research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of catena-poly[[tetra-μ-acetato-copper(II)]-μ-6-eth­­oxy-N2,N4-bis­­[2-(pyridin-2-yl)eth­yl]-1,3,5-triazine-2,4-di­amine]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403, USA
*Correspondence e-mail: mayokua@bgsu.edu

Edited by A. M. Chippindale, University of Reading, England (Received 15 February 2021; accepted 23 February 2021; online 26 February 2021)

The title compound, [Cu2(C19H23N7O)(C2H3O2)4]n, was obtained via reaction of copper(II) acetate with the coordinating ligand, 6-eth­oxy-N2,N4-bis­[2-(pyridin-2-yl)eth­yl]-1,3,5-triazine-2,4-di­amine. The crystallized product adopts the monoclinic P21/c space group. The metal core exhibits a paddle-wheel structure typical for dicopper tetra­acetate units, with triazine and pyridyl nitro­gen atoms from different ligands coordinating to the two axial positions of the paddle wheel in an asymmetric manner. This forms a coordination polymer with the segments of the polymer created by the c-glide of the P21/c setting of the space group. The resulting chains running along the c-axis direction are held together by intra­molecular N—H⋯O hydrogen bonding. These chains are further packed by dispersion forces, producing an extended three-dimensional structure.

1. Chemical context

Dinuclear CuII groups are recognized for their crucial role as active sites in metalloenzymes and are present in many biological systems (Festa & Thiele, 2011[Festa, R. A. & Thiele, D. J. (2011). Curr. Biol. 21, R877-R883.]; Solomon et al., 2014[Solomon, E. I., Heppner, D. E., Johnston, E. M., Ginsbach, J. W., Cirera, J., Qayyum, M., Kieber-Emmons, M. T., Kjaergaard, C. H., Hadt, R. G. & Tian, L. (2014). Chem. Rev. 114, 3659-3853.]). They often constitute the catalytically active sites involved in the stepwise oxidative conversions of many small mol­ecules (Pham & Waite, 2014[Pham, A. N. & Waite, T. D. (2014). J. Inorg. Biochem. 137, 74-84.]; Chakraborty et al., 2014[Chakraborty, P., Adhikary, J., Ghosh, B., Sanyal, R., Chattopadhyay, S. K., Bauzá, A., Frontera, A., Zangrando, E. & Das, D. (2014). Inorg. Chem. 53, 8257-8269.]). A well-known series of metalloenyzmes containing dinuclear copper active sites is that of the polyphenol oxidases (e.g. catechol oxidase) where the catechol is easily oxidized to quinone products (Ravikiran & Mahalakshmi, 2014[Ravikiran, B. & Mahalakshmi, R. (2014). RSC Adv. 4, 33958-33974.]). In recent years, there has been an increased effort to carry over this efficient and selective oxidation into biomimetic models of metalloenzymes (Mahadevan et al., 2000[Mahadevan, V., Gebbink, R. K. & Stack, T. D. (2000). Curr. Opin. Chem. Biol. 4, 228-234.]; Panda et al., 2011[Panda, M. K., Shaikh, M. M., Butcher, R. J. & Ghosh, P. (2011). Inorg. Chim. Acta, 372, 145-151.]; Marion et al., 2012[Marion, R., Saleh, N. M., Le Poul, N., Floner, D., Lavastre, O. & Geneste, F. (2012). New J. Chem. 36, 1828-1835.]).

As part of this quest, significant efforts have been made to identify and better understand the specific structural patterns found at these copper-containing active sites. These patterns have often been found to convey functionalities that define a particular enzyme. This has led to a focus on the basic elements of coordination between the ligands and the metal centers. For example, when designing mimics of catechol oxidase, many model catalysts include the same basic structural elements (Koval et al., 2006[Koval, I. A., Gamez, P., Belle, C., Selmeczi, K. & Reedijk, J. (2006). Chem. Soc. Rev. 35, 814-840.]). These models often contain multidentate ligands with at least five coordinating heteroatoms branched off a central ring, all coordinating to the copper centers. This coordination motif and its orientation often provide a unique accessibility for substrate approach, similar to that found in a type-3 active site (Koval et al., 2006[Koval, I. A., Gamez, P., Belle, C., Selmeczi, K. & Reedijk, J. (2006). Chem. Soc. Rev. 35, 814-840.]).

[Scheme 1]

In this paper, we report the crystal structure of a biomimetic complex (I) of catechol oxidase synthesized from a multidentate ligand that is coordinated to the copper centers in an unexpected fashion. The complex possesses two nitro­gen coordinating heteroatoms from triazine ligands, which coordinate to the copper centers of the paddle-wheel unit at the axial positions. Additional coordination by the terminal pendant pyridine group on the ligand to another copper paddle-wheel unit creates a continuous coordinated chain linkage.

