research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of [bis­­(di­phenyl­phosphan­yl)methane-κP]chloridobis­[2-(pyridin-2-yl)phenyl-κ2N,C1]iridium(III)

CROSSMARK_Color_square_no_text.svg

aDivision of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand
*Correspondence e-mail: nararak.le@psu.ac.th

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 5 January 2021; accepted 27 January 2021; online 2 February 2021)

The title IrIII complex, [Ir(C11H8N)2Cl(C25H22P2)], was synthesized from the substitution reaction between the (ppy)2Ir(μ-Cl)2Ir(ppy)2 (ppy = deprotonated 2-phenyl­pyridine, C11H8N) dimer and 1,1-bis­(di­phenyl­phosphan­yl)methane (dppm, C25H22P2) under an argon gas atmosphere for 20 h. The IrIII atom is coordinated by two C,N-bidentate ppy anions, a unidentate dppm ligand and a chloride anion in a distorted octa­hedral IrC2N2PCl arrangement. The N donor atoms of the ppy ligands are mutually trans while the C atoms are cis. Intra­molecular aromatic ππ stacking between the phenyl rings of ppy and dppm, and C—H⋯Cl inter­actions are observed. In the crystal, C—H⋯Cl and C—H⋯π contacts link the mol­ecules into a three-dimensional network. A Hirshfeld surface analysis was carried out to further qu­antify the inter­molecular inter­actions, and indicated that H⋯H contacts (63.9%) dominate the packing.

1. Chemical context

Iridium(III) complexes have been investigated for decades because of their stability (Jian et al., 2011[Jian, Y., Peng, S., Li, X., Wen, X., He, J., Jiang, L. & Dang, Y. (2011). Inorg. Chim. Acta, 368, 37-43.]; Lee et al., 2009[Lee, S., Park, K.-M., Yang, K. & Kang, Y. (2009). Inorg. Chem. 48, 1030-1037.]; Tsuboyama et al., 2003[Tsuboyama, A., Iwawaki, H., Furugori, M., Mukaide, T., Kamatani, J., Igawa, S., Moriyama, T., Miura, S., Takiguchi, T., Okada, S., Hoshino, M. & Ueno, K. (2003). J. Am. Chem. Soc. 125, 12971-12979.]), promising luminescent properties (Lin et al., 2011[Lin, C. H., Chi, Y., Chung, M. W., Chen, Y. J., Wang, K. W., Lee, G. H., Chou, P. T., Hung, W. Y. & Chiu, H. C. (2011). Dalton Trans. 40, 1132-1143.]; Lowry et al., 2004[Lowry, M. S., Hudson, W. R., Pascal, R. A. & Bernhard, S. (2004). J. Am. Chem. Soc. 126, 14129-14135.]; Tamayo et al., 2003[Tamayo, A. B., Alleyne, B. D., Djurovich, P. I., Lamansky, S., Tsyba, I., Ho, N. N., Bau, R. & Thompson, M. E. (2003). Inorg. Chem. Commun. 125, 7377-7387.]) and medicinal applications, especially as anti­cancer agents (Hearn et al., 2018[Hearn, J. M., Hughes, G. M., Romero-Canelón, I., Munro, A. F., Rubio-Ruiz, B., Liu, Z., Carragher, N. O. & Sadler, P. J. (2018). Metallomics, 10, 93-107.]; Rubio et al., 2020[Rubio, A. R., Fidalgo, J., Martin-Vargas, J., Pérez-Arnaiz, C., Alonso-Torre, S. R., Biver, T., Espino, G., Busto, N. & García, B. (2020). J. Inorg. Biochem. 203, 110885.]; Xiao et al., 2018[Xiao, Q., Zhao, Z., Lin, K. & Wang, J. (2018). Inorg. Chem. Commun. 94, 75-79.]). The syntheses of cyclo­metallated iridium(III) complexes have mainly focused on the 2-phenyl­pyridine (ppy) ligand and its derivatives. The octa­hedral geometry of bis-complexes is commonly selected as the main backbone accompanied by various types of ancillary ligands. Most of them are N-donor ligands (Chi & Chou, 2010[Chi, Y. & Chou, P. T. (2010). Chem. Soc. Rev. 39, 638-655.]; Goldsmith et al., 2005[Goldsmith, J. I., Hudson, W. R., Lowry, M. S., Anderson, T. H. & Bernhard, S. (2005). J. Am. Chem. Soc. 127, 7502-7510.]; Lin et al., 2011[Lin, C. H., Chi, Y., Chung, M. W., Chen, Y. J., Wang, K. W., Lee, G. H., Chou, P. T., Hung, W. Y. & Chiu, H. C. (2011). Dalton Trans. 40, 1132-1143.]) owing to the strong binding of the borderline acid metal and basic ligand. However, there are fewer reports of P-donor ancillary ligands. In this present work, we report the synthesis and characterization of the title photoactive complex, (I)[link], obtained by the reaction between (ppy)2Ir(μ-Cl)2Ir(ppy)2) dimer (ppy = deprotonated 2-phenyl­pyridine, C11H8N) with 1,1-bis­(di­phenyl­phosphan­yl)methane under an inert gas atmosphere.

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] shows a distorted octa­hedral mol­ecular structure to overcome steric hindrance between the ligands (Fig. 1[link]) in space group P21/n. The IrIII atom is linked to two C,N-bidentate 2-phenyl­pyridine (ppy) anions through five-membered chelate rings where the N1 and N2 atoms of the ppy pyridine rings exist in a trans orientation to each other [N1—Ir1—N2 = 170.97 (9)°] and C11 and C22 are in cis orientation [C11—Ir1—C22 = 91.12 (11)°]. The bond lengths of Ir1—N1, Ir1—N2, Ir1—C11 and Ir1—C22 are 2.051 (2), 2.062 (2), 2.004 (3) and 2.032 (3) Å, respectively. As expected, the averaged Ir–C and Ir—N bond lengths are much shorter than the Ir—Cl and Ir—P bonds, based on the sizes of the different species.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, including atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

The averaged Ir—N and Ir—C distances in (I)[link] are both slightly shorter than those in [Ir(ppy)2(dppm)]PF6 (Hao et al., 2019[Hao, L., Li, Z. W., Zhang, D. Y., He, L., Liu, W., Yang, J., Tan, C. P., Ji, L. N. & Mao, Z. W. (2019). Chem. Sci. 10, 1285-1293.]). However, the averaged Ir—N distance is a little longer, but the Ir—C bond lengths are relatively shorter than those of related IrIII complexes bonded with ppy ligands (Chen et al., 2015[Chen, Z.-Q., Shen, X., Xu, J.-X., Zou, H., Wang, X., Xu, Y. & Zhu, D.-R. (2015). Inorg. Chem. Commun. 61, 152-156.]; Shen et al., 2011[Shen, X., Wang, F.-L., Sun, F., Zhao, R., Wang, X., Jing, S., Xu, Y. & Zhu, D.-R. (2011). Inorg. Chem. Commun. 14, 1511-1515.]; Wang et al., 2005[Wang, Y., Teng, F., Tang, A., Wang, Y. & Xu, X. (2005). Acta Cryst. E61, m778-m780.])

Although bis­(di­phenyl­phosphan­yl)methane (dppm) often occurs as a bidentate ligand (e.g., Hao et al., 2019[Hao, L., Li, Z. W., Zhang, D. Y., He, L., Liu, W., Yang, J., Tan, C. P., Ji, L. N. & Mao, Z. W. (2019). Chem. Sci. 10, 1285-1293.]), in (I)[link] it is unidentate [Ir1—P1 = 2.4241 (7) Å]. This Ir—P distance is somewhat longer than that in the [Ir(ppy)2(dppm)](PF6) (Hao et al., 2019[Hao, L., Li, Z. W., Zhang, D. Y., He, L., Liu, W., Yang, J., Tan, C. P., Ji, L. N. & Mao, Z. W. (2019). Chem. Sci. 10, 1285-1293.]) complex. The Ir—Cl bond distances in chloro­bis­[2-(2-pyrid­yl)phenyl-κ2N,C](tri­phenyl­phosphine-κP)iridium(III) are reported to be 2.503 (19) (Wang et al., 2005[Wang, Y., Teng, F., Tang, A., Wang, Y. & Xu, X. (2005). Acta Cryst. E61, m778-m780.]) and 2.505 (16) (Shen et al., 2011[Shen, X., Wang, F.-L., Sun, F., Zhao, R., Wang, X., Jing, S., Xu, Y. & Zhu, D.-R. (2011). Inorg. Chem. Commun. 14, 1511-1515.]) Å, which are slightly longer than that in (I)[link] [Ir1—Cl1 = 2.4866 (8) Å]. The cis bond angles in (I)[link] all deviate from the ideal value of 90° [80.07 (10)–95.27 (7)°] and likewise, the trans bond angles deviate from the ideal 180° [170.97 (9)–175.37 (8)°], similar to related compounds (Shen et al., 2011[Shen, X., Wang, F.-L., Sun, F., Zhao, R., Wang, X., Jing, S., Xu, Y. & Zhu, D.-R. (2011). Inorg. Chem. Commun. 14, 1511-1515.]; Wang et al., 2005[Wang, Y., Teng, F., Tang, A., Wang, Y. & Xu, X. (2005). Acta Cryst. E61, m778-m780.]). The dihedral angle between the mean planes of the ppy rings is 77.98 (4)°, indicating the cis-form of the chelate rings. Key geometrical data are given in Table 1[link].

Table 1
Selected geometric parameters (Å, °)

Ir1—C11 2.004 (3) Ir1—N2 2.062 (2)
Ir1—C22 2.032 (3) Ir1—P1 2.4241 (7)
Ir1—N1 2.051 (2) Ir1—Cl1 2.4866 (8)
       
C11—Ir1—C22 91.12 (11) N1—Ir1—P1 85.83 (6)
C11—Ir1—N1 80.35 (10) N2—Ir1—P1 101.93 (6)
C22—Ir1—N1 92.62 (10) C11—Ir1—Cl1 175.37 (8)
C11—Ir1—N2 94.40 (10) C22—Ir1—Cl1 87.54 (8)
C22—Ir1—N2 80.07 (10) N1—Ir1—Cl1 95.27 (7)
N1—Ir1—N2 170.97 (9) N2—Ir1—Cl1 89.74 (7)
C11—Ir1—P1 93.75 (8) P1—Ir1—Cl1 87.41 (3)
C22—Ir1—P1 174.57 (8)    

Intra­molecular ππ stacking inter­actions are observed for (I)[link]. The ππ stackings are found between two phenyl rings (C6–C11 and C23–C28) of the ppy and dppm ligands, Cg5⋯Cg7 = 3.621 (1) Å and between the phenyl rings of the dppm mol­ecule (C29–C34 and C36–C41), Cg8⋯Cg9 = 3.997 (1) Å (Fig. 2[link]). Three weak intra­molecular hydrogen-bonding inter­actions, viz. C1—H1⋯Cl1 [C⋯Cl = 3.357 (3) Å], C30—H30⋯Cl1 [C⋯Cl = 3.664 (4) Å] and C35—H35A⋯Cl1 [C35⋯Cl = 3.460 (3) Å] (Fig. 3[link] and Table 2[link]) are observed.

Table 2
Hydrogen-bond geometry (Å, °)

Cg6, Cg8 and Cg10 are the centroids of the C17–C22, C29–C34 and C42–C47 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl1 0.93 2.73 3.357 (3) 126
C14—H14⋯Cl1i 0.93 2.77 3.548 (4) 142
C30—H30⋯Cl1 0.93 2.84 3.664 (4) 148
C35—H35A⋯Cl1 0.97 2.83 3.460 (3) 124
C3—H3⋯Cg6ii 0.93 2.83 3.572 (4) 137
C26—H26⋯Cg10iii 0.93 2.79 3.575 (5) 143
C38—H38⋯C10iii 0.93 2.81 3.659 (5) 153
C40—H40⋯Cg8iv 0.93 2.95 3.711 (5) 140
Symmetry codes: (i) [-x+1, -y, -z+2]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+2, -y+1, -z+2]; (iv) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{5\over 2}}].
[Figure 2]
Figure 2
Intra­molecular ππ inter­actions occurred between the phenyl rings of the complex (H atoms are omitted).
[Figure 3]
Figure 3
The intra­molecular C—H⋯Cl inter­actions in the title compound

3. Supra­molecular features

Several weak C—Hπ (ring) inter­actions are found in the crystal packing (Fig. 4[link]). The inter­actions are observed between any two adjacent mol­ecules of ppy via the C3—H3 grouping of the pyridine ring and the centroid (Cg6) of the C17–C22 phenyl ring (H3⋯Cg6 = 2.83 Å). In addition, C—H⋯π(ring) inter­actions are also found between the dppm phenyl rings of neighbouring mol­ecules: C26—H26 ⋯Cg10 (H26⋯Cg10 = 2.79 Å; Cg10 is the centroid of the C42–C47 ring), C38—H38⋯Cg10 (H38⋯Cg10 = 2.81 Å) and C40—H40⋯Cg8 (H40⋯Cg8 = 2.95 Å). In addition, pairwise inter­molecular hydrogen bonds are observed between C14—H14 of the pyridine ring of the ppy ring and Cl1 (Table 2[link]).

[Figure 4]
Figure 4
The inter­molecular C—H⋯·π inter­actions in the title compound.

4. Hirshfeld surface analysis

Additional insights into the weak inter­molecular contacts in the crystal packing of (I)[link] were gained from Hirshfeld surface analysis and the two-dimensional fingerprint plots (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]; 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) generated using Crystal Explorer 17.5 program (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.]). The Hirshfeld surfaces were mapped over the normalized contact distance (dnorm) with the functions de and di, which are the distances from an indicated area on the Hirshfeld surface to the nearest atoms outside and inside the surface, respectively. The white, red, and blue areas on the dnorm-mapped Hirshfeld surfaces show inter­molecular contacts that are equal to, shorter than, and longer than the sum of their van der Waals (vdW) radii, respectively. A pair of inter­molecular contacts are shown as red spots on the Hirshfeld surface close to the Cl1 atom of the adjoining mol­ecule and the H14 atom of the associated pyridine ring. The spots indicate hydrogen-bond donor-to-acceptor inter­actions of C14—H14⋯Cl1 and vice versa (Fig. 5[link]). The relative contributions of the various types of contacts to the total of inter­molecular inter­actions across the Hirshfeld surface are represented in two-dimensional fingerprint plots. Total inter­molecular inter­actions (100%) are shown in Fig. 6[link](a) while Fig. 6[link](b)–(d) depict the contacts of the H⋯H (63.9%), C⋯H/H⋯C (29.5%) and H⋯Cl/Cl⋯H (4.4%) inter­actions, respectively.

[Figure 5]
Figure 5
Hirshfeld surface plot showing the C—H⋯·Cl inter­actions.
[Figure 6]
Figure 6
Fingerprint plots corresponding to inter­molecular contacts in the crystal: (a) all inter­actions, (b) H⋯H contacts, (c) H⋯C/C⋯H and (d) H⋯Cl/Cl⋯H.

5. Database survey

A search of the SciFinder (SciFinder, 2020[SciFinder (2020). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed November 26, 2020).]) database for phospho­rescent complexes of ppy with iridium(III) diphos­phine (dpp) reveals eight structures closely related to the title compound. Hao et al. (2019[Hao, L., Li, Z. W., Zhang, D. Y., He, L., Liu, W., Yang, J., Tan, C. P., Ji, L. N. & Mao, Z. W. (2019). Chem. Sci. 10, 1285-1293.]) report the crystal structure of an ionic complex of the [Ir(ppy)2(dppm)]+; dppm = bis­(di­phenyl­phosphan­yl)methane bidentate ligand. However, none of the remaining publications describe a monomeric IrIII complex similar to the title compound. The seven hits include the octa­hedral crystal structures of IrIII complexes with a bis­(2-phenyl­pyridine)­iridium(III) backbone and ancillary ligands of both N-donor, P-donor and O-donor ligands. There are a tris-complex of Ir(ppy)3 (Huynh et al., 2005[Huynh, L., Wang, Z., Yang, J., Stoeva, V., Lough, A., Manners, I. & Winnik, M. A. (2005). Chem. Mater. 17, 4765-4773.]), [Ir(ppy)2(dppel)]; dppel = 1,2-bis­(di­phenyl­phosphan­yl)ethyl­ene, [Ir(ppy)2(dppp)]; dppp = 1,3-bis­(di­phenyl­phosphan­yl)propane and [Ir(ppy)2(dppe)]; dppe = 1,2-bis­(diphenylphosphan­yl) ethane] (Alam et al., 2013[Alam, P., Laskar, I. R., Climent, C., Casanova, D., Alemany, P., Karanam, M., Choudhury, A. R. & Raymond Butcher, J. (2013). Polyhedron, 53, 286-294.]), [Ir(ppy)2L2]+ (L2 = substituted 2,2′-bi­pyridine, dppe and 1,10-phenanthroline; Lowry & Bernhard, 2006[Lowry, M. S. & Bernhard, S. (2006). Chem. Eur. J. 12, 7970-7977.]), [Ir(ppy)2(P^N)]PF6, [Ir(dfppy)2(P^N)]PF6 and [Ir(dfmppy)2(P^N)]PF6 where P^N = 2-[(di­phenyl­phos­phan­yl) meth­yl]pyridine, dfppy = 2-(2,4-difuorophen­yl)pyri­dine and dfmppy = 2-(2,4-di­fluoro­phen­yl)-4-methyl­pyridine (Ma et al., 2009[Ma, A.-F., Seo, H.-J., Jin, S.-H., Ung, C., Yoon, M., Ho, H., Kang, S. & Kim, Y.-I. (2009). Bull. Korean Chem. Soc. 30, 2754-2758.]), [Ir(ppy)2(biq)]PF6 (biq = 2,2-bi­quinoline; Nishikitani et al., 2018[Nishikitani, Y., Cho, T., Uchida, S., Nishimura, S., Oyaizu, K. & Nishide, H. (2018). ChemPlusChem, 83, 463-469.]) and Ir(dppy)2(acac) (dppy = 2,5-di­phenyl­pyridyl and acac = acetyl­acetonate; Xu et al., 2005[Xu, M., Li, W., An, Z., Zhou, Q. & Wang, G. (2005). Appl. Organomet. Chem. 19, 1225-1231.]). There are four other related complexes, Ir(ppy)2(L) [L = 1,2-bis­(di­phenyl­phosphan­yl)ethane, 1,2-bis (di­phenyl­phosphan­yl)propane, 1,2-bis­(di­phenyl­phos phino)benzene and 1,8-bis­(di­phenyl­phos phino)naphthalene; Liu et al., 2019[Liu, Z., Li, J., Ge, X., Zhang, S., Xu, Z. & Gao, W. (2019). J. Inorg. Biochem. 197, 110703.]; Luo et al., 2013[Luo, S.-X., Wei, L., Zhang, X.-H., Lim, M. H., Lin, K. X. V., Yeo, M. H. V., Zhang, W.-H., Liu, Z.-P., Young, D. J. & Hor, T. S. A. (2013). Organometallics, 32, 2908-2917.]] and Ir(ppy)2(PPh3)Cl (Wang et al., 2005[Wang, Y., Teng, F., Tang, A., Wang, Y. & Xu, X. (2005). Acta Cryst. E61, m778-m780.]).

