research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and structures of two benzoyl amides: 2-chloro-4-eth­­oxy-3,5-dimeth­­oxy-N-(3-oxo­cyclo­hex-1-en-1-yl)benzamide and 2-chloro-N-(5,5-di­methyl-3-oxo­cyclo­hex-1-en-1-yl)-4-eth­­oxy-3,5-di­meth­­oxy­benzamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Natural Sciences, Bowie State University, 14000 Jericho Park Road, Bowie, MD 20715-9465, USA, and bDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA
*Correspondence e-mail: ajanderson@bowiestate.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 January 2021; accepted 13 February 2021; online 26 February 2021)

The first title benzoyl amide, C17H20ClNO5 (3a), crystallizes in the monoclinic space group P21/c with Z = 4 and the second, C19H24ClNO5 (3b), also crystallizes in P21/c with Z = 8 (Z′ = 2), thus there are two independent mol­ecules in the asymmetric unit. In 3a, the phenyl ring makes a dihedral angle of 50.8 (3)° with the amide moiety with the C=O group on the same side of the mol­ecule as the C—Cl group. One meth­oxy group is almost in the plane of the benzene ring, while the eth­oxy and other meth­oxy substituent are arranged on opposite sides of the ring with the eth­oxy group occupying the same side of the ring as the C=O group in the amide moiety. For one of the two mol­ecules in 3b, both the amide and 5,5-dimethyl-3-oxo­cyclo­hex-1-en-1-yl moieties are disordered over two sets of sites with occupancies of 0.551 (2)/0.449 (2) with the major difference between the two conformers being due to the conformation adopted by the cyclo­hex-2-en-1-one ring. The three mol­ecules in 3b (i.e., the undisordered mol­ecule and the two disorder components) differ in the arrangement of the subsituents on the phenyl ring and the conformation adopted by their 5,5-dimethyl-3-oxo­cyclo­hex-1-en-1-yl moieties. In the crystal of 3a, N—H⋯O hydrogen bonds link the mol­ecules into a zigzag chain propagating in the [001] direction. For 3b a combination of C—H⋯O and N—H⋯O inter­molecular inter­actions link the mol­ecules into a zigzag ribbon propagating in the [001] direction.

1. Chemical context

Enamino­nes are compounds in which a nitro­gen atom is conjugated through a carbon–carbon double bond to an ester (vinyl­ogous urethane) or a ketone (vinyl­ogous amide) functional group (see Scheme). Enamino­nes may be viewed as amides into which a vinyl fragment has been inter­polated. Designations often used, such as enamino ketone or β-amino-α, β-unsaturated ketone, are misleading in that the compounds rarely exhibit the physical properties normally associated with ketones. Enamino­nes, compounds possessing the structural unit NH2—C=C—C=O, are versatile synthetic inter­mediates that combine the ambient nucleophilicity of enamines with the ambient electrophilicity of enones (Greenhill, 1976[Greenhill, J. V. (1976). J. Chem. Soc. Perkin Trans. 1, pp. 2207-2210.]; Lue & Greenhill, 1996[Lue, P. & Greenhill, J. V. (1996). Adv. Heterocycl. Chem. 67, 207-343.]).

β-Enamino­nes may be used in the synthesis of many bioactive mol­ecules with a heterocyclic unit. Enamino­nes as inter­mediates are responsible for a wide range of therapeutic agents from both natural and synthetic sources including taxol, anti­convulsants, anti-inflammatories, and duocarmycin, and consequently have been the subject of numerous structural bioactivity investigations in recent times (Misra et al., 2008[Misra, R., Bhattacharyya, S. & Maity, D. K. (2008). Chem. Phys. Lett. 458, 54-57.]; Greenhill, 1977[Greenhill, J. V. (1977). Chem. Soc. Rev. 6, 277-294.]; Boger et al., 1989[Boger, D. L., Ishizaki, T., Wysocki, J. R., Munk, S. A., Kitos, P. A. & Suntornwat, O. (1989). J. Am. Chem. Soc. 111, 6461-6463.]; Eddington et al., 2003[Eddington, N. D., Cox, D. S., Khurana, M., Salama, N. N., Stables, J. P., Harrison, S. J., Negussie, A., Taylor, R. S., Tran, U. Q., Moore, J. A., Barrow, J. C. & Scott, K. R. (2003). Eur. J. Med. Chem. 38, 49-64.]; Stoltz et al., 2016[Stoltz, B. M., Dougherty, D. A., Duquette, D. & Duffy, N. (2016). US Patent US 9,518,034 B2.]; Jerach & Elassar, 2015[Jerach, B. & Elassar, A.-Z. A. (2015). Chemical Science Transactions, 4, 113-120.]; Kalita et al., 2017[Kalita, U., Kaping, S., Nongkynrih, R., Boiss, I., Singha, L. I. & Vishwakarma, J. N. (2017). Monatsh. Chem. 148, 2155-2171.]). In spite of the breadth of research related to the biological properties of enamino­nes, recent research also indicates that enamino­nes, particularly the cyclic 3-(phenyl­amino)-2-cyclo­hexen-1-one (PACO), contain spectroscopic signatures of intra­molecular charge transfer (ICT), making cyclic enamino­nes ideal components for mol­ecules that mimic natural photosynthetic energy and electron transfer (Lue & Greenhill, 1996[Lue, P. & Greenhill, J. V. (1996). Adv. Heterocycl. Chem. 67, 207-343.]). A later study conducted in 2009 concluded that PACO has a low lying strongly polar singlet excited state with significant intra­molecular charge transfer (Misra et al., 2009[Misra, R., Mandal, A., Mukhopadhyay, M., Maity, D. K. & Bhattacharyya, S. P. (2009). J. Phys. Chem. B, 113, 10779-10791.]).

We herein describe the synthesis and structural characterization of the title benzoyl amides 2-chloro-4-eth­oxy-3,5-dimeth­oxy-N-3-oxo­cyclo­hex-1-en-1-yl)benzamide, 3a and 2-chloro-N-(5,5-dimethyl-3-oxo­cyclo­hex-1-en-1-yl)-4-eth­oxy-3,5-di­meth­oxy­benzamide, 3b developed in connection with an ongoing research inter­est.

[Scheme 1]

2. Structural commentary

In view of the bioactivity of enamino­nes, the conformation adopted by a mol­ecule is crucial to its activity. Thus an analysis of this for both mol­ecules is appropriate. The benzoyl amide, C17H20ClNO5 (3a), crystallizes in the monoclinic space group P21/c with Z = 4. The compound is the result of the condensation of the enaminone 1a with the acid chloride 2. In the case of 3a (Fig. 1[link]), the central phenyl ring makes a dihedral angle of 50.8 (3)° with the amide moiety; with the C=O group on the same side of the mol­ecule as the C—Cl group; in the 3-oxo­cyclo­hex-1-en-1-yl group the C=O moiety is on the same side with respect to the phenyl ring [the pseudo torsion angle for O4—C11⋯C14—O5 = 21.8 (1)°]. One of the meth­oxy groups (O3—C10) attached to the C1–C6 benzene ring is close to the plane of the ring [torsion angle between the ring and C5—O3—C10 = 17.72 (2)°], while the eth­oxy and the other meth­oxy substituent are arranged on opposite sides of the ring with the eth­oxy group occupying the same side of the ring as the C=O group in the amide moiety [C8—O2⋯C11—O4 = −44.0 (1) and C7—O1⋯C11—O4 = 123.6 (1)°]. The extended conformation of the eth­oxy group with respect to the ring is shown by a torsion angle of −170.8 (1)° for C4—O2—C8—C9.

[Figure 1]
Figure 1
The mol­ecular structure of 3a with atom labeling and with atomic displacement parameters shown at the 30% probability level.

The benzoyl amide, C19H24ClNO5 (3b), crystallizes in the monoclinic space group P21/c with Z = 8 (Z′ = 2), thus there are two independent mol­ecules in the asymmetric unit. The compound is the result of the condensation of the enaminone 1b with the acid chloride 2. For one of the two mol­ecules, both the amide and 5,5-dimethyl-3-oxo­cyclo­hex-1-en-1-yl moieties are disordered over two inequivalent conformations with occupancies of 0.551 (2)/0.449 (2). The major difference between the two conformers is due to the conformation adopted by the cyclo­hex-2-en-1-one ring (vide infra).

The conformations of both independent mol­ecules will be discussed separately and then comparisons will be made between the conformation of 3a and the two mol­ecules of 3b in which, due to disorder, one has adopted two different conformations. For simplicity, these will be called 3ba, 3bb and 3bc (where 3bb and 3bc are the major and minor components, respectively, of the disordered mol­ecule). For 3ba (Fig. 2[link]) the central phenyl ring makes a dihedral angle of 54.5 (3)° with the amide moiety with the C=O group on the opposite side of the mol­ecule as the C—Cl group in contrast to the situation in 3a (this is illustrated by the respective C2—C1⋯C11—O4 torsion angles of 47.2 (2) and −129.5 (2) for 3a and 3ba, respectively). In both the amide moiety and the 3-oxo­cyclo­hex-1-en-1-yl group, the C=O moiety is on the same side [the torsion angle for O4A—C11A⋯C14A—O5A = −17.5 (1)°]. For the substituents on the phenyl ring, one meth­oxy group is almost coplanar with the ring [torsion angle between the ring and C5A—O3A—C10A = 3.5 (2)°] while in contrast to the situation in 3a, both the other meth­oxy and eth­oxy substituents are on the same side of the ring [torsion angles for C7A—O1A⋯C11A—O4A and C8A—O2A⋯C11A—O4A = −32.4 (2) and −6.4 (2)°, respectively]. The conformation of the eth­oxy substituent is different than that in 3a in that it has not adopted a fully extended aspect [C4A—O2A—C8A—C9A = −148.77 (16)].

[Figure 2]
Figure 2
The mol­ecular structure of 3ba with atom labeling and with atomic displacement parameters shown at the 30% probability level.

As indicated above, 3bb and 3bc are the major and minor components of the disordered 5,5-dimethyl-3-oxo­cyclo­hex-1-en-1-yl moieties with occupancies of 0.551 (2)/0.449 (2) (Fig. 3[link]). The difference in the conformation of this group can be seen by the torsion angles for the C12—C17—C16—C15 grouping in 3a, 3ba, 3bb and 3bc of −48.67 (17), 50.11 (15), −51.7 (7) and 53.9 (10)°, respectively. From this it can be seen that for this moiety, 3a and 3bb have a similar conformation and 3ba and 3bc also have a similar conformation. For 3bb, the central phenyl ring makes a dihedral angle of 55.8 (9)° with the amide moiety with the C=O group on the opposite side of the mol­ecule as the C—Cl group [torsion angle for C2B—C1B⋯C11B—O4B = −122.81 (13)]. In both the amide moiety and the 3-oxo­cyclo­hex-1-en-1-yl group, the C=O moiety is on the same side [O4B—C11B⋯C14B—O5B = 13.7 (2)°]. For the substituents on the phenyl ring, one meth­oxy group is almost coplanar with the ring [torsion angle between ring and meth­oxy group of 2.3 (2)] while the other meth­oxy group and eth­oxy groups are on opposite sides of the ring [torsion angles for C7B—O1B⋯C11B—O4B and C8B—O2B⋯C11B—O4B = 165.4 (2) and −46.6 (2)°, respectively]. The conformation of the eth­oxy substituent is different than that in 3a in that it has not adopted an extended aspect [C4B—O2B—C8B—C9B = 67.92 (16)°].

[Figure 3]
Figure 3
The mol­ecular structure of the disordered mol­ecule in 3b showing both disorder components (3bb and 3bc) with atom labeling and with atomic displacement parameters shown at the 30% probability level.

Both 3bb and 3bc retain the same (undisordered) phenyl moiety and the only differences are in the conformation of the 5,5-dimethyl-3-oxo­cyclo­hex-1-en-1-yl moiety, thus in discussing this mol­ecule we only have to consider the amide moiety and the 3-oxo­cyclo­hex-1-en-1-yl group where the C=O moiety is on the same side [O4B—C11B⋯C14C—O5C = −9.1 (2)°].

3. Supra­molecular features

For 3a, N—H⋯O hydrogen bonds (Table 1[link]) link the mol­ecules into a zigzag chain propagating in the [001] direction as shown in Fig. 4[link]. For 3b, a combination of C—H⋯O and N—H⋯O inter­molecular inter­actions (Table 2[link]) link the mol­ecules into a zigzag ribbon propagating in the [001] direction (Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °) for 3a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O5i 0.844 (18) 2.098 (18) 2.9410 (15) 177.1 (16)
C7—H7A⋯Cl1ii 0.98 2.86 3.7022 (16) 145
C7—H7A⋯O4ii 0.98 2.48 3.293 (2) 140
C9—H9A⋯O4iii 0.98 2.53 3.470 (2) 161
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x, -y+1, -z+1].

Table 2
Hydrogen-bond geometry (Å, °) for 3b[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AA⋯O5B 0.853 (16) 2.040 (18) 2.849 (8) 158.1 (15)
N1A—H1AA⋯O5C 0.853 (16) 2.081 (19) 2.909 (9) 163.5 (15)
C7A—H7AA⋯O2Bi 0.98 2.44 3.3451 (17) 153
C8A—H8AB⋯Cl1Aii 0.99 2.92 3.703 (2) 137
C17A—H17A⋯O5B 0.99 2.42 3.285 (7) 146
C17A—H17A⋯O5C 0.99 2.63 3.481 (8) 144
C10B—H10F⋯O4Aiii 0.98 2.46 3.4013 (15) 161
N1B—H1BA⋯O5Aiv 0.77 (5) 2.31 (5) 2.985 (10) 147 (5)
N1C—H1CA⋯O5Aiv 0.88 (5) 1.96 (4) 2.795 (12) 159 (4)
C17C—H17E⋯O5Aiv 0.99 2.54 3.364 (3) 141
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, -y+2, -z+1]; (iii) [-x+1, -y+2, -z+1]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 4]
Figure 4
Packing diagram for 3a viewed along the b axis showing the mol­ecules linked by N—H⋯O hydrogen bonds (shown by dashed bonds) into chains propagating in the [001] direction
[Figure 5]
Figure 5
Packing diagram for 3b viewed along the a axis showing the mol­ecules linked by both C—H⋯O and C—H⋯Cl inter­actions as well as N—H⋯O hydrogen bonds (all shown by dashed bonds) into chains propagating in the [001] direction

4. Database survey

A survey of the Cambridge Structural Database for similar compounds did not provide any hits. Even if the mol­ecules are broken up into two components, one based on the tris­ubstituted phenyl ring and the other on the cyclo­hexene ring no hits for the former and only one hit for the latter fragment is obtained [Cambridge Structural Database refcode MOLPUA (Meng et al., 2014[Meng, L.-H., Li, X.-M., Lv, C.-T., Huang, C.-G. & Wang, B. G. (2014). J. Nat. Prod. 77, 1921-1927.])]. Even in this structure the only similar chromophore is the cyclo­hex-2-ene-1-one fragment, but with the double bond in a different position in the ring. For similar structures to this fragment but containing a cyclo­hexane ring there are DOSDOE, DOSBUK (Romney et al., 2014[Romney, D. K., Colvin, S. M. & Miller, S. J. (2014). J. Am. Chem. Soc. 136, 14019-14022.]) and KAVDAP (Alford et al., 2016[Alford, J. S., Abascal, N. C., Shugrue, C. R., Colvin, S. M., Romney, D. K. & Miller, S. J. (2016). ACS Cent. Sci. 2, 733-739.]).

5. Synthesis and crystallization

The methodology involves N-deprotonation of the commercially available enamino­nes 1a,b with sodium hydride followed by benzoyl­ation of 2 to give the title benzoyl amides 3a,b in 54% and 51% yield, respectively, from a method previously reported (see Scheme 1; Anderson et al., 2004[Anderson, A. J., Nicholson, J. M., Bakare, O., Butcher, R. J. & Scott, K. R. (2004). J. Comb. Chem. 6, 950-954.]). Benzoyl chloride 2 was prepared via chlorination of commercially available 4 under previously reported conditions (Zheng et al., 2011[Zheng, F. L., Ban, S. R., Feng, X. E., Zhao, C. X., Lin, W. & Li, Q. S. (2011). Molecules, 16, 4897-4911.]).

Preparation of 2-chloro-4-eth­oxy-3,5-di­meth­oxy­benzoyl chloride (2)

A solution of commercially available 2-chloro-4-eth­oxy-3,5-di­meth­oxy­benzoic acid, 4 (2.07 g, 7.7 mmol), and a catalytic amount of DMF in thionyl chloride (5 ml) was stirred at 353–363 K for 3 h to give the crude acid chloride 2. The mixture was concentrated under reduced pressure and used without any further purification. 1H NMR: (400 MHz, DMSO): δ 1.40–1.45 (3H, t, CH3), δ 3.03 (3H, s, CH3), δ 3.19 (3H, s, CH3), 4.21–4.28 (2H, q, CH2), 7.48 (H, s, aromatic H).

Preparation of 2-chloro-4-eth­oxy-3,5-dimeth­oxy-N-(3-oxo­cyclo­hex-1-en-1-yl)benzamide (3a)

The enaminone, 1a (0.799 g, 7.2 mmol), under an inert atmosphere, was stirred in a solution of NaH (0.391 g, 17.2 mmol) in dry THF (40 ml) maintaining the temperature below 293 K. The reaction was refluxed for 20 minutes, cooled to room temperature and stirred on an ice-bath for 5 minutes before a solution of benzoyl chloride 2 (2.09 g, 7.5 mmol) in dry THF (10 ml) was added dropwise over 5 minutes. After stirring at room temperature for a further 10 minutes, the mixture was quenched with concentrated hydro­chloric acid (∼5 ml) and diluted with di­chloro­methane (25 ml). The mixture was transferred to a separatory funnel and washed successively with water (25 ml), 10% NaHCO3 and with water again. The organic layer was dried over sodium sulfate and concentrated in vacuo. The crude residue was purified by column chromatography (silica gel, EtOAc:hexa­nes = 5:5) to give compound 3a (1.37 g, 54%) as a faint yellow solid. (m.p. = 417–418 K) Rf (EtOAc:hexa­nes 7:3) 1H NMR: (400 MHz, DMSO): 1.01 (6H, s, 2 × CH3), δ 1.27–1.32 (3H, t, CH3), 2.16 (2H, m, CH2), 2.43 (2H, t, CH2), 3.83 (6H, s, 2 × CH3), δ4.01–4.07 (2H, quart, CH2), δ 6.70 (H, s, CH), 7.04 (H, s, aromatic H), 10.25 (H, s, NH) ppm; 13C NMR (DMSO) δ 198.60, 165.69, 154.02, 152.27, 149.54, 142.88, 131.24, 115.82, 110.15, 107.81, 68.80, 60.83, 56.32, 49.96, 40.85, 32.13, 27.73, 15.35 ppm.

Preparation of 2-chloro-N-(5,5-dimethyl-3-oxo­cyclo­hex-1-en-1-yl)-4-eth­oxy-3,5-δi­meth­oxy­benzamide (3b)

The same synthesis and purification method as for 3a was used to prepare 3b except that 1.00 g (7.2 mmol) of the enaminone 1b replaced 1a: this gave compound 3b (1.40 g, 51%) as a light white solid. (m.p. = 331–332 K) Rf (EtOAc:hexa­nes 7:3) 1H NMR: (400 MHz, DMSO): δ 1.27–1.32 (3H, t, CH3), δ 1.8.7–1.95 (2H, quintet, CH2), 2.22–2.29 (2H, t, CH2), 3.32 (6, s, 2 × CH3, slight long-range coupling noticed), δ 4.00–4.06 (2H, quart, CH2), δ 6.71 (H, s, CH), 7.04 (H, s, aromatic H), 10.30 (H, s, NH) ppm; 13C NMR (DMSO) δ 198.62, 165.56, 156.14, 152.27, 149.55, 142.85, 131.27, 115.77, 110.76, 107.76, 68.80, 60.83, 56.32, 49.96, 40.85, 32.13, 27.73, 21.11, 15.35 ppm.

For both 3a and 3b crystals were grown from a 2:1 ethanol:water mixed solvent system.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The N-bound H atoms were located in difference maps and their positions were freely refined. A riding model was used for the H atoms attached to C with C—H distances ranging from 0.95 to 0.99 Å and Uiso(H) = 1.2Ueq(C) [1.5Ueq(CH3)]. For 3b there are two independent mol­ecules in the asymmetric unit, in one of which the 5,5-dimethyl-3-oxo­cyclo­hex-1-en-1-yl moiety is disordered and was treated with similar metrical parameters with refined occupancies of 0.551 (2)/0.449 (2).

Table 3
Experimental details

  3a 3b
Crystal data
Chemical formula C17H20ClNO5 C19H24ClNO5
Mr 353.79 381.84
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 150 150
a, b, c (Å) 14.654 (3), 8.9148 (17), 13.045 (2) 14.6986 (13), 10.6309 (10), 25.131 (2)
β (°) 102.581 (3) 90.1851 (14)
V3) 1663.2 (5) 3926.9 (6)
Z 4 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.26 0.22
Crystal size (mm) 0.34 × 0.32 × 0.10 0.48 × 0.44 × 0.21
 
Data collection
Diffractometer Bruker SMART APEXII CCD Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.])
Tmin, Tmax 0.885, 0.975 0.841, 0.954
No. of measured, independent and observed [I > 2σ(I)] reflections 21434, 5291, 4023 67292, 12630, 10320
Rint 0.041 0.026
(sin θ/λ)max−1) 0.726 0.727
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.05 0.039, 0.115, 1.03
No. of reflections 5291 12630
No. of parameters 224 584
No. of restraints 0 399
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.25 0.64, −0.35
Computer programs: APEX2 and SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), and SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

For both structures, data collection: APEX2 (Bruker, 2010); cell refinement: APEX2 (Bruker, 2010); data reduction: APEX2 and SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-Chloro-4-ethoxy-3,5-dimethoxy-N-(3-oxocyclohex-1-en-1-yl)benzamide (3a) top
Crystal data top
C17H20ClNO5F(000) = 744
Mr = 353.79Dx = 1.413 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.654 (3) ÅCell parameters from 5173 reflections
b = 8.9148 (17) Åθ = 2.7–31.0°
c = 13.045 (2) ŵ = 0.26 mm1
β = 102.581 (3)°T = 150 K
V = 1663.2 (5) Å3Prism, yellow
Z = 40.34 × 0.32 × 0.10 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
5291 independent reflections
Radiation source: sealed tube4023 reflections with I > 2σ(I)
Detector resolution: 8.333 pixels mm-1Rint = 0.041
φ and ω scansθmax = 31.1°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 2121
Tmin = 0.885, Tmax = 0.975k = 1212
21434 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.4383P]
where P = (Fo2 + 2Fc2)/3
5291 reflections(Δ/σ)max < 0.001
224 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Compound #4

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.29234 (3)0.32109 (4)0.48615 (3)0.02725 (10)
O10.18273 (7)0.38773 (11)0.64208 (7)0.0241 (2)
O20.10261 (6)0.65866 (12)0.67309 (7)0.0239 (2)
O30.10408 (7)0.88836 (11)0.54071 (9)0.0302 (2)
O40.25869 (8)0.47397 (12)0.27145 (8)0.0320 (3)
O50.38442 (7)0.56929 (12)0.02661 (7)0.0249 (2)
N10.33695 (8)0.69571 (13)0.31234 (8)0.0191 (2)
H1A0.3526 (12)0.762 (2)0.3588 (13)0.026 (4)*
C10.23398 (9)0.60558 (15)0.42223 (10)0.0193 (2)
C20.23353 (9)0.48844 (14)0.49310 (10)0.0189 (2)
C30.18745 (9)0.50552 (14)0.57581 (10)0.0186 (2)
C40.14420 (9)0.64091 (15)0.58915 (10)0.0194 (2)
C50.14667 (9)0.76025 (15)0.51996 (10)0.0204 (2)
C60.19046 (9)0.74103 (15)0.43585 (10)0.0207 (3)
H6A0.1906000.8207830.3875830.025*
C70.25364 (12)0.39211 (18)0.73685 (12)0.0323 (3)
H7A0.2479230.3036260.7795830.048*
H7B0.2461220.4830710.7763840.048*
H7C0.3154080.3926390.7194410.048*
C80.00347 (10)0.62546 (17)0.64724 (12)0.0260 (3)
H8A0.0064690.5167300.6338780.031*
H8B0.0271860.6806430.5830950.031*
C90.03754 (11)0.6722 (2)0.73783 (14)0.0410 (4)
H9A0.1045760.6494640.7220870.061*
H9B0.0283570.7802380.7496970.061*
H9C0.0065310.6175410.8010300.061*
C100.12623 (12)1.02402 (17)0.49314 (14)0.0327 (3)
H10A0.1092551.1101960.5317600.049*
H10B0.0911991.0280740.4200610.049*
H10C0.1934191.0268580.4949740.049*
C110.27614 (9)0.58307 (16)0.32791 (10)0.0213 (3)
C120.38339 (9)0.70472 (14)0.22986 (10)0.0180 (2)
C130.36265 (9)0.61821 (15)0.14259 (10)0.0204 (3)
H13A0.3155540.5435650.1370430.024*
C140.41092 (9)0.63713 (15)0.05714 (10)0.0201 (2)
C150.49279 (10)0.74267 (18)0.07335 (11)0.0262 (3)
H15A0.4996870.7815660.0043570.031*
H15B0.5505110.6869240.1049060.031*
C160.48180 (11)0.87402 (17)0.14418 (11)0.0275 (3)
H16A0.4303040.9395260.1077460.033*
H16B0.5400600.9340010.1589340.033*
C170.46077 (10)0.81930 (16)0.24729 (11)0.0234 (3)
H17A0.5180060.7745460.2910630.028*
H17B0.4426540.9058880.2860320.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03470 (19)0.02092 (16)0.02974 (18)0.00364 (13)0.01494 (14)0.00058 (13)
O10.0298 (5)0.0226 (5)0.0213 (5)0.0047 (4)0.0089 (4)0.0046 (4)
O20.0204 (5)0.0342 (5)0.0200 (5)0.0020 (4)0.0107 (4)0.0029 (4)
O30.0330 (6)0.0225 (5)0.0407 (6)0.0067 (4)0.0200 (5)0.0031 (4)
O40.0448 (6)0.0290 (5)0.0281 (5)0.0144 (5)0.0210 (5)0.0079 (4)
O50.0320 (5)0.0273 (5)0.0173 (4)0.0001 (4)0.0092 (4)0.0014 (4)
N10.0220 (5)0.0222 (5)0.0153 (5)0.0033 (4)0.0087 (4)0.0023 (4)
C10.0192 (6)0.0227 (6)0.0177 (6)0.0027 (5)0.0076 (4)0.0000 (5)
C20.0194 (6)0.0191 (6)0.0202 (6)0.0008 (5)0.0085 (4)0.0009 (5)
C30.0189 (6)0.0203 (6)0.0176 (6)0.0035 (5)0.0065 (4)0.0012 (5)
C40.0187 (6)0.0239 (6)0.0173 (6)0.0023 (5)0.0075 (4)0.0007 (5)
C50.0181 (6)0.0215 (6)0.0227 (6)0.0005 (5)0.0071 (5)0.0002 (5)
C60.0205 (6)0.0222 (6)0.0206 (6)0.0003 (5)0.0072 (5)0.0039 (5)
C70.0401 (9)0.0305 (8)0.0242 (7)0.0003 (6)0.0026 (6)0.0077 (6)
C80.0210 (6)0.0297 (7)0.0301 (7)0.0005 (5)0.0114 (5)0.0007 (6)
C90.0256 (8)0.0645 (12)0.0379 (9)0.0013 (8)0.0178 (7)0.0059 (8)
C100.0356 (8)0.0216 (7)0.0420 (9)0.0061 (6)0.0107 (7)0.0059 (6)
C110.0230 (6)0.0242 (6)0.0190 (6)0.0021 (5)0.0094 (5)0.0011 (5)
C120.0183 (6)0.0206 (6)0.0165 (5)0.0011 (4)0.0065 (4)0.0028 (4)
C130.0217 (6)0.0245 (6)0.0165 (6)0.0025 (5)0.0072 (4)0.0009 (5)
C140.0220 (6)0.0229 (6)0.0165 (6)0.0032 (5)0.0065 (4)0.0027 (5)
C150.0258 (7)0.0357 (8)0.0202 (6)0.0046 (6)0.0116 (5)0.0005 (6)
C160.0305 (7)0.0290 (7)0.0263 (7)0.0101 (6)0.0132 (6)0.0001 (6)
C170.0240 (6)0.0274 (7)0.0208 (6)0.0066 (5)0.0096 (5)0.0030 (5)
Geometric parameters (Å, º) top
Cl1—C21.7352 (13)C8—C91.497 (2)
O1—C31.3714 (15)C8—H8A0.9900
O1—C71.4317 (18)C8—H8B0.9900
O2—C41.3734 (14)C9—H9A0.9800
O2—C81.4486 (16)C9—H9B0.9800
O3—C51.3567 (16)C9—H9C0.9800
O3—C101.4285 (18)C10—H10A0.9800
O4—C111.2132 (17)C10—H10B0.9800
O5—C141.2350 (16)C10—H10C0.9800
N1—C111.3865 (17)C12—C131.3536 (18)
N1—C121.3950 (15)C12—C171.5061 (18)
N1—H1A0.844 (18)C13—C141.4543 (17)
C1—C61.3949 (18)C13—H13A0.9500
C1—C21.3956 (18)C14—C151.5029 (19)
C1—C111.5056 (17)C15—C161.522 (2)
C2—C31.4001 (16)C15—H15A0.9900
C3—C41.3917 (18)C15—H15B0.9900
C4—C51.4008 (19)C16—C171.5241 (19)
C5—C61.3969 (17)C16—H16A0.9900
C6—H6A0.9500C16—H16B0.9900
C7—H7A0.9800C17—H17A0.9900
C7—H7B0.9800C17—H17B0.9900
C7—H7C0.9800
C3—O1—C7113.37 (11)C8—C9—H9C109.5
C4—O2—C8112.80 (10)H9A—C9—H9C109.5
C5—O3—C10117.91 (11)H9B—C9—H9C109.5
C11—N1—C12126.28 (11)O3—C10—H10A109.5
C11—N1—H1A119.2 (12)O3—C10—H10B109.5
C12—N1—H1A114.3 (12)H10A—C10—H10B109.5
C6—C1—C2119.68 (11)O3—C10—H10C109.5
C6—C1—C11119.99 (11)H10A—C10—H10C109.5
C2—C1—C11120.24 (12)H10B—C10—H10C109.5
C1—C2—C3120.11 (12)O4—C11—N1123.29 (11)
C1—C2—Cl1122.32 (9)O4—C11—C1122.22 (12)
C3—C2—Cl1117.53 (10)N1—C11—C1114.48 (11)
O1—C3—C4119.88 (11)C13—C12—N1123.91 (12)
O1—C3—C2120.10 (11)C13—C12—C17122.49 (11)
C4—C3—C2119.99 (11)N1—C12—C17113.59 (11)
O2—C4—C3119.54 (11)C12—C13—C14121.39 (12)
O2—C4—C5120.30 (12)C12—C13—H13A119.3
C3—C4—C5120.11 (11)C14—C13—H13A119.3
O3—C5—C6124.74 (12)O5—C14—C13120.63 (12)
O3—C5—C4115.67 (11)O5—C14—C15121.24 (11)
C6—C5—C4119.59 (12)C13—C14—C15118.12 (11)
C1—C6—C5120.47 (12)C14—C15—C16112.36 (11)
C1—C6—H6A119.8C14—C15—H15A109.1
C5—C6—H6A119.8C16—C15—H15A109.1
O1—C7—H7A109.5C14—C15—H15B109.1
O1—C7—H7B109.5C16—C15—H15B109.1
H7A—C7—H7B109.5H15A—C15—H15B107.9
O1—C7—H7C109.5C15—C16—C17110.98 (12)
H7A—C7—H7C109.5C15—C16—H16A109.4
H7B—C7—H7C109.5C17—C16—H16A109.4
O2—C8—C9108.30 (12)C15—C16—H16B109.4
O2—C8—H8A110.0C17—C16—H16B109.4
C9—C8—H8A110.0H16A—C16—H16B108.0
O2—C8—H8B110.0C12—C17—C16111.97 (11)
C9—C8—H8B110.0C12—C17—H17A109.2
H8A—C8—H8B108.4C16—C17—H17A109.2
C8—C9—H9A109.5C12—C17—H17B109.2
C8—C9—H9B109.5C16—C17—H17B109.2
H9A—C9—H9B109.5H17A—C17—H17B107.9
C6—C1—C2—C31.71 (19)C11—C1—C6—C5176.51 (12)
C11—C1—C2—C3174.66 (12)O3—C5—C6—C1178.77 (13)
C6—C1—C2—Cl1175.87 (10)C4—C5—C6—C11.9 (2)
C11—C1—C2—Cl17.76 (18)C4—O2—C8—C9170.82 (13)
C7—O1—C3—C485.34 (15)C12—N1—C11—O42.7 (2)
C7—O1—C3—C296.38 (15)C12—N1—C11—C1178.18 (12)
C1—C2—C3—O1176.51 (12)C6—C1—C11—O4129.20 (15)
Cl1—C2—C3—O15.80 (17)C2—C1—C11—O447.2 (2)
C1—C2—C3—C41.77 (19)C6—C1—C11—N151.64 (17)
Cl1—C2—C3—C4175.92 (10)C2—C1—C11—N1132.00 (13)
C8—O2—C4—C394.55 (14)C11—N1—C12—C1312.4 (2)
C8—O2—C4—C588.21 (15)C11—N1—C12—C17166.70 (13)
O1—C3—C4—O24.46 (18)N1—C12—C13—C14177.36 (12)
C2—C3—C4—O2177.25 (11)C17—C12—C13—C143.6 (2)
O1—C3—C4—C5178.29 (12)C12—C13—C14—O5171.94 (13)
C2—C3—C4—C50.01 (19)C12—C13—C14—C157.3 (2)
C10—O3—C5—C618.0 (2)O5—C14—C15—C16146.86 (13)
C10—O3—C5—C4162.68 (13)C13—C14—C15—C1632.36 (18)
O2—C4—C5—O31.55 (19)C14—C15—C16—C1752.88 (17)
C3—C4—C5—O3178.78 (12)C13—C12—C17—C1624.94 (19)
O2—C4—C5—C6179.06 (12)N1—C12—C17—C16155.90 (12)
C3—C4—C5—C61.8 (2)C15—C16—C17—C1248.67 (17)
C2—C1—C6—C50.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O5i0.844 (18)2.098 (18)2.9410 (15)177.1 (16)
C7—H7A···Cl1ii0.982.863.7022 (16)145
C7—H7A···O4ii0.982.483.293 (2)140
C9—H9A···O4iii0.982.533.470 (2)161
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z+1.
2-Chloro-N-(5,5-dimethyl-3-oxocyclohex-1-en-1-yl)-4-ethoxy-3,5-dimethoxybenzamide (3b) top
Crystal data top
C19H24ClNO5F(000) = 1616
Mr = 381.84Dx = 1.292 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.6986 (13) ÅCell parameters from 23388 reflections
b = 10.6309 (10) Åθ = 2.4–31.0°
c = 25.131 (2) ŵ = 0.22 mm1
β = 90.1851 (14)°T = 150 K
V = 3926.9 (6) Å3Prism, colourless
Z = 80.48 × 0.44 × 0.21 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
12630 independent reflections
Radiation source: sealed tube10320 reflections with I > 2σ(I)
Detector resolution: 8.333 pixels mm-1Rint = 0.026
φ and ω scansθmax = 31.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 2121
Tmin = 0.841, Tmax = 0.954k = 1515
67292 measured reflectionsl = 3636
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: mixed
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0599P)2 + 1.0458P]
where P = (Fo2 + 2Fc2)/3
12630 reflections(Δ/σ)max = 0.006
584 parametersΔρmax = 0.64 e Å3
399 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Compound #6

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl1A0.74167 (2)1.06636 (3)0.50622 (2)0.03341 (7)
O1A0.85300 (6)0.92470 (9)0.43031 (3)0.03358 (19)
O2A0.96808 (6)0.73233 (10)0.45218 (4)0.0371 (2)
O3A0.98422 (6)0.64044 (10)0.55396 (4)0.0411 (2)
O4A0.79762 (5)0.97694 (9)0.66166 (3)0.03064 (18)
O5A0.54514 (6)1.01715 (10)0.78213 (3)0.0376 (2)
N1A0.67015 (6)0.94345 (9)0.61067 (4)0.02155 (17)
H1AA0.6506 (11)0.9153 (15)0.5810 (7)0.034 (4)*
C1A0.81762 (7)0.89610 (10)0.57423 (4)0.02277 (19)
C2A0.81118 (7)0.94022 (11)0.52235 (4)0.0245 (2)
C3A0.86370 (7)0.88575 (12)0.48185 (4)0.0272 (2)
C4A0.92222 (7)0.78611 (12)0.49363 (5)0.0293 (2)
C5A0.92801 (7)0.74122 (12)0.54613 (5)0.0293 (2)
C6A0.87719 (7)0.79758 (11)0.58605 (4)0.0263 (2)
H6AA0.8829940.7688780.6216950.032*
C7A0.91558 (11)1.01997 (17)0.41412 (5)0.0474 (4)
H7AA0.9032361.0433800.3770780.071*
H7AB0.9778790.9878950.4171980.071*
H7AC0.9085511.0939940.4369810.071*
C8A1.06559 (9)0.7271 (2)0.45645 (6)0.0624 (5)
H8AA1.0839770.6472580.4736680.075*
H8AB1.0875440.7975090.4788640.075*
C9A1.10703 (11)0.7356 (2)0.40297 (7)0.0628 (5)
H9AA1.1727510.7214180.4057970.094*
H9AB1.0957070.8192840.3880250.094*
H9AC1.0800690.6716100.3796850.094*
C10A0.99347 (11)0.59578 (18)0.60744 (7)0.0550 (4)
H10A1.0335980.5221730.6079830.082*
H10B0.9335240.5722830.6212090.082*
H10C1.0196100.6623030.6297350.082*
C11A0.76218 (7)0.94515 (10)0.61997 (4)0.02202 (19)
C12A0.60074 (6)0.97178 (10)0.64589 (4)0.02102 (18)
C13A0.61233 (7)0.98962 (10)0.69867 (4)0.02312 (19)
H13A0.6719610.9873780.7133410.028*
C14A0.53549 (7)1.01213 (11)0.73334 (4)0.0258 (2)
C15A0.44417 (8)1.03239 (13)0.70805 (5)0.0322 (2)
H15A0.4374921.1224770.6988500.039*
H15C0.3961691.0110490.7340770.039*
C16A0.43022 (7)0.95307 (15)0.65763 (5)0.0363 (3)
C17A0.50923 (7)0.98156 (14)0.61962 (4)0.0327 (3)
H17A0.5067110.9220340.5893520.039*
H17B0.5016341.0675880.6051910.039*
C18A0.34099 (9)0.9921 (3)0.63114 (6)0.0782 (8)
H18A0.2906870.9796650.6560990.117*
H18B0.3307830.9405980.5993230.117*
H18C0.3442031.0809520.6209910.117*
C19A0.42926 (11)0.81411 (18)0.67166 (7)0.0577 (5)
H19A0.3809730.7978140.6975610.087*
H19B0.4881560.7903430.6870290.087*
H19C0.4180200.7644970.6394320.087*
Cl1B0.33068 (2)0.36791 (3)0.37042 (2)0.03251 (7)
O1B0.19443 (6)0.32113 (8)0.28774 (3)0.03058 (17)
O2B0.12498 (6)0.49472 (9)0.21650 (3)0.03228 (18)
O3B0.17637 (6)0.73524 (8)0.22015 (3)0.03071 (18)
O4B0.35516 (6)0.74079 (10)0.40209 (4)0.0415 (2)
C1B0.31411 (6)0.60638 (10)0.33084 (4)0.02011 (18)
C2B0.28768 (7)0.48116 (10)0.32756 (4)0.02208 (19)
C3B0.22268 (7)0.44399 (10)0.28987 (4)0.02362 (19)
C4B0.18562 (7)0.53194 (11)0.25503 (4)0.0240 (2)
C5B0.21397 (7)0.65796 (10)0.25735 (4)0.02301 (19)
C6B0.27647 (7)0.69485 (10)0.29595 (4)0.02189 (18)
H6BA0.2937250.7807330.2986450.026*
C7B0.23634 (11)0.25212 (13)0.24515 (7)0.0436 (3)
H7BA0.2153240.1646580.2459360.065*
H7BB0.3026050.2542940.2494830.065*
H7BC0.2196490.2903790.2110100.065*
C8B0.03306 (9)0.47519 (14)0.23569 (6)0.0416 (3)
H8BA0.0346650.4166370.2663150.050*
H8BB0.0038210.4356960.2072050.050*
C9B0.01135 (10)0.59598 (18)0.25249 (10)0.0675 (6)
H9BA0.0729820.5785210.2652780.101*
H9BB0.0144470.6534900.2220610.101*
H9BC0.0244140.6347580.2810910.101*
C10B0.20442 (9)0.86380 (11)0.22096 (5)0.0310 (2)
H10D0.1730440.9099340.1925670.047*
H10E0.2702990.8686150.2154240.047*
H10F0.1891850.9011080.2554640.047*
C11B0.37827 (7)0.65588 (10)0.37276 (4)0.02269 (19)
O5B0.5926 (5)0.7923 (8)0.5286 (3)0.0383 (12)0.551 (2)
N1B0.4614 (6)0.6071 (10)0.3766 (4)0.0274 (15)0.551 (2)
H1BA0.471 (3)0.552 (4)0.3576 (18)0.026 (13)*0.551 (2)
C12B0.5307 (6)0.6264 (11)0.4131 (5)0.0259 (10)0.551 (2)
C13B0.5224 (5)0.7057 (8)0.4537 (3)0.0210 (9)0.551 (2)
H13B0.4660930.7467000.4601770.025*0.551 (2)
C14B0.6004 (6)0.7288 (8)0.4881 (4)0.0293 (11)0.551 (2)
C15B0.69268 (14)0.6766 (2)0.47298 (9)0.0304 (5)0.551 (2)
H15B0.7295000.6652060.5056840.036*0.551 (2)
H15D0.7243670.7385540.4501900.036*0.551 (2)
C16B0.6870 (4)0.5507 (7)0.4434 (3)0.0262 (9)0.551 (2)
C17B0.62225 (13)0.5682 (2)0.39563 (8)0.0261 (4)0.551 (2)
H17C0.6108860.4856220.3786360.031*0.551 (2)
H17D0.6513460.6236240.3689930.031*0.551 (2)
C18B0.65099 (17)0.4478 (2)0.48043 (10)0.0384 (5)0.551 (2)
H18D0.6929490.4371440.5104800.058*0.551 (2)
H18E0.6461480.3683750.4607970.058*0.551 (2)
H18F0.5908750.4719310.4937230.058*0.551 (2)
C19B0.78134 (15)0.5136 (3)0.42324 (10)0.0436 (7)0.551 (2)
H19D0.8235510.5077980.4534100.065*0.551 (2)
H19E0.8031550.5773840.3981770.065*0.551 (2)
H19F0.7777910.4319640.4052630.065*0.551 (2)
O5C0.6059 (7)0.7977 (10)0.5201 (4)0.0413 (15)0.449 (2)
N1C0.4643 (5)0.5949 (11)0.3708 (4)0.0156 (9)0.449 (2)
H1CA0.476 (3)0.549 (4)0.3423 (18)0.019 (12)*0.449 (2)
C12C0.5324 (8)0.6138 (14)0.4091 (6)0.0262 (12)0.449 (2)
C13C0.5340 (6)0.6981 (11)0.4488 (4)0.0268 (13)0.449 (2)
H13C0.4851650.7564760.4508180.032*0.449 (2)
C14C0.6048 (7)0.7067 (10)0.4889 (5)0.0310 (13)0.449 (2)
C15C0.67207 (18)0.6008 (3)0.49113 (11)0.0341 (6)0.449 (2)
H15E0.6496820.5363540.5163270.041*0.449 (2)
H15F0.7305530.6332840.5051440.041*0.449 (2)
C16C0.6890 (6)0.5385 (9)0.4371 (4)0.0293 (12)0.449 (2)
C17C0.59763 (16)0.5023 (2)0.41227 (10)0.0244 (5)0.449 (2)
H17E0.6079930.4689610.3760090.029*0.449 (2)
H17F0.5695010.4347000.4337300.029*0.449 (2)
C18C0.7464 (2)0.4183 (3)0.44515 (14)0.0434 (8)0.449 (2)
H18G0.8064030.4410800.4592040.065*0.449 (2)
H18H0.7534840.3750200.4109760.065*0.449 (2)
H18I0.7156140.3624310.4703710.065*0.449 (2)
C19C0.74033 (19)0.6285 (3)0.39994 (12)0.0373 (7)0.449 (2)
H19G0.7069200.7080070.3971460.056*0.449 (2)
H19H0.7455730.5903070.3645840.056*0.449 (2)
H19I0.8012410.6445310.4143780.056*0.449 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.03295 (13)0.04046 (16)0.02684 (13)0.00661 (11)0.00220 (10)0.00619 (11)
O1A0.0289 (4)0.0525 (5)0.0193 (4)0.0066 (4)0.0016 (3)0.0010 (4)
O2A0.0223 (4)0.0560 (6)0.0330 (4)0.0005 (4)0.0088 (3)0.0150 (4)
O3A0.0336 (4)0.0458 (5)0.0439 (5)0.0154 (4)0.0105 (4)0.0032 (4)
O4A0.0233 (3)0.0448 (5)0.0238 (4)0.0036 (3)0.0004 (3)0.0060 (3)
O5A0.0335 (4)0.0616 (6)0.0178 (4)0.0051 (4)0.0043 (3)0.0003 (4)
N1A0.0193 (4)0.0277 (4)0.0176 (4)0.0009 (3)0.0024 (3)0.0040 (3)
C1A0.0181 (4)0.0292 (5)0.0211 (4)0.0022 (4)0.0033 (3)0.0018 (4)
C2A0.0195 (4)0.0320 (5)0.0220 (5)0.0011 (4)0.0017 (3)0.0000 (4)
C3A0.0208 (4)0.0409 (6)0.0200 (5)0.0046 (4)0.0029 (4)0.0032 (4)
C4A0.0189 (4)0.0416 (6)0.0274 (5)0.0031 (4)0.0070 (4)0.0080 (5)
C5A0.0200 (4)0.0353 (6)0.0326 (6)0.0019 (4)0.0053 (4)0.0016 (5)
C6A0.0196 (4)0.0340 (6)0.0252 (5)0.0002 (4)0.0042 (4)0.0016 (4)
C7A0.0488 (8)0.0673 (10)0.0262 (6)0.0183 (7)0.0043 (5)0.0060 (6)
C8A0.0219 (6)0.1254 (17)0.0400 (8)0.0095 (8)0.0090 (5)0.0176 (9)
C9A0.0377 (7)0.0939 (14)0.0570 (10)0.0074 (8)0.0225 (7)0.0248 (10)
C10A0.0494 (8)0.0604 (10)0.0552 (9)0.0266 (8)0.0120 (7)0.0177 (8)
C11A0.0197 (4)0.0250 (5)0.0213 (4)0.0013 (3)0.0031 (3)0.0002 (4)
C12A0.0201 (4)0.0228 (5)0.0202 (4)0.0008 (3)0.0031 (3)0.0002 (4)
C13A0.0214 (4)0.0287 (5)0.0193 (4)0.0013 (4)0.0018 (3)0.0004 (4)
C14A0.0266 (5)0.0311 (5)0.0199 (5)0.0002 (4)0.0039 (4)0.0008 (4)
C15A0.0273 (5)0.0462 (7)0.0232 (5)0.0103 (5)0.0048 (4)0.0002 (5)
C16A0.0187 (4)0.0670 (9)0.0232 (5)0.0029 (5)0.0020 (4)0.0056 (5)
C17A0.0219 (5)0.0560 (8)0.0201 (5)0.0068 (5)0.0006 (4)0.0016 (5)
C18A0.0225 (6)0.180 (2)0.0325 (7)0.0184 (10)0.0011 (5)0.0117 (11)
C19A0.0454 (8)0.0640 (11)0.0639 (10)0.0278 (7)0.0217 (7)0.0218 (8)
Cl1B0.03134 (13)0.03067 (14)0.03546 (15)0.00338 (10)0.00739 (11)0.01257 (11)
O1B0.0322 (4)0.0260 (4)0.0335 (4)0.0104 (3)0.0015 (3)0.0034 (3)
O2B0.0319 (4)0.0379 (5)0.0270 (4)0.0106 (3)0.0110 (3)0.0017 (3)
O3B0.0340 (4)0.0294 (4)0.0287 (4)0.0042 (3)0.0122 (3)0.0075 (3)
O4B0.0345 (4)0.0486 (6)0.0412 (5)0.0168 (4)0.0129 (4)0.0232 (4)
C1B0.0169 (4)0.0262 (5)0.0172 (4)0.0002 (3)0.0008 (3)0.0015 (4)
C2B0.0195 (4)0.0258 (5)0.0209 (4)0.0007 (3)0.0004 (3)0.0043 (4)
C3B0.0222 (4)0.0248 (5)0.0239 (5)0.0057 (4)0.0008 (4)0.0015 (4)
C4B0.0214 (4)0.0296 (5)0.0209 (5)0.0053 (4)0.0030 (3)0.0004 (4)
C5B0.0223 (4)0.0262 (5)0.0205 (4)0.0012 (4)0.0023 (3)0.0029 (4)
C6B0.0211 (4)0.0229 (5)0.0217 (4)0.0012 (3)0.0013 (3)0.0001 (4)
C7B0.0510 (8)0.0262 (6)0.0538 (9)0.0048 (5)0.0071 (6)0.0044 (6)
C8B0.0284 (6)0.0426 (7)0.0536 (8)0.0126 (5)0.0136 (5)0.0074 (6)
C9B0.0263 (6)0.0535 (10)0.1226 (18)0.0024 (6)0.0072 (8)0.0030 (11)
C10B0.0358 (6)0.0266 (5)0.0306 (6)0.0012 (4)0.0068 (4)0.0051 (4)
C11B0.0206 (4)0.0276 (5)0.0199 (4)0.0015 (4)0.0020 (3)0.0019 (4)
O5B0.044 (3)0.0460 (17)0.025 (2)0.0018 (18)0.0094 (18)0.0140 (14)
N1B0.0313 (19)0.034 (2)0.0166 (19)0.0050 (12)0.0028 (10)0.0165 (13)
C12B0.0168 (14)0.039 (3)0.022 (2)0.0082 (14)0.0033 (13)0.0089 (15)
C13B0.0186 (16)0.0277 (16)0.0168 (14)0.0033 (13)0.0052 (14)0.0116 (11)
C14B0.0250 (14)0.036 (2)0.0273 (17)0.0022 (14)0.0035 (11)0.0064 (16)
C15B0.0246 (9)0.0413 (12)0.0254 (9)0.0051 (8)0.0078 (7)0.0024 (9)
C16B0.0154 (13)0.0386 (19)0.0245 (18)0.0026 (12)0.0049 (11)0.0001 (14)
C17B0.0198 (8)0.0370 (11)0.0216 (9)0.0018 (7)0.0014 (7)0.0058 (8)
C18B0.0415 (12)0.0370 (12)0.0367 (12)0.0060 (9)0.0004 (9)0.0069 (9)
C19B0.0224 (9)0.0731 (19)0.0351 (12)0.0124 (10)0.0029 (8)0.0055 (12)
O5C0.039 (2)0.059 (2)0.026 (3)0.0141 (15)0.0007 (16)0.0192 (19)
N1C0.0102 (13)0.025 (2)0.012 (2)0.0063 (12)0.0053 (14)0.0123 (18)
C12C0.028 (2)0.035 (2)0.0154 (18)0.0042 (16)0.0047 (15)0.0139 (15)
C13C0.024 (2)0.029 (2)0.028 (2)0.0077 (15)0.0039 (15)0.0020 (16)
C14C0.034 (2)0.039 (3)0.0197 (18)0.0018 (18)0.0065 (15)0.009 (2)
C15C0.0299 (12)0.0471 (16)0.0252 (12)0.0027 (11)0.0088 (9)0.0059 (11)
C16C0.029 (2)0.035 (2)0.024 (2)0.0004 (15)0.0035 (15)0.0040 (16)
C17C0.0234 (10)0.0253 (11)0.0246 (11)0.0024 (9)0.0036 (8)0.0028 (9)
C18C0.0343 (14)0.0524 (18)0.0434 (17)0.0172 (13)0.0090 (12)0.0012 (14)
C19C0.0297 (12)0.0467 (16)0.0356 (14)0.0080 (11)0.0034 (10)0.0072 (12)
Geometric parameters (Å, º) top
Cl1A—C2A1.7331 (12)C3B—C4B1.3908 (15)
O1A—C3A1.3684 (14)C4B—C5B1.4042 (15)
O1A—C7A1.4281 (17)C5B—C6B1.3903 (14)
O2A—C4A1.3678 (13)C6B—H6BA0.9500
O2A—C8A1.4381 (16)C7B—H7BA0.9800
O3A—C5A1.3667 (15)C7B—H7BB0.9800
O3A—C10A1.4313 (19)C7B—H7BC0.9800
O4A—C11A1.2163 (13)C8B—C9B1.502 (2)
O5A—C14A1.2349 (13)C8B—H8BA0.9900
N1A—C11A1.3722 (13)C8B—H8BB0.9900
N1A—C12A1.3859 (12)C9B—H9BA0.9800
N1A—H1AA0.853 (16)C9B—H9BB0.9800
C1A—C2A1.3885 (15)C9B—H9BC0.9800
C1A—C6A1.3964 (15)C10B—H10D0.9800
C1A—C11A1.5047 (14)C10B—H10E0.9800
C2A—C3A1.4044 (15)C10B—H10F0.9800
C3A—C4A1.3956 (17)C11B—N1B1.330 (8)
C4A—C5A1.4053 (17)C11B—N1C1.421 (8)
C5A—C6A1.3886 (15)O5B—C14B1.229 (8)
C6A—H6AA0.9500N1B—C12B1.384 (8)
C7A—H7AA0.9800N1B—H1BA0.77 (5)
C7A—H7AB0.9800C12B—C13B1.330 (7)
C7A—H7AC0.9800C12B—C17B1.545 (8)
C8A—C9A1.480 (2)C13B—C14B1.455 (7)
C8A—H8AA0.9900C13B—H13B0.9500
C8A—H8AB0.9900C14B—C15B1.515 (8)
C9A—H9AA0.9800C15B—C16B1.535 (7)
C9A—H9AB0.9800C15B—H15B0.9900
C9A—H9AC0.9800C15B—H15D0.9900
C10A—H10A0.9800C16B—C19B1.530 (7)
C10A—H10B0.9800C16B—C18B1.532 (8)
C10A—H10C0.9800C16B—C17B1.540 (6)
C12A—C13A1.3501 (14)C17B—H17C0.9900
C12A—C17A1.5001 (15)C17B—H17D0.9900
C13A—C14A1.4486 (14)C18B—H18D0.9800
C13A—H13A0.9500C18B—H18E0.9800
C14A—C15A1.4989 (16)C18B—H18F0.9800
C15A—C16A1.5351 (18)C19B—H19D0.9800
C15A—H15A0.9900C19B—H19E0.9800
C15A—H15C0.9900C19B—H19F0.9800
C16A—C19A1.519 (2)O5C—C14C1.244 (9)
C16A—C18A1.5263 (19)N1C—C12C1.401 (9)
C16A—C17A1.5364 (16)N1C—H1CA0.88 (5)
C17A—H17A0.9900C12C—C13C1.342 (9)
C17A—H17B0.9900C12C—C17C1.527 (10)
C18A—H18A0.9800C13C—C14C1.450 (9)
C18A—H18B0.9800C13C—H13C0.9500
C18A—H18C0.9800C14C—C15C1.499 (8)
C19A—H19A0.9800C15C—C16C1.532 (9)
C19A—H19B0.9800C15C—H15E0.9900
C19A—H19C0.9800C15C—H15F0.9900
Cl1B—C2B1.7334 (11)C16C—C17C1.528 (9)
O1B—C3B1.3715 (13)C16C—C19C1.537 (10)
O1B—C7B1.4379 (17)C16C—C18C1.545 (9)
O2B—C4B1.3724 (12)C17C—H17E0.9900
O2B—C8B1.4510 (16)C17C—H17F0.9900
O3B—C5B1.3605 (13)C18C—H18G0.9800
O3B—C10B1.4277 (14)C18C—H18H0.9800
O4B—C11B1.2147 (13)C18C—H18I0.9800
C1B—C2B1.3891 (15)C19C—H19G0.9800
C1B—C6B1.3986 (14)C19C—H19H0.9800
C1B—C11B1.5065 (14)C19C—H19I0.9800
C2B—C3B1.4000 (14)
C3A—O1A—C7A114.34 (10)O1B—C7B—H7BB109.5
C4A—O2A—C8A116.92 (10)H7BA—C7B—H7BB109.5
C5A—O3A—C10A116.80 (10)O1B—C7B—H7BC109.5
C11A—N1A—C12A127.99 (9)H7BA—C7B—H7BC109.5
C11A—N1A—H1AA118.9 (11)H7BB—C7B—H7BC109.5
C12A—N1A—H1AA112.8 (11)O2B—C8B—C9B112.15 (12)
C2A—C1A—C6A119.60 (10)O2B—C8B—H8BA109.2
C2A—C1A—C11A124.39 (10)C9B—C8B—H8BA109.2
C6A—C1A—C11A115.99 (9)O2B—C8B—H8BB109.2
C1A—C2A—C3A120.34 (10)C9B—C8B—H8BB109.2
C1A—C2A—Cl1A121.28 (8)H8BA—C8B—H8BB107.9
C3A—C2A—Cl1A118.34 (9)C8B—C9B—H9BA109.5
O1A—C3A—C4A119.96 (10)C8B—C9B—H9BB109.5
O1A—C3A—C2A119.96 (11)H9BA—C9B—H9BB109.5
C4A—C3A—C2A119.94 (10)C8B—C9B—H9BC109.5
O2A—C4A—C3A117.42 (11)H9BA—C9B—H9BC109.5
O2A—C4A—C5A122.99 (11)H9BB—C9B—H9BC109.5
C3A—C4A—C5A119.50 (10)O3B—C10B—H10D109.5
O3A—C5A—C6A124.09 (11)O3B—C10B—H10E109.5
O3A—C5A—C4A115.87 (10)H10D—C10B—H10E109.5
C6A—C5A—C4A120.03 (11)O3B—C10B—H10F109.5
C5A—C6A—C1A120.56 (11)H10D—C10B—H10F109.5
C5A—C6A—H6AA119.7H10E—C10B—H10F109.5
C1A—C6A—H6AA119.7O4B—C11B—N1B120.3 (4)
O1A—C7A—H7AA109.5O4B—C11B—N1C127.6 (4)
O1A—C7A—H7AB109.5O4B—C11B—C1B120.55 (9)
H7AA—C7A—H7AB109.5N1B—C11B—C1B119.1 (4)
O1A—C7A—H7AC109.5N1C—C11B—C1B111.8 (4)
H7AA—C7A—H7AC109.5C11B—N1B—C12B131.6 (8)
H7AB—C7A—H7AC109.5C11B—N1B—H1BA115 (4)
O2A—C8A—C9A110.05 (14)C12B—N1B—H1BA112 (4)
O2A—C8A—H8AA109.7C13B—C12B—N1B122.2 (7)
C9A—C8A—H8AA109.7C13B—C12B—C17B123.6 (6)
O2A—C8A—H8AB109.7N1B—C12B—C17B113.1 (6)
C9A—C8A—H8AB109.7C12B—C13B—C14B119.3 (6)
H8AA—C8A—H8AB108.2C12B—C13B—H13B120.4
C8A—C9A—H9AA109.5C14B—C13B—H13B120.4
C8A—C9A—H9AB109.5O5B—C14B—C13B120.7 (7)
H9AA—C9A—H9AB109.5O5B—C14B—C15B119.7 (7)
C8A—C9A—H9AC109.5C13B—C14B—C15B119.6 (6)
H9AA—C9A—H9AC109.5C14B—C15B—C16B113.2 (4)
H9AB—C9A—H9AC109.5C14B—C15B—H15B108.9
O3A—C10A—H10A109.5C16B—C15B—H15B108.9
O3A—C10A—H10B109.5C14B—C15B—H15D108.9
H10A—C10A—H10B109.5C16B—C15B—H15D108.9
O3A—C10A—H10C109.5H15B—C15B—H15D107.8
H10A—C10A—H10C109.5C19B—C16B—C18B109.4 (4)
H10B—C10A—H10C109.5C19B—C16B—C15B109.7 (4)
O4A—C11A—N1A124.73 (9)C18B—C16B—C15B110.3 (4)
O4A—C11A—C1A121.52 (9)C19B—C16B—C17B109.4 (4)
N1A—C11A—C1A113.66 (9)C18B—C16B—C17B110.3 (4)
C13A—C12A—N1A124.56 (9)C15B—C16B—C17B107.8 (4)
C13A—C12A—C17A122.20 (9)C16B—C17B—C12B111.3 (4)
N1A—C12A—C17A113.25 (9)C16B—C17B—H17C109.4
C12A—C13A—C14A121.19 (10)C12B—C17B—H17C109.4
C12A—C13A—H13A119.4C16B—C17B—H17D109.4
C14A—C13A—H13A119.4C12B—C17B—H17D109.4
O5A—C14A—C13A121.13 (10)H17C—C17B—H17D108.0
O5A—C14A—C15A120.98 (10)C16B—C18B—H18D109.5
C13A—C14A—C15A117.88 (9)C16B—C18B—H18E109.5
C14A—C15A—C16A112.84 (9)H18D—C18B—H18E109.5
C14A—C15A—H15A109.0C16B—C18B—H18F109.5
C16A—C15A—H15A109.0H18D—C18B—H18F109.5
C14A—C15A—H15C109.0H18E—C18B—H18F109.5
C16A—C15A—H15C109.0C16B—C19B—H19D109.5
H15A—C15A—H15C107.8C16B—C19B—H19E109.5
C19A—C16A—C18A110.90 (16)H19D—C19B—H19E109.5
C19A—C16A—C15A110.13 (12)C16B—C19B—H19F109.5
C18A—C16A—C15A108.85 (12)H19D—C19B—H19F109.5
C19A—C16A—C17A110.10 (11)H19E—C19B—H19F109.5
C18A—C16A—C17A108.99 (12)C12C—N1C—C11B123.0 (9)
C15A—C16A—C17A107.80 (11)C12C—N1C—H1CA119 (3)
C12A—C17A—C16A113.03 (9)C11B—N1C—H1CA117 (3)
C12A—C17A—H17A109.0C13C—C12C—N1C128.2 (9)
C16A—C17A—H17A109.0C13C—C12C—C17C118.0 (8)
C12A—C17A—H17B109.0N1C—C12C—C17C111.9 (7)
C16A—C17A—H17B109.0C12C—C13C—C14C124.8 (8)
H17A—C17A—H17B107.8C12C—C13C—H13C117.6
C16A—C18A—H18A109.5C14C—C13C—H13C117.6
C16A—C18A—H18B109.5O5C—C14C—C13C119.6 (9)
H18A—C18A—H18B109.5O5C—C14C—C15C123.6 (8)
C16A—C18A—H18C109.5C13C—C14C—C15C116.8 (7)
H18A—C18A—H18C109.5C14C—C15C—C16C113.6 (5)
H18B—C18A—H18C109.5C14C—C15C—H15E108.8
C16A—C19A—H19A109.5C16C—C15C—H15E108.8
C16A—C19A—H19B109.5C14C—C15C—H15F108.8
H19A—C19A—H19B109.5C16C—C15C—H15F108.8
C16A—C19A—H19C109.5H15E—C15C—H15F107.7
H19A—C19A—H19C109.5C17C—C16C—C15C109.0 (6)
H19B—C19A—H19C109.5C17C—C16C—C19C110.0 (6)
C3B—O1B—C7B112.62 (9)C15C—C16C—C19C110.6 (6)
C4B—O2B—C8B114.21 (10)C17C—C16C—C18C108.9 (6)
C5B—O3B—C10B116.84 (9)C15C—C16C—C18C109.4 (6)
C2B—C1B—C6B119.81 (9)C19C—C16C—C18C109.0 (6)
C2B—C1B—C11B123.40 (9)C12C—C17C—C16C112.2 (6)
C6B—C1B—C11B116.68 (9)C12C—C17C—H17E109.2
C1B—C2B—C3B120.05 (9)C16C—C17C—H17E109.2
C1B—C2B—Cl1B121.83 (8)C12C—C17C—H17F109.2
C3B—C2B—Cl1B118.10 (8)C16C—C17C—H17F109.2
O1B—C3B—C4B119.85 (9)H17E—C17C—H17F107.9
O1B—C3B—C2B120.07 (10)C16C—C18C—H18G109.5
C4B—C3B—C2B120.08 (10)C16C—C18C—H18H109.5
O2B—C4B—C3B120.17 (10)H18G—C18C—H18H109.5
O2B—C4B—C5B119.75 (10)C16C—C18C—H18I109.5
C3B—C4B—C5B119.98 (9)H18G—C18C—H18I109.5
O3B—C5B—C6B125.11 (10)H18H—C18C—H18I109.5
O3B—C5B—C4B115.33 (9)C16C—C19C—H19G109.5
C6B—C5B—C4B119.56 (10)C16C—C19C—H19H109.5
C5B—C6B—C1B120.46 (10)H19G—C19C—H19H109.5
C5B—C6B—H6BA119.8C16C—C19C—H19I109.5
C1B—C6B—H6BA119.8H19G—C19C—H19I109.5
O1B—C7B—H7BA109.5H19H—C19C—H19I109.5
C6A—C1A—C2A—C3A0.43 (16)C8B—O2B—C4B—C3B79.16 (14)
C11A—C1A—C2A—C3A177.91 (10)C8B—O2B—C4B—C5B104.32 (12)
C6A—C1A—C2A—Cl1A177.38 (8)O1B—C3B—C4B—O2B3.90 (16)
C11A—C1A—C2A—Cl1A4.27 (15)C2B—C3B—C4B—O2B177.06 (9)
C7A—O1A—C3A—C4A89.70 (15)O1B—C3B—C4B—C5B179.58 (9)
C7A—O1A—C3A—C2A94.67 (14)C2B—C3B—C4B—C5B0.54 (16)
C1A—C2A—C3A—O1A176.11 (10)C10B—O3B—C5B—C6B0.54 (16)
Cl1A—C2A—C3A—O1A6.00 (14)C10B—O3B—C5B—C4B179.34 (10)
C1A—C2A—C3A—C4A0.48 (16)O2B—C4B—C5B—O3B0.86 (15)
Cl1A—C2A—C3A—C4A178.36 (9)C3B—C4B—C5B—O3B177.39 (10)
C8A—O2A—C4A—C3A124.66 (15)O2B—C4B—C5B—C6B179.03 (10)
C8A—O2A—C4A—C5A58.83 (18)C3B—C4B—C5B—C6B2.50 (16)
O1A—C3A—C4A—O2A0.97 (16)O3B—C5B—C6B—C1B177.06 (10)
C2A—C3A—C4A—O2A176.61 (10)C4B—C5B—C6B—C1B2.82 (15)
O1A—C3A—C4A—C5A175.67 (10)C2B—C1B—C6B—C5B1.17 (15)
C2A—C3A—C4A—C5A0.03 (17)C11B—C1B—C6B—C5B177.57 (9)
C10A—O3A—C5A—C6A3.11 (19)C4B—O2B—C8B—C9B67.92 (16)
C10A—O3A—C5A—C4A178.00 (13)C2B—C1B—C11B—O4B122.81 (13)
O2A—C4A—C5A—O3A1.15 (17)C6B—C1B—C11B—O4B53.44 (14)
C3A—C4A—C5A—O3A177.60 (10)C2B—C1B—C11B—N1B58.5 (6)
O2A—C4A—C5A—C6A177.78 (10)C6B—C1B—C11B—N1B125.2 (6)
C3A—C4A—C5A—C6A1.34 (17)C2B—C1B—C11B—N1C59.4 (5)
O3A—C5A—C6A—C1A176.57 (11)C6B—C1B—C11B—N1C124.3 (5)
C4A—C5A—C6A—C1A2.27 (17)O4B—C11B—N1B—C12B7.2 (16)
C2A—C1A—C6A—C5A1.81 (16)C1B—C11B—N1B—C12B174.2 (11)
C11A—C1A—C6A—C5A176.67 (10)C11B—N1B—C12B—C13B0 (2)
C4A—O2A—C8A—C9A148.77 (16)C11B—N1B—C12B—C17B169.0 (10)
C12A—N1A—C11A—O4A2.59 (18)N1B—C12B—C13B—C14B175.2 (12)
C12A—N1A—C11A—C1A174.03 (10)C17B—C12B—C13B—C14B7.6 (18)
C2A—C1A—C11A—O4A129.47 (12)C12B—C13B—C14B—O5B173.3 (12)
C6A—C1A—C11A—O4A52.13 (15)C12B—C13B—C14B—C15B8.2 (15)
C2A—C1A—C11A—N1A53.79 (14)O5B—C14B—C15B—C16B148.7 (9)
C6A—C1A—C11A—N1A124.61 (10)C13B—C14B—C15B—C16B32.8 (11)
C11A—N1A—C12A—C13A9.78 (18)C14B—C15B—C16B—C19B172.5 (5)
C11A—N1A—C12A—C17A170.04 (11)C14B—C15B—C16B—C18B66.9 (6)
N1A—C12A—C13A—C14A176.55 (10)C14B—C15B—C16B—C17B53.5 (7)
C17A—C12A—C13A—C14A3.65 (17)C19B—C16B—C17B—C12B170.7 (7)
C12A—C13A—C14A—O5A173.40 (12)C18B—C16B—C17B—C12B68.9 (7)
C12A—C13A—C14A—C15A8.11 (17)C15B—C16B—C17B—C12B51.5 (7)
O5A—C14A—C15A—C16A146.37 (12)C13B—C12B—C17B—C16B31.0 (15)
C13A—C14A—C15A—C16A35.13 (16)N1B—C12B—C17B—C16B160.4 (9)
C14A—C15A—C16A—C19A65.22 (14)O4B—C11B—N1C—C12C9.7 (15)
C14A—C15A—C16A—C18A173.01 (13)C1B—C11B—N1C—C12C172.7 (11)
C14A—C15A—C16A—C17A54.92 (14)C11B—N1C—C12C—C13C8 (3)
C13A—C12A—C17A—C16A26.27 (17)C11B—N1C—C12C—C17C155.4 (10)
N1A—C12A—C17A—C16A153.90 (11)N1C—C12C—C13C—C14C176.1 (15)
C19A—C16A—C17A—C12A70.04 (15)C17C—C12C—C13C—C14C13 (2)
C18A—C16A—C17A—C12A168.10 (14)C12C—C13C—C14C—O5C171.1 (16)
C15A—C16A—C17A—C12A50.11 (15)C12C—C13C—C14C—C15C11 (2)
C6B—C1B—C2B—C3B0.81 (14)O5C—C14C—C15C—C16C151.4 (13)
C11B—C1B—C2B—C3B175.34 (9)C13C—C14C—C15C—C16C30.3 (14)
C6B—C1B—C2B—Cl1B178.96 (8)C14C—C15C—C16C—C17C51.9 (9)
C11B—C1B—C2B—Cl1B2.82 (14)C14C—C15C—C16C—C19C69.1 (9)
C7B—O1B—C3B—C4B79.27 (13)C14C—C15C—C16C—C18C170.8 (7)
C7B—O1B—C3B—C2B101.69 (13)C13C—C12C—C17C—C16C35.8 (17)
C1B—C2B—C3B—O1B177.93 (9)N1C—C12C—C17C—C16C158.7 (11)
Cl1B—C2B—C3B—O1B0.30 (14)C15C—C16C—C17C—C12C53.9 (10)
C1B—C2B—C3B—C4B1.12 (15)C19C—C16C—C17C—C12C67.5 (9)
Cl1B—C2B—C3B—C4B179.34 (8)C18C—C16C—C17C—C12C173.2 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AA···O5B0.853 (16)2.040 (18)2.849 (8)158.1 (15)
N1A—H1AA···O5C0.853 (16)2.081 (19)2.909 (9)163.5 (15)
C7A—H7AA···O2Bi0.982.443.3451 (17)153
C8A—H8AB···Cl1Aii0.992.923.703 (2)137
C17A—H17A···O5B0.992.423.285 (7)146
C17A—H17A···O5C0.992.633.481 (8)144
C10B—H10F···O4Aiii0.982.463.4013 (15)161
N1B—H1BA···O5Aiv0.77 (5)2.31 (5)2.985 (10)147 (5)
N1C—H1CA···O5Aiv0.88 (5)1.96 (4)2.795 (12)159 (4)
C17C—H17E···O5Aiv0.992.543.364 (3)141
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y+2, z+1; (iii) x+1, y+2, z+1; (iv) x, y+3/2, z1/2.
 

Acknowledgements

The authors wish to acknowledge the assistance of Dr Peter Zavalij at the University of Maryl­and for collecting the X-ray data.

References

First citationAlford, J. S., Abascal, N. C., Shugrue, C. R., Colvin, S. M., Romney, D. K. & Miller, S. J. (2016). ACS Cent. Sci. 2, 733–739.  CrossRef CAS PubMed Google Scholar
First citationAnderson, A. J., Nicholson, J. M., Bakare, O., Butcher, R. J. & Scott, K. R. (2004). J. Comb. Chem. 6, 950–954.  CrossRef PubMed CAS Google Scholar
First citationBoger, D. L., Ishizaki, T., Wysocki, J. R., Munk, S. A., Kitos, P. A. & Suntornwat, O. (1989). J. Am. Chem. Soc. 111, 6461–6463.  CrossRef CAS Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEddington, N. D., Cox, D. S., Khurana, M., Salama, N. N., Stables, J. P., Harrison, S. J., Negussie, A., Taylor, R. S., Tran, U. Q., Moore, J. A., Barrow, J. C. & Scott, K. R. (2003). Eur. J. Med. Chem. 38, 49–64.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGreenhill, J. V. (1976). J. Chem. Soc. Perkin Trans. 1, pp. 2207–2210.  CrossRef Google Scholar
First citationGreenhill, J. V. (1977). Chem. Soc. Rev. 6, 277–294.  CrossRef CAS Web of Science Google Scholar
First citationJerach, B. & Elassar, A.-Z. A. (2015). Chemical Science Transactions, 4, 113–120.  Google Scholar
First citationKalita, U., Kaping, S., Nongkynrih, R., Boiss, I., Singha, L. I. & Vishwakarma, J. N. (2017). Monatsh. Chem. 148, 2155–2171.  CrossRef CAS Google Scholar
First citationLue, P. & Greenhill, J. V. (1996). Adv. Heterocycl. Chem. 67, 207–343.  CrossRef CAS Google Scholar
First citationMeng, L.-H., Li, X.-M., Lv, C.-T., Huang, C.-G. & Wang, B. G. (2014). J. Nat. Prod. 77, 1921–1927.  CrossRef CAS PubMed Google Scholar
First citationMisra, R., Bhattacharyya, S. & Maity, D. K. (2008). Chem. Phys. Lett. 458, 54–57.  CrossRef CAS Google Scholar
First citationMisra, R., Mandal, A., Mukhopadhyay, M., Maity, D. K. & Bhattacharyya, S. P. (2009). J. Phys. Chem. B, 113, 10779–10791.  CrossRef PubMed CAS Google Scholar
First citationRomney, D. K., Colvin, S. M. & Miller, S. J. (2014). J. Am. Chem. Soc. 136, 14019–14022.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoltz, B. M., Dougherty, D. A., Duquette, D. & Duffy, N. (2016). US Patent US 9,518,034 B2.  Google Scholar
First citationZheng, F. L., Ban, S. R., Feng, X. E., Zhao, C. X., Lin, W. & Li, Q. S. (2011). Molecules, 16, 4897–4911.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds