research communications
Synthesis and catena-poly[[tetra-μ-acetato-copper(II)]-μ-6-ethoxy-N2,N4-bis[2-(pyridin-2-yl)ethyl]-1,3,5-triazine-2,4-diamine]
ofaDepartment of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA
*Correspondence e-mail: mayokua@bgsu.edu
The title compound, [Cu2(C19H23N7O)(C2H3O2)4]n, was obtained via reaction of copper(II) acetate with the coordinating ligand, 6-ethoxy-N2,N4-bis[2-(pyridin-2-yl)ethyl]-1,3,5-triazine-2,4-diamine. The crystallized product adopts the monoclinic P21/c The metal core exhibits a paddle-wheel structure typical for dicopper tetraacetate units, with triazine and pyridyl nitrogen atoms from different ligands coordinating to the two axial positions of the paddle wheel in an asymmetric manner. This forms a coordination polymer with the segments of the polymer created by the c-glide of the P21/c setting of the The resulting chains running along the c-axis direction are held together by intramolecular N—H⋯O hydrogen bonding. These chains are further packed by dispersion forces, producing an extended three-dimensional structure.
CCDC reference: 2064738
1. Chemical context
Dinuclear CuII groups are recognized for their crucial role as active sites in metalloenzymes and are present in many biological systems (Festa & Thiele, 2011; Solomon et al., 2014). They often constitute the catalytically active sites involved in the stepwise oxidative conversions of many small molecules (Pham & Waite, 2014; Chakraborty et al., 2014). A well-known series of metalloenyzmes containing dinuclear copper active sites is that of the polyphenol oxidases (e.g. catechol oxidase) where the catechol is easily oxidized to quinone products (Ravikiran & Mahalakshmi, 2014). In recent years, there has been an increased effort to carry over this efficient and selective oxidation into biomimetic models of metalloenzymes (Mahadevan et al., 2000; Panda et al., 2011; Marion et al., 2012).
As part of this quest, significant efforts have been made to identify and better understand the specific structural patterns found at these copper-containing active sites. These patterns have often been found to convey functionalities that define a particular enzyme. This has led to a focus on the basic elements of coordination between the ligands and the metal centers. For example, when designing mimics of catechol oxidase, many model catalysts include the same basic structural elements (Koval et al., 2006). These models often contain multidentate ligands with at least five coordinating heteroatoms branched off a central ring, all coordinating to the copper centers. This coordination motif and its orientation often provide a unique accessibility for substrate approach, similar to that found in a type-3 active site (Koval et al., 2006).
In this paper, we report the I) of catechol oxidase synthesized from a multidentate ligand that is coordinated to the copper centers in an unexpected fashion. The complex possesses two nitrogen coordinating heteroatoms from triazine ligands, which coordinate to the copper centers of the paddle-wheel unit at the axial positions. Additional coordination by the terminal pendant pyridine group on the ligand to another copper paddle-wheel unit creates a continuous coordinated chain linkage.
of a biomimetic complex (2. Structural commentary
The title compound (I) crystallizes in the P21/c. The molecular structure of (I) (Fig. 1) includes a dinuclear CuII paddle-wheel unit with both metal ions in slightly Jahn–Teller-distorted octahedral environments. The two copper atoms are separated by a Cu1—Cu2 bond distance of 2.7888 (8) Å. As expected in a typical acetate paddle wheel, the acetate groups bridge the Cu atoms in a μ2-O:O′ mode, with the Cu—O bonds lying in the range 1.927 (3)–2.046 (3) Å (Table 1). The longer Cu—O bonds found for Cu2—O5 [2.046 (3) Å] and Cu2—O9 [2.036 (3) Å] are a consequence of hydrogen-bonding interactions involving the O5 and O9 oxygen atoms (see text below for further details). Two triazine ligands coordinate to the copper-acetate paddle-wheel unit in an asymmetric manner, with one Cu atom coordinated to the triazyl nitrogen, N1, of the central ring on one ligand (green nitrogen in Scheme 1), and the other Cu coordinated to the terminal pyridyl nitrogen, N6, of a second ligand (pink nitrogen in Scheme 1). The two ligands adopt an almost orthogonal orientation to each other. Each of the ligands has their linking alkyl chain adopting a gauche geometry, making the two terminal pyridine rings twist away from the central triazine ring.
3. Supramolecular features
The copper centers and ligands are linked into a coordination polymer as a consequence of the presence of the c-glide in the P21/c Intramolecular hydrogen-bonding interactions (Table 2) are observed for only one of the two triazine ligands coordinating to the paddle wheel, as shown in Fig. 2. These occur between the N4—H1⋯O5 and N5—H2⋯O9 atoms at (H⋯A) distances of 1.89 and 1.99 Å, respectively, with the hydrogens on the nitrogen atoms of the ortho branches off the triazine ring pointing towards the oxygen atoms of two of the acetate groups of the paddle wheel. Closely packed arrays of one-dimensional chains, hypothesized to be held together by dispersion forces, form an extended two-dimensional network in the bc plane (Fig. 3), which, with further packing, forms an extended three-dimensional structure. The 1D chains are separated from each other by 4.486 (1) Å, as shown in Fig. 4.
|
4. Database survey
A structure survey was carried out on the Cambridge Structural Database (CSD version 5.41, update of August 2020; Groom et al., 2016). Search results show that although 1,3,5-triazine-2,4-diamine-derivative complexes with copper, ruthenium and rhodium have been reported (Singh et al., 2010; Chu et al., 2011; Massoud et al., 2011; Chakraborty et al., 2014), none of these complexes contains a copper(II) acetate [Cu2(OAc)4L2] paddle wheel, as is found in compound (I). In all the previously reported structures, each ligand is coordinated to the metal using at least four of the nitrogen heteroatoms present. The structure of compound (I) presented here is rather different, as each ligand is coordinated to copper through only one nitrogen heteroatom. In addition, whilst some of the previously reported derivatives contain ortho-branched tertiary compound (I) contains secondary amines.
5. Synthesis, crystallization and catalytic activity
The triazine ligand (Fig. 5, c) was synthesized by substituting all three chlorines on the cyanuric chloride ring (Fig. 5, a) (Razgoniaev et al., 2016). The first substitution was completed by chilling 40 mL (0.69 mol) of ethanol in an ice bath. Cyanuric chloride (5.00 g, 27 mmol) and sodium bicarbonate (2.35 g, 28 mmol) were added to the chilled ethanol and stirred in an ice bath for 45 minutes. The reaction mixture was then taken out of the ice bath, stirred at room temperature for 3.5 h and then poured over 20 mL of ice. The resulting precipitate was collected by vacuum filtration. The second and third substitutions were completed by taking the product from step 1 (2.30 g, 12 mmol) (Fig. 5, b) and dissolving it in CHCl3. The solution was chilled in an ice bath. 2-(2-Aminoethyl)pyridine (3.60 g, 29 mmol) and N,N-diisopropylethylamine (DIPEA) (3.80 g, 29 mmol) were dissolved in CHCl3 and added dropwise to the chilled solution. The reaction was stirred at room temperature for 1 h and stirred at reflux for 12 h. The final product was purified by removing the solvent and taking up the residue in chilled DMF. The product was collected by vacuum filtration and washed at least three times with 15 mL of chilled DMF. The product was obtained as a white powder [yield: 1.75g, 4.8 mmol (40% yield)] and was characterized using 1H NMR.
1H NMR (CDCl3, 500 MHz): δ ppm, 8.6 (d, 2H, Ar—H, a); 7.7 (m, 2H, Ar—H, b); 7.2 (m, 4H, Ar—H, c); 6.6 (m, 2H, NH, d); 4.5 (m, 2H, O—CH2, g); 4.4 (m, 4H, N—-CH2–, e); 3.1 (m, 4H, –N—CH2, f); 1.4 (d, 3H, –CH3, h)
Crystal formation of [Cu2(C19H23N7O)2(C2H3O2)4]n (I). The triazine ligand (339.4 mg, 1.0 mmol) was dissolved in chloroform (20 mL) and a stoichiometric amount of copper(II) acetate (367.3 mg, 1.0 mmol) was dissolved in methanol (20 mL). The two solutions were mixed, and the resulting solution was placed in an ether diffusion chamber for at least four days. Green crystals of (I) were filtered off and washed with methanol. The melting point of the crystals was 639–643 K.
Catalytic activity of [Cu2(C19H23N7O)2(C2H3O2)4]n (I)
The catechol, 1,4-dihydroxybenzene, was used to test the I). This catechol is cheap and has good solubility in water. 2 mL of 10−4 M of compound (I) in a chloroform: methanol (1:1) solution was placed in a cuvette and 10 µL of a 1 M solution of the catechol injected. The conversion of the catechol into its quinone derivative (benzoquinone) was monitored by measuring the absorbance at 403 nm over a period of time. Fig. 6 shows a continuous increment in absorption at this wavelength, indicating the formation of the product.
of compound (6. Refinement
Crystal data, data collection and structure . All hydrogen atoms attached to methyl carbons were placed in geometrically calculated positions (C—H = 0.98 Å) and refined using a riding model with displacement parameters [Uiso(H) = 1.5Ueq(C)]. All other carbon–bound hydrogens were placed in geometrically calculated positions (C—H = 0.95–0.99 Å) and were refined as part of a riding model with Uiso(H) = 1.2Ueq(C). Nitrogen-bound hydrogens were located in a difference-Fourier map and refined using a riding model with fixed displacement parameters [Uiso (H) = 1.2Ueq(N)], with the N—H bond distance equal to 0.88 Å.
details are summarized in Table 3Supporting information
CCDC reference: 2064738
https://doi.org/10.1107/S2056989021002164/cq2041sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021002164/cq2041Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021002164/cq2041Isup3.cdx
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015) shelXle (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).[Cu2(C19H23N7O)(C2H3O2)4] | F(000) = 1504 |
Mr = 728.70 | Dx = 1.570 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 8.1495 (8) Å | Cell parameters from 9834 reflections |
b = 21.964 (2) Å | θ = 3.3–72.4° |
c = 17.5750 (17) Å | µ = 2.25 mm−1 |
β = 101.457 (4)° | T = 100 K |
V = 3083.2 (5) Å3 | Block, green |
Z = 4 | 0.09 × 0.08 × 0.07 mm |
Bruker AXS D8 Quest CMOS diffractometer | 5118 reflections with I > 2σ(I) |
Radiation source: I-mu-S microsource X-ray tube | Rint = 0.064 |
ω and phi scans | θmax = 72.4°, θmin = 3.3° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −9→10 |
Tmin = 0.621, Tmax = 0.754 | k = −27→27 |
32494 measured reflections | l = −21→21 |
5992 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.059 | H-atom parameters constrained |
wR(F2) = 0.128 | w = 1/[σ2(Fo2) + 14.2144P] where P = (Fo2 + 2Fc2)/3 |
S = 1.12 | (Δ/σ)max < 0.001 |
5992 reflections | Δρmax = 0.47 e Å−3 |
411 parameters | Δρmin = −0.58 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.21566 (7) | 0.28042 (3) | 0.63661 (3) | 0.01910 (15) | |
N1 | 0.4958 (4) | 0.41259 (15) | 0.85305 (17) | 0.0176 (6) | |
C1 | 0.5128 (4) | 0.39364 (18) | 0.9280 (2) | 0.0182 (7) | |
O1 | 0.1575 (3) | 0.39851 (14) | 0.75122 (17) | 0.0280 (6) | |
Cu2 | 0.36793 (7) | 0.35695 (3) | 0.75666 (3) | 0.01962 (15) | |
N2 | 0.6024 (4) | 0.42400 (16) | 0.98968 (18) | 0.0221 (7) | |
C2 | 0.5743 (5) | 0.46537 (17) | 0.8439 (2) | 0.0187 (7) | |
O3 | 0.2721 (4) | 0.33954 (14) | 0.56345 (16) | 0.0275 (6) | |
N3 | 0.6693 (4) | 0.49737 (16) | 0.90069 (19) | 0.0238 (7) | |
C3 | 0.6778 (5) | 0.47284 (18) | 0.9713 (2) | 0.0222 (8) | |
O4 | 0.5758 (3) | 0.31407 (14) | 0.76057 (17) | 0.0285 (7) | |
N4 | 0.4395 (4) | 0.34253 (15) | 0.94256 (18) | 0.0214 (7) | |
H1 | 0.3869 | 0.3209 | 0.9030 | 0.026* | |
C4 | 0.7996 (6) | 0.4807 (2) | 1.1067 (2) | 0.0296 (9) | |
H4A | 0.6922 | 0.4644 | 1.1162 | 0.036* | |
H4B | 0.8360 | 0.5137 | 1.1445 | 0.036* | |
O5 | 0.2767 (4) | 0.28468 (14) | 0.80890 (16) | 0.0282 (6) | |
N5 | 0.5563 (4) | 0.48814 (15) | 0.76969 (18) | 0.0199 (7) | |
H2 | 0.5024 | 0.4661 | 0.7309 | 0.024* | |
C5 | 0.9278 (6) | 0.4313 (2) | 1.1184 (3) | 0.0359 (11) | |
H5A | 0.8852 | 0.3962 | 1.0859 | 0.054* | |
H5B | 0.9517 | 0.4190 | 1.1731 | 0.054* | |
H5C | 1.0307 | 0.4462 | 1.1039 | 0.054* | |
O6 | 0.1639 (3) | 0.22284 (13) | 0.71209 (15) | 0.0236 (6) | |
N6 | 0.0755 (4) | 0.27169 (15) | 1.04225 (17) | 0.0192 (7) | |
C6 | 0.6206 (5) | 0.5454 (2) | 0.7528 (3) | 0.0292 (9) | |
H6A | 0.6606 | 0.5424 | 0.7033 | 0.035* | |
H6B | 0.7179 | 0.5558 | 0.7942 | 0.035* | |
C7 | 0.4917 (6) | 0.5963 (2) | 0.7464 (3) | 0.0347 (10) | |
H7A | 0.4418 | 0.5961 | 0.7933 | 0.042* | |
H7B | 0.5484 | 0.6359 | 0.7443 | 0.042* | |
N7 | 0.3853 (6) | 0.6155 (2) | 0.6104 (2) | 0.0441 (10) | |
C8 | 0.3538 (6) | 0.5897 (2) | 0.6751 (3) | 0.0352 (10) | |
O9 | 0.3976 (4) | 0.40096 (14) | 0.65835 (16) | 0.0295 (7) | |
C9 | 0.2070 (7) | 0.5581 (3) | 0.6758 (3) | 0.0451 (12) | |
H9 | 0.1891 | 0.5392 | 0.7220 | 0.054* | |
O10 | 0.4582 (3) | 0.25350 (14) | 0.66345 (16) | 0.0269 (6) | |
C10 | 0.0865 (7) | 0.5545 (3) | 0.6082 (4) | 0.0547 (15) | |
H10 | −0.0154 | 0.5334 | 0.6077 | 0.066* | |
C11 | 0.1158 (7) | 0.5817 (3) | 0.5421 (3) | 0.0512 (14) | |
H11 | 0.0348 | 0.5806 | 0.4951 | 0.061* | |
C19 | −0.0735 (5) | 0.2493 (2) | 1.0075 (2) | 0.0266 (9) | |
H19 | −0.1127 | 0.2134 | 1.0283 | 0.032* | |
C18 | −0.1729 (5) | 0.2754 (2) | 0.9435 (2) | 0.0298 (9) | |
H18 | −0.2779 | 0.2580 | 0.9207 | 0.036* | |
C17 | −0.1163 (5) | 0.3274 (2) | 0.9132 (2) | 0.0289 (9) | |
H17 | −0.1805 | 0.3459 | 0.8680 | 0.035* | |
C16 | 0.0351 (5) | 0.3525 (2) | 0.9492 (2) | 0.0268 (9) | |
H16 | 0.0747 | 0.3889 | 0.9300 | 0.032* | |
C15 | 0.1289 (5) | 0.32336 (17) | 1.0141 (2) | 0.0189 (8) | |
C14 | 0.2967 (5) | 0.34749 (18) | 1.0542 (2) | 0.0219 (8) | |
H14A | 0.3140 | 0.3380 | 1.1103 | 0.026* | |
H14B | 0.2977 | 0.3923 | 1.0485 | 0.026* | |
C13 | 0.4415 (5) | 0.32016 (19) | 1.0209 (2) | 0.0229 (8) | |
H13A | 0.5495 | 0.3310 | 1.0550 | 0.027* | |
H13B | 0.4319 | 0.2752 | 1.0199 | 0.027* | |
C12 | 0.2675 (8) | 0.6108 (3) | 0.5462 (3) | 0.0560 (16) | |
H12 | 0.2893 | 0.6288 | 0.5000 | 0.067* | |
C20 | 0.5797 (5) | 0.27124 (19) | 0.7137 (2) | 0.0214 (8) | |
C21 | 0.7455 (5) | 0.2386 (2) | 0.7185 (3) | 0.0311 (10) | |
H21A | 0.7259 | 0.1988 | 0.6933 | 0.047* | |
H21B | 0.7992 | 0.2331 | 0.7731 | 0.047* | |
H21C | 0.8185 | 0.2630 | 0.6923 | 0.047* | |
O23 | 0.7747 (4) | 0.50524 (13) | 1.02788 (16) | 0.0286 (7) | |
C23 | 0.1705 (6) | 0.1901 (2) | 0.8418 (3) | 0.0322 (10) | |
H23A | 0.0889 | 0.1602 | 0.8159 | 0.048* | |
H23B | 0.1251 | 0.2110 | 0.8823 | 0.048* | |
H23C | 0.2746 | 0.1692 | 0.8653 | 0.048* | |
C22 | 0.2058 (5) | 0.23605 (18) | 0.7830 (2) | 0.0217 (8) | |
C26 | 0.3480 (5) | 0.38767 (19) | 0.5880 (2) | 0.0227 (8) | |
C25 | −0.1298 (5) | 0.4153 (2) | 0.7018 (3) | 0.0346 (10) | |
H25A | −0.1744 | 0.4304 | 0.6493 | 0.052* | |
H25B | −0.1082 | 0.4497 | 0.7379 | 0.052* | |
H25C | −0.2114 | 0.3878 | 0.7178 | 0.052* | |
C24 | 0.0304 (5) | 0.38149 (19) | 0.7023 (2) | 0.0236 (8) | |
C27 | 0.3794 (6) | 0.4337 (2) | 0.5296 (3) | 0.0368 (11) | |
H27A | 0.3726 | 0.4138 | 0.4791 | 0.055* | |
H27B | 0.4911 | 0.4513 | 0.5466 | 0.055* | |
H27C | 0.2950 | 0.4660 | 0.5249 | 0.055* | |
O2 | 0.0277 (3) | 0.33809 (13) | 0.65513 (16) | 0.0266 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0161 (3) | 0.0253 (3) | 0.0143 (3) | −0.0009 (2) | −0.0007 (2) | −0.0005 (2) |
N1 | 0.0139 (15) | 0.0243 (16) | 0.0138 (15) | −0.0021 (12) | 0.0008 (12) | −0.0017 (12) |
C1 | 0.0110 (17) | 0.0250 (19) | 0.0163 (17) | −0.0009 (14) | −0.0030 (14) | −0.0010 (15) |
O1 | 0.0175 (14) | 0.0345 (16) | 0.0296 (15) | 0.0046 (12) | −0.0009 (12) | −0.0067 (13) |
Cu2 | 0.0149 (3) | 0.0259 (3) | 0.0164 (3) | 0.0012 (2) | −0.0010 (2) | −0.0024 (2) |
N2 | 0.0208 (17) | 0.0287 (18) | 0.0148 (15) | −0.0047 (14) | −0.0014 (13) | −0.0028 (13) |
C2 | 0.0170 (18) | 0.0208 (19) | 0.0171 (18) | 0.0004 (15) | 0.0007 (14) | −0.0018 (14) |
O3 | 0.0283 (15) | 0.0351 (16) | 0.0170 (13) | −0.0067 (13) | −0.0004 (11) | 0.0017 (12) |
N3 | 0.0239 (17) | 0.0250 (17) | 0.0206 (16) | −0.0049 (14) | −0.0004 (14) | −0.0031 (13) |
C3 | 0.0186 (19) | 0.026 (2) | 0.0202 (19) | −0.0064 (16) | 0.0002 (15) | −0.0073 (16) |
O4 | 0.0178 (14) | 0.0355 (17) | 0.0275 (15) | 0.0056 (12) | −0.0067 (12) | −0.0104 (13) |
N4 | 0.0218 (17) | 0.0290 (18) | 0.0120 (15) | −0.0071 (14) | −0.0002 (12) | 0.0005 (13) |
C4 | 0.030 (2) | 0.034 (2) | 0.021 (2) | −0.0058 (18) | −0.0044 (17) | −0.0054 (17) |
O5 | 0.0323 (16) | 0.0338 (16) | 0.0166 (13) | −0.0089 (13) | 0.0003 (12) | −0.0003 (12) |
N5 | 0.0167 (16) | 0.0249 (17) | 0.0165 (15) | −0.0057 (13) | −0.0009 (12) | −0.0026 (13) |
C5 | 0.024 (2) | 0.053 (3) | 0.028 (2) | 0.004 (2) | −0.0022 (18) | 0.000 (2) |
O6 | 0.0234 (14) | 0.0269 (15) | 0.0195 (14) | −0.0029 (12) | 0.0020 (11) | −0.0010 (11) |
N6 | 0.0144 (15) | 0.0258 (17) | 0.0152 (15) | 0.0028 (13) | −0.0022 (12) | −0.0001 (13) |
C6 | 0.028 (2) | 0.032 (2) | 0.025 (2) | −0.0065 (18) | −0.0003 (17) | 0.0027 (18) |
C7 | 0.039 (3) | 0.032 (2) | 0.033 (2) | −0.003 (2) | 0.007 (2) | 0.0005 (19) |
N7 | 0.049 (3) | 0.044 (2) | 0.036 (2) | 0.014 (2) | 0.003 (2) | 0.0086 (19) |
C8 | 0.041 (3) | 0.031 (2) | 0.033 (2) | 0.008 (2) | 0.007 (2) | 0.0016 (19) |
O9 | 0.0346 (17) | 0.0309 (16) | 0.0219 (15) | −0.0077 (13) | 0.0028 (12) | 0.0004 (12) |
C9 | 0.044 (3) | 0.051 (3) | 0.040 (3) | 0.000 (2) | 0.006 (2) | 0.000 (2) |
O10 | 0.0175 (14) | 0.0353 (16) | 0.0261 (15) | 0.0030 (12) | −0.0002 (11) | −0.0075 (12) |
C10 | 0.037 (3) | 0.068 (4) | 0.057 (4) | 0.002 (3) | 0.002 (3) | −0.003 (3) |
C11 | 0.040 (3) | 0.061 (4) | 0.044 (3) | 0.016 (3) | −0.012 (2) | 0.002 (3) |
C19 | 0.021 (2) | 0.034 (2) | 0.025 (2) | −0.0007 (17) | 0.0031 (16) | 0.0018 (17) |
C18 | 0.0158 (19) | 0.041 (3) | 0.029 (2) | 0.0032 (18) | −0.0046 (16) | 0.0009 (19) |
C17 | 0.026 (2) | 0.036 (2) | 0.021 (2) | 0.0077 (18) | −0.0056 (17) | 0.0028 (17) |
C16 | 0.026 (2) | 0.029 (2) | 0.024 (2) | 0.0035 (17) | 0.0000 (17) | 0.0035 (17) |
C15 | 0.0206 (19) | 0.0204 (18) | 0.0150 (17) | 0.0046 (15) | 0.0017 (14) | 0.0003 (14) |
C14 | 0.027 (2) | 0.0220 (19) | 0.0143 (17) | −0.0018 (16) | −0.0007 (15) | 0.0003 (14) |
C13 | 0.021 (2) | 0.029 (2) | 0.0162 (18) | 0.0005 (16) | −0.0021 (15) | 0.0053 (15) |
C12 | 0.063 (4) | 0.065 (4) | 0.036 (3) | 0.025 (3) | 0.000 (3) | 0.015 (3) |
C20 | 0.0137 (18) | 0.029 (2) | 0.0205 (19) | −0.0004 (16) | 0.0012 (15) | 0.0004 (16) |
C21 | 0.017 (2) | 0.037 (2) | 0.039 (2) | 0.0025 (18) | 0.0039 (18) | −0.008 (2) |
O23 | 0.0324 (16) | 0.0295 (15) | 0.0208 (14) | −0.0093 (13) | −0.0021 (12) | −0.0029 (12) |
C23 | 0.038 (3) | 0.034 (2) | 0.025 (2) | −0.003 (2) | 0.0090 (19) | 0.0050 (18) |
C22 | 0.0155 (18) | 0.028 (2) | 0.0220 (19) | −0.0007 (15) | 0.0037 (15) | 0.0027 (16) |
C26 | 0.0173 (19) | 0.030 (2) | 0.0201 (19) | −0.0008 (16) | 0.0017 (15) | 0.0037 (16) |
C25 | 0.018 (2) | 0.038 (3) | 0.046 (3) | 0.0055 (18) | 0.0033 (19) | −0.007 (2) |
C24 | 0.0156 (19) | 0.029 (2) | 0.026 (2) | 0.0016 (16) | 0.0032 (16) | 0.0020 (17) |
C27 | 0.043 (3) | 0.039 (3) | 0.028 (2) | −0.003 (2) | 0.008 (2) | 0.007 (2) |
O2 | 0.0192 (14) | 0.0328 (16) | 0.0254 (15) | 0.0036 (12) | −0.0016 (11) | −0.0059 (12) |
Cu1—O6 | 1.939 (3) | C7—H7B | 0.9900 |
Cu1—O3 | 1.946 (3) | N7—C12 | 1.332 (7) |
Cu1—O10 | 2.027 (3) | N7—C8 | 1.342 (6) |
Cu1—O2 | 2.063 (3) | C8—C9 | 1.384 (8) |
Cu1—N6i | 2.148 (3) | O9—C26 | 1.256 (5) |
Cu1—Cu2 | 2.7887 (8) | C9—C10 | 1.385 (8) |
N1—C2 | 1.349 (5) | C9—H9 | 0.9500 |
N1—C1 | 1.362 (5) | O10—C20 | 1.250 (5) |
C1—N4 | 1.320 (5) | C10—C11 | 1.369 (9) |
C1—N2 | 1.356 (5) | C10—H10 | 0.9500 |
O1—C24 | 1.264 (5) | C11—C12 | 1.380 (9) |
Cu2—O1 | 1.928 (3) | C11—H11 | 0.9500 |
Cu2—O4 | 1.927 (3) | C19—C18 | 1.374 (6) |
Cu2—O9 | 2.036 (3) | C19—H19 | 0.9500 |
Cu2—O5 | 2.046 (3) | C18—C17 | 1.379 (6) |
Cu2—N1 | 2.179 (3) | C18—H18 | 0.9500 |
N2—C3 | 1.308 (5) | C17—C16 | 1.384 (6) |
C2—N3 | 1.336 (5) | C17—H17 | 0.9500 |
C2—N5 | 1.377 (5) | C16—C15 | 1.397 (5) |
O3—C26 | 1.257 (5) | C16—H16 | 0.9500 |
N3—C3 | 1.343 (5) | C15—C14 | 1.505 (5) |
C3—O23 | 1.344 (5) | C14—C13 | 1.539 (6) |
O4—C20 | 1.255 (5) | C14—H14A | 0.9900 |
N4—C13 | 1.459 (5) | C14—H14B | 0.9900 |
N4—H1 | 0.8800 | C13—H13A | 0.9900 |
C4—O23 | 1.463 (5) | C13—H13B | 0.9900 |
C4—C5 | 1.492 (6) | C12—H12 | 0.9500 |
C4—H4A | 0.9900 | C20—C21 | 1.516 (5) |
C4—H4B | 0.9900 | C21—H21A | 0.9800 |
O5—C22 | 1.256 (5) | C21—H21B | 0.9800 |
N5—C6 | 1.416 (5) | C21—H21C | 0.9800 |
N5—H2 | 0.8800 | C23—C22 | 1.513 (6) |
C5—H5A | 0.9800 | C23—H23A | 0.9800 |
C5—H5B | 0.9800 | C23—H23B | 0.9800 |
C5—H5C | 0.9800 | C23—H23C | 0.9800 |
O6—C22 | 1.259 (5) | C26—C27 | 1.499 (6) |
N6—C19 | 1.340 (5) | C25—C24 | 1.500 (6) |
N6—C15 | 1.344 (5) | C25—H25A | 0.9800 |
N6—Cu1ii | 2.148 (3) | C25—H25B | 0.9800 |
C6—C7 | 1.522 (6) | C25—H25C | 0.9800 |
C6—H6A | 0.9900 | C24—O2 | 1.261 (5) |
C6—H6B | 0.9900 | C27—H27A | 0.9800 |
C7—C8 | 1.515 (7) | C27—H27B | 0.9800 |
C7—H7A | 0.9900 | C27—H27C | 0.9800 |
O6—Cu1—O3 | 178.22 (12) | N7—C8—C9 | 122.0 (5) |
O6—Cu1—O10 | 89.15 (12) | N7—C8—C7 | 115.2 (5) |
O3—Cu1—O10 | 90.05 (13) | C9—C8—C7 | 122.8 (4) |
O6—Cu1—O2 | 91.34 (12) | C26—O9—Cu2 | 130.9 (3) |
O3—Cu1—O2 | 88.55 (13) | C8—C9—C10 | 119.2 (5) |
O10—Cu1—O2 | 149.63 (11) | C8—C9—H9 | 120.4 |
O6—Cu1—N6i | 91.50 (12) | C10—C9—H9 | 120.4 |
O3—Cu1—N6i | 90.27 (12) | C20—O10—Cu1 | 132.2 (3) |
O10—Cu1—N6i | 111.64 (12) | C11—C10—C9 | 119.3 (6) |
O2—Cu1—N6i | 98.70 (12) | C11—C10—H10 | 120.3 |
O6—Cu1—Cu2 | 90.00 (8) | C9—C10—H10 | 120.3 |
O3—Cu1—Cu2 | 88.25 (9) | C10—C11—C12 | 117.6 (5) |
O10—Cu1—Cu2 | 74.51 (8) | C10—C11—H11 | 121.2 |
O2—Cu1—Cu2 | 75.12 (8) | C12—C11—H11 | 121.2 |
N6i—Cu1—Cu2 | 173.68 (9) | N6—C19—C18 | 123.6 (4) |
C2—N1—C1 | 114.8 (3) | N6—C19—H19 | 118.2 |
C2—N1—Cu2 | 123.6 (2) | C18—C19—H19 | 118.2 |
C1—N1—Cu2 | 121.4 (2) | C19—C18—C17 | 118.3 (4) |
N4—C1—N2 | 117.1 (3) | C19—C18—H18 | 120.9 |
N4—C1—N1 | 119.0 (3) | C17—C18—H18 | 120.9 |
N2—C1—N1 | 123.9 (3) | C18—C17—C16 | 119.3 (4) |
C24—O1—Cu2 | 119.6 (3) | C18—C17—H17 | 120.3 |
O4—Cu2—O1 | 178.75 (13) | C16—C17—H17 | 120.3 |
O4—Cu2—O9 | 90.60 (13) | C17—C16—C15 | 119.0 (4) |
O1—Cu2—O9 | 89.29 (13) | C17—C16—H16 | 120.5 |
O4—Cu2—O5 | 90.00 (13) | C15—C16—H16 | 120.5 |
O1—Cu2—O5 | 89.47 (13) | N6—C15—C16 | 121.5 (4) |
O9—Cu2—O5 | 149.80 (12) | N6—C15—C14 | 117.1 (3) |
O4—Cu2—N1 | 88.00 (12) | C16—C15—C14 | 121.3 (4) |
O1—Cu2—N1 | 93.23 (12) | C15—C14—C13 | 112.3 (3) |
O9—Cu2—N1 | 105.92 (12) | C15—C14—H14A | 109.1 |
O5—Cu2—N1 | 104.28 (11) | C13—C14—H14A | 109.1 |
O4—Cu2—Cu1 | 89.33 (9) | C15—C14—H14B | 109.1 |
O1—Cu2—Cu1 | 89.44 (9) | C13—C14—H14B | 109.1 |
O9—Cu2—Cu1 | 75.77 (8) | H14A—C14—H14B | 107.9 |
O5—Cu2—Cu1 | 74.05 (8) | N4—C13—C14 | 111.2 (3) |
N1—Cu2—Cu1 | 176.85 (9) | N4—C13—H13A | 109.4 |
C3—N2—C1 | 114.3 (3) | C14—C13—H13A | 109.4 |
N3—C2—N1 | 125.5 (3) | N4—C13—H13B | 109.4 |
N3—C2—N5 | 117.0 (3) | C14—C13—H13B | 109.4 |
N1—C2—N5 | 117.5 (3) | H13A—C13—H13B | 108.0 |
C26—O3—Cu1 | 119.9 (3) | N7—C12—C11 | 124.6 (6) |
C2—N3—C3 | 113.3 (3) | N7—C12—H12 | 117.7 |
N2—C3—N3 | 128.1 (3) | C11—C12—H12 | 117.7 |
N2—C3—O23 | 119.2 (4) | O10—C20—O4 | 125.2 (4) |
N3—C3—O23 | 112.7 (3) | O10—C20—C21 | 117.7 (4) |
C20—O4—Cu2 | 118.7 (2) | O4—C20—C21 | 117.1 (3) |
C1—N4—C13 | 123.3 (3) | C20—C21—H21A | 109.5 |
C1—N4—H1 | 118.4 | C20—C21—H21B | 109.5 |
C13—N4—H1 | 118.4 | H21A—C21—H21B | 109.5 |
O23—C4—C5 | 111.1 (4) | C20—C21—H21C | 109.5 |
O23—C4—H4A | 109.4 | H21A—C21—H21C | 109.5 |
C5—C4—H4A | 109.4 | H21B—C21—H21C | 109.5 |
O23—C4—H4B | 109.4 | C3—O23—C4 | 117.1 (3) |
C5—C4—H4B | 109.4 | C22—C23—H23A | 109.5 |
H4A—C4—H4B | 108.0 | C22—C23—H23B | 109.5 |
C22—O5—Cu2 | 132.8 (3) | H23A—C23—H23B | 109.5 |
C2—N5—C6 | 123.2 (3) | C22—C23—H23C | 109.5 |
C2—N5—H2 | 118.4 | H23A—C23—H23C | 109.5 |
C6—N5—H2 | 118.4 | H23B—C23—H23C | 109.5 |
C4—C5—H5A | 109.5 | O5—C22—O6 | 124.7 (4) |
C4—C5—H5B | 109.5 | O5—C22—C23 | 117.2 (4) |
H5A—C5—H5B | 109.5 | O6—C22—C23 | 118.1 (4) |
C4—C5—H5C | 109.5 | O9—C26—O3 | 125.0 (4) |
H5A—C5—H5C | 109.5 | O9—C26—C27 | 116.9 (4) |
H5B—C5—H5C | 109.5 | O3—C26—C27 | 118.1 (4) |
C22—O6—Cu1 | 118.3 (3) | C24—C25—H25A | 109.5 |
C19—N6—C15 | 118.2 (3) | C24—C25—H25B | 109.5 |
C19—N6—Cu1ii | 116.8 (3) | H25A—C25—H25B | 109.5 |
C15—N6—Cu1ii | 124.9 (2) | C24—C25—H25C | 109.5 |
N5—C6—C7 | 112.9 (4) | H25A—C25—H25C | 109.5 |
N5—C6—H6A | 109.0 | H25B—C25—H25C | 109.5 |
C7—C6—H6A | 109.0 | O2—C24—O1 | 125.2 (4) |
N5—C6—H6B | 109.0 | O2—C24—C25 | 117.9 (4) |
C7—C6—H6B | 109.0 | O1—C24—C25 | 116.9 (4) |
H6A—C6—H6B | 107.8 | C26—C27—H27A | 109.5 |
C8—C7—C6 | 112.3 (4) | C26—C27—H27B | 109.5 |
C8—C7—H7A | 109.2 | H27A—C27—H27B | 109.5 |
C6—C7—H7A | 109.2 | C26—C27—H27C | 109.5 |
C8—C7—H7B | 109.2 | H27A—C27—H27C | 109.5 |
C6—C7—H7B | 109.2 | H27B—C27—H27C | 109.5 |
H7A—C7—H7B | 107.9 | C24—O2—Cu1 | 130.7 (3) |
C12—N7—C8 | 117.3 (5) | ||
C2—N1—C1—N4 | 179.7 (3) | C19—C18—C17—C16 | −1.8 (7) |
Cu2—N1—C1—N4 | −5.0 (5) | C18—C17—C16—C15 | 1.7 (6) |
C2—N1—C1—N2 | −0.8 (5) | C19—N6—C15—C16 | −1.8 (6) |
Cu2—N1—C1—N2 | 174.5 (3) | Cu1ii—N6—C15—C16 | 175.6 (3) |
N4—C1—N2—C3 | 177.2 (4) | C19—N6—C15—C14 | −179.9 (3) |
N1—C1—N2—C3 | −2.2 (6) | Cu1ii—N6—C15—C14 | −2.6 (5) |
C1—N1—C2—N3 | 3.0 (6) | C17—C16—C15—N6 | 0.1 (6) |
Cu2—N1—C2—N3 | −172.2 (3) | C17—C16—C15—C14 | 178.2 (4) |
C1—N1—C2—N5 | −177.5 (3) | N6—C15—C14—C13 | 87.7 (4) |
Cu2—N1—C2—N5 | 7.2 (5) | C16—C15—C14—C13 | −90.5 (4) |
N1—C2—N3—C3 | −1.8 (6) | C1—N4—C13—C14 | 86.6 (4) |
N5—C2—N3—C3 | 178.8 (3) | C15—C14—C13—N4 | 69.7 (4) |
C1—N2—C3—N3 | 3.8 (6) | C8—N7—C12—C11 | 0.4 (9) |
C1—N2—C3—O23 | −177.8 (3) | C10—C11—C12—N7 | −1.7 (9) |
C2—N3—C3—N2 | −2.0 (6) | Cu1—O10—C20—O4 | −1.8 (7) |
C2—N3—C3—O23 | 179.6 (3) | Cu1—O10—C20—C21 | 178.3 (3) |
N2—C1—N4—C13 | 4.3 (6) | Cu2—O4—C20—O10 | 0.0 (6) |
N1—C1—N4—C13 | −176.2 (3) | Cu2—O4—C20—C21 | 180.0 (3) |
N3—C2—N5—C6 | −5.8 (6) | N2—C3—O23—C4 | 4.5 (6) |
N1—C2—N5—C6 | 174.7 (4) | N3—C3—O23—C4 | −176.8 (3) |
C2—N5—C6—C7 | −94.9 (5) | C5—C4—O23—C3 | 79.3 (5) |
N5—C6—C7—C8 | −69.1 (5) | Cu2—O5—C22—O6 | −5.0 (6) |
C12—N7—C8—C9 | 1.5 (7) | Cu2—O5—C22—C23 | 174.2 (3) |
C12—N7—C8—C7 | 180.0 (5) | Cu1—O6—C22—O5 | 1.3 (5) |
C6—C7—C8—N7 | −87.7 (5) | Cu1—O6—C22—C23 | −177.9 (3) |
C6—C7—C8—C9 | 90.8 (6) | Cu2—O9—C26—O3 | −4.0 (6) |
N7—C8—C9—C10 | −2.0 (8) | Cu2—O9—C26—C27 | 174.7 (3) |
C7—C8—C9—C10 | 179.6 (5) | Cu1—O3—C26—O9 | 2.4 (6) |
C8—C9—C10—C11 | 0.6 (9) | Cu1—O3—C26—C27 | −176.2 (3) |
C9—C10—C11—C12 | 1.1 (9) | Cu2—O1—C24—O2 | 0.3 (6) |
C15—N6—C19—C18 | 1.7 (6) | Cu2—O1—C24—C25 | 179.3 (3) |
Cu1ii—N6—C19—C18 | −175.9 (3) | O1—C24—O2—Cu1 | −0.9 (6) |
N6—C19—C18—C17 | 0.1 (7) | C25—C24—O2—Cu1 | −179.9 (3) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+1/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H1···O5 | 0.88 | 1.89 | 2.767 (4) | 171 |
N5—H2···O9 | 0.88 | 1.99 | 2.857 (4) | 168 |
Cu1—O6 | 1.939 (3) | Cu2—O1 | 1.927 (3) |
Cu1—O3 | 1.946 (3) | Cu2—O4 | 1.926 (3) |
Cu1—O10 | 2.026 (3) | Cu2—O9 | 2.035 (3) |
Cu1—O2 | 2.062 (3) | Cu2—O5 | 2.047 (3) |
Cu1—N6i | 2.147 (3) | Cu2—N1 | 2.180 (3) |
Cu1—Cu2 | 2.7889 (8) |
Symmetry codes: (i) x, -y+1/2, z-1/2 |
Acknowledgements
We thank Matthias Zeller (Purdue University) for his advice on data collection for the reported crystal structure.
Funding information
Funding for this research was provided by: National Science Foundation (award No. CHE-1900541).
References
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). APEX2,. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chakraborty, P., Adhikary, J., Ghosh, B., Sanyal, R., Chattopadhyay, S. K., Bauzá, A., Frontera, A., Zangrando, E. & Das, D. (2014). Inorg. Chem. 53, 8257–8269. CrossRef CAS PubMed Google Scholar
Chu, J., Chen, W., Su, G. & Song, Y. (2011). Inorg. Chim. Acta, 376, 350–357. CrossRef CAS Google Scholar
Festa, R. A. & Thiele, D. J. (2011). Curr. Biol. 21, R877–R883. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Koval, I. A., Gamez, P., Belle, C., Selmeczi, K. & Reedijk, J. (2006). Chem. Soc. Rev. 35, 814–840. Web of Science CrossRef PubMed CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mahadevan, V., Gebbink, R. K. & Stack, T. D. (2000). Curr. Opin. Chem. Biol. 4, 228–234. CrossRef PubMed CAS Google Scholar
Marion, R., Saleh, N. M., Le Poul, N., Floner, D., Lavastre, O. & Geneste, F. (2012). New J. Chem. 36, 1828–1835. CrossRef CAS Google Scholar
Massoud, S. S., Louka, F. R., Xu, W., Perkins, R. S., Vicente, R., Albering, J. H. & Mautner, F. A. (2011). Eur. J. Inorg. Chem. pp. 3469–3479. CrossRef Google Scholar
Panda, M. K., Shaikh, M. M., Butcher, R. J. & Ghosh, P. (2011). Inorg. Chim. Acta, 372, 145–151. CrossRef CAS Google Scholar
Pham, A. N. & Waite, T. D. (2014). J. Inorg. Biochem. 137, 74–84. CrossRef CAS PubMed Google Scholar
Ravikiran, B. & Mahalakshmi, R. (2014). RSC Adv. 4, 33958–33974. CrossRef CAS Google Scholar
Razgoniaev, A. O., Butaeva, E. V., Iretskii, A. V. & Ostrowski, A. D. (2016). Inorg. Chem. 55, 5430–5437. CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, A. K., Yadav, M., Pandey, R., Kumar, P. & Pandey, D. S. (2010). J. Organomet. Chem. 695, 1932–1939. CrossRef CAS Google Scholar
Solomon, E. I., Heppner, D. E., Johnston, E. M., Ginsbach, J. W., Cirera, J., Qayyum, M., Kieber-Emmons, M. T., Kjaergaard, C. H., Hadt, R. G. & Tian, L. (2014). Chem. Rev. 114, 3659–3853. Web of Science CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.