6. Synthesis and crystallization

The title complex was synthesized from the reaction between (ppy)2Ir(μ-Cl)2Ir(ppy)2 (0.5 mmol) and bis­(di­phenyl­phosphan­yl)methane (1.25 mmol) in CH2Cl2 solution. The reaction was carried out by refluxing the mixture under Ar gas for 20 h. The solution mixture was then cooled to room temperature and the solvent was evaporated. The crude yellow product thus obtained was washed with diethyl ether to remove excess ligands and impurities, and the complex was crystallized and recrystallized in mixed solvents of di­chloro­methane:diethyl ether (9:1) at room temperature three times, yielding yellowish crystals (yield = 30%), m.p. = 488–489 K IR (KBr, cm−1): ν(C—H), 3054; ν(C=C), 1436, 2367; ν(C—N), 1030; ν(C=N), 1613; ν(P—Ph), 1098; ν(Ir—P), 760; ν(Ir—N), 733; ν(Ir—Cl), 510. Analysis (%): found C 61.01, H 4.38, N 2.77; calculated C 61.33, H 4.16, N 3.04.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were included in calculated positions [C—H = 0.93 (aromatic) or 0.97 Å (Csp2)] and refined as riding with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [Ir(C11H8N)2Cl(C25H22P2)]
Mr 920.38
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 14.4506 (5), 15.4490 (5), 17.8532 (6)
β (°) 103.044 (1)
V3) 3882.8 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.63
Crystal size (mm) 0.19 × 0.09 × 0.06
 
Data collection
Diffractometer Bruker APEX CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.800, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 35153, 9248, 7758
Rint 0.033
(sin θ/λ)max−1) 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.062, 1.05
No. of reflections 9248
No. of parameters 478
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.90, −0.33
Computer programs: SMART and SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), WinGX publication routines (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: ShelXle (Hübschle et al., 2011), SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012) and publCIF (Westrip, 2010).

