research communications
Synthesis, κP]chloridobis[2-(pyridin-2-yl)phenyl-κ2N,C1]iridium(III)
and Hirshfeld surface analysis of [bis(diphenylphosphanyl)methane-aDivision of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla, 90112, Thailand
*Correspondence e-mail: nararak.le@psu.ac.th
The title IrIII complex, [Ir(C11H8N)2Cl(C25H22P2)], was synthesized from the between the (ppy)2Ir(μ-Cl)2Ir(ppy)2 (ppy = deprotonated 2-phenylpyridine, C11H8N−) dimer and 1,1-bis(diphenylphosphanyl)methane (dppm, C25H22P2) under an argon gas atmosphere for 20 h. The IrIII atom is coordinated by two C,N-bidentate ppy anions, a unidentate dppm ligand and a chloride anion in a distorted octahedral IrC2N2PCl arrangement. The N donor atoms of the ppy ligands are mutually trans while the C atoms are cis. Intramolecular aromatic π–π stacking between the phenyl rings of ppy and dppm, and C—H⋯Cl interactions are observed. In the crystal, C—H⋯Cl and C—H⋯π contacts link the molecules into a three-dimensional network. A Hirshfeld surface analysis was carried out to further quantify the intermolecular interactions, and indicated that H⋯H contacts (63.9%) dominate the packing.
CCDC reference: 2058995
1. Chemical context
Iridium(III) complexes have been investigated for decades because of their stability (Jian et al., 2011; Lee et al., 2009; Tsuboyama et al., 2003), promising luminescent properties (Lin et al., 2011; Lowry et al., 2004; Tamayo et al., 2003) and medicinal applications, especially as anticancer agents (Hearn et al., 2018; Rubio et al., 2020; Xiao et al., 2018). The syntheses of cyclometallated iridium(III) complexes have mainly focused on the 2-phenylpyridine (ppy) ligand and its derivatives. The octahedral geometry of bis-complexes is commonly selected as the main backbone accompanied by various types of ancillary ligands. Most of them are N-donor ligands (Chi & Chou, 2010; Goldsmith et al., 2005; Lin et al., 2011) owing to the strong binding of the borderline acid metal and basic ligand. However, there are fewer reports of P-donor ancillary ligands. In this present work, we report the synthesis and characterization of the title photoactive complex, (I), obtained by the reaction between (ppy)2Ir(μ-Cl)2Ir(ppy)2) dimer (ppy = deprotonated 2-phenylpyridine, C11H8N−) with 1,1-bis(diphenylphosphanyl)methane under an atmosphere.
2. Structural commentary
The shows a distorted octahedral molecular structure to overcome between the ligands (Fig. 1) in P21/n. The IrIII atom is linked to two C,N-bidentate 2-phenylpyridine (ppy) anions through five-membered chelate rings where the N1 and N2 atoms of the ppy pyridine rings exist in a trans orientation to each other [N1—Ir1—N2 = 170.97 (9)°] and C11 and C22 are in cis orientation [C11—Ir1—C22 = 91.12 (11)°]. The bond lengths of Ir1—N1, Ir1—N2, Ir1—C11 and Ir1—C22 are 2.051 (2), 2.062 (2), 2.004 (3) and 2.032 (3) Å, respectively. As expected, the averaged Ir–C and Ir—N bond lengths are much shorter than the Ir—Cl and Ir—P bonds, based on the sizes of the different species.
of (I)The averaged Ir—N and Ir—C distances in (I) are both slightly shorter than those in [Ir(ppy)2(dppm)]PF6 (Hao et al., 2019). However, the averaged Ir—N distance is a little longer, but the Ir—C bond lengths are relatively shorter than those of related IrIII complexes bonded with ppy ligands (Chen et al., 2015; Shen et al., 2011; Wang et al., 2005)
Although bis(diphenylphosphanyl)methane (dppm) often occurs as a bidentate ligand (e.g., Hao et al., 2019), in (I) it is unidentate [Ir1—P1 = 2.4241 (7) Å]. This Ir—P distance is somewhat longer than that in the [Ir(ppy)2(dppm)](PF6) (Hao et al., 2019) complex. The Ir—Cl bond distances in chlorobis[2-(2-pyridyl)phenyl-κ2N,C](triphenylphosphine-κP)iridium(III) are reported to be 2.503 (19) (Wang et al., 2005) and 2.505 (16) (Shen et al., 2011) Å, which are slightly longer than that in (I) [Ir1—Cl1 = 2.4866 (8) Å]. The cis bond angles in (I) all deviate from the ideal value of 90° [80.07 (10)–95.27 (7)°] and likewise, the trans bond angles deviate from the ideal 180° [170.97 (9)–175.37 (8)°], similar to related compounds (Shen et al., 2011; Wang et al., 2005). The dihedral angle between the mean planes of the ppy rings is 77.98 (4)°, indicating the cis-form of the chelate rings. Key geometrical data are given in Table 1.
|
Intramolecular π–π stacking interactions are observed for (I). The π–π stackings are found between two phenyl rings (C6–C11 and C23–C28) of the ppy and dppm ligands, Cg5⋯Cg7 = 3.621 (1) Å and between the phenyl rings of the dppm molecule (C29–C34 and C36–C41), Cg8⋯Cg9 = 3.997 (1) Å (Fig. 2). Three weak intramolecular hydrogen-bonding interactions, viz. C1—H1⋯Cl1 [C⋯Cl = 3.357 (3) Å], C30—H30⋯Cl1 [C⋯Cl = 3.664 (4) Å] and C35—H35A⋯Cl1 [C35⋯Cl = 3.460 (3) Å] (Fig. 3 and Table 2) are observed.
3. Supramolecular features
Several weak C—H⋯π (ring) interactions are found in the crystal packing (Fig. 4). The interactions are observed between any two adjacent molecules of ppy via the C3—H3 grouping of the pyridine ring and the centroid (Cg6) of the C17–C22 phenyl ring (H3⋯Cg6 = 2.83 Å). In addition, C—H⋯π(ring) interactions are also found between the dppm phenyl rings of neighbouring molecules: C26—H26 ⋯Cg10 (H26⋯Cg10 = 2.79 Å; Cg10 is the centroid of the C42–C47 ring), C38—H38⋯Cg10 (H38⋯Cg10 = 2.81 Å) and C40—H40⋯Cg8 (H40⋯Cg8 = 2.95 Å). In addition, pairwise intermolecular hydrogen bonds are observed between C14—H14 of the pyridine ring of the ppy ring and Cl1 (Table 2).
4. Hirshfeld surface analysis
Additional insights into the weak intermolecular contacts in the crystal packing of (I) were gained from Hirshfeld surface analysis and the two-dimensional fingerprint plots (McKinnon et al., 2004; 2007; Spackman & Jayatilaka, 2009) generated using Crystal Explorer 17.5 program (Turner et al., 2017). The Hirshfeld surfaces were mapped over the normalized contact distance (dnorm) with the functions de and di, which are the distances from an indicated area on the Hirshfeld surface to the nearest atoms outside and inside the surface, respectively. The white, red, and blue areas on the dnorm-mapped Hirshfeld surfaces show intermolecular contacts that are equal to, shorter than, and longer than the sum of their van der Waals (vdW) radii, respectively. A pair of intermolecular contacts are shown as red spots on the Hirshfeld surface close to the Cl1 atom of the adjoining molecule and the H14 atom of the associated pyridine ring. The spots indicate hydrogen-bond donor-to-acceptor interactions of C14—H14⋯Cl1 and vice versa (Fig. 5). The relative contributions of the various types of contacts to the total of intermolecular interactions across the Hirshfeld surface are represented in two-dimensional fingerprint plots. Total intermolecular interactions (100%) are shown in Fig. 6(a) while Fig. 6(b)–(d) depict the contacts of the H⋯H (63.9%), C⋯H/H⋯C (29.5%) and H⋯Cl/Cl⋯H (4.4%) interactions, respectively.
5. Database survey
A search of the SciFinder (SciFinder, 2020) database for phosphorescent complexes of ppy with iridium(III) diphosphine (dpp) reveals eight structures closely related to the title compound. Hao et al. (2019) report the of an ionic complex of the [Ir(ppy)2(dppm)]+; dppm = bis(diphenylphosphanyl)methane bidentate ligand. However, none of the remaining publications describe a monomeric IrIII complex similar to the title compound. The seven hits include the octahedral crystal structures of IrIII complexes with a bis(2-phenylpyridine)iridium(III) backbone and ancillary ligands of both N-donor, P-donor and O-donor ligands. There are a tris-complex of Ir(ppy)3 (Huynh et al., 2005), [Ir(ppy)2(dppel)]; dppel = 1,2-bis(diphenylphosphanyl)ethylene, [Ir(ppy)2(dppp)]; dppp = 1,3-bis(diphenylphosphanyl)propane and [Ir(ppy)2(dppe)]; dppe = 1,2-bis(diphenylphosphanyl) ethane] (Alam et al., 2013), [Ir(ppy)2L2]+ (L2 = substituted 2,2′-bipyridine, dppe and 1,10-phenanthroline; Lowry & Bernhard, 2006), [Ir(ppy)2(P^N)]PF6, [Ir(dfppy)2(P^N)]PF6 and [Ir(dfmppy)2(P^N)]PF6 where P^N = 2-[(diphenylphosphanyl) methyl]pyridine, dfppy = 2-(2,4-difuorophenyl)pyridine and dfmppy = 2-(2,4-difluorophenyl)-4-methylpyridine (Ma et al., 2009), [Ir(ppy)2(biq)]PF6 (biq = 2,2-biquinoline; Nishikitani et al., 2018) and Ir(dppy)2(acac) (dppy = 2,5-diphenylpyridyl and acac = acetylacetonate; Xu et al., 2005). There are four other related complexes, Ir(ppy)2(L) [L = 1,2-bis(diphenylphosphanyl)ethane, 1,2-bis (diphenylphosphanyl)propane, 1,2-bis(diphenylphos phino)benzene and 1,8-bis(diphenylphos phino)naphthalene; Liu et al., 2019; Luo et al., 2013] and Ir(ppy)2(PPh3)Cl (Wang et al., 2005).
6. Synthesis and crystallization
The title complex was synthesized from the reaction between (ppy)2Ir(μ-Cl)2Ir(ppy)2 (0.5 mmol) and bis(diphenylphosphanyl)methane (1.25 mmol) in CH2Cl2 solution. The reaction was carried out by refluxing the mixture under Ar gas for 20 h. The solution mixture was then cooled to room temperature and the solvent was evaporated. The crude yellow product thus obtained was washed with diethyl ether to remove excess ligands and impurities, and the complex was crystallized and recrystallized in mixed solvents of dichloromethane:diethyl ether (9:1) at room temperature three times, yielding yellowish crystals (yield = 30%), m.p. = 488–489 K IR (KBr, cm−1): ν(C—H), 3054; ν(C=C), 1436, 2367; ν(C—N), 1030; ν(C=N), 1613; ν(P—Ph), 1098; ν(Ir—P), 760; ν(Ir—N), 733; ν(Ir—Cl), 510. Analysis (%): found C 61.01, H 4.38, N 2.77; calculated C 61.33, H 4.16, N 3.04.
7. Refinement
Crystal data, data collection and structure . H atoms were included in calculated positions [C—H = 0.93 (aromatic) or 0.97 Å (Csp2)] and refined as riding with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 3
|
Supporting information
CCDC reference: 2058995
https://doi.org/10.1107/S2056989021000955/hb7961sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021000955/hb7961Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021000955/hb7961Isup3.mol
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: ShelXle (Hübschle et al., 2011), SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012) and publCIF (Westrip, 2010).[Ir(C11H8N)2Cl(C25H22P2)] | F(000) = 1832 |
Mr = 920.38 | Dx = 1.574 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 14.4506 (5) Å | Cell parameters from 9441 reflections |
b = 15.4490 (5) Å | θ = 2.3–25.6° |
c = 17.8532 (6) Å | µ = 3.63 mm−1 |
β = 103.044 (1)° | T = 293 K |
V = 3882.8 (2) Å3 | Block, light yellow |
Z = 4 | 0.19 × 0.09 × 0.06 mm |
Bruker APEX CCD area-detector diffractometer | 9248 independent reflections |
Radiation source: fine-focus sealed tube | 7758 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Frames, each covering 0.3 ° in ω scans | θmax = 27.9°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −19→18 |
Tmin = 0.800, Tmax = 1.000 | k = −20→20 |
35153 measured reflections | l = −23→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.062 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0298P)2 + 0.328P] where P = (Fo2 + 2Fc2)/3 |
9248 reflections | (Δ/σ)max = 0.004 |
478 parameters | Δρmax = 0.90 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ir1 | 0.68717 (2) | 0.18203 (2) | 0.91417 (2) | 0.02951 (4) | |
Cl1 | 0.53215 (5) | 0.24293 (5) | 0.92683 (4) | 0.04323 (17) | |
P1 | 0.76225 (5) | 0.28142 (5) | 1.01468 (4) | 0.03235 (16) | |
P2 | 0.76117 (6) | 0.48320 (5) | 1.05116 (4) | 0.03587 (17) | |
N1 | 0.71230 (16) | 0.27466 (14) | 0.83889 (12) | 0.0322 (5) | |
N2 | 0.66418 (17) | 0.07508 (14) | 0.97668 (13) | 0.0345 (5) | |
C1 | 0.6505 (2) | 0.33752 (19) | 0.80720 (17) | 0.0414 (7) | |
H1 | 0.5898 | 0.3378 | 0.8167 | 0.050* | |
C2 | 0.6752 (3) | 0.4012 (2) | 0.76128 (18) | 0.0492 (8) | |
H2 | 0.6313 | 0.4433 | 0.7395 | 0.059* | |
C3 | 0.7646 (3) | 0.4020 (2) | 0.74807 (19) | 0.0528 (9) | |
H3 | 0.7830 | 0.4458 | 0.7187 | 0.063* | |
C4 | 0.8269 (3) | 0.3377 (2) | 0.77858 (18) | 0.0466 (8) | |
H4 | 0.8880 | 0.3380 | 0.7700 | 0.056* | |
C5 | 0.7996 (2) | 0.27145 (18) | 0.82245 (15) | 0.0353 (6) | |
C6 | 0.8552 (2) | 0.19571 (18) | 0.85264 (17) | 0.0374 (7) | |
C7 | 0.9445 (2) | 0.1771 (2) | 0.8388 (2) | 0.0494 (8) | |
H7 | 0.9729 | 0.2159 | 0.8111 | 0.059* | |
C8 | 0.9905 (3) | 0.1019 (2) | 0.8659 (2) | 0.0575 (9) | |
H8 | 1.0506 | 0.0901 | 0.8577 | 0.069* | |
C9 | 0.9467 (3) | 0.0438 (2) | 0.9055 (2) | 0.0556 (9) | |
H9 | 0.9766 | −0.0082 | 0.9224 | 0.067* | |
C10 | 0.8589 (2) | 0.0618 (2) | 0.92042 (18) | 0.0449 (7) | |
H10 | 0.8312 | 0.0217 | 0.9474 | 0.054* | |
C11 | 0.8109 (2) | 0.13846 (18) | 0.89610 (15) | 0.0338 (6) | |
C12 | 0.7031 (2) | 0.06046 (19) | 1.05128 (17) | 0.0469 (8) | |
H12 | 0.7442 | 0.1017 | 1.0785 | 0.056* | |
C13 | 0.6849 (3) | −0.0130 (2) | 1.0891 (2) | 0.0598 (10) | |
H13 | 0.7127 | −0.0209 | 1.1409 | 0.072* | |
C14 | 0.6251 (3) | −0.0741 (2) | 1.0492 (2) | 0.0656 (11) | |
H14 | 0.6112 | −0.1240 | 1.0736 | 0.079* | |
C15 | 0.5859 (3) | −0.0609 (2) | 0.9727 (2) | 0.0543 (9) | |
H15 | 0.5446 | −0.1019 | 0.9453 | 0.065* | |
C16 | 0.6071 (2) | 0.01343 (18) | 0.93549 (17) | 0.0373 (6) | |
C17 | 0.5754 (2) | 0.03060 (18) | 0.85349 (16) | 0.0366 (6) | |
C18 | 0.5151 (2) | −0.0240 (2) | 0.80214 (19) | 0.0457 (7) | |
H18 | 0.4890 | −0.0725 | 0.8203 | 0.055* | |
C19 | 0.4945 (2) | −0.0059 (2) | 0.72503 (19) | 0.0520 (8) | |
H19 | 0.4546 | −0.0424 | 0.6907 | 0.062* | |
C20 | 0.5328 (2) | 0.0662 (2) | 0.69845 (18) | 0.0488 (8) | |
H20 | 0.5194 | 0.0778 | 0.6460 | 0.059* | |
C21 | 0.5910 (2) | 0.1216 (2) | 0.74885 (16) | 0.0409 (7) | |
H21 | 0.6159 | 0.1701 | 0.7296 | 0.049* | |
C22 | 0.61342 (19) | 0.10635 (17) | 0.82804 (15) | 0.0324 (6) | |
C23 | 0.8897 (2) | 0.2899 (2) | 1.02168 (16) | 0.0381 (7) | |
C24 | 0.9480 (2) | 0.2230 (2) | 1.0551 (2) | 0.0531 (8) | |
H24 | 0.9226 | 0.1784 | 1.0793 | 0.064* | |
C25 | 1.0427 (3) | 0.2207 (3) | 1.0535 (2) | 0.0675 (11) | |
H25 | 1.0807 | 0.1751 | 1.0767 | 0.081* | |
C26 | 1.0814 (3) | 0.2856 (3) | 1.0178 (3) | 0.0708 (12) | |
H26 | 1.1452 | 0.2839 | 1.0160 | 0.085* | |
C27 | 1.0251 (3) | 0.3526 (3) | 0.9848 (2) | 0.0621 (10) | |
H27 | 1.0513 | 0.3969 | 0.9610 | 0.074* | |
C28 | 0.9301 (2) | 0.3557 (2) | 0.98620 (18) | 0.0460 (7) | |
H28 | 0.8929 | 0.4019 | 0.9634 | 0.055* | |
C29 | 0.7500 (2) | 0.27335 (18) | 1.11445 (16) | 0.0388 (7) | |
C30 | 0.6630 (3) | 0.2510 (2) | 1.12801 (19) | 0.0529 (8) | |
H30 | 0.6141 | 0.2342 | 1.0872 | 0.063* | |
C31 | 0.6477 (3) | 0.2534 (3) | 1.2018 (2) | 0.0694 (11) | |
H31 | 0.5884 | 0.2392 | 1.2104 | 0.083* | |
C32 | 0.7209 (4) | 0.2769 (3) | 1.2625 (2) | 0.0792 (13) | |
H32 | 0.7108 | 0.2784 | 1.3121 | 0.095* | |
C33 | 0.8081 (4) | 0.2980 (3) | 1.2500 (2) | 0.0743 (13) | |
H33 | 0.8572 | 0.3133 | 1.2912 | 0.089* | |
C34 | 0.8234 (3) | 0.2965 (2) | 1.17625 (19) | 0.0551 (9) | |
H34 | 0.8827 | 0.3110 | 1.1679 | 0.066* | |
C35 | 0.7142 (2) | 0.38963 (17) | 0.98911 (16) | 0.0381 (7) | |
H35A | 0.6463 | 0.3870 | 0.9857 | 0.046* | |
H35B | 0.7227 | 0.4023 | 0.9379 | 0.046* | |
C36 | 0.6829 (2) | 0.49398 (19) | 1.11822 (17) | 0.0395 (7) | |
C37 | 0.5910 (3) | 0.4657 (2) | 1.1068 (2) | 0.0625 (10) | |
H37 | 0.5653 | 0.4332 | 1.0632 | 0.075* | |
C38 | 0.5354 (3) | 0.4842 (3) | 1.1587 (3) | 0.0831 (14) | |
H38 | 0.4734 | 0.4636 | 1.1504 | 0.100* | |
C39 | 0.5727 (3) | 0.5334 (3) | 1.2227 (2) | 0.0721 (12) | |
H39 | 0.5361 | 0.5458 | 1.2580 | 0.086* | |
C40 | 0.6627 (3) | 0.5638 (3) | 1.2342 (2) | 0.0699 (12) | |
H40 | 0.6869 | 0.5988 | 1.2764 | 0.084* | |
C41 | 0.7188 (3) | 0.5429 (2) | 1.18332 (19) | 0.0565 (9) | |
H41 | 0.7815 | 0.5619 | 1.1930 | 0.068* | |
C42 | 0.7121 (2) | 0.56941 (18) | 0.98220 (17) | 0.0383 (7) | |
C43 | 0.6538 (3) | 0.6345 (2) | 0.9985 (2) | 0.0520 (8) | |
H43 | 0.6357 | 0.6344 | 1.0453 | 0.062* | |
C44 | 0.6223 (3) | 0.6995 (2) | 0.9458 (2) | 0.0659 (11) | |
H44 | 0.5827 | 0.7424 | 0.9574 | 0.079* | |
C45 | 0.6479 (3) | 0.7019 (3) | 0.8779 (2) | 0.0673 (11) | |
H45 | 0.6269 | 0.7467 | 0.8434 | 0.081* | |
C46 | 0.7056 (3) | 0.6376 (3) | 0.8596 (2) | 0.0594 (10) | |
H46 | 0.7224 | 0.6381 | 0.8123 | 0.071* | |
C47 | 0.7380 (2) | 0.5729 (2) | 0.91164 (18) | 0.0468 (8) | |
H47 | 0.7780 | 0.5306 | 0.8996 | 0.056* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ir1 | 0.03490 (7) | 0.02715 (6) | 0.02633 (6) | −0.00467 (4) | 0.00662 (4) | −0.00016 (4) |
Cl1 | 0.0386 (4) | 0.0438 (4) | 0.0497 (4) | −0.0044 (3) | 0.0150 (3) | −0.0041 (3) |
P1 | 0.0393 (4) | 0.0284 (3) | 0.0293 (4) | −0.0065 (3) | 0.0075 (3) | −0.0017 (3) |
P2 | 0.0401 (4) | 0.0312 (4) | 0.0358 (4) | −0.0056 (3) | 0.0074 (3) | −0.0042 (3) |
N1 | 0.0393 (13) | 0.0303 (12) | 0.0270 (11) | −0.0046 (10) | 0.0074 (10) | 0.0011 (9) |
N2 | 0.0420 (14) | 0.0295 (12) | 0.0320 (12) | −0.0061 (10) | 0.0085 (11) | 0.0011 (10) |
C1 | 0.0457 (18) | 0.0408 (17) | 0.0376 (16) | 0.0004 (13) | 0.0090 (14) | 0.0047 (13) |
C2 | 0.063 (2) | 0.0413 (18) | 0.0418 (17) | 0.0032 (16) | 0.0096 (16) | 0.0115 (14) |
C3 | 0.072 (2) | 0.0458 (18) | 0.0463 (19) | −0.0085 (17) | 0.0247 (18) | 0.0100 (15) |
C4 | 0.053 (2) | 0.0519 (19) | 0.0410 (17) | −0.0136 (15) | 0.0233 (16) | −0.0014 (14) |
C5 | 0.0417 (17) | 0.0379 (16) | 0.0279 (13) | −0.0059 (12) | 0.0110 (12) | −0.0045 (12) |
C6 | 0.0394 (16) | 0.0397 (16) | 0.0334 (15) | −0.0049 (12) | 0.0092 (13) | −0.0067 (12) |
C7 | 0.0446 (19) | 0.059 (2) | 0.0473 (19) | −0.0043 (16) | 0.0167 (16) | −0.0086 (16) |
C8 | 0.047 (2) | 0.069 (2) | 0.057 (2) | 0.0124 (18) | 0.0130 (17) | −0.0148 (19) |
C9 | 0.057 (2) | 0.050 (2) | 0.055 (2) | 0.0152 (17) | 0.0033 (18) | −0.0123 (17) |
C10 | 0.0518 (19) | 0.0372 (17) | 0.0446 (17) | 0.0032 (14) | 0.0089 (15) | −0.0021 (13) |
C11 | 0.0378 (16) | 0.0347 (15) | 0.0274 (13) | −0.0005 (12) | 0.0039 (12) | −0.0074 (11) |
C12 | 0.067 (2) | 0.0370 (17) | 0.0339 (15) | −0.0143 (15) | 0.0066 (15) | 0.0024 (13) |
C13 | 0.088 (3) | 0.048 (2) | 0.0401 (18) | −0.0137 (19) | 0.0080 (18) | 0.0123 (15) |
C14 | 0.090 (3) | 0.0412 (19) | 0.064 (2) | −0.0216 (19) | 0.014 (2) | 0.0167 (17) |
C15 | 0.068 (2) | 0.0337 (17) | 0.057 (2) | −0.0173 (16) | 0.0066 (18) | 0.0020 (15) |
C16 | 0.0403 (16) | 0.0297 (14) | 0.0410 (16) | −0.0047 (12) | 0.0072 (13) | −0.0019 (12) |
C17 | 0.0378 (16) | 0.0342 (15) | 0.0379 (15) | −0.0024 (12) | 0.0084 (13) | −0.0078 (12) |
C18 | 0.0412 (17) | 0.0392 (17) | 0.055 (2) | −0.0065 (13) | 0.0065 (15) | −0.0099 (14) |
C19 | 0.0437 (19) | 0.054 (2) | 0.051 (2) | −0.0006 (16) | −0.0045 (16) | −0.0211 (16) |
C20 | 0.0482 (19) | 0.059 (2) | 0.0335 (16) | 0.0087 (16) | −0.0022 (14) | −0.0101 (15) |
C21 | 0.0437 (17) | 0.0437 (17) | 0.0348 (15) | 0.0045 (13) | 0.0075 (14) | 0.0008 (13) |
C22 | 0.0303 (14) | 0.0344 (14) | 0.0319 (14) | 0.0002 (11) | 0.0057 (12) | −0.0064 (11) |
C23 | 0.0407 (17) | 0.0386 (15) | 0.0343 (15) | −0.0089 (13) | 0.0071 (13) | −0.0098 (12) |
C24 | 0.049 (2) | 0.0446 (19) | 0.062 (2) | −0.0051 (16) | 0.0060 (17) | −0.0013 (16) |
C25 | 0.046 (2) | 0.065 (3) | 0.083 (3) | 0.0051 (19) | −0.001 (2) | −0.011 (2) |
C26 | 0.042 (2) | 0.079 (3) | 0.093 (3) | −0.014 (2) | 0.018 (2) | −0.027 (3) |
C27 | 0.057 (2) | 0.071 (3) | 0.065 (2) | −0.027 (2) | 0.026 (2) | −0.018 (2) |
C28 | 0.0501 (19) | 0.0464 (18) | 0.0431 (17) | −0.0130 (15) | 0.0137 (15) | −0.0107 (14) |
C29 | 0.0549 (19) | 0.0316 (15) | 0.0297 (14) | −0.0039 (13) | 0.0093 (14) | −0.0023 (12) |
C30 | 0.058 (2) | 0.060 (2) | 0.0440 (18) | −0.0061 (17) | 0.0199 (17) | −0.0005 (16) |
C31 | 0.082 (3) | 0.076 (3) | 0.062 (2) | −0.003 (2) | 0.039 (2) | 0.001 (2) |
C32 | 0.116 (4) | 0.089 (3) | 0.041 (2) | 0.001 (3) | 0.034 (3) | −0.004 (2) |
C33 | 0.101 (4) | 0.086 (3) | 0.0325 (19) | −0.008 (3) | 0.006 (2) | −0.0113 (19) |
C34 | 0.064 (2) | 0.059 (2) | 0.0387 (18) | −0.0119 (18) | 0.0044 (17) | −0.0041 (15) |
C35 | 0.0490 (18) | 0.0304 (14) | 0.0326 (14) | −0.0048 (13) | 0.0044 (13) | −0.0031 (12) |
C36 | 0.0453 (18) | 0.0354 (15) | 0.0380 (16) | 0.0017 (13) | 0.0100 (14) | 0.0043 (13) |
C37 | 0.059 (2) | 0.058 (2) | 0.075 (3) | −0.0176 (18) | 0.023 (2) | −0.0163 (19) |
C38 | 0.063 (3) | 0.078 (3) | 0.126 (4) | −0.016 (2) | 0.057 (3) | −0.009 (3) |
C39 | 0.080 (3) | 0.081 (3) | 0.068 (3) | 0.014 (2) | 0.042 (2) | 0.018 (2) |
C40 | 0.075 (3) | 0.094 (3) | 0.0402 (19) | 0.023 (2) | 0.0102 (19) | −0.005 (2) |
C41 | 0.048 (2) | 0.077 (2) | 0.0423 (18) | 0.0061 (18) | 0.0049 (16) | −0.0139 (17) |
C42 | 0.0420 (17) | 0.0328 (15) | 0.0411 (16) | −0.0066 (12) | 0.0113 (14) | −0.0014 (12) |
C43 | 0.069 (2) | 0.0363 (17) | 0.057 (2) | 0.0033 (16) | 0.0286 (18) | 0.0051 (15) |
C44 | 0.076 (3) | 0.049 (2) | 0.079 (3) | 0.0178 (19) | 0.032 (2) | 0.0156 (19) |
C45 | 0.072 (3) | 0.064 (2) | 0.071 (3) | 0.013 (2) | 0.026 (2) | 0.034 (2) |
C46 | 0.063 (2) | 0.067 (2) | 0.051 (2) | −0.007 (2) | 0.0206 (18) | 0.0163 (18) |
C47 | 0.050 (2) | 0.0455 (18) | 0.0477 (19) | −0.0042 (15) | 0.0173 (16) | 0.0002 (14) |
Ir1—C11 | 2.004 (3) | C20—C21 | 1.381 (4) |
Ir1—C22 | 2.032 (3) | C20—H20 | 0.9300 |
Ir1—N1 | 2.051 (2) | C21—C22 | 1.397 (4) |
Ir1—N2 | 2.062 (2) | C21—H21 | 0.9300 |
Ir1—P1 | 2.4241 (7) | C23—C24 | 1.381 (5) |
Ir1—Cl1 | 2.4866 (8) | C23—C28 | 1.394 (4) |
P1—C23 | 1.822 (3) | C24—C25 | 1.377 (5) |
P1—C35 | 1.828 (3) | C24—H24 | 0.9300 |
P1—C29 | 1.834 (3) | C25—C26 | 1.373 (6) |
P2—C36 | 1.830 (3) | C25—H25 | 0.9300 |
P2—C42 | 1.844 (3) | C26—C27 | 1.365 (6) |
P2—C35 | 1.854 (3) | C26—H26 | 0.9300 |
N1—C1 | 1.354 (4) | C27—C28 | 1.380 (5) |
N1—C5 | 1.360 (4) | C27—H27 | 0.9300 |
N2—C12 | 1.343 (4) | C28—H28 | 0.9300 |
N2—C16 | 1.362 (3) | C29—C30 | 1.376 (4) |
C1—C2 | 1.378 (4) | C29—C34 | 1.394 (4) |
C1—H1 | 0.9300 | C30—C31 | 1.384 (5) |
C2—C3 | 1.365 (5) | C30—H30 | 0.9300 |
C2—H2 | 0.9300 | C31—C32 | 1.381 (6) |
C3—C4 | 1.369 (5) | C31—H31 | 0.9300 |
C3—H3 | 0.9300 | C32—C33 | 1.367 (6) |
C4—C5 | 1.398 (4) | C32—H32 | 0.9300 |
C4—H4 | 0.9300 | C33—C34 | 1.384 (5) |
C5—C6 | 1.453 (4) | C33—H33 | 0.9300 |
C6—C7 | 1.397 (4) | C34—H34 | 0.9300 |
C6—C11 | 1.421 (4) | C35—H35A | 0.9700 |
C7—C8 | 1.372 (5) | C35—H35B | 0.9700 |
C7—H7 | 0.9300 | C36—C37 | 1.369 (4) |
C8—C9 | 1.382 (5) | C36—C41 | 1.385 (4) |
C8—H8 | 0.9300 | C37—C38 | 1.387 (5) |
C9—C10 | 1.382 (5) | C37—H37 | 0.9300 |
C9—H9 | 0.9300 | C38—C39 | 1.376 (6) |
C10—C11 | 1.391 (4) | C38—H38 | 0.9300 |
C10—H10 | 0.9300 | C39—C40 | 1.353 (6) |
C12—C13 | 1.376 (4) | C39—H39 | 0.9300 |
C12—H12 | 0.9300 | C40—C41 | 1.386 (5) |
C13—C14 | 1.367 (5) | C40—H40 | 0.9300 |
C13—H13 | 0.9300 | C41—H41 | 0.9300 |
C14—C15 | 1.370 (5) | C42—C43 | 1.384 (4) |
C14—H14 | 0.9300 | C42—C47 | 1.394 (4) |
C15—C16 | 1.395 (4) | C43—C44 | 1.382 (5) |
C15—H15 | 0.9300 | C43—H43 | 0.9300 |
C16—C17 | 1.456 (4) | C44—C45 | 1.344 (5) |
C17—C18 | 1.397 (4) | C44—H44 | 0.9300 |
C17—C22 | 1.411 (4) | C45—C46 | 1.384 (5) |
C18—C19 | 1.370 (4) | C45—H45 | 0.9300 |
C18—H18 | 0.9300 | C46—C47 | 1.372 (5) |
C19—C20 | 1.376 (5) | C46—H46 | 0.9300 |
C19—H19 | 0.9300 | C47—H47 | 0.9300 |
C11—Ir1—C22 | 91.12 (11) | C19—C20—C21 | 120.7 (3) |
C11—Ir1—N1 | 80.35 (10) | C19—C20—H20 | 119.7 |
C22—Ir1—N1 | 92.62 (10) | C21—C20—H20 | 119.7 |
C11—Ir1—N2 | 94.40 (10) | C20—C21—C22 | 121.5 (3) |
C22—Ir1—N2 | 80.07 (10) | C20—C21—H21 | 119.2 |
N1—Ir1—N2 | 170.97 (9) | C22—C21—H21 | 119.2 |
C11—Ir1—P1 | 93.75 (8) | C21—C22—C17 | 116.6 (3) |
C22—Ir1—P1 | 174.57 (8) | C21—C22—Ir1 | 129.1 (2) |
N1—Ir1—P1 | 85.83 (6) | C17—C22—Ir1 | 114.18 (19) |
N2—Ir1—P1 | 101.93 (6) | C24—C23—C28 | 117.8 (3) |
C11—Ir1—Cl1 | 175.37 (8) | C24—C23—P1 | 118.9 (2) |
C22—Ir1—Cl1 | 87.54 (8) | C28—C23—P1 | 122.8 (3) |
N1—Ir1—Cl1 | 95.27 (7) | C25—C24—C23 | 121.5 (3) |
N2—Ir1—Cl1 | 89.74 (7) | C25—C24—H24 | 119.3 |
P1—Ir1—Cl1 | 87.41 (3) | C23—C24—H24 | 119.3 |
C23—P1—C35 | 105.78 (14) | C26—C25—C24 | 120.1 (4) |
C23—P1—C29 | 104.84 (14) | C26—C25—H25 | 119.9 |
C35—P1—C29 | 100.97 (13) | C24—C25—H25 | 119.9 |
C23—P1—Ir1 | 111.90 (9) | C27—C26—C25 | 119.3 (4) |
C35—P1—Ir1 | 108.25 (9) | C27—C26—H26 | 120.3 |
C29—P1—Ir1 | 123.42 (10) | C25—C26—H26 | 120.3 |
C36—P2—C42 | 99.77 (13) | C26—C27—C28 | 121.1 (4) |
C36—P2—C35 | 105.37 (14) | C26—C27—H27 | 119.4 |
C42—P2—C35 | 97.50 (13) | C28—C27—H27 | 119.4 |
C1—N1—C5 | 119.5 (2) | C27—C28—C23 | 120.2 (3) |
C1—N1—Ir1 | 125.2 (2) | C27—C28—H28 | 119.9 |
C5—N1—Ir1 | 115.23 (18) | C23—C28—H28 | 119.9 |
C12—N2—C16 | 119.0 (2) | C30—C29—C34 | 119.2 (3) |
C12—N2—Ir1 | 126.07 (19) | C30—C29—P1 | 118.7 (2) |
C16—N2—Ir1 | 114.83 (18) | C34—C29—P1 | 121.9 (3) |
N1—C1—C2 | 121.7 (3) | C29—C30—C31 | 120.6 (4) |
N1—C1—H1 | 119.1 | C29—C30—H30 | 119.7 |
C2—C1—H1 | 119.1 | C31—C30—H30 | 119.7 |
C3—C2—C1 | 119.5 (3) | C32—C31—C30 | 119.7 (4) |
C3—C2—H2 | 120.3 | C32—C31—H31 | 120.2 |
C1—C2—H2 | 120.3 | C30—C31—H31 | 120.2 |
C2—C3—C4 | 119.2 (3) | C33—C32—C31 | 120.3 (4) |
C2—C3—H3 | 120.4 | C33—C32—H32 | 119.8 |
C4—C3—H3 | 120.4 | C31—C32—H32 | 119.8 |
C3—C4—C5 | 120.7 (3) | C32—C33—C34 | 120.1 (4) |
C3—C4—H4 | 119.6 | C32—C33—H33 | 119.9 |
C5—C4—H4 | 119.6 | C34—C33—H33 | 119.9 |
N1—C5—C4 | 119.1 (3) | C33—C34—C29 | 120.1 (4) |
N1—C5—C6 | 114.3 (2) | C33—C34—H34 | 120.0 |
C4—C5—C6 | 126.5 (3) | C29—C34—H34 | 120.0 |
C7—C6—C11 | 121.1 (3) | P1—C35—P2 | 119.78 (16) |
C7—C6—C5 | 123.8 (3) | P1—C35—H35A | 107.4 |
C11—C6—C5 | 115.1 (3) | P2—C35—H35A | 107.4 |
C8—C7—C6 | 120.4 (3) | P1—C35—H35B | 107.4 |
C8—C7—H7 | 119.8 | P2—C35—H35B | 107.4 |
C6—C7—H7 | 119.8 | H35A—C35—H35B | 106.9 |
C7—C8—C9 | 119.2 (3) | C37—C36—C41 | 117.8 (3) |
C7—C8—H8 | 120.4 | C37—C36—P2 | 126.5 (3) |
C9—C8—H8 | 120.4 | C41—C36—P2 | 115.4 (2) |
C8—C9—C10 | 121.0 (3) | C36—C37—C38 | 121.6 (4) |
C8—C9—H9 | 119.5 | C36—C37—H37 | 119.2 |
C10—C9—H9 | 119.5 | C38—C37—H37 | 119.2 |
C9—C10—C11 | 121.7 (3) | C39—C38—C37 | 119.4 (4) |
C9—C10—H10 | 119.1 | C39—C38—H38 | 120.3 |
C11—C10—H10 | 119.1 | C37—C38—H38 | 120.3 |
C10—C11—C6 | 116.5 (3) | C40—C39—C38 | 120.0 (4) |
C10—C11—Ir1 | 129.5 (2) | C40—C39—H39 | 120.0 |
C6—C11—Ir1 | 114.0 (2) | C38—C39—H39 | 120.0 |
N2—C12—C13 | 122.8 (3) | C39—C40—C41 | 120.3 (4) |
N2—C12—H12 | 118.6 | C39—C40—H40 | 119.9 |
C13—C12—H12 | 118.6 | C41—C40—H40 | 119.9 |
C14—C13—C12 | 118.8 (3) | C36—C41—C40 | 120.9 (4) |
C14—C13—H13 | 120.6 | C36—C41—H41 | 119.6 |
C12—C13—H13 | 120.6 | C40—C41—H41 | 119.6 |
C13—C14—C15 | 119.2 (3) | C43—C42—C47 | 117.5 (3) |
C13—C14—H14 | 120.4 | C43—C42—P2 | 123.0 (2) |
C15—C14—H14 | 120.4 | C47—C42—P2 | 119.4 (2) |
C14—C15—C16 | 120.8 (3) | C44—C43—C42 | 120.4 (3) |
C14—C15—H15 | 119.6 | C44—C43—H43 | 119.8 |
C16—C15—H15 | 119.6 | C42—C43—H43 | 119.8 |
N2—C16—C15 | 119.3 (3) | C45—C44—C43 | 121.3 (4) |
N2—C16—C17 | 115.5 (2) | C45—C44—H44 | 119.3 |
C15—C16—C17 | 125.2 (3) | C43—C44—H44 | 119.3 |
C18—C17—C22 | 121.3 (3) | C44—C45—C46 | 119.7 (3) |
C18—C17—C16 | 123.9 (3) | C44—C45—H45 | 120.2 |
C22—C17—C16 | 114.7 (2) | C46—C45—H45 | 120.2 |
C19—C18—C17 | 119.9 (3) | C47—C46—C45 | 119.7 (3) |
C19—C18—H18 | 120.0 | C47—C46—H46 | 120.2 |
C17—C18—H18 | 120.0 | C45—C46—H46 | 120.2 |
C18—C19—C20 | 119.9 (3) | C46—C47—C42 | 121.3 (3) |
C18—C19—H19 | 120.1 | C46—C47—H47 | 119.3 |
C20—C19—H19 | 120.1 | C42—C47—H47 | 119.3 |
C5—N1—C1—C2 | −3.1 (4) | C35—P1—C23—C28 | −21.3 (3) |
Ir1—N1—C1—C2 | 175.3 (2) | C29—P1—C23—C28 | −127.5 (2) |
N1—C1—C2—C3 | −1.0 (5) | Ir1—P1—C23—C28 | 96.4 (2) |
C1—C2—C3—C4 | 2.3 (5) | C28—C23—C24—C25 | −0.2 (5) |
C2—C3—C4—C5 | 0.3 (5) | P1—C23—C24—C25 | 171.8 (3) |
C1—N1—C5—C4 | 5.6 (4) | C23—C24—C25—C26 | −0.4 (6) |
Ir1—N1—C5—C4 | −172.9 (2) | C24—C25—C26—C27 | 0.8 (6) |
C1—N1—C5—C6 | −173.3 (3) | C25—C26—C27—C28 | −0.6 (6) |
Ir1—N1—C5—C6 | 8.1 (3) | C26—C27—C28—C23 | 0.0 (5) |
C3—C4—C5—N1 | −4.3 (4) | C24—C23—C28—C27 | 0.4 (5) |
C3—C4—C5—C6 | 174.5 (3) | P1—C23—C28—C27 | −171.3 (2) |
N1—C5—C6—C7 | 176.2 (3) | C23—P1—C29—C30 | −168.8 (3) |
C4—C5—C6—C7 | −2.6 (5) | C35—P1—C29—C30 | 81.4 (3) |
N1—C5—C6—C11 | −1.6 (4) | Ir1—P1—C29—C30 | −39.2 (3) |
C4—C5—C6—C11 | 179.6 (3) | C23—P1—C29—C34 | 17.0 (3) |
C11—C6—C7—C8 | 1.2 (5) | C35—P1—C29—C34 | −92.8 (3) |
C5—C6—C7—C8 | −176.5 (3) | Ir1—P1—C29—C34 | 146.5 (2) |
C6—C7—C8—C9 | 1.5 (5) | C34—C29—C30—C31 | 1.5 (5) |
C7—C8—C9—C10 | −2.3 (5) | P1—C29—C30—C31 | −172.9 (3) |
C8—C9—C10—C11 | 0.3 (5) | C29—C30—C31—C32 | −1.2 (6) |
C9—C10—C11—C6 | 2.3 (4) | C30—C31—C32—C33 | 0.2 (7) |
C9—C10—C11—Ir1 | −177.0 (2) | C31—C32—C33—C34 | 0.5 (7) |
C7—C6—C11—C10 | −3.1 (4) | C32—C33—C34—C29 | −0.2 (6) |
C5—C6—C11—C10 | 174.9 (3) | C30—C29—C34—C33 | −0.8 (5) |
C7—C6—C11—Ir1 | 176.3 (2) | P1—C29—C34—C33 | 173.4 (3) |
C5—C6—C11—Ir1 | −5.8 (3) | C23—P1—C35—P2 | −56.6 (2) |
C16—N2—C12—C13 | −2.7 (5) | C29—P1—C35—P2 | 52.4 (2) |
Ir1—N2—C12—C13 | −179.5 (3) | Ir1—P1—C35—P2 | −176.66 (14) |
N2—C12—C13—C14 | 0.4 (6) | C36—P2—C35—P1 | −93.0 (2) |
C12—C13—C14—C15 | 0.6 (6) | C42—P2—C35—P1 | 164.65 (18) |
C13—C14—C15—C16 | 0.6 (6) | C42—P2—C36—C37 | 76.6 (3) |
C12—N2—C16—C15 | 3.9 (4) | C35—P2—C36—C37 | −24.0 (3) |
Ir1—N2—C16—C15 | −179.0 (2) | C42—P2—C36—C41 | −97.0 (3) |
C12—N2—C16—C17 | −174.2 (3) | C35—P2—C36—C41 | 162.4 (2) |
Ir1—N2—C16—C17 | 3.0 (3) | C41—C36—C37—C38 | −0.6 (5) |
C14—C15—C16—N2 | −2.9 (5) | P2—C36—C37—C38 | −174.1 (3) |
C14—C15—C16—C17 | 174.9 (3) | C36—C37—C38—C39 | 1.0 (7) |
N2—C16—C17—C18 | −178.7 (3) | C37—C38—C39—C40 | 0.5 (7) |
C15—C16—C17—C18 | 3.4 (5) | C38—C39—C40—C41 | −2.4 (6) |
N2—C16—C17—C22 | 3.7 (4) | C37—C36—C41—C40 | −1.3 (5) |
C15—C16—C17—C22 | −174.2 (3) | P2—C36—C41—C40 | 172.9 (3) |
C22—C17—C18—C19 | 2.3 (5) | C39—C40—C41—C36 | 2.8 (6) |
C16—C17—C18—C19 | −175.2 (3) | C36—P2—C42—C43 | 16.7 (3) |
C17—C18—C19—C20 | −0.4 (5) | C35—P2—C42—C43 | 123.8 (3) |
C18—C19—C20—C21 | −0.9 (5) | C36—P2—C42—C47 | −166.7 (2) |
C19—C20—C21—C22 | 0.4 (5) | C35—P2—C42—C47 | −59.6 (3) |
C20—C21—C22—C17 | 1.4 (4) | C47—C42—C43—C44 | 0.6 (5) |
C20—C21—C22—Ir1 | −174.3 (2) | P2—C42—C43—C44 | 177.3 (3) |
C18—C17—C22—C21 | −2.7 (4) | C42—C43—C44—C45 | −0.6 (6) |
C16—C17—C22—C21 | 175.0 (3) | C43—C44—C45—C46 | 1.0 (7) |
C18—C17—C22—Ir1 | 173.6 (2) | C44—C45—C46—C47 | −1.5 (6) |
C16—C17—C22—Ir1 | −8.7 (3) | C45—C46—C47—C42 | 1.5 (5) |
C35—P1—C23—C24 | 167.1 (2) | C43—C42—C47—C46 | −1.1 (5) |
C29—P1—C23—C24 | 60.9 (3) | P2—C42—C47—C46 | −177.9 (3) |
Ir1—P1—C23—C24 | −75.2 (3) |
Cg6, Cg8 and Cg10 are the centroids of the C17–C22, C29–C34 and C42–C47 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···Cl1 | 0.93 | 2.73 | 3.357 (3) | 126 |
C14—H14···Cl1i | 0.93 | 2.77 | 3.548 (4) | 142 |
C30—H30···Cl1 | 0.93 | 2.84 | 3.664 (4) | 148 |
C35—H35A···Cl1 | 0.97 | 2.83 | 3.460 (3) | 124 |
C3—H3···Cg6ii | 0.93 | 2.83 | 3.572 (4) | 137 |
C26—H26···Cg10iii | 0.93 | 2.79 | 3.575 (5) | 143 |
C38—H38···C10iii | 0.93 | 2.81 | 3.659 (5) | 153 |
C40—H40···Cg8iv | 0.93 | 2.95 | 3.711 (5) | 140 |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+3/2, y+1/2, −z+3/2; (iii) −x+2, −y+1, −z+2; (iv) −x+3/2, y+1/2, −z+5/2. |
Acknowledgements
We are grateful to the Division of Physical Science, Faculty of Science, Prince of Songkla University, for research facilities.
Funding information
NL acknowledges financial support from the Thailand Research Fund (TRF), Office of the Higher Education Commission and Prince of Songkla University under contract number MRG 5580109 as well as the financial support from the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Ministry of Higher Education, Science, Research and Innovation.
References
Alam, P., Laskar, I. R., Climent, C., Casanova, D., Alemany, P., Karanam, M., Choudhury, A. R. & Raymond Butcher, J. (2013). Polyhedron, 53, 286–294. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2003). SMART, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, Z.-Q., Shen, X., Xu, J.-X., Zou, H., Wang, X., Xu, Y. & Zhu, D.-R. (2015). Inorg. Chem. Commun. 61, 152–156. Web of Science CSD CrossRef CAS Google Scholar
Chi, Y. & Chou, P. T. (2010). Chem. Soc. Rev. 39, 638–655. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Goldsmith, J. I., Hudson, W. R., Lowry, M. S., Anderson, T. H. & Bernhard, S. (2005). J. Am. Chem. Soc. 127, 7502–7510. Web of Science CrossRef PubMed CAS Google Scholar
Hao, L., Li, Z. W., Zhang, D. Y., He, L., Liu, W., Yang, J., Tan, C. P., Ji, L. N. & Mao, Z. W. (2019). Chem. Sci. 10, 1285–1293. Web of Science CSD CrossRef CAS PubMed Google Scholar
Hearn, J. M., Hughes, G. M., Romero-Canelón, I., Munro, A. F., Rubio-Ruiz, B., Liu, Z., Carragher, N. O. & Sadler, P. J. (2018). Metallomics, 10, 93–107. Web of Science CrossRef CAS PubMed Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Huynh, L., Wang, Z., Yang, J., Stoeva, V., Lough, A., Manners, I. & Winnik, M. A. (2005). Chem. Mater. 17, 4765–4773. Web of Science CSD CrossRef CAS Google Scholar
Jian, Y., Peng, S., Li, X., Wen, X., He, J., Jiang, L. & Dang, Y. (2011). Inorg. Chim. Acta, 368, 37–43. Web of Science CSD CrossRef CAS Google Scholar
Lee, S., Park, K.-M., Yang, K. & Kang, Y. (2009). Inorg. Chem. 48, 1030–1037. Web of Science CSD CrossRef PubMed CAS Google Scholar
Lin, C. H., Chi, Y., Chung, M. W., Chen, Y. J., Wang, K. W., Lee, G. H., Chou, P. T., Hung, W. Y. & Chiu, H. C. (2011). Dalton Trans. 40, 1132–1143. Web of Science CSD CrossRef CAS PubMed Google Scholar
Liu, Z., Li, J., Ge, X., Zhang, S., Xu, Z. & Gao, W. (2019). J. Inorg. Biochem. 197, 110703. Web of Science CSD CrossRef PubMed Google Scholar
Lowry, M. S. & Bernhard, S. (2006). Chem. Eur. J. 12, 7970–7977. Web of Science CrossRef PubMed CAS Google Scholar
Lowry, M. S., Hudson, W. R., Pascal, R. A. & Bernhard, S. (2004). J. Am. Chem. Soc. 126, 14129–14135. Web of Science CrossRef PubMed CAS Google Scholar
Luo, S.-X., Wei, L., Zhang, X.-H., Lim, M. H., Lin, K. X. V., Yeo, M. H. V., Zhang, W.-H., Liu, Z.-P., Young, D. J. & Hor, T. S. A. (2013). Organometallics, 32, 2908–2917. Web of Science CSD CrossRef CAS Google Scholar
Ma, A.-F., Seo, H.-J., Jin, S.-H., Ung, C., Yoon, M., Ho, H., Kang, S. & Kim, Y.-I. (2009). Bull. Korean Chem. Soc. 30, 2754–2758. CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nishikitani, Y., Cho, T., Uchida, S., Nishimura, S., Oyaizu, K. & Nishide, H. (2018). ChemPlusChem, 83, 463-469. Web of Science CrossRef CAS PubMed Google Scholar
Rubio, A. R., Fidalgo, J., Martin-Vargas, J., Pérez-Arnaiz, C., Alonso-Torre, S. R., Biver, T., Espino, G., Busto, N. & García, B. (2020). J. Inorg. Biochem. 203, 110885. Web of Science CrossRef PubMed Google Scholar
SciFinder (2020). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed November 26, 2020). Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shen, X., Wang, F.-L., Sun, F., Zhao, R., Wang, X., Jing, S., Xu, Y. & Zhu, D.-R. (2011). Inorg. Chem. Commun. 14, 1511–1515. Web of Science CSD CrossRef CAS Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Tamayo, A. B., Alleyne, B. D., Djurovich, P. I., Lamansky, S., Tsyba, I., Ho, N. N., Bau, R. & Thompson, M. E. (2003). Inorg. Chem. Commun. 125, 7377–7387. CAS Google Scholar
Tsuboyama, A., Iwawaki, H., Furugori, M., Mukaide, T., Kamatani, J., Igawa, S., Moriyama, T., Miura, S., Takiguchi, T., Okada, S., Hoshino, M. & Ueno, K. (2003). J. Am. Chem. Soc. 125, 12971–12979. Web of Science CSD CrossRef PubMed CAS Google Scholar
Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. The University of Western Australia. Google Scholar
Wang, Y., Teng, F., Tang, A., Wang, Y. & Xu, X. (2005). Acta Cryst. E61, m778–m780. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xiao, Q., Zhao, Z., Lin, K. & Wang, J. (2018). Inorg. Chem. Commun. 94, 75–79. Web of Science CrossRef CAS Google Scholar
Xu, M., Li, W., An, Z., Zhou, Q. & Wang, G. (2005). Appl. Organomet. Chem. 19, 1225–1231. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.