2. Structural commentary

The title compound (I) crystallizes in the space group P21/c. The mol­ecular structure of (I) (Fig. 1[link]) includes a dinuclear CuII paddle-wheel unit with both metal ions in slightly Jahn–Teller-distorted octa­hedral environments. The two copper atoms are separated by a Cu1—Cu2 bond distance of 2.7888 (8) Å. As expected in a typical acetate paddle wheel, the acetate groups bridge the Cu atoms in a μ2-O:O′ mode, with the Cu—O bonds lying in the range 1.927 (3)–2.046 (3) Å (Table 1[link]). The longer Cu—O bonds found for Cu2—O5 [2.046 (3) Å] and Cu2—O9 [2.036 (3) Å] are a consequence of hydrogen-bonding inter­actions involving the O5 and O9 oxygen atoms (see text below for further details). Two triazine ligands coordinate to the copper-acetate paddle-wheel unit in an asymmetric manner, with one Cu atom coordinated to the triazyl nitro­gen, N1, of the central ring on one ligand (green nitro­gen in Scheme 1), and the other Cu coordinated to the terminal pyridyl nitro­gen, N6, of a second ligand (pink nitro­gen in Scheme 1). The two ligands adopt an almost orthogonal orientation to each other. Each of the ligands has their linking alkyl chain adopting a gauche geometry, making the two terminal pyridine rings twist away from the central triazine ring.

Table 1
Selected bond lengths (Å)

Cu1—O6 1.939 (3) Cu2—O1 1.927 (3)
Cu1—O3 1.946 (3) Cu2—O4 1.926 (3)
Cu1—O10 2.026 (3) Cu2—O9 2.035 (3)
Cu1—O2 2.062 (3) Cu2—O5 2.047 (3)
Cu1—N6i 2.147 (3) Cu2—N1 2.180 (3)
Cu1—Cu2 2.7889 (8)    
Symmetry codes: (i) x, −y + [{1\over 2}], z − [{1\over 2}]
[Figure 1]
Figure 1
Mol­ecular structure of (I) drawn with 50% probability displacement ellipsoids. symmetry code (i) x, −y + [{1\over 2}], z − [{1\over 2}]; (ii) x, −y + [{1\over 2}], z + [{1\over 2}]. Key: carbon, gray; nitro­gen, blue; copper, light green; oxygen, red.

3. Supra­molecular features

The copper centers and ligands are linked into a coordination polymer as a consequence of the presence of the c-glide in the P21/c space group. Intra­molecular hydrogen-bonding inter­actions (Table 2[link]) are observed for only one of the two triazine ligands coordinating to the paddle wheel, as shown in Fig. 2[link]. These occur between the N4—H1⋯O5 and N5—H2⋯O9 atoms at (H⋯A) distances of 1.89 and 1.99 Å, respectively, with the hydrogens on the nitro­gen atoms of the ortho branches off the triazine ring pointing towards the oxygen atoms of two of the acetate groups of the paddle wheel. Closely packed arrays of one-dimensional chains, hypothesized to be held together by dispersion forces, form an extended two-dimensional network in the bc plane (Fig. 3[link]), which, with further packing, forms an extended three-dimensional structure. The 1D chains are separated from each other by 4.486 (1) Å, as shown in Fig. 4[link].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1⋯O5 0.88 1.89 2.767 (4) 171
N5—H2⋯O9 0.88 1.99 2.857 (4) 168
[Figure 2]
Figure 2
A packing diagram of (I)[link] viewed along the a axis showing the one-dimensional network. The N—H⋯·O hydrogen bonds are shown with the dashed light-blue lines. Key: carbon, gray; nitro­gen, blue; copper, light green; oxygen, red.
[Figure 3]
Figure 3
The two-dimensional array of the coordinating networks of (I) viewed along the a axis.
[Figure 4]
Figure 4
Separated planes of the neighboring one-dimensional networks viewed slightly off the c axis. Key: carbon, gray; nitro­gen, blue; copper, light green; oxygen, red.

4. Database survey

A structure survey was carried out on the Cambridge Structural Database (CSD version 5.41, update of August 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Search results show that although 1,3,5-triazine-2,4-di­amine-derivative complexes with copper, ruthenium and rhodium have been reported (Singh et al., 2010[Singh, A. K., Yadav, M., Pandey, R., Kumar, P. & Pandey, D. S. (2010). J. Organomet. Chem. 695, 1932-1939.]; Chu et al., 2011[Chu, J., Chen, W., Su, G. & Song, Y. (2011). Inorg. Chim. Acta, 376, 350-357.]; Massoud et al., 2011[Massoud, S. S., Louka, F. R., Xu, W., Perkins, R. S., Vicente, R., Albering, J. H. & Mautner, F. A. (2011). Eur. J. Inorg. Chem. pp. 3469-3479.]; Chakraborty et al., 2014[Chakraborty, P., Adhikary, J., Ghosh, B., Sanyal, R., Chattopadhyay, S. K., Bauzá, A., Frontera, A., Zangrando, E. & Das, D. (2014). Inorg. Chem. 53, 8257-8269.]), none of these complexes contains a copper(II) acetate [Cu2(OAc)4L2] paddle wheel, as is found in compound (I). In all the previously reported structures, each ligand is coord­inated to the metal using at least four of the nitro­gen heteroatoms present. The structure of compound (I) presented here is rather different, as each ligand is coordinated to copper through only one nitro­gen heteroatom. In addition, whilst some of the previously reported derivatives contain ortho-branched tertiary amines, compound (I) contains secondary amines.

5. Synthesis, crystallization and catalytic activity

The triazine ligand (Fig. 5[link], c) was synthesized by substituting all three chlorines on the cyanuric chloride ring (Fig. 5[link], a) (Razgoniaev et al., 2016[Razgoniaev, A. O., Butaeva, E. V., Iretskii, A. V. & Ostrowski, A. D. (2016). Inorg. Chem. 55, 5430-5437.]). The first substitution was completed by chilling 40 mL (0.69 mol) of ethanol in an ice bath. Cyanuric chloride (5.00 g, 27 mmol) and sodium bicarbonate (2.35 g, 28 mmol) were added to the chilled ethanol and stirred in an ice bath for 45 minutes. The reaction mixture was then taken out of the ice bath, stirred at room temperature for 3.5 h and then poured over 20 mL of ice. The resulting precipitate was collected by vacuum filtration. The second and third substitutions were completed by taking the product from step 1 (2.30 g, 12 mmol) (Fig. 5[link], b) and dissolving it in CHCl3. The solution was chilled in an ice bath. 2-(2-Amino­eth­yl)pyridine (3.60 g, 29 mmol) and N,N-diiso­propyl­ethyl­amine (DIPEA) (3.80 g, 29 mmol) were dissolved in CHCl3 and added dropwise to the chilled solution. The reaction was stirred at room temperature for 1 h and stirred at reflux for 12 h. The final product was purified by removing the solvent and taking up the residue in chilled DMF. The product was collected by vacuum filtration and washed at least three times with 15 mL of chilled DMF. The product was obtained as a white powder [yield: 1.75g, 4.8 mmol (40% yield)] and was characterized using 1H NMR.

[Figure 5]
Figure 5
Synthesis of 6-eth­oxy-N2,N4-bis­(2-(pyridin-2-yl)eth­yl)-1,3,5-triazine-2,4-di­amine.

1H NMR (CDCl3, 500 MHz): δ ppm, 8.6 (d, 2H, Ar—H, a); 7.7 (m, 2H, Ar—H, b); 7.2 (m, 4H, Ar—H, c); 6.6 (m, 2H, NH, d); 4.5 (m, 2H, O—CH2, g); 4.4 (m, 4H, N—-CH2–, e); 3.1 (m, 4H, –N—CH2, f); 1.4 (d, 3H, –CH3, h)

Crystal formation of [Cu2(C19H23N7O)2(C2H3O2)4]n (I). The triazine ligand (339.4 mg, 1.0 mmol) was dissolved in chloro­form (20 mL) and a stoichiometric amount of copper(II) acetate (367.3 mg, 1.0 mmol) was dissolved in methanol (20 mL). The two solutions were mixed, and the resulting solution was placed in an ether diffusion chamber for at least four days. Green crystals of (I) were filtered off and washed with methanol. The melting point of the crystals was 639–643 K.

Catalytic activity of [Cu2(C19H23N7O)2(C2H3O2)4]n (I)

The catechol, 1,4-di­hydroxy­benzene, was used to test the catalytic activity of compound (I). This catechol is cheap and has good solubility in water. 2 mL of 10−4 M of compound (I) in a chloro­form: methanol (1:1) solution was placed in a cuvette and 10 µL of a 1 M solution of the catechol injected. The conversion of the catechol into its quinone derivative (benzo­quinone) was monitored by measuring the absorbance at 403 nm over a period of time. Fig. 6[link] shows a continuous increment in absorption at this wavelength, indicating the formation of the product.

[Figure 6]
Figure 6
Plot of change in absorbance intensity at 403 nm vs time indicating the catalytic oxidation of catechol by (I).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms attached to methyl carbons were placed in geometrically calculated positions (C—H = 0.98 Å) and refined using a riding model with displacement parameters [Uiso(H) = 1.5Ueq(C)]. All other carbon–bound hydrogens were placed in geometrically calculated positions (C—H = 0.95–0.99 Å) and were refined as part of a riding model with Uiso(H) = 1.2Ueq(C). Nitro­gen-bound hydrogens were located in a difference-Fourier map and refined using a riding model with fixed displacement parameters [Uiso (H) = 1.2Ueq(N)], with the N—H bond distance equal to 0.88 Å.

Table 3
Experimental details

Crystal data
Chemical formula [Cu2(C19H23N7O)(C2H3O2)4]
Mr 728.70
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 8.1495 (8), 21.964 (2), 17.5750 (17)
β (°) 101.457 (4)
V3) 3083.2 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.25
Crystal size (mm) 0.09 × 0.08 × 0.07
 
Data collection
Diffractometer Bruker AXS D8 Quest CMOS diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.621, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 32494, 5992, 5118
Rint 0.064
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.128, 1.12
No. of reflections 5992
No. of parameters 411
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.47, −0.58
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2,. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015) shelXle (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

catena-Poly[[tetra-µ-acetato-copper(II)]-µ-6-ethoxy-N2,N4-bis[2-(pyridin-2-yl)ethyl]-1,3,5-triazine-2,4-diamine] top
Crystal data top
[Cu2(C19H23N7O)(C2H3O2)4]F(000) = 1504
Mr = 728.70Dx = 1.570 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 8.1495 (8) ÅCell parameters from 9834 reflections
b = 21.964 (2) Åθ = 3.3–72.4°
c = 17.5750 (17) ŵ = 2.25 mm1
β = 101.457 (4)°T = 100 K
V = 3083.2 (5) Å3Block, green
Z = 40.09 × 0.08 × 0.07 mm
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer
5118 reflections with I > 2σ(I)
Radiation source: I-mu-S microsource X-ray tubeRint = 0.064
ω and phi scansθmax = 72.4°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 910
Tmin = 0.621, Tmax = 0.754k = 2727
32494 measured reflectionsl = 2121
5992 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + 14.2144P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
5992 reflectionsΔρmax = 0.47 e Å3
411 parametersΔρmin = 0.58 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.21566 (7)0.28042 (3)0.63661 (3)0.01910 (15)
N10.4958 (4)0.41259 (15)0.85305 (17)0.0176 (6)
C10.5128 (4)0.39364 (18)0.9280 (2)0.0182 (7)
O10.1575 (3)0.39851 (14)0.75122 (17)0.0280 (6)
Cu20.36793 (7)0.35695 (3)0.75666 (3)0.01962 (15)
N20.6024 (4)0.42400 (16)0.98968 (18)0.0221 (7)
C20.5743 (5)0.46537 (17)0.8439 (2)0.0187 (7)
O30.2721 (4)0.33954 (14)0.56345 (16)0.0275 (6)
N30.6693 (4)0.49737 (16)0.90069 (19)0.0238 (7)
C30.6778 (5)0.47284 (18)0.9713 (2)0.0222 (8)
O40.5758 (3)0.31407 (14)0.76057 (17)0.0285 (7)
N40.4395 (4)0.34253 (15)0.94256 (18)0.0214 (7)
H10.38690.32090.90300.026*
C40.7996 (6)0.4807 (2)1.1067 (2)0.0296 (9)
H4A0.69220.46441.11620.036*
H4B0.83600.51371.14450.036*
O50.2767 (4)0.28468 (14)0.80890 (16)0.0282 (6)
N50.5563 (4)0.48814 (15)0.76969 (18)0.0199 (7)
H20.50240.46610.73090.024*
C50.9278 (6)0.4313 (2)1.1184 (3)0.0359 (11)
H5A0.88520.39621.08590.054*
H5B0.95170.41901.17310.054*
H5C1.03070.44621.10390.054*
O60.1639 (3)0.22284 (13)0.71209 (15)0.0236 (6)
N60.0755 (4)0.27169 (15)1.04225 (17)0.0192 (7)
C60.6206 (5)0.5454 (2)0.7528 (3)0.0292 (9)
H6A0.66060.54240.70330.035*
H6B0.71790.55580.79420.035*
C70.4917 (6)0.5963 (2)0.7464 (3)0.0347 (10)
H7A0.44180.59610.79330.042*
H7B0.54840.63590.74430.042*
N70.3853 (6)0.6155 (2)0.6104 (2)0.0441 (10)
C80.3538 (6)0.5897 (2)0.6751 (3)0.0352 (10)
O90.3976 (4)0.40096 (14)0.65835 (16)0.0295 (7)
C90.2070 (7)0.5581 (3)0.6758 (3)0.0451 (12)
H90.18910.53920.72200.054*
O100.4582 (3)0.25350 (14)0.66345 (16)0.0269 (6)
C100.0865 (7)0.5545 (3)0.6082 (4)0.0547 (15)
H100.01540.53340.60770.066*
C110.1158 (7)0.5817 (3)0.5421 (3)0.0512 (14)
H110.03480.58060.49510.061*
C190.0735 (5)0.2493 (2)1.0075 (2)0.0266 (9)
H190.11270.21341.02830.032*
C180.1729 (5)0.2754 (2)0.9435 (2)0.0298 (9)
H180.27790.25800.92070.036*
C170.1163 (5)0.3274 (2)0.9132 (2)0.0289 (9)
H170.18050.34590.86800.035*
C160.0351 (5)0.3525 (2)0.9492 (2)0.0268 (9)
H160.07470.38890.93000.032*
C150.1289 (5)0.32336 (17)1.0141 (2)0.0189 (8)
C140.2967 (5)0.34749 (18)1.0542 (2)0.0219 (8)
H14A0.31400.33801.11030.026*
H14B0.29770.39231.04850.026*
C130.4415 (5)0.32016 (19)1.0209 (2)0.0229 (8)
H13A0.54950.33101.05500.027*
H13B0.43190.27521.01990.027*
C120.2675 (8)0.6108 (3)0.5462 (3)0.0560 (16)
H120.28930.62880.50000.067*
C200.5797 (5)0.27124 (19)0.7137 (2)0.0214 (8)
C210.7455 (5)0.2386 (2)0.7185 (3)0.0311 (10)
H21A0.72590.19880.69330.047*
H21B0.79920.23310.77310.047*
H21C0.81850.26300.69230.047*
O230.7747 (4)0.50524 (13)1.02788 (16)0.0286 (7)
C230.1705 (6)0.1901 (2)0.8418 (3)0.0322 (10)
H23A0.08890.16020.81590.048*
H23B0.12510.21100.88230.048*
H23C0.27460.16920.86530.048*
C220.2058 (5)0.23605 (18)0.7830 (2)0.0217 (8)
C260.3480 (5)0.38767 (19)0.5880 (2)0.0227 (8)
C250.1298 (5)0.4153 (2)0.7018 (3)0.0346 (10)
H25A0.17440.43040.64930.052*
H25B0.10820.44970.73790.052*
H25C0.21140.38780.71780.052*
C240.0304 (5)0.38149 (19)0.7023 (2)0.0236 (8)
C270.3794 (6)0.4337 (2)0.5296 (3)0.0368 (11)
H27A0.37260.41380.47910.055*
H27B0.49110.45130.54660.055*
H27C0.29500.46600.52490.055*
O20.0277 (3)0.33809 (13)0.65513 (16)0.0266 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0161 (3)0.0253 (3)0.0143 (3)0.0009 (2)0.0007 (2)0.0005 (2)
N10.0139 (15)0.0243 (16)0.0138 (15)0.0021 (12)0.0008 (12)0.0017 (12)
C10.0110 (17)0.0250 (19)0.0163 (17)0.0009 (14)0.0030 (14)0.0010 (15)
O10.0175 (14)0.0345 (16)0.0296 (15)0.0046 (12)0.0009 (12)0.0067 (13)
Cu20.0149 (3)0.0259 (3)0.0164 (3)0.0012 (2)0.0010 (2)0.0024 (2)
N20.0208 (17)0.0287 (18)0.0148 (15)0.0047 (14)0.0014 (13)0.0028 (13)
C20.0170 (18)0.0208 (19)0.0171 (18)0.0004 (15)0.0007 (14)0.0018 (14)
O30.0283 (15)0.0351 (16)0.0170 (13)0.0067 (13)0.0004 (11)0.0017 (12)
N30.0239 (17)0.0250 (17)0.0206 (16)0.0049 (14)0.0004 (14)0.0031 (13)
C30.0186 (19)0.026 (2)0.0202 (19)0.0064 (16)0.0002 (15)0.0073 (16)
O40.0178 (14)0.0355 (17)0.0275 (15)0.0056 (12)0.0067 (12)0.0104 (13)
N40.0218 (17)0.0290 (18)0.0120 (15)0.0071 (14)0.0002 (12)0.0005 (13)
C40.030 (2)0.034 (2)0.021 (2)0.0058 (18)0.0044 (17)0.0054 (17)
O50.0323 (16)0.0338 (16)0.0166 (13)0.0089 (13)0.0003 (12)0.0003 (12)
N50.0167 (16)0.0249 (17)0.0165 (15)0.0057 (13)0.0009 (12)0.0026 (13)
C50.024 (2)0.053 (3)0.028 (2)0.004 (2)0.0022 (18)0.000 (2)
O60.0234 (14)0.0269 (15)0.0195 (14)0.0029 (12)0.0020 (11)0.0010 (11)
N60.0144 (15)0.0258 (17)0.0152 (15)0.0028 (13)0.0022 (12)0.0001 (13)
C60.028 (2)0.032 (2)0.025 (2)0.0065 (18)0.0003 (17)0.0027 (18)
C70.039 (3)0.032 (2)0.033 (2)0.003 (2)0.007 (2)0.0005 (19)
N70.049 (3)0.044 (2)0.036 (2)0.014 (2)0.003 (2)0.0086 (19)
C80.041 (3)0.031 (2)0.033 (2)0.008 (2)0.007 (2)0.0016 (19)
O90.0346 (17)0.0309 (16)0.0219 (15)0.0077 (13)0.0028 (12)0.0004 (12)
C90.044 (3)0.051 (3)0.040 (3)0.000 (2)0.006 (2)0.000 (2)
O100.0175 (14)0.0353 (16)0.0261 (15)0.0030 (12)0.0002 (11)0.0075 (12)
C100.037 (3)0.068 (4)0.057 (4)0.002 (3)0.002 (3)0.003 (3)
C110.040 (3)0.061 (4)0.044 (3)0.016 (3)0.012 (2)0.002 (3)
C190.021 (2)0.034 (2)0.025 (2)0.0007 (17)0.0031 (16)0.0018 (17)
C180.0158 (19)0.041 (3)0.029 (2)0.0032 (18)0.0046 (16)0.0009 (19)
C170.026 (2)0.036 (2)0.021 (2)0.0077 (18)0.0056 (17)0.0028 (17)
C160.026 (2)0.029 (2)0.024 (2)0.0035 (17)0.0000 (17)0.0035 (17)
C150.0206 (19)0.0204 (18)0.0150 (17)0.0046 (15)0.0017 (14)0.0003 (14)
C140.027 (2)0.0220 (19)0.0143 (17)0.0018 (16)0.0007 (15)0.0003 (14)
C130.021 (2)0.029 (2)0.0162 (18)0.0005 (16)0.0021 (15)0.0053 (15)
C120.063 (4)0.065 (4)0.036 (3)0.025 (3)0.000 (3)0.015 (3)
C200.0137 (18)0.029 (2)0.0205 (19)0.0004 (16)0.0012 (15)0.0004 (16)
C210.017 (2)0.037 (2)0.039 (2)0.0025 (18)0.0039 (18)0.008 (2)
O230.0324 (16)0.0295 (15)0.0208 (14)0.0093 (13)0.0021 (12)0.0029 (12)