[Bis(diphenylphosphanyl)methane-κP]chloridobis[2-(pyridin-2-yl)phenyl-κ2N,C1]iridium(III) top
Crystal data top
[Ir(C11H8N)2Cl(C25H22P2)]F(000) = 1832
Mr = 920.38Dx = 1.574 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.4506 (5) ÅCell parameters from 9441 reflections
b = 15.4490 (5) Åθ = 2.3–25.6°
c = 17.8532 (6) ŵ = 3.63 mm1
β = 103.044 (1)°T = 293 K
V = 3882.8 (2) Å3Block, light yellow
Z = 40.19 × 0.09 × 0.06 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
9248 independent reflections
Radiation source: fine-focus sealed tube7758 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Frames, each covering 0.3 ° in ω scansθmax = 27.9°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1918
Tmin = 0.800, Tmax = 1.000k = 2020
35153 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0298P)2 + 0.328P]
where P = (Fo2 + 2Fc2)/3
9248 reflections(Δ/σ)max = 0.004
478 parametersΔρmax = 0.90 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.68717 (2)0.18203 (2)0.91417 (2)0.02951 (4)
Cl10.53215 (5)0.24293 (5)0.92683 (4)0.04323 (17)
P10.76225 (5)0.28142 (5)1.01468 (4)0.03235 (16)
P20.76117 (6)0.48320 (5)1.05116 (4)0.03587 (17)
N10.71230 (16)0.27466 (14)0.83889 (12)0.0322 (5)
N20.66418 (17)0.07508 (14)0.97668 (13)0.0345 (5)
C10.6505 (2)0.33752 (19)0.80720 (17)0.0414 (7)
H10.58980.33780.81670.050*
C20.6752 (3)0.4012 (2)0.76128 (18)0.0492 (8)
H20.63130.44330.73950.059*
C30.7646 (3)0.4020 (2)0.74807 (19)0.0528 (9)
H30.78300.44580.71870.063*
C40.8269 (3)0.3377 (2)0.77858 (18)0.0466 (8)
H40.88800.33800.77000.056*
C50.7996 (2)0.27145 (18)0.82245 (15)0.0353 (6)
C60.8552 (2)0.19571 (18)0.85264 (17)0.0374 (7)
C70.9445 (2)0.1771 (2)0.8388 (2)0.0494 (8)
H70.97290.21590.81110.059*
C80.9905 (3)0.1019 (2)0.8659 (2)0.0575 (9)
H81.05060.09010.85770.069*
C90.9467 (3)0.0438 (2)0.9055 (2)0.0556 (9)
H90.97660.00820.92240.067*
C100.8589 (2)0.0618 (2)0.92042 (18)0.0449 (7)
H100.83120.02170.94740.054*
C110.8109 (2)0.13846 (18)0.89610 (15)0.0338 (6)
C120.7031 (2)0.06046 (19)1.05128 (17)0.0469 (8)
H120.74420.10171.07850.056*
C130.6849 (3)0.0130 (2)1.0891 (2)0.0598 (10)
H130.71270.02091.14090.072*
C140.6251 (3)0.0741 (2)1.0492 (2)0.0656 (11)
H140.61120.12401.07360.079*
C150.5859 (3)0.0609 (2)0.9727 (2)0.0543 (9)
H150.54460.10190.94530.065*
C160.6071 (2)0.01343 (18)0.93549 (17)0.0373 (6)
C170.5754 (2)0.03060 (18)0.85349 (16)0.0366 (6)
C180.5151 (2)0.0240 (2)0.80214 (19)0.0457 (7)
H180.48900.07250.82030.055*
C190.4945 (2)0.0059 (2)0.72503 (19)0.0520 (8)
H190.45460.04240.69070.062*
C200.5328 (2)0.0662 (2)0.69845 (18)0.0488 (8)
H200.51940.07780.64600.059*
C210.5910 (2)0.1216 (2)0.74885 (16)0.0409 (7)
H210.61590.17010.72960.049*
C220.61342 (19)0.10635 (17)0.82804 (15)0.0324 (6)
C230.8897 (2)0.2899 (2)1.02168 (16)0.0381 (7)
C240.9480 (2)0.2230 (2)1.0551 (2)0.0531 (8)
H240.92260.17841.07930.064*
C251.0427 (3)0.2207 (3)1.0535 (2)0.0675 (11)
H251.08070.17511.07670.081*
C261.0814 (3)0.2856 (3)1.0178 (3)0.0708 (12)
H261.14520.28391.01600.085*
C271.0251 (3)0.3526 (3)0.9848 (2)0.0621 (10)
H271.05130.39690.96100.074*
C280.9301 (2)0.3557 (2)0.98620 (18)0.0460 (7)
H280.89290.40190.96340.055*
C290.7500 (2)0.27335 (18)1.11445 (16)0.0388 (7)
C300.6630 (3)0.2510 (2)1.12801 (19)0.0529 (8)
H300.61410.23421.08720.063*
C310.6477 (3)0.2534 (3)1.2018 (2)0.0694 (11)
H310.58840.23921.21040.083*
C320.7209 (4)0.2769 (3)1.2625 (2)0.0792 (13)
H320.71080.27841.31210.095*
C330.8081 (4)0.2980 (3)1.2500 (2)0.0743 (13)
H330.85720.31331.29120.089*
C340.8234 (3)0.2965 (2)1.17625 (19)0.0551 (9)
H340.88270.31101.16790.066*
C350.7142 (2)0.38963 (17)0.98911 (16)0.0381 (7)
H35A0.64630.38700.98570.046*
H35B0.72270.40230.93790.046*
C360.6829 (2)0.49398 (19)1.11822 (17)0.0395 (7)
C370.5910 (3)0.4657 (2)1.1068 (2)0.0625 (10)
H370.56530.43321.06320.075*
C380.5354 (3)0.4842 (3)1.1587 (3)0.0831 (14)
H380.47340.46361.15040.100*
C390.5727 (3)0.5334 (3)1.2227 (2)0.0721 (12)
H390.53610.54581.25800.086*
C400.6627 (3)0.5638 (3)1.2342 (2)0.0699 (12)
H400.68690.59881.27640.084*
C410.7188 (3)0.5429 (2)1.18332 (19)0.0565 (9)
H410.78150.56191.19300.068*
C420.7121 (2)0.56941 (18)0.98220 (17)0.0383 (7)
C430.6538 (3)0.6345 (2)0.9985 (2)0.0520 (8)
H430.63570.63441.04530.062*
C440.6223 (3)0.6995 (2)0.9458 (2)0.0659 (11)
H440.58270.74240.95740.079*
C450.6479 (3)0.7019 (3)0.8779 (2)0.0673 (11)
H450.62690.74670.84340.081*
C460.7056 (3)0.6376 (3)0.8596 (2)0.0594 (10)
H460.72240.63810.81230.071*
C470.7380 (2)0.5729 (2)0.91164 (18)0.0468 (8)
H470.77800.53060.89960.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.03490 (7)0.02715 (6)0.02633 (6)0.00467 (4)0.00662 (4)0.00016 (4)
Cl10.0386 (4)0.0438 (4)0.0497 (4)0.0044 (3)0.0150 (3)0.0041 (3)
P10.0393 (4)0.0284 (3)0.0293 (4)0.0065 (3)0.0075 (3)0.0017 (3)
P20.0401 (4)0.0312 (4)0.0358 (4)0.0056 (3)0.0074 (3)0.0042 (3)
N10.0393 (13)0.0303 (12)0.0270 (11)0.0046 (10)0.0074 (10)0.0011 (9)
N20.0420 (14)0.0295 (12)0.0320 (12)0.0061 (10)0.0085 (11)0.0011 (10)
C10.0457 (18)0.0408 (17)0.0376 (16)0.0004 (13)0.0090 (14)0.0047 (13)
C20.063 (2)0.0413 (18)0.0418 (17)0.0032 (16)0.0096 (16)0.0115 (14)
C30.072 (2)0.0458 (18)0.0463 (19)0.0085 (17)0.0247 (18)0.0100 (15)
C40.053 (2)0.0519 (19)0.0410 (17)0.0136 (15)0.0233 (16)0.0014 (14)
C50.0417 (17)0.0379 (16)0.0279 (13)0.0059 (12)0.0110 (12)0.0045 (12)
C60.0394 (16)0.0397 (16)0.0334 (15)0.0049 (12)0.0092 (13)0.0067 (12)
C70.0446 (19)0.059 (2)0.0473 (19)0.0043 (16)0.0167 (16)0.0086 (16)
C80.047 (2)0.069 (2)0.057 (2)0.0124 (18)0.0130 (17)0.0148 (19)
C90.057 (2)0.050 (2)0.055 (2)0.0152 (17)0.0033 (18)0.0123 (17)
C100.0518 (19)0.0372 (17)0.0446 (17)0.0032 (14)0.0089 (15)0.0021 (13)
C110.0378 (16)0.0347 (15)0.0274 (13)0.0005 (12)0.0039 (12)0.0074 (11)
C120.067 (2)0.0370 (17)0.0339 (15)0.0143 (15)0.0066 (15)0.0024 (13)
C130.088 (3)0.048 (2)0.0401 (18)0.0137 (19)0.0080 (18)0.0123 (15)
C140.090 (3)0.0412 (19)0.064 (2)0.0216 (19)0.014 (2)0.0167 (17)
C150.068 (2)0.0337 (17)0.057 (2)0.0173 (16)0.0066 (18)0.0020 (15)
C160.0403 (16)0.0297 (14)0.0410 (16)0.0047 (12)0.0072 (13)0.0019 (12)
C170.0378 (16)0.0342 (15)0.0379 (15)0.0024 (12)0.0084 (13)0.0078 (12)
C180.0412 (17)0.0392 (17)0.055 (2)0.0065 (13)0.0065 (15)0.0099 (14)
C190.0437 (19)0.054 (2)0.051 (2)0.0006 (16)0.0045 (16)0.0211 (16)
C200.0482 (19)0.059 (2)0.0335 (16)0.0087 (16)0.0022 (14)0.0101 (15)
C210.0437 (17)0.0437 (17)0.0348 (15)0.0045 (13)0.0075 (14)0.0008 (13)
C220.0303 (14)0.0344 (14)0.0319 (14)0.0002 (11)0.0057 (12)0.0064 (11)
C230.0407 (17)0.0386 (15)0.0343 (15)0.0089 (13)0.0071 (13)0.0098 (12)
C240.049 (2)0.0446 (19)0.062 (2)0.0051 (16)0.0060 (17)0.0013 (16)
C250.046 (2)0.065 (3)0.083 (3)0.0051 (19)0.001 (2)0.011 (2)
C260.042 (2)0.079 (3)0.093 (3)0.014 (2)0.018 (2)0.027 (3)
C270.057 (2)0.071 (3)0.065 (2)0.027 (2)0.026 (2)0.018 (2)
C280.0501 (19)0.0464 (18)0.0431 (17)0.0130 (15)0.0137 (15)0.0107 (14)
C290.0549 (19)0.0316 (15)0.0297 (14)0.0039 (13)0.0093 (14)0.0023 (12)
C300.058 (2)0.060 (2)0.0440 (18)0.0061 (17)0.0199 (17)0.0005 (16)
C310.082 (3)0.076 (3)0.062 (2)0.003 (2)0.039 (2)0.001 (2)
C320.116 (4)0.089 (3)0.041 (2)0.001 (3)0.034 (3)0.004 (2)
C330.101 (4)0.086 (3)0.0325 (19)0.008 (3)0.006 (2)0.0113 (19)
C340.064 (2)0.059 (2)0.0387 (18)0.0119 (18)0.0044 (17)0.0041 (15)
C350.0490 (18)0.0304 (14)0.0326 (14)0.0048 (13)0.0044 (13)0.0031 (12)
C360.0453 (18)0.0354 (15)0.0380 (16)0.0017 (13)0.0100 (14)0.0043 (13)
C370.059 (2)0.058 (2)0.075 (3)0.0176 (18)0.023 (2)0.0163 (19)
C380.063 (3)0.078 (3)0.126 (4)0.016 (2)0.057 (3)0.009 (3)
C390.080 (3)0.081 (3)0.068 (3)0.014 (2)0.042 (2)0.018 (2)
C400.075 (3)0.094 (3)0.0402 (19)0.023 (2)0.0102 (19)0.005 (2)
C410.048 (2)0.077 (2)0.0423 (18)0.0061 (18)0.0049 (16)0.0139 (17)
C420.0420 (17)0.0328 (15)0.0411 (16)0.0066 (12)0.0113 (14)0.0014 (12)
C430.069 (2)0.0363 (17)0.057 (2)0.0033 (16)0.0286 (18)0.0051 (15)
C440.076 (3)0.049 (2)0.079 (3)0.0178 (19)0.032 (2)0.0156 (19)
C450.072 (3)0.064 (2)0.071 (3)0.013 (2)0.026 (2)0.034 (2)
C460.063 (2)0.067 (2)0.051 (2)0.007 (2)0.0206 (18)0.0163 (18)
C470.050 (2)0.0455 (18)0.0477 (19)0.0042 (15)0.0173 (16)0.0002 (14)
Geometric parameters (Å, º) top
Ir1—C112.004 (3)C20—C211.381 (4)
Ir1—C222.032 (3)C20—H200.9300
Ir1—N12.051 (2)C21—C221.397 (4)
Ir1—N22.062 (2)C21—H210.9300
Ir1—P12.4241 (7)C23—C241.381 (5)
Ir1—Cl12.4866 (8)C23—C281.394 (4)
P1—C231.822 (3)C24—C251.377 (5)
P1—C351.828 (3)C24—H240.9300
P1—C291.834 (3)C25—C261.373 (6)
P2—C361.830 (3)C25—H250.9300
P2—C421.844 (3)C26—C271.365 (6)
P2—C351.854 (3)C26—H260.9300
N1—C11.354 (4)C27—C281.380 (5)
N1—C51.360 (4)C27—H270.9300
N2—C121.343 (4)C28—H280.9300
N2—C161.362 (3)C29—C301.376 (4)
C1—C21.378 (4)C29—C341.394 (4)
C1—H10.9300C30—C311.384 (5)
C2—C31.365 (5)C30—H300.9300
C2—H20.9300C31—C321.381 (6)
C3—C41.369 (5)C31—H310.9300
C3—H30.9300C32—C331.367 (6)
C4—C51.398 (4)C32—H320.9300
C4—H40.9300C33—C341.384 (5)
C5—C61.453 (4)C33—H330.9300
C6—C71.397 (4)C34—H340.9300
C6—C111.421 (4)C35—H35A0.9700
C7—C81.372 (5)C35—H35B0.9700
C7—H70.9300C36—C371.369 (4)
C8—C91.382 (5)C36—C411.385 (4)
C8—H80.9300C37—C381.387 (5)
C9—C101.382 (5)C37—H370.9300
C9—H90.9300C38—C391.376 (6)
C10—C111.391 (4)C38—H380.9300
C10—H100.9300C39—C401.353 (6)
C12—C131.376 (4)C39—H390.9300
C12—H120.9300C40—C411.386 (5)
C13—C141.367 (5)C40—H400.9300
C13—H130.9300C41—H410.9300
C14—C151.370 (5)C42—C431.384 (4)
C14—H140.9300C42—C471.394 (4)
C15—C161.395 (4)C43—C441.382 (5)
C15—H150.9300C43—H430.9300
C16—C171.456 (4)C44—C451.344 (5)
C17—C181.397 (4)C44—H440.9300
C17—C221.411 (4)C45—C461.384 (5)
C18—C191.370 (4)C45—H450.9300
C18—H180.9300C46—C471.372 (5)
C19—C201.376 (5)C46—H460.9300
C19—H190.9300C47—H470.9300
C11—Ir1—C2291.12 (11)C19—C20—C21120.7 (3)
C11—Ir1—N180.35 (10)C19—C20—H20119.7
C22—Ir1—N192.62 (10)C21—C20—H20119.7
C11—Ir1—N294.40 (10)C20—C21—C22121.5 (3)
C22—Ir1—N280.07 (10)C20—C21—H21119.2
N1—Ir1—N2170.97 (9)C22—C21—H21119.2
C11—Ir1—P193.75 (8)C21—C22—C17116.6 (3)
C22—Ir1—P1174.57 (8)C21—C22—Ir1129.1 (2)
N1—Ir1—P185.83 (6)C17—C22—Ir1114.18 (19)
N2—Ir1—P1101.93 (6)C24—C23—C28117.8 (3)
C11—Ir1—Cl1175.37 (8)C24—C23—P1118.9 (2)
C22—Ir1—Cl187.54 (8)C28—C23—P1122.8 (3)
N1—Ir1—Cl195.27 (7)C25—C24—C23121.5 (3)
N2—Ir1—Cl189.74 (7)C25—C24—H24119.3
P1—Ir1—Cl187.41 (3)C23—C24—H24119.3
C23—P1—C35105.78 (14)C26—C25—C24120.1 (4)
C23—P1—C29104.84 (14)C26—C25—H25119.9
C35—P1—C29100.97 (13)C24—C25—H25119.9
C23—P1—Ir1111.90 (9)C27—C26—C25119.3 (4)
C35—P1—Ir1108.25 (9)C27—C26—H26120.3
C29—P1—Ir1123.42 (10)C25—C26—H26120.3
C36—P2—C4299.77 (13)C26—C27—C28121.1 (4)
C36—P2—C35105.37 (14)C26—C27—H27119.4
C42—P2—C3597.50 (13)C28—C27—H27119.4
C1—N1—C5119.5 (2)C27—C28—C23120.2 (3)
C1—N1—Ir1125.2 (2)C27—C28—H28119.9
C5—N1—Ir1115.23 (18)C23—C28—H28119.9
C12—N2—C16119.0 (2)C30—C29—C34119.2 (3)
C12—N2—Ir1126.07 (19)C30—C29—P1118.7 (2)
C16—N2—Ir1114.83 (18)C34—C29—P1121.9 (3)
N1—C1—C2121.7 (3)C29—C30—C31120.6 (4)
N1—C1—H1119.1C29—C30—H30119.7
C2—C1—H1119.1C31—C30—H30119.7
C3—C2—C1119.5 (3)C32—C31—C30119.7 (4)
C3—C2—H2120.3C32—C31—H31120.2
C1—C2—H2120.3C30—C31—H31120.2
C2—C3—C4119.2 (3)C33—C32—C31120.3 (4)
C2—C3—H3120.4C33—C32—H32119.8
C4—C3—H3120.4C31—C32—H32119.8
C3—C4—C5120.7 (3)C32—C33—C34120.1 (4)
C3—C4—H4119.6C32—C33—H33119.9
C5—C4—H4119.6C34—C33—H33119.9
N1—C5—C4119.1 (3)C33—C34—C29120.1 (4)
N1—C5—C6114.3 (2)C33—C34—H34120.0
C4—C5—C6126.5 (3)C29—C34—H34120.0
C7—C6—C11121.1 (3)P1—C35—P2119.78 (16)
C7—C6—C5123.8 (3)P1—C35—H35A107.4
C11—C6—C5115.1 (3)P2—C35—H35A107.4
C8—C7—C6120.4 (3)P1—C35—H35B107.4
C8—C7—H7119.8P2—C35—H35B107.4
C6—C7—H7119.8H35A—C35—H35B106.9
C7—C8—C9119.2 (3)C37—C36—C41117.8 (3)
C7—C8—H8120.4C37—C36—P2126.5 (3)
C9—C8—H8120.4C41—C36—P2115.4 (2)
C8—C9—C10121.0 (3)C36—C37—C38121.6 (4)
C8—C9—H9119.5C36—C37—H37119.2
C10—C9—H9119.5C38—C37—H37119.2
C9—C10—C11121.7 (3)C39—C38—C37119.4 (4)
C9—C10—H10119.1C39—C38—H38120.3
C11—C10—H10119.1C37—C38—H38120.3
C10—C11—C6116.5 (3)C40—C39—C38120.0 (4)
C10—C11—Ir1129.5 (2)C40—C39—H39120.0
C6—C11—Ir1114.0 (2)C38—C39—H39120.0
N2—C12—C13122.8 (3)C39—C40—C41120.3 (4)
N2—C12—H12118.6C39—C40—H40119.9
C13—C12—H12118.6C41—C40—H40119.9
C14—C13—C12118.8 (3)C36—C41—C40120.9 (4)
C14—C13—H13120.6C36—C41—H41119.6
C12—C13—H13120.6C40—C41—H41119.6
C13—C14—C15119.2 (3)C43—C42—C47117.5 (3)
C13—C14—H14120.4C43—C42—P2123.0 (2)
C15—C14—H14120.4C47—C42—P2119.4 (2)
C14—C15—C16120.8 (3)C44—C43—C42120.4 (3)
C14—C15—H15119.6C44—C43—H43119.8
C16—C15—H15119.6C42—C43—H43119.8
N2—C16—C15119.3 (3)C45—C44—C43121.3 (4)
N2—C16—C17115.5 (2)C45—C44—H44119.3
C15—C16—C17125.2 (3)C43—C44—H44119.3
C18—C17—C22121.3 (3)C44—C45—C46119.7 (3)
C18—C17—C16123.9 (3)C44—C45—H45120.2
C22—C17—C16114.7 (2)C46—C45—H45120.2
C19—C18—C17119.9 (3)C47—C46—C45119.7 (3)
C19—C18—H18120.0C47—C46—H46120.2
C17—C18—H18120.0C45—C46—H46120.2
C18—C19—C20119.9 (3)C46—C47—C42121.3 (3)
C18—C19—H19120.1C46—C47—H47119.3
C20—C19—H19120.1C42—C47—H47119.3
C5—N1—C1—C23.1 (4)C35—P1—C23—C2821.3 (3)
Ir1—N1—C1—C2175.3 (2)C29—P1—C23—C28127.5 (2)
N1—C1—C2—C31.0 (5)Ir1—P1—C23—C2896.4 (2)
C1—C2—C3—C42.3 (5)C28—C23—C24—C250.2 (5)
C2—C3—C4—C50.3 (5)P1—C23—C24—C25171.8 (3)
C1—N1—C5—C45.6 (4)C23—C24—C25—C260.4 (6)
Ir1—N1—C5—C4172.9 (2)C24—C25—C26—C270.8 (6)
C1—N1—C5—C6173.3 (3)C25—C26—C27—C280.6 (6)
Ir1—N1—C5—C68.1 (3)C26—C27—C28—C230.0 (5)
C3—C4—C5—N14.3 (4)C24—C23—C28—C270.4 (5)
C3—C4—C5—C6174.5 (3)P1—C23—C28—C27171.3 (2)
N1—C5—C6—C7176.2 (3)C23—P1—C29—C30168.8 (3)
C4—C5—C6—C72.6 (5)C35—P1—C29—C3081.4 (3)
N1—C5—C6—C111.6 (4)Ir1—P1—C29—C3039.2 (3)
C4—C5—C6—C11179.6 (3)C23—P1—C29—C3417.0 (3)
C11—C6—C7—C81.2 (5)C35—P1—C29—C3492.8 (3)
C5—C6—C7—C8176.5 (3)Ir1—P1—C29—C34146.5 (2)
C6—C7—C8—C91.5 (5)C34—C29—C30—C311.5 (5)
C7—C8—C9—C102.3 (5)P1—C29—C30—C31172.9 (3)
C8—C9—C10—C110.3 (5)C29—C30—C31—C321.2 (6)
C9—C10—C11—C62.3 (4)C30—C31—C32—C330.2 (7)
C9—C10—C11—Ir1177.0 (2)C31—C32—C33—C340.5 (7)
C7—C6—C11—C103.1 (4)C32—C33—C34—C290.2 (6)
C5—C6—C11—C10174.9 (3)C30—C29—C34—C330.8 (5)
C7—C6—C11—Ir1176.3 (2)P1—C29—C34—C33173.4 (3)
C5—C6—C11—Ir15.8 (3)C23—P1—C35—P256.6 (2)
C16—N2—C12—C132.7 (5)C29—P1—C35—P252.4 (2)
Ir1—N2—C12—C13179.5 (3)Ir1—P1—C35—P2176.66 (14)
N2—C12—C13—C140.4 (6)C36—P2—C35—P193.0 (2)
C12—C13—C14—C150.6 (6)C42—P2—C35—P1164.65 (18)
C13—C14—C15—C160.6 (6)C42—P2—C36—C3776.6 (3)
C12—N2—C16—C153.9 (4)C35—P2—C36—C3724.0 (3)
Ir1—N2—C16—C15179.0 (2)C42—P2—C36—C4197.0 (3)
C12—N2—C16—C17174.2 (3)C35—P2—C36—C41162.4 (2)
Ir1—N2—C16—C173.0 (3)C41—C36—C37—C380.6 (5)
C14—C15—C16—N22.9 (5)P2—C36—C37—C38174.1 (3)
C14—C15—C16—C17174.9 (3)C36—C37—C38—C391.0 (7)
N2—C16—C17—C18178.7 (3)C37—C38—C39—C400.5 (7)
C15—C16—C17—C183.4 (5)C38—C39—C40—C412.4 (6)
N2—C16—C17—C223.7 (4)C37—C36—C41—C401.3 (5)
C15—C16—C17—C22174.2 (3)P2—C36—C41—C40172.9 (3)
C22—C17—C18—C192.3 (5)C39—C40—C41—C362.8 (6)
C16—C17—C18—C19175.2 (3)C36—P2—C42—C4316.7 (3)
C17—C18—C19—C200.4 (5)C35—P2—C42—C43123.8 (3)
C18—C19—C20—C210.9 (5)C36—P2—C42—C47166.7 (2)
C19—C20—C21—C220.4 (5)C35—P2—C42—C4759.6 (3)
C20—C21—C22—C171.4 (4)C47—C42—C43—C440.6 (5)
C20—C21—C22—Ir1174.3 (2)P2—C42—C43—C44177.3 (3)
C18—C17—C22—C212.7 (4)C42—C43—C44—C450.6 (6)
C16—C17—C22—C21175.0 (3)C43—C44—C45—C461.0 (7)
C18—C17—C22—Ir1173.6 (2)C44—C45—C46—C471.5 (6)
C16—C17—C22—Ir18.7 (3)C45—C46—C47—C421.5 (5)
C35—P1—C23—C24167.1 (2)C43—C42—C47—C461.1 (5)
C29—P1—C23—C2460.9 (3)P2—C42—C47—C46177.9 (3)
Ir1—P1—C23—C2475.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg6, Cg8 and Cg10 are the centroids of the C17–C22, C29–C34 and C42–C47 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl10.932.733.357 (3)126
C14—H14···Cl1i0.932.773.548 (4)142
C30—H30···Cl10.932.843.664 (4)148
C35—H35A···Cl10.972.833.460 (3)124
C3—H3···Cg6ii0.932.833.572 (4)137
C26—H26···Cg10iii0.932.793.575 (5)143
C38—H38···C10iii0.932.813.659 (5)153
C40—H40···Cg8iv0.932.953.711 (5)140
Symmetry codes: (i) x+1, y, z+2; (ii) x+3/2, y+1/2, z+3/2; (iii) x+2, y+1, z+2; (iv) x+3/2, y+1/2, z+5/2.
 

Acknowledgements

We are grateful to the Division of Physical Science, Faculty of Science, Prince of Songkla University, for research facilities.

Funding information

NL acknowledges financial support from the Thailand Research Fund (TRF), Office of the Higher Education Commission and Prince of Songkla University under contract number MRG 5580109 as well as the financial support from the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Ministry of Higher Education, Science, Research and Innovation.

References

First citationAlam, P., Laskar, I. R., Climent, C., Casanova, D., Alemany, P., Karanam, M., Choudhury, A. R. & Raymond Butcher, J. (2013). Polyhedron, 53, 286–294.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2003). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z.-Q., Shen, X., Xu, J.-X., Zou, H., Wang, X., Xu, Y. & Zhu, D.-R. (2015). Inorg. Chem. Commun. 61, 152–156.  Web of Science CSD CrossRef CAS Google Scholar
First citationChi, Y. & Chou, P. T. (2010). Chem. Soc. Rev. 39, 638–655.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoldsmith, J. I., Hudson, W. R., Lowry, M. S., Anderson, T. H. & Bernhard, S. (2005). J. Am. Chem. Soc. 127, 7502–7510.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHao, L., Li, Z. W., Zhang, D. Y., He, L., Liu, W., Yang, J., Tan, C. P., Ji, L. N. & Mao, Z. W. (2019). Chem. Sci. 10, 1285–1293.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHearn, J. M., Hughes, G. M., Romero-Canelón, I., Munro, A. F., Rubio-Ruiz, B., Liu, Z., Carragher, N. O. & Sadler, P. J. (2018). Metallomics, 10, 93–107.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuynh, L., Wang, Z., Yang, J., Stoeva, V., Lough, A., Manners, I. & Winnik, M. A. (2005). Chem. Mater. 17, 4765–4773.  Web of Science CSD CrossRef CAS Google Scholar
First citationJian, Y., Peng, S., Li, X., Wen, X., He, J., Jiang, L. & Dang, Y. (2011). Inorg. Chim. Acta, 368, 37–43.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, S., Park, K.-M., Yang, K. & Kang, Y. (2009). Inorg. Chem. 48, 1030–1037.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLin, C. H., Chi, Y., Chung, M. W., Chen, Y. J., Wang, K. W., Lee, G. H., Chou, P. T., Hung, W. Y. & Chiu, H. C. (2011). Dalton Trans. 40, 1132–1143.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLiu, Z., Li, J., Ge, X., Zhang, S., Xu, Z. & Gao, W. (2019). J. Inorg. Biochem. 197, 110703.  Web of Science CSD CrossRef PubMed Google Scholar
First citationLowry, M. S. & Bernhard, S. (2006). Chem. Eur. J. 12, 7970–7977.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLowry, M. S., Hudson, W. R., Pascal, R. A. & Bernhard, S. (2004). J. Am. Chem. Soc. 126, 14129–14135.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLuo, S.-X., Wei, L., Zhang, X.-H., Lim, M. H., Lin, K. X. V., Yeo, M. H. V., Zhang, W.-H., Liu, Z.-P., Young, D. J. & Hor, T. S. A. (2013). Organometallics, 32, 2908–2917.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, A.-F., Seo, H.-J., Jin, S.-H., Ung, C., Yoon, M., Ho, H., Kang, S. & Kim, Y.-I. (2009). Bull. Korean Chem. Soc. 30, 2754–2758.  CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNishikitani, Y., Cho, T., Uchida, S., Nishimura, S., Oyaizu, K. & Nishide, H. (2018). ChemPlusChem, 83, 463-469.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRubio, A. R., Fidalgo, J., Martin-Vargas, J., Pérez-Arnaiz, C., Alonso-Torre, S. R., Biver, T., Espino, G., Busto, N. & García, B. (2020). J. Inorg. Biochem. 203, 110885.  Web of Science CrossRef PubMed Google Scholar
First citationSciFinder (2020). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed November 26, 2020).  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, X., Wang, F.-L., Sun, F., Zhao, R., Wang, X., Jing, S., Xu, Y. & Zhu, D.-R. (2011). Inorg. Chem. Commun. 14, 1511–1515.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTamayo, A. B., Alleyne, B. D., Djurovich, P. I., Lamansky, S., Tsyba, I., Ho, N. N., Bau, R. & Thompson, M. E. (2003). Inorg. Chem. Commun. 125, 7377–7387.  CAS Google Scholar
First citationTsuboyama, A., Iwawaki, H., Furugori, M., Mukaide, T., Kamatani, J., Igawa, S., Moriyama, T., Miura, S., Takiguchi, T., Okada, S., Hoshino, M. & Ueno, K. (2003). J. Am. Chem. Soc. 125, 12971–12979.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia.  Google Scholar
First citationWang, Y., Teng, F., Tang, A., Wang, Y. & Xu, X. (2005). Acta Cryst. E61, m778–m780.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Q., Zhao, Z., Lin, K. & Wang, J. (2018). Inorg. Chem. Commun. 94, 75–79.  Web of Science CrossRef CAS Google Scholar
First citationXu, M., Li, W., An, Z., Zhou, Q. & Wang, G. (2005). Appl. Organomet. Chem. 19, 1225–1231.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds