Su et al., 2018). In their report, they describe multiple transformations for this product, being able to replace selectively the boronic acid group while leaving a silanol group behind.
2. Structural commentary
The title molecule (1) is a cyclic intramolecular ester of a boronic acid and a stannanol. The contains one molecule (Fig. 2). It shows notable disorder of the tin atom and the butyl groups. They occupy two sets of positions with site-occupancy factors of 0.295 (6) and 0.705 (6). It is furthermore planar, pointing towards electron delocalization over almost the whole molecule. The C—C bond lengths in the naphthalene structure are between 1.352 (4) and 1.439 (3) Å. This is in line with the bond lengths in naphthalene ranging from 1.350 to 1.421 Å (Abrahams et al., 1949). The Sn—O bond distance is 2.0041 (17) and 2.040 (3) Å and the Sn—C bond connecting the tin atom to the aromatic ring has a length of 2.151 (6) Å and 2.210 (4) Å, varying due to disorder. The B—C bond has a length of 1.594 (3) Å, the B—O bond lengths are 1.352 (3) Å (B—OSn) and 1.362 (3) Å (B—OH).
3. Supramolecular features
In the crystal, the molecules form dimers through pairs of hydrogen bonds between the ring oxygen atom and the hydroxyl group with a distance of 2.805 (2) Å between the two involved oxygen atoms (Fig. 3, Table 1).
4. Database survey
Searching the Cambridge Structural Database (CSD, version 5.41, update of November 2019; Groom et al., 2016), not a single ester of a boronic acid and a stannanol has been crystallized. The same is true for the corresponding germanol and plumbanol derivatives. One ester of a boronic acid and trimethylsilanol (5) has been crystallized (Ito et al., 2011). Two additional crystal structures containing the C–B–O–Sn–C motif have been reported. However, in those cases, either the O—Sn bond in 6 (Braunschweig et al., 2017) or the O—B bond in 7 (Boese et al., 1996) are not covalent, but rather coordinative bonds. Those three molecules are shown in Fig. 4.
The CSD lists three stannanols, all of which are triaryl stannanols (Růžička et al., 2013; Barbul et al., 2012). For those compounds, the Sn—O bond has a length of 1.981 to 2.057 Å, agreeing with the bond length of 2.0041 (17) Å found for the title compound. The Sn—CAr bond length varies between 2.143 and 2.208 Å, matching the corresponding bond in the title compound.
5. Synthesis and crystallization
8-Iodo-1-naphthylboronic acid was prepared according to literature (Katz, 1986). Under argon, 122.6 mg (0.412 mmol, 1 eq.) of 8-iodo-1-naphthylboronic acid and 0.13 mL (0.459 mmol, 1.1 eq.) of tributyltin methoxide were heated to 373 K for 22.5 h; 0.2 mL (0.706 mmol, 1.7 eq.) of tributyltin methoxide were added and stirring was continued for 21 h at 373 K. Then 0.5 mL (1.764 mmol, 4.3 eq.) of tributyltin methoxide were added and the mixture was heated to 403 K for an additional 23 h. The mixture was cooled to RT and diluted by the addition of hexane. It was washed with equal volume 1 M aq. NaOH, dried (Na2SO4), filtered and concentrated in vacuo. The residue was purified by (pure hexane to hexane:ethyl acetate 1:1) to obtain a yellowish solid that was crystallized by slow evaporation of a solution in 1,2-dimethoxyethane at 258 K and washed with pentane to obtain 27.3 mg (0.068 mmol, 15%) of colorless crystals suitable for X-ray crystallography.
1H NMR (400 MHz, CDCl3) δ 8.44 (dd, J = 7.0, 1.5 Hz, 1H, H12), 7.93 (dd, J = 8.2, 1.5 Hz, 1H, H10), 7.89 (dd, J = 7.1, 2.6 Hz, 1H, H14), 7.55 (dd, J = 8.1, 7.0 Hz, 1H, H11), 7.51–7.38 (m, 2H, H15 & H16), 4.80–4.37 (s, 1H, OH), 1.67 (dtd, J = 14.3, 7.2, 2.5 Hz, 4H, H2A & H2B & H6A & H6B), 1.47–1.29 (m, 8H H1A & H1B & H3A & H3B & H5A & H5B & H7A & H7B), 0.87 (t, J = 7.3 Hz, 6H H4A & H4B & H4C & H8A & H8B & H8C).
11B NMR (128 MHz, CDCl3) δ 27.22 (s, br, B1).
13C NMR (101 MHz, CDCl3) δ 142.65 (s, C18), 139.20 (s, C13), 137.30 (s, C12), 134.50 (s, C16), 133.78 (s, C17), 132.13 (s, C10), 130.81 (s, C14), 125.86 (s, C11), 124.55 (s, C15), 27.55 (s, C2 & C6), 27.10 (s, C3 & C7), 17.51 (s, C1 & C5), 13.70 (C4 & C8). C9 is not visible due to C–B interactions.
6. Refinement
Crystal data, data collection and structure . Data were collected at 200 K, as a leads to breaking crystals at lower temperatures. The disordered tin atom and butyl groups were restrained using rigid body (RIGU) restraints with σ for 1–3 distances and 1–2 distances of 0.004 and same-distance (SADI) restrains were applied to equivalent 1,2- and 1,3-distances within the disorder. Ellipsoids of four atoms and their equivalents in the alternate orientation were constrained to be equal (EADP). H atoms were refined with riding coordinates [C—H = 0.93–0.97; Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O, C-methyl)] except for the proton involved in the hydrogen bond, which was only lightly restrained with DFIX.
details are summarized in Table 2Supporting information
CCDC reference: 2057745
https://doi.org/10.1107/S2056989021000712/zq2260sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021000712/zq2260Isup2.hkl
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Sn(C4H9)2(C10H7BO2)] | F(000) = 1632 |
Mr = 402.88 | Dx = 1.468 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54184 Å |
a = 30.1386 (6) Å | Cell parameters from 21527 reflections |
b = 11.2948 (1) Å | θ = 4.5–79.4° |
c = 16.4726 (3) Å | µ = 11.17 mm−1 |
β = 139.457 (4)° | T = 200 K |
V = 3644.9 (2) Å3 | Plate, clear colourless |
Z = 8 | 0.26 × 0.13 × 0.02 mm |
Rigaku Oxford Diffraction XtaLAB Synergy, Dualflex, Pilatus 300K diffractometer | 3724 reflections with I > 2σ(I) |
ω scans | Rint = 0.033 |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2018) | θmax = 79.6°, θmin = 4.5° |
Tmin = 0.234, Tmax = 1.000 | h = −38→29 |
28847 measured reflections | k = −14→14 |
3923 independent reflections | l = −17→20 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.024 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.066 | w = 1/[σ2(Fo2) + (0.0359P)2 + 2.7329P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
3923 reflections | Δρmax = 0.45 e Å−3 |
264 parameters | Δρmin = −0.39 e Å−3 |
167 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Sn1 | 0.80127 (4) | 0.57065 (8) | 0.24979 (9) | 0.03908 (16) | 0.705 (6) |
O1 | 0.75421 (8) | 0.66412 (13) | 0.09740 (13) | 0.0452 (3) | |
O2 | 0.66330 (9) | 0.77545 (16) | −0.07920 (16) | 0.0560 (4) | |
H2 | 0.6923 (15) | 0.790 (3) | −0.079 (3) | 0.084* | |
C18 | 0.65789 (11) | 0.61897 (17) | 0.12184 (19) | 0.0411 (4) | |
C17 | 0.72252 (13) | 0.56497 (18) | 0.2265 (2) | 0.0465 (5) | |
C9 | 0.64190 (11) | 0.68493 (18) | 0.02737 (19) | 0.0427 (4) | |
C13 | 0.60618 (13) | 0.6048 (2) | 0.1109 (2) | 0.0498 (5) | |
C16 | 0.73393 (15) | 0.5022 (2) | 0.3129 (3) | 0.0606 (6) | |
H16 | 0.776391 | 0.467551 | 0.380439 | 0.073* | |
C12 | 0.54116 (13) | 0.6536 (3) | 0.0087 (3) | 0.0628 (6) | |
H12 | 0.507856 | 0.643613 | 0.002056 | 0.075* | |
C15 | 0.68324 (17) | 0.4895 (3) | 0.3016 (3) | 0.0676 (7) | |
H15 | 0.692174 | 0.447318 | 0.361363 | 0.081* | |
B1 | 0.69046 (12) | 0.7075 (2) | 0.0188 (2) | 0.0403 (4) | |
C14 | 0.62094 (16) | 0.5390 (2) | 0.2029 (3) | 0.0609 (6) | |
H14 | 0.587231 | 0.529701 | 0.195310 | 0.073* | |
C10 | 0.57682 (13) | 0.7313 (2) | −0.0696 (2) | 0.0571 (6) | |
H10 | 0.565960 | 0.775310 | −0.130655 | 0.069* | |
C11 | 0.52614 (14) | 0.7150 (3) | −0.0803 (3) | 0.0698 (7) | |
H11 | 0.482665 | 0.746192 | −0.148228 | 0.084* | |
C7 | 0.9197 (5) | 0.8346 (9) | 0.5547 (9) | 0.0641 (11) | 0.705 (6) |
H7A | 0.927199 | 0.892715 | 0.522732 | 0.077* | 0.705 (6) |
H7B | 0.962017 | 0.791753 | 0.621729 | 0.077* | 0.705 (6) |
C6 | 0.8653 (4) | 0.7496 (5) | 0.4523 (7) | 0.0553 (11) | 0.705 (6) |
H6A | 0.823204 | 0.793127 | 0.385509 | 0.066* | 0.705 (6) |
H6B | 0.857484 | 0.692717 | 0.484475 | 0.066* | 0.705 (6) |
C1 | 0.8221 (5) | 0.3983 (7) | 0.2290 (11) | 0.0757 (19) | 0.705 (6) |
H1A | 0.854211 | 0.357484 | 0.308673 | 0.091* | 0.705 (6) |
H1B | 0.780202 | 0.352665 | 0.169737 | 0.091* | 0.705 (6) |
C5 | 0.8825 (3) | 0.6821 (5) | 0.3978 (6) | 0.0555 (11) | 0.705 (6) |
H5A | 0.923203 | 0.634959 | 0.462947 | 0.067* | 0.705 (6) |
H5B | 0.891816 | 0.738315 | 0.367705 | 0.067* | 0.705 (6) |
C8 | 0.9005 (7) | 0.8980 (10) | 0.6062 (8) | 0.0776 (15) | 0.705 (6) |
H8A | 0.855991 | 0.932701 | 0.538591 | 0.116* | 0.705 (6) |
H8B | 0.933280 | 0.959032 | 0.662845 | 0.116* | 0.705 (6) |
H8C | 0.900010 | 0.842311 | 0.649544 | 0.116* | 0.705 (6) |
C3A | 0.9362 (9) | 0.469 (2) | 0.2939 (13) | 0.131 (9) | 0.295 (6) |
H3AA | 0.980912 | 0.440122 | 0.340706 | 0.158* | 0.295 (6) |
H3AB | 0.940412 | 0.552561 | 0.313166 | 0.158* | 0.295 (6) |
C2 | 0.8516 (4) | 0.4040 (4) | 0.1841 (8) | 0.110 (2) | 0.705 (6) |
H2A | 0.859231 | 0.324071 | 0.175231 | 0.132* | 0.705 (6) |
H2B | 0.818392 | 0.441013 | 0.102315 | 0.132* | 0.705 (6) |
C4 | 0.9615 (5) | 0.4669 (7) | 0.2585 (10) | 0.142 (3) | 0.705 (6) |
H4A | 0.943675 | 0.519424 | 0.193075 | 0.213* | 0.705 (6) |
H4B | 0.962191 | 0.387520 | 0.238623 | 0.213* | 0.705 (6) |
H4C | 1.007051 | 0.490615 | 0.335834 | 0.213* | 0.705 (6) |
C4A | 0.8861 (8) | 0.4541 (14) | 0.1525 (11) | 0.117 (6) | 0.295 (6) |
H4AA | 0.840486 | 0.445560 | 0.109470 | 0.176* | 0.295 (6) |
H4AB | 0.898299 | 0.384852 | 0.138891 | 0.176* | 0.295 (6) |
H4AC | 0.888484 | 0.522479 | 0.121278 | 0.176* | 0.295 (6) |
C3 | 0.9174 (5) | 0.4718 (7) | 0.2707 (12) | 0.149 (5) | 0.705 (6) |
H3A | 0.906412 | 0.554416 | 0.264650 | 0.179* | 0.705 (6) |
H3B | 0.945236 | 0.446432 | 0.354910 | 0.179* | 0.705 (6) |
C2A | 0.9121 (6) | 0.4051 (10) | 0.3302 (14) | 0.091 (4) | 0.295 (6) |
H2AA | 0.941594 | 0.426381 | 0.416263 | 0.110* | 0.295 (6) |
H2AB | 0.919817 | 0.321779 | 0.330202 | 0.110* | 0.295 (6) |
C1A | 0.8408 (11) | 0.4164 (14) | 0.261 (3) | 0.100 (8) | 0.295 (6) |
H1AA | 0.833837 | 0.357857 | 0.293132 | 0.120* | 0.295 (6) |
H1AB | 0.810547 | 0.396319 | 0.173984 | 0.120* | 0.295 (6) |
Sn1A | 0.8101 (2) | 0.5864 (4) | 0.2649 (3) | 0.0696 (7) | 0.295 (6) |
C5A | 0.8830 (9) | 0.7164 (16) | 0.4067 (17) | 0.0555 (11) | 0.295 (6) |
H5AA | 0.926737 | 0.677223 | 0.474024 | 0.067* | 0.295 (6) |
H5AB | 0.888251 | 0.774727 | 0.371250 | 0.067* | 0.295 (6) |
C6A | 0.8671 (11) | 0.7814 (15) | 0.4627 (19) | 0.0553 (11) | 0.295 (6) |
H6AA | 0.827565 | 0.831359 | 0.398553 | 0.066* | 0.295 (6) |
H6AB | 0.854627 | 0.723469 | 0.486213 | 0.066* | 0.295 (6) |
C7A | 0.9231 (13) | 0.856 (3) | 0.574 (2) | 0.0641 (11) | 0.295 (6) |
H7AA | 0.931733 | 0.920516 | 0.547875 | 0.077* | 0.295 (6) |
H7AB | 0.964334 | 0.808857 | 0.633969 | 0.077* | 0.295 (6) |
C8A | 0.9093 (18) | 0.908 (3) | 0.637 (2) | 0.0776 (15) | 0.295 (6) |
H8AA | 0.879434 | 0.974810 | 0.589615 | 0.116* | 0.295 (6) |
H8AB | 0.951534 | 0.932796 | 0.719433 | 0.116* | 0.295 (6) |
H8AC | 0.888151 | 0.849241 | 0.640933 | 0.116* | 0.295 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.0426 (2) | 0.0423 (2) | 0.04336 (19) | 0.00587 (15) | 0.03572 (17) | 0.00775 (15) |
O1 | 0.0546 (8) | 0.0530 (8) | 0.0488 (7) | 0.0110 (6) | 0.0450 (7) | 0.0129 (6) |
O2 | 0.0562 (9) | 0.0733 (11) | 0.0550 (9) | 0.0151 (8) | 0.0468 (8) | 0.0221 (8) |
C18 | 0.0557 (11) | 0.0377 (9) | 0.0490 (10) | −0.0046 (8) | 0.0451 (10) | −0.0059 (8) |
C17 | 0.0602 (13) | 0.0475 (11) | 0.0514 (12) | −0.0012 (9) | 0.0478 (11) | 0.0012 (8) |
C9 | 0.0521 (11) | 0.0445 (10) | 0.0475 (10) | 0.0001 (8) | 0.0423 (10) | −0.0010 (8) |
C13 | 0.0656 (13) | 0.0488 (11) | 0.0632 (13) | −0.0119 (10) | 0.0568 (12) | −0.0116 (10) |
C16 | 0.0771 (16) | 0.0629 (15) | 0.0624 (14) | 0.0033 (12) | 0.0587 (14) | 0.0109 (11) |
C12 | 0.0598 (14) | 0.0779 (17) | 0.0756 (16) | −0.0075 (12) | 0.0584 (14) | −0.0072 (13) |
C15 | 0.095 (2) | 0.0702 (16) | 0.0759 (17) | −0.0076 (15) | 0.0759 (17) | 0.0055 (13) |
B1 | 0.0510 (12) | 0.0406 (10) | 0.0437 (11) | 0.0022 (9) | 0.0399 (10) | 0.0014 (9) |
C14 | 0.0834 (17) | 0.0627 (14) | 0.0767 (16) | −0.0206 (13) | 0.0720 (16) | −0.0132 (13) |
C10 | 0.0570 (13) | 0.0690 (15) | 0.0602 (13) | 0.0105 (11) | 0.0486 (12) | 0.0125 (11) |
C11 | 0.0553 (14) | 0.091 (2) | 0.0741 (17) | 0.0102 (13) | 0.0522 (14) | 0.0107 (15) |
C7 | 0.084 (2) | 0.058 (4) | 0.062 (3) | 0.003 (2) | 0.059 (2) | −0.0001 (19) |
C6 | 0.0703 (16) | 0.047 (4) | 0.066 (2) | −0.001 (3) | 0.0567 (16) | −0.002 (2) |
C1 | 0.093 (4) | 0.040 (2) | 0.132 (5) | 0.010 (2) | 0.096 (4) | 0.012 (3) |
C5 | 0.0517 (13) | 0.066 (4) | 0.0520 (16) | 0.003 (2) | 0.0403 (13) | −0.006 (2) |
C8 | 0.123 (4) | 0.062 (3) | 0.078 (5) | 0.003 (3) | 0.084 (5) | 0.000 (3) |
C3A | 0.094 (10) | 0.25 (3) | 0.098 (9) | −0.067 (13) | 0.087 (8) | −0.059 (12) |
C2 | 0.163 (6) | 0.063 (3) | 0.188 (7) | 0.031 (3) | 0.157 (6) | 0.013 (3) |
C4 | 0.176 (8) | 0.098 (4) | 0.244 (11) | 0.024 (5) | 0.185 (9) | 0.019 (6) |
C4A | 0.095 (10) | 0.087 (9) | 0.094 (8) | 0.003 (7) | 0.050 (8) | −0.011 (7) |
C3 | 0.165 (7) | 0.094 (5) | 0.291 (13) | 0.022 (5) | 0.202 (9) | 0.007 (6) |
C2A | 0.095 (8) | 0.061 (6) | 0.146 (12) | 0.022 (5) | 0.099 (9) | 0.031 (7) |
C1A | 0.124 (13) | 0.057 (9) | 0.17 (2) | 0.030 (9) | 0.127 (16) | 0.039 (10) |
Sn1A | 0.0836 (12) | 0.0915 (15) | 0.0617 (9) | 0.0361 (8) | 0.0630 (9) | 0.0338 (8) |
C5A | 0.0517 (13) | 0.066 (4) | 0.0520 (16) | 0.003 (2) | 0.0403 (13) | −0.006 (2) |
C6A | 0.0703 (16) | 0.047 (4) | 0.066 (2) | −0.001 (3) | 0.0567 (16) | −0.002 (2) |
C7A | 0.084 (2) | 0.058 (4) | 0.062 (3) | 0.003 (2) | 0.059 (2) | −0.0001 (19) |
C8A | 0.123 (4) | 0.062 (3) | 0.078 (5) | 0.003 (3) | 0.084 (5) | 0.000 (3) |
Sn1—O1 | 2.0041 (17) | C8—H8A | 0.9600 |
Sn1—C17 | 2.098 (3) | C8—H8B | 0.9600 |
Sn1—C1 | 2.151 (6) | C8—H8C | 0.9600 |
Sn1—C5 | 2.110 (5) | C3A—H3AA | 0.9700 |
O1—B1 | 1.352 (3) | C3A—H3AB | 0.9700 |
O1—Sn1A | 2.040 (3) | C3A—C4A | 1.546 (13) |
O2—H2 | 0.882 (18) | C3A—C2A | 1.439 (12) |
O2—B1 | 1.362 (3) | C2—H2A | 0.9700 |
C18—C17 | 1.427 (3) | C2—H2B | 0.9700 |
C18—C9 | 1.439 (3) | C2—C3 | 1.501 (9) |
C18—C13 | 1.435 (3) | C4—H4A | 0.9600 |
C17—C16 | 1.380 (3) | C4—H4B | 0.9600 |
C17—Sn1A | 2.210 (4) | C4—H4C | 0.9600 |
C9—B1 | 1.594 (3) | C4—C3 | 1.489 (8) |
C9—C10 | 1.382 (3) | C4A—H4AA | 0.9600 |
C13—C12 | 1.401 (4) | C4A—H4AB | 0.9600 |
C13—C14 | 1.422 (4) | C4A—H4AC | 0.9600 |
C16—H16 | 0.9300 | C3—H3A | 0.9700 |
C16—C15 | 1.399 (4) | C3—H3B | 0.9700 |
C12—H12 | 0.9300 | C2A—H2AA | 0.9700 |
C12—C11 | 1.352 (4) | C2A—H2AB | 0.9700 |
C15—H15 | 0.9300 | C2A—C1A | 1.483 (13) |
C15—C14 | 1.357 (4) | C1A—H1AA | 0.9700 |
C14—H14 | 0.9300 | C1A—H1AB | 0.9700 |
C10—H10 | 0.9300 | C1A—Sn1A | 2.157 (13) |
C10—C11 | 1.410 (3) | Sn1A—C5A | 2.154 (12) |
C11—H11 | 0.9300 | C5A—H5AA | 0.9700 |
C7—H7A | 0.9700 | C5A—H5AB | 0.9700 |
C7—H7B | 0.9700 | C5A—C6A | 1.513 (12) |
C7—C6 | 1.500 (6) | C6A—H6AA | 0.9700 |
C7—C8 | 1.521 (7) | C6A—H6AB | 0.9700 |
C6—H6A | 0.9700 | C6A—C7A | 1.489 (13) |
C6—H6B | 0.9700 | C7A—H7AA | 0.9700 |
C6—C5 | 1.535 (6) | C7A—H7AB | 0.9700 |
C1—H1A | 0.9700 | C7A—C8A | 1.498 (13) |
C1—H1B | 0.9700 | C8A—H8AA | 0.9600 |
C1—C2 | 1.530 (9) | C8A—H8AB | 0.9600 |
C5—H5A | 0.9700 | C8A—H8AC | 0.9600 |
C5—H5B | 0.9700 | ||
O1—Sn1—C17 | 99.30 (8) | H8B—C8—H8C | 109.5 |
O1—Sn1—C1 | 107.0 (3) | H3AA—C3A—H3AB | 108.1 |
O1—Sn1—C5 | 103.2 (2) | C4A—C3A—H3AA | 109.6 |
C17—Sn1—C1 | 111.7 (2) | C4A—C3A—H3AB | 109.6 |
C17—Sn1—C5 | 112.8 (2) | C2A—C3A—H3AA | 109.6 |
C5—Sn1—C1 | 120.1 (3) | C2A—C3A—H3AB | 109.6 |
B1—O1—Sn1 | 121.92 (13) | C2A—C3A—C4A | 110.4 (11) |
B1—O1—Sn1A | 124.28 (15) | C1—C2—H2A | 108.9 |
B1—O2—H2 | 113 (2) | C1—C2—H2B | 108.9 |
C17—C18—C9 | 123.78 (18) | H2A—C2—H2B | 107.7 |
C17—C18—C13 | 117.34 (19) | C3—C2—C1 | 113.2 (7) |
C13—C18—C9 | 118.9 (2) | C3—C2—H2A | 108.9 |
C18—C17—Sn1 | 121.60 (15) | C3—C2—H2B | 108.9 |
C18—C17—Sn1A | 122.42 (16) | H4A—C4—H4B | 109.5 |
C16—C17—Sn1 | 117.84 (19) | H4A—C4—H4C | 109.5 |
C16—C17—C18 | 120.5 (2) | H4B—C4—H4C | 109.5 |
C16—C17—Sn1A | 117.0 (2) | C3—C4—H4A | 109.5 |
C18—C9—B1 | 127.12 (19) | C3—C4—H4B | 109.5 |
C10—C9—C18 | 117.46 (19) | C3—C4—H4C | 109.5 |
C10—C9—B1 | 115.39 (18) | C3A—C4A—H4AA | 109.5 |
C12—C13—C18 | 120.0 (2) | C3A—C4A—H4AB | 109.5 |
C12—C13—C14 | 120.3 (2) | C3A—C4A—H4AC | 109.5 |
C14—C13—C18 | 119.6 (2) | H4AA—C4A—H4AB | 109.5 |
C17—C16—H16 | 119.2 | H4AA—C4A—H4AC | 109.5 |
C17—C16—C15 | 121.7 (3) | H4AB—C4A—H4AC | 109.5 |
C15—C16—H16 | 119.2 | C2—C3—H3A | 107.0 |
C13—C12—H12 | 119.5 | C2—C3—H3B | 106.9 |
C11—C12—C13 | 121.0 (2) | C4—C3—C2 | 121.5 (9) |
C11—C12—H12 | 119.5 | C4—C3—H3A | 106.9 |
C16—C15—H15 | 120.2 | C4—C3—H3B | 106.9 |
C14—C15—C16 | 119.6 (2) | H3A—C3—H3B | 106.7 |
C14—C15—H15 | 120.2 | C3A—C2A—H2AA | 106.9 |
O1—B1—O2 | 118.44 (18) | C3A—C2A—H2AB | 106.9 |
O1—B1—C9 | 126.12 (18) | C3A—C2A—C1A | 121.8 (14) |
O2—B1—C9 | 115.44 (18) | H2AA—C2A—H2AB | 106.7 |
C13—C14—H14 | 119.4 | C1A—C2A—H2AA | 106.9 |
C15—C14—C13 | 121.3 (2) | C1A—C2A—H2AB | 106.9 |
C15—C14—H14 | 119.4 | C2A—C1A—H1AA | 108.0 |
C9—C10—H10 | 118.5 | C2A—C1A—H1AB | 108.0 |
C9—C10—C11 | 123.1 (2) | C2A—C1A—Sn1A | 117.2 (11) |
C11—C10—H10 | 118.5 | H1AA—C1A—H1AB | 107.2 |
C12—C11—C10 | 119.6 (3) | Sn1A—C1A—H1AA | 108.0 |
C12—C11—H11 | 120.2 | Sn1A—C1A—H1AB | 108.0 |
C10—C11—H11 | 120.2 | O1—Sn1A—C17 | 94.66 (15) |
H7A—C7—H7B | 107.9 | O1—Sn1A—C1A | 105.8 (10) |
C6—C7—H7A | 109.2 | O1—Sn1A—C5A | 106.7 (7) |
C6—C7—H7B | 109.2 | C1A—Sn1A—C17 | 110.1 (4) |
C6—C7—C8 | 112.1 (6) | C5A—Sn1A—C17 | 113.4 (5) |
C8—C7—H7A | 109.2 | C5A—Sn1A—C1A | 122.2 (8) |
C8—C7—H7B | 109.2 | Sn1A—C5A—H5AA | 108.0 |
C7—C6—H6A | 108.7 | Sn1A—C5A—H5AB | 108.0 |
C7—C6—H6B | 108.7 | H5AA—C5A—H5AB | 107.3 |
C7—C6—C5 | 114.2 (5) | C6A—C5A—Sn1A | 117.2 (11) |
H6A—C6—H6B | 107.6 | C6A—C5A—H5AA | 108.0 |
C5—C6—H6A | 108.7 | C6A—C5A—H5AB | 108.0 |
C5—C6—H6B | 108.7 | C5A—C6A—H6AA | 108.3 |
Sn1—C1—H1A | 109.1 | C5A—C6A—H6AB | 108.3 |
Sn1—C1—H1B | 109.1 | H6AA—C6A—H6AB | 107.4 |
H1A—C1—H1B | 107.8 | C7A—C6A—C5A | 115.7 (13) |
C2—C1—Sn1 | 112.7 (5) | C7A—C6A—H6AA | 108.3 |
C2—C1—H1A | 109.1 | C7A—C6A—H6AB | 108.3 |
C2—C1—H1B | 109.1 | C6A—C7A—H7AA | 108.6 |
Sn1—C5—H5A | 109.4 | C6A—C7A—H7AB | 108.6 |
Sn1—C5—H5B | 109.4 | C6A—C7A—C8A | 114.7 (14) |
C6—C5—Sn1 | 111.2 (4) | H7AA—C7A—H7AB | 107.6 |
C6—C5—H5A | 109.4 | C8A—C7A—H7AA | 108.6 |
C6—C5—H5B | 109.4 | C8A—C7A—H7AB | 108.6 |
H5A—C5—H5B | 108.0 | C7A—C8A—H8AA | 109.5 |
C7—C8—H8A | 109.5 | C7A—C8A—H8AB | 109.5 |
C7—C8—H8B | 109.5 | C7A—C8A—H8AC | 109.5 |
C7—C8—H8C | 109.5 | H8AA—C8A—H8AB | 109.5 |
H8A—C8—H8B | 109.5 | H8AA—C8A—H8AC | 109.5 |
H8A—C8—H8C | 109.5 | H8AB—C8A—H8AC | 109.5 |
Sn1—O1—B1—O2 | 176.60 (15) | C13—C18—C17—C16 | −0.2 (3) |
Sn1—O1—B1—C9 | −4.7 (3) | C13—C18—C17—Sn1A | −176.2 (2) |
Sn1—C17—C16—C15 | −177.2 (2) | C13—C18—C9—B1 | −177.74 (19) |
Sn1—C1—C2—C3 | 59.5 (9) | C13—C18—C9—C10 | 0.0 (3) |
C18—C17—C16—C15 | −0.1 (4) | C13—C12—C11—C10 | −0.7 (5) |
C18—C9—B1—O1 | 2.6 (3) | C16—C15—C14—C13 | −0.6 (4) |
C18—C9—B1—O2 | −178.7 (2) | C12—C13—C14—C15 | 179.0 (3) |
C18—C9—C10—C11 | −1.1 (4) | B1—C9—C10—C11 | 176.9 (3) |
C18—C13—C12—C11 | −0.4 (4) | C14—C13—C12—C11 | −179.1 (3) |
C18—C13—C14—C15 | 0.3 (4) | C10—C9—B1—O1 | −175.2 (2) |
C17—C18—C9—B1 | 1.6 (3) | C10—C9—B1—O2 | 3.6 (3) |
C17—C18—C9—C10 | 179.3 (2) | C7—C6—C5—Sn1 | −177.6 (7) |
C17—C18—C13—C12 | −178.6 (2) | C1—C2—C3—C4 | 167.2 (8) |
C17—C18—C13—C14 | 0.1 (3) | C8—C7—C6—C5 | −179.4 (8) |
C17—C16—C15—C14 | 0.5 (4) | C3A—C2A—C1A—Sn1A | −66 (3) |
C9—C18—C17—Sn1 | −2.6 (3) | C4A—C3A—C2A—C1A | −49 (3) |
C9—C18—C17—C16 | −179.5 (2) | Sn1A—O1—B1—O2 | 168.6 (2) |
C9—C18—C17—Sn1A | 4.4 (3) | Sn1A—O1—B1—C9 | −12.7 (3) |
C9—C18—C13—C12 | 0.8 (3) | Sn1A—C17—C16—C15 | 176.1 (3) |
C9—C18—C13—C14 | 179.5 (2) | Sn1A—C5A—C6A—C7A | 170.7 (19) |
C9—C10—C11—C12 | 1.5 (5) | C5A—C6A—C7A—C8A | −173 (2) |
C13—C18—C17—Sn1 | 176.78 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.88 (2) | 1.93 (2) | 2.805 (2) | 172 (3) |
Symmetry code: (i) −x+3/2, −y+3/2, −z. |
Acknowledgements
X-ray services were provided by SMoCC – The Small Molecule Crystallography Center of ETH Zurich. The authors acknowledge Nils Trapp for proof-reading the manuscript.
Funding information
Funding for this research was provided by: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung.
References
Abrahams, S. C., Robertson, J. M. & White, J. G. (1949). Acta Cryst. 2, 233–238. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Barbul, I., Varga, R. A. & Silvestru, C. (2012). Rev. Roum. Chim. 57, 313–319. CAS Google Scholar
Beckett, M. A., Owen, P. & Varma, K. S. (1999). J. Organomet. Chem. 588, 107–112. Web of Science CrossRef CAS Google Scholar
Boese, R., Wrackmeyer, B. & Wagner, K. (1996). CSD Communication (refcode SUSFER; deposition number 1264745). CCDC, Cambridge, England.. Google Scholar
Braunschweig, H., Dömling, M., Kachel, S., Kelch, H., Kramer, T., Krummenacher, I., Lenczyk, C., Lin, S., Lin, Z., Possiel, C. & Radacki, K. (2017). Chem. Eur. J. 23, 16167–16170. CSD CrossRef CAS PubMed Google Scholar
Brzozowska, A., Ćwik, P., Durka, K., Kliś, T., Laudy, A. E., Luliński, S., Serwatowski, J., Tyski, S., Urban, M. & Wróblewski, W. (2015). Organometallics, 34, 2924–2932. CSD CrossRef CAS Google Scholar
Cárdenas, D. J. (2003). Angew. Chem. Int. Ed. 42, 384–387. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Durka, K., Laudy, A. E., Charzewski, Ł., Urban, M., Stępień, K., Tyski, S., Krzyśko, A. & Luliński, S. (2019). Eur. J. Med. Chem. 171, 11–24. CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Ito, K., Tamashima, H., Iwasawa, N. & Kusama, H. (2011). J. Am. Chem. Soc. 133, 3716–3719. CSD CrossRef CAS PubMed Google Scholar
Katz, H. E. (1986). Organometallics, 5, 2308–2311. CrossRef CAS Google Scholar
Murphy, D., Sheehan, J. P., Spalding, T. R., Ferguson, G., Lough, A. J. & Gallagher, J. F. (1993). J. Mater. Chem. 3, 1275–1283. CSD CrossRef CAS Web of Science Google Scholar
Negishi, E. (2002). J. Organomet. Chem. 653, 34–40. CrossRef CAS Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Růžička, A., Padělková, Z., Švec, P., Pejchal, V., Česlová, L. & Holeček, J. (2013). J. Organomet. Chem. 732, 47–57. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Su, B. & Hartwig, J. F. (2018). Angew. Chem. Int. Ed. 57, 10163–10167. CrossRef CAS Google Scholar
Sumida, Y., Harada, R., Sumida, T., Hashizume, D. & Hosoya, T. (2018). Chem. Lett. 47, 1251–1254. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.