C230.038 (3)0.034 (2)0.025 (2)0.003 (2)0.0090 (19)0.0050 (18)
C220.0155 (18)0.028 (2)0.0220 (19)0.0007 (15)0.0037 (15)0.0027 (16)
C260.0173 (19)0.030 (2)0.0201 (19)0.0008 (16)0.0017 (15)0.0037 (16)
C250.018 (2)0.038 (3)0.046 (3)0.0055 (18)0.0033 (19)0.007 (2)
C240.0156 (19)0.029 (2)0.026 (2)0.0016 (16)0.0032 (16)0.0020 (17)
C270.043 (3)0.039 (3)0.028 (2)0.003 (2)0.008 (2)0.007 (2)
O20.0192 (14)0.0328 (16)0.0254 (15)0.0036 (12)0.0016 (11)0.0059 (12)
Geometric parameters (Å, º) top
Cu1—O61.939 (3)C7—H7B0.9900
Cu1—O31.946 (3)N7—C121.332 (7)
Cu1—O102.027 (3)N7—C81.342 (6)
Cu1—O22.063 (3)C8—C91.384 (8)
Cu1—N6i2.148 (3)O9—C261.256 (5)
Cu1—Cu22.7887 (8)C9—C101.385 (8)
N1—C21.349 (5)C9—H90.9500
N1—C11.362 (5)O10—C201.250 (5)
C1—N41.320 (5)C10—C111.369 (9)
C1—N21.356 (5)C10—H100.9500
O1—C241.264 (5)C11—C121.380 (9)
Cu2—O11.928 (3)C11—H110.9500
Cu2—O41.927 (3)C19—C181.374 (6)
Cu2—O92.036 (3)C19—H190.9500
Cu2—O52.046 (3)C18—C171.379 (6)
Cu2—N12.179 (3)C18—H180.9500
N2—C31.308 (5)C17—C161.384 (6)
C2—N31.336 (5)C17—H170.9500
C2—N51.377 (5)C16—C151.397 (5)
O3—C261.257 (5)C16—H160.9500
N3—C31.343 (5)C15—C141.505 (5)
C3—O231.344 (5)C14—C131.539 (6)
O4—C201.255 (5)C14—H14A0.9900
N4—C131.459 (5)C14—H14B0.9900
N4—H10.8800C13—H13A0.9900
C4—O231.463 (5)C13—H13B0.9900
C4—C51.492 (6)C12—H120.9500
C4—H4A0.9900C20—C211.516 (5)
C4—H4B0.9900C21—H21A0.9800
O5—C221.256 (5)C21—H21B0.9800
N5—C61.416 (5)C21—H21C0.9800
N5—H20.8800C23—C221.513 (6)
C5—H5A0.9800C23—H23A0.9800
C5—H5B0.9800C23—H23B0.9800
C5—H5C0.9800C23—H23C0.9800
O6—C221.259 (5)C26—C271.499 (6)
N6—C191.340 (5)C25—C241.500 (6)
N6—C151.344 (5)C25—H25A0.9800
N6—Cu1ii2.148 (3)C25—H25B0.9800
C6—C71.522 (6)C25—H25C0.9800
C6—H6A0.9900C24—O21.261 (5)
C6—H6B0.9900C27—H27A0.9800
C7—C81.515 (7)C27—H27B0.9800
C7—H7A0.9900C27—H27C0.9800
O6—Cu1—O3178.22 (12)N7—C8—C9122.0 (5)
O6—Cu1—O1089.15 (12)N7—C8—C7115.2 (5)
O3—Cu1—O1090.05 (13)C9—C8—C7122.8 (4)
O6—Cu1—O291.34 (12)C26—O9—Cu2130.9 (3)
O3—Cu1—O288.55 (13)C8—C9—C10119.2 (5)
O10—Cu1—O2149.63 (11)C8—C9—H9120.4
O6—Cu1—N6i91.50 (12)C10—C9—H9120.4
O3—Cu1—N6i90.27 (12)C20—O10—Cu1132.2 (3)
O10—Cu1—N6i111.64 (12)C11—C10—C9119.3 (6)
O2—Cu1—N6i98.70 (12)C11—C10—H10120.3
O6—Cu1—Cu290.00 (8)C9—C10—H10120.3
O3—Cu1—Cu288.25 (9)C10—C11—C12117.6 (5)
O10—Cu1—Cu274.51 (8)C10—C11—H11121.2
O2—Cu1—Cu275.12 (8)C12—C11—H11121.2
N6i—Cu1—Cu2173.68 (9)N6—C19—C18123.6 (4)
C2—N1—C1114.8 (3)N6—C19—H19118.2
C2—N1—Cu2123.6 (2)C18—C19—H19118.2
C1—N1—Cu2121.4 (2)C19—C18—C17118.3 (4)
N4—C1—N2117.1 (3)C19—C18—H18120.9
N4—C1—N1119.0 (3)C17—C18—H18120.9
N2—C1—N1123.9 (3)C18—C17—C16119.3 (4)
C24—O1—Cu2119.6 (3)C18—C17—H17120.3
O4—Cu2—O1178.75 (13)C16—C17—H17120.3
O4—Cu2—O990.60 (13)C17—C16—C15119.0 (4)
O1—Cu2—O989.29 (13)C17—C16—H16120.5
O4—Cu2—O590.00 (13)C15—C16—H16120.5
O1—Cu2—O589.47 (13)N6—C15—C16121.5 (4)
O9—Cu2—O5149.80 (12)N6—C15—C14117.1 (3)
O4—Cu2—N188.00 (12)C16—C15—C14121.3 (4)
O1—Cu2—N193.23 (12)C15—C14—C13112.3 (3)
O9—Cu2—N1105.92 (12)C15—C14—H14A109.1
O5—Cu2—N1104.28 (11)C13—C14—H14A109.1
O4—Cu2—Cu189.33 (9)C15—C14—H14B109.1
O1—Cu2—Cu189.44 (9)C13—C14—H14B109.1
O9—Cu2—Cu175.77 (8)H14A—C14—H14B107.9
O5—Cu2—Cu174.05 (8)N4—C13—C14111.2 (3)
N1—Cu2—Cu1176.85 (9)N4—C13—H13A109.4
C3—N2—C1114.3 (3)C14—C13—H13A109.4
N3—C2—N1125.5 (3)N4—C13—H13B109.4
N3—C2—N5117.0 (3)C14—C13—H13B109.4
N1—C2—N5117.5 (3)H13A—C13—H13B108.0
C26—O3—Cu1119.9 (3)N7—C12—C11124.6 (6)
C2—N3—C3113.3 (3)N7—C12—H12117.7
N2—C3—N3128.1 (3)C11—C12—H12117.7
N2—C3—O23119.2 (4)O10—C20—O4125.2 (4)
N3—C3—O23112.7 (3)O10—C20—C21117.7 (4)
C20—O4—Cu2118.7 (2)O4—C20—C21117.1 (3)
C1—N4—C13123.3 (3)C20—C21—H21A109.5
C1—N4—H1118.4C20—C21—H21B109.5
C13—N4—H1118.4H21A—C21—H21B109.5
O23—C4—C5111.1 (4)C20—C21—H21C109.5
O23—C4—H4A109.4H21A—C21—H21C109.5
C5—C4—H4A109.4H21B—C21—H21C109.5
O23—C4—H4B109.4C3—O23—C4117.1 (3)
C5—C4—H4B109.4C22—C23—H23A109.5
H4A—C4—H4B108.0C22—C23—H23B109.5
C22—O5—Cu2132.8 (3)H23A—C23—H23B109.5
C2—N5—C6123.2 (3)C22—C23—H23C109.5
C2—N5—H2118.4H23A—C23—H23C109.5
C6—N5—H2118.4H23B—C23—H23C109.5
C4—C5—H5A109.5O5—C22—O6124.7 (4)
C4—C5—H5B109.5O5—C22—C23117.2 (4)
H5A—C5—H5B109.5O6—C22—C23118.1 (4)
C4—C5—H5C109.5O9—C26—O3125.0 (4)
H5A—C5—H5C109.5O9—C26—C27116.9 (4)
H5B—C5—H5C109.5O3—C26—C27118.1 (4)
C22—O6—Cu1118.3 (3)C24—C25—H25A109.5
C19—N6—C15118.2 (3)C24—C25—H25B109.5
C19—N6—Cu1ii116.8 (3)H25A—C25—H25B109.5
C15—N6—Cu1ii124.9 (2)C24—C25—H25C109.5
N5—C6—C7112.9 (4)H25A—C25—H25C109.5
N5—C6—H6A109.0H25B—C25—H25C109.5
C7—C6—H6A109.0O2—C24—O1125.2 (4)
N5—C6—H6B109.0O2—C24—C25117.9 (4)
C7—C6—H6B109.0O1—C24—C25116.9 (4)
H6A—C6—H6B107.8C26—C27—H27A109.5
C8—C7—C6112.3 (4)C26—C27—H27B109.5
C8—C7—H7A109.2H27A—C27—H27B109.5
C6—C7—H7A109.2C26—C27—H27C109.5
C8—C7—H7B109.2H27A—C27—H27C109.5
C6—C7—H7B109.2H27B—C27—H27C109.5
H7A—C7—H7B107.9C24—O2—Cu1130.7 (3)
C12—N7—C8117.3 (5)
C2—N1—C1—N4179.7 (3)C19—C18—C17—C161.8 (7)
Cu2—N1—C1—N45.0 (5)C18—C17—C16—C151.7 (6)
C2—N1—C1—N20.8 (5)C19—N6—C15—C161.8 (6)
Cu2—N1—C1—N2174.5 (3)Cu1ii—N6—C15—C16175.6 (3)
N4—C1—N2—C3177.2 (4)C19—N6—C15—C14179.9 (3)
N1—C1—N2—C32.2 (6)Cu1ii—N6—C15—C142.6 (5)
C1—N1—C2—N33.0 (6)C17—C16—C15—N60.1 (6)
Cu2—N1—C2—N3172.2 (3)C17—C16—C15—C14178.2 (4)
C1—N1—C2—N5177.5 (3)N6—C15—C14—C1387.7 (4)
Cu2—N1—C2—N57.2 (5)C16—C15—C14—C1390.5 (4)
N1—C2—N3—C31.8 (6)C1—N4—C13—C1486.6 (4)
N5—C2—N3—C3178.8 (3)C15—C14—C13—N469.7 (4)
C1—N2—C3—N33.8 (6)C8—N7—C12—C110.4 (9)
C1—N2—C3—O23177.8 (3)C10—C11—C12—N71.7 (9)
C2—N3—C3—N22.0 (6)Cu1—O10—C20—O41.8 (7)
C2—N3—C3—O23179.6 (3)Cu1—O10—C20—C21178.3 (3)
N2—C1—N4—C134.3 (6)Cu2—O4—C20—O100.0 (6)
N1—C1—N4—C13176.2 (3)Cu2—O4—C20—C21180.0 (3)
N3—C2—N5—C65.8 (6)N2—C3—O23—C44.5 (6)
N1—C2—N5—C6174.7 (4)N3—C3—O23—C4176.8 (3)
C2—N5—C6—C794.9 (5)C5—C4—O23—C379.3 (5)
N5—C6—C7—C869.1 (5)Cu2—O5—C22—O65.0 (6)
C12—N7—C8—C91.5 (7)Cu2—O5—C22—C23174.2 (3)
C12—N7—C8—C7180.0 (5)Cu1—O6—C22—O51.3 (5)
C6—C7—C8—N787.7 (5)Cu1—O6—C22—C23177.9 (3)
C6—C7—C8—C990.8 (6)Cu2—O9—C26—O34.0 (6)
N7—C8—C9—C102.0 (8)Cu2—O9—C26—C27174.7 (3)
C7—C8—C9—C10179.6 (5)Cu1—O3—C26—O92.4 (6)
C8—C9—C10—C110.6 (9)Cu1—O3—C26—C27176.2 (3)
C9—C10—C11—C121.1 (9)Cu2—O1—C24—O20.3 (6)
C15—N6—C19—C181.7 (6)Cu2—O1—C24—C25179.3 (3)
Cu1ii—N6—C19—C18175.9 (3)O1—C24—O2—Cu10.9 (6)
N6—C19—C18—C170.1 (7)C25—C24—O2—Cu1179.9 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1···O50.881.892.767 (4)171
N5—H2···O90.881.992.857 (4)168
Selected geometric parameters (Å) top
Cu1—O61.939 (3)Cu2—O11.927 (3)
Cu1—O31.946 (3)Cu2—O41.926 (3)
Cu1—O102.026 (3)Cu2—O92.035 (3)
Cu1—O22.062 (3)Cu2—O52.047 (3)
Cu1—N6i2.147 (3)Cu2—N12.180 (3)
Cu1—Cu22.7889 (8)
Symmetry codes: (i) x, -y+1/2, z-1/2
 

Acknowledgements

We thank Matthias Zeller (Purdue University) for his advice on data collection for the reported crystal structure.

Funding information

Funding for this research was provided by: National Science Foundation (award No. CHE-1900541).

References

First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2,. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakraborty, P., Adhikary, J., Ghosh, B., Sanyal, R., Chattopadhyay, S. K., Bauzá, A., Frontera, A., Zangrando, E. & Das, D. (2014). Inorg. Chem. 53, 8257–8269.  CrossRef CAS PubMed Google Scholar
First citationChu, J., Chen, W., Su, G. & Song, Y. (2011). Inorg. Chim. Acta, 376, 350–357.  CrossRef CAS Google Scholar
First citationFesta, R. A. & Thiele, D. J. (2011). Curr. Biol. 21, R877–R883.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKoval, I. A., Gamez, P., Belle, C., Selmeczi, K. & Reedijk, J. (2006). Chem. Soc. Rev. 35, 814–840.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMahadevan, V., Gebbink, R. K. & Stack, T. D. (2000). Curr. Opin. Chem. Biol. 4, 228–234.  CrossRef PubMed CAS Google Scholar
First citationMarion, R., Saleh, N. M., Le Poul, N., Floner, D., Lavastre, O. & Geneste, F. (2012). New J. Chem. 36, 1828–1835.  CrossRef CAS Google Scholar
First citationMassoud, S. S., Louka, F. R., Xu, W., Perkins, R. S., Vicente, R., Albering, J. H. & Mautner, F. A. (2011). Eur. J. Inorg. Chem. pp. 3469–3479.  CrossRef Google Scholar
First citationPanda, M. K., Shaikh, M. M., Butcher, R. J. & Ghosh, P. (2011). Inorg. Chim. Acta, 372, 145–151.  CrossRef CAS Google Scholar
First citationPham, A. N. & Waite, T. D. (2014). J. Inorg. Biochem. 137, 74–84.  CrossRef CAS PubMed Google Scholar
First citationRavikiran, B. & Mahalakshmi, R. (2014). RSC Adv. 4, 33958–33974.  CrossRef CAS Google Scholar
First citationRazgoniaev, A. O., Butaeva, E. V., Iretskii, A. V. & Ostrowski, A. D. (2016). Inorg. Chem. 55, 5430–5437.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, A. K., Yadav, M., Pandey, R., Kumar, P. & Pandey, D. S. (2010). J. Organomet. Chem. 695, 1932–1939.  CrossRef CAS Google Scholar
First citationSolomon, E. I., Heppner, D. E., Johnston, E. M., Ginsbach, J. W., Cirera, J., Qayyum, M., Kieber-Emmons, M. T., Kjaergaard, C. H., Hadt, R. G. & Tian, L. (2014). Chem. Rev. 114, 3659–3853.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds