research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tribarium dicitrate penta­hydrate, [Ba3(C6H5O7)2(H2O)4]·H2O

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, North Central College, 131 S. Loomis St., Naperville IL 60540 , USA, and bDepartment of Chemistry, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago IL 60616 , USA
*Correspondence e-mail: kaduk@polycrystallography.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 22 January 2021; accepted 7 February 2021; online 12 February 2021)

The crystal structure of tribarium dicitrate penta­hydrate, [Ba3(C6H5O7)2(H2O)4]·H2O, has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. The BaO9 and BaO10 coordination polyhedra share edges and corners to form a three-dimensional network. All of the active hydrogen atoms act as donors in O—H⋯O hydrogen bonds. Most of the acceptors are carboxyl­ate oxygen atoms, but there are also water⋯water hydrogen bonds. Both of the citrate hydroxyl groups form intra­molecular O—H⋯O hydrogen bonds to terminal carboxyl groups.

1. Chemical context

A systematic study of the crystal structures of Group 1 (alkali metal) citrate salts has been reported in Rammohan & Kaduk (2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). The study was extended to mixed Group 1 citrates and to alkali/ammonium citrates in a series of papers, to magnesium citrates in Kaduk (2020a[Kaduk, J. A. (2020a). Acta Cryst. E76, 1611-1616.]), and to calcium citrates in Kaduk (2018[Kaduk, J. A. (2018). Powd. Diffr. 33, 237-243.]) and Kaduk (2020b[Kaduk, J. A. (2020b). Acta Cryst. E76, 1689-1693.]). This paper represents a further extension to barium citrates and describes the synthesis and structure of the title compound, (I)[link].

[Scheme 1]

2. Structural commentary

The crystal structure of tribarium dicitrate penta­hydrate, [Ba3(C6H5O7)2(H2O)4](H2O), has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques (Fig. 1[link]). The root-mean-square Cartesian displacements of the non-H atoms in the Rietveld-refined and DFT-optimized structures of the two crystallographically distinct citrate anions are 0.155 and 0.093 Å (Fig. 2[link]). The absolute differences in the positions of the three unique Ba2+ cations are 0.075, 0.345, and 0.081 Å. The good agreement between the structures is evidence that the experimental structure is correct (van de Streek & Neumann, 2014[Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020-1032.]). The rest of the discussion will emphasize the DFT-optimized structure. Almost all of the citrate bond distances, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul Geometry Check (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). The O13—C5—O14 bond angle of 122.1° is flagged as unusual [average = 123.8 (4)°, Z-score = 3.3]. The standard uncertainty on this average is exceptionally-small, inflating the Z-score. The C22—C23—C24—C25 torsion angle is flagged as unusual; it lies on the tail of a minor gauche population in a mainly trans distribution of similar torsion angles. Citrate anion 1 (atoms C1–H18) occurs in the trans,trans-conformation (about C2—C3 and C3—C4), which is one of the two low-energy conformations of an isolated citrate anion (Rammohan & Kaduk, 2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]), while citrate anion 2 (C21–H38) is the in the trans, gauche conformation, which is the other low-energy arrangement. For the larger Group 1 cations, the trans,trans conformation is more typical. The central carboxyl­ate groups and the hydroxyl groups exhibit significant twists of −20 and −24° from the normal planar arrangement.

[Figure 1]
Figure 1
The asymmetric unit of (I)[link] with the atom numbering and 50% probability spheres.
[Figure 2]
Figure 2
Comparison of the refined and optimized structures of the citrate anions in (I)[link]. The refined structure is in red, and the DFT-optimized structure is in blue. Citrate ion 1 (C1–H18) is on the left, and citrate ion 2 (C21–H38) is on the right.

The three barium cations Ba19, Ba20, and Ba39 are ten-, nine- and ten-coordinate, respectively. Ba19 is coordinated to one water mol­ecule, eight carboxyl­ate oxygen atoms and one hydroxyl group. Ba20 is coordinated to three water mol­ecules and six carboxyl­ate oxygen atoms. Ba39 is coordinated to one water mol­ecule, seven carboxyl­ate oxygen atoms and two hydroxyl groups. Water mol­ecule O40 is uncoordinated. The bond-valence sums (in valence units) for Ba19, Ba20 and Ba39 are 2.20, 2.15 and 2.20, respectively. The Mulliken overlap populations indicate that the Ba—O bonds are ionic. Citrate anion 1 triply chelates to Ba19 through the terminal carboxyl­ate atom O13, the central carboxyl­ate O16 and the hydroxyl group O17. It doubly chelates to another Ba19 cation through the terminal carboxyl­ate O11 and the central carboxyl­ate O16. The terminal carboxyl­ate O13/O14 chelates to a third Ba19, and the central carboxyl­ate O15/O16 chelates to a fourth Ba19. Citrate 1 also chelates to Ba39 through the terminal carboxyl­ate O13 and the hydroxyl group O17. Citrate 2 chelates to Ba39 through the terminal carboxyl­ate O33 and the hydroxyl group O37. The terminal carboxyl­ate O33/O34 chelates to Ba39, the terminal carboxyl­ate O31/O32 chelates to Ba20 and the central carboxyl­ate O35/O36 chelates to another Ba20 cation.

3. Supra­molecular features

The Ba coordination polyhedra share edges and corners to form a three-dimensional framework (Fig. 3[link]). The framework contains edge-sharing layers propagating in the ab plane. These layers share corners to form the framework. All of the active hydrogen atoms act as donors in O—H⋯O hydrogen bonds: most of the acceptors are carboxyl­ate oxygen atoms, but there are also water⋯water hydrogen bonds (Table 1[link]). Both of the hydroxyl groups form intra­molecular hydrogen bonds to terminal carboxyl groups. Two weak C—H⋯O hydrogen bonds also contribute to the packing.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O17—H18⋯O11 0.99 1.80 2.675 146
O37—H38⋯O32 0.98 1.90 2.742 142
O40—H45⋯O44i 0.97 1.94 2.862 156
O40—H46⋯O34ii 0.97 2.01 2.959 165
O41—H47⋯O12iii 0.98 1.78 2.718 159
O41—H48⋯O44i 0.97 2.43 3.257 143
O42—H49⋯O14iii 0.98 1.75 2.629 147
O42—H50⋯O32ii 0.99 1.68 2.642 164
O43—H51⋯O40 0.99 1.73 2.711 171
O43—H52⋯O41 0.97 2.07 2.963 151
O44—H53⋯O12iv 0.97 1.94 2.804 146
O44—H54⋯O36v 0.98 1.80 2.707 152
C4—H9⋯O33vi 1.09 2.42 3.411 150
C22—H27⋯O40ii 1.09 2.54 3.534 151
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+1]; (ii) [-x+1, -y+1, -z+1]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1]; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+2]; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1].
[Figure 3]
Figure 3
The crystal structure of (I)[link], viewed down the b-axis direction.

4. Database survey

Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2018[Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239-252.]). A search of the Cambridge Structural Database (CSD, version 2020.3.0 from Dec 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using a citrate fragment and the elements Ba, C, H, and O only yielded [Ba5(C6H5O7)2(HC6H5O7)2(H2O)6)](H2O)2 (Drzewiecka-Antonik et al., 2017[Drzewiecka-Antonik, A., Koziol, A. E., Rejmak, P., Lawniczak-Jablonska, K., Nittler, L. & Lis, T. (2017). Polyhedron, 132, 1-11.]; refcode QASXAM), the structure of which was also determined independently (Kaduk & Mueller, 2020[Kaduk, J. A. & Mueller, P. (2020). CSD Communication (deposition number 2032093). CCDC, Cambridge, England.]). A search of the Powder Diffraction File (Gates-Rector & Blanton, 2019[Gates-Rector, S. & Blanton, T. N. (2019). Powder Diffr. 34, 352-360.]) for barium citrates yielded only entry 00-001-0009 for barium citrate hepta­hydrate (Hanawalt et al., 1938[Hanawalt, J. D., Rinn, H. & Frevel, L. (1938). Anal. Chem. 10, 457-512.]), one of the compounds in the first group of entries in the PDF. This powder pattern differs from that of the current compound.

5. Synthesis and crystallization

Tribarium dicitrate penta­hydrate was synthesized by dissolving 2.0818 g (10.0 mmol) of citric acid monohydrate in 25 ml of water, and adding 2.9615 g (15.0 mmol) of BaCO3 to the clear solution. After slow fizzing, some solid remained, so the slurry was heated to boiling, and additional fizzing occurred. The slurry was filtered and dried at room temperature to yield the title compound as a white powder.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. A laboratory pattern, measured using Cu Kα radiation, was indexed using DICVOL06 (Louër & Boultif, 2007[Louër, D. & Boultif, A. (2007). Z. Kristallogr. Suppl. pp. 191-196.]) on a primitive monoclinic cell with a = 11.4741, b = 13.7366, c = 15.0626 Å, β = 107.944°, V = 2258.62 Å3, and Z = 4. After attempts to solve the structure using the laboratory data were unsuccessful, the powder pattern was measured at beamline 11-BM at the Advanced Photon Source, Argonne National Laboratory using a wavelength of 0.413891 Å and was indexed on a similar cell (Fig. 4[link]). The structure was solved using Monte Carlo simulated annealing techniques as implemented in DASH (David et al., 2006[David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S. & Cole, J. C. (2006). J. Appl. Cryst. 39, 910-915.]). Three Ba atoms and two citrate anions were used as fragments. Oxygen atoms of water mol­ecules were placed in voids located by Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). Approximate positions of the hydrogen atoms were determined by analysis of potential hydrogen-bonding patterns.

Table 2
Experimental details

Crystal data
Chemical formula [Ba3(C6H5O7)2(H2O)4]·H2O
Mr 880.26
Crystal system, space group Monoclinic, P21/a
Temperature (K) 295
a, b, c (Å) 11.4768 (2), 13.75186 (7), 15.0943 (4)
β (°) 107.7746 (7)
V3) 2268.57 (2)
Z 4
Radiation type Synchrotron, λ = 0.41389 Å
μ (mm−1) 0.57
Specimen shape, size (mm) Cylinder, 3.0 × 1.5
 
Data collection
Diffractometer 11-BM, APS
Specimen mounting Kapton capillary
Data collection mode Transmission
Scan method Step
2θ values (°) 2θmin = 0.500, 2θmax = 49.994, 2θstep = 0.001
 
Refinement
R factors and goodness of fit Rp = 0.105, Rwp = 0.111, Rexp = 0.050, χ2 = 4.995
No. of parameters 133
No. of restraints 58
(Δ/σ)max 3.844
Computer programs: DASH (David et al., 2006[David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S. & Cole, J. C. (2006). J. Appl. Cryst. 39, 910-915.]), GSAS-II (Toby & Von Dreele, 2013[Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544-549.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), DIAMOND (Crystal Impact, 2015[Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 4]
Figure 4
Comparison of the synchrotron (black) and laboratory X-ray powder diffraction patterns of (I)[link]. The laboratory pattern (measured using Cu Kα radiation) was converted to the synchrotron wavelength of 0.413891 Å using JADE Pro (MDI, 2020[MDI (2020). JADE Pro. Materials Data, Livermore CA, USA.]).

The structure was refined by the Rietveld method using GSAS-II (Toby & Von Dreele, 2013[Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544-549.]). The initial refinement clarified the presence of extra peaks, which were identified as witherite, BaCO3, which was added as a second phase; its contribution refined to 9.2 wt%. All non-H bond distances and angles in the citrate anions were subjected to restraints, based on a Mercury Mogul Geometry Check (Sykes et al., 2011[Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J. & Wood, P. A. (2011). J. Appl. Cryst. 44, 882-886.]; Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]); the Ba—O distances were not restrained. The Mogul average and standard deviation for each qu­antity were used as the restraint parameters. The restraints contributed 1.5% to the final χ2. The hydrogen atoms were included in calculated positions, which were recalculated during the refinement using Materials Studio (Dassault Systems, 2020[Dassault Systems (2020). Materials Studio. BIOVIA, San Diego CA, USA.]). The Uiso values (Å2) were grouped by chemical similarity; the Uiso for the H atoms were fixed at 1.3 × the Uiso of the heavy atoms to which they are attached. Attempts to refine the Uiso of the C and O atoms of the citrate anions led to values very close to zero, so these were fixed at reasonable values based on experience. The generalized microstrain model was used to describe the peak profiles. A 4th-order spherical harmonics preferred orientation model was included; the texture index refined to 1.006. The background was described by a six-term shifted Chebyshev polynomial, with a peak at 5.60° to describe the scattering from the Kapton capillary and any amorphous component. The largest errors in the fit (Fig. 5[link]) are in the positions and shapes of some of the strong low-angle peaks, and suggest that the specimen changed during exposure to the X-ray beam.

[Figure 5]
Figure 5
Rietveld plot for (I)[link]. The blue crosses represent the observed data points, and the green line is the calculated pattern. The cyan curve is the normalized error plot. The vertical scale has been multiplied by a factor of 20× for 2θ > 12.0°. The row of blue tick marks indicates the calculated reflection positions, and the red tick marks indicate the peak positions for the BaCO3 impurity. The red line is the background curve.

A density functional geometry optimization (fixed experimental unit cell) was carried out using CRYSTAL09 (Dovesi et al., 2018[Dovesi, R., Erba, A., Orlando, R., Zicovich-Wilson, C. M., Civalleri, B., Maschio, L., Rérat, M., Casassa, S., Baima, J., Salustro, S. & Kirtman, B. (2018). WIREs Comput. Mol. Sci. 8, e1360.]). The basis sets for the H, C and O atoms were those of Gatti et al. (1994[Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686-10696.]), and the basis set for Ba was that of Piskunov et al. (2004[Piskunov, S., Heifets, E., Eglitis, R. I. & Borstel, G. (2004). Comput. Mater. Sci. 29, 165-178.]). The calculation used 8 k-points and the B3LYP functional, and took ∼10.5 days on a 2.4 GHz PC.

Supporting information


Computing details top

Program(s) used to solve structure: DASH (David et al., 2006) for (I), (II).

Tribarium dicitrate pentahydrate (I) top
Crystal data top
[Ba3(C6H5O7)2(H2O)4]·H2OV = 2268.57 (2) Å3
Mr = 880.26Z = 4
Monoclinic, P21/aDx = 2.577 Mg m3
Hall symbol: -P 2yabSynchrotron radiation
a = 11.4768 (2) ŵ = 0.57 mm1
b = 13.75186 (7) ÅT = 295 K
c = 15.0943 (4) Åcylinder, 3.0 × 1.5 mm
β = 107.7746 (7)°
Data collection top
11-BM, APS
diffractometer
Data collection mode: transmission
Specimen mounting: Kapton capillaryScan method: step
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.000, 1.000, Microstrain, "generalized" model (106 * delta Q/Q) parameters: S400, S040, S004, S220, S202, S022, S301, S103, S121, G/L mix 335.804, 65.612, 324.354, 213.281, 392.656, 323.823, 45.812, 408.669, 280.544, 1.000,Preferred orientation correction: Simple spherical harmonic correction Order = 4 Coefficients: 0:0:C(2,-2) = -0.042(4); 0:0:C(2,0) = 0.073(7); 0:0:C(2,2) = -0.088(5); 0:0:C(4,-4) = -0.024(7); 0:0:C(4,-2) = 0.001(6); 0:0:C(4,0) = 0.156(8); 0:0:C(4,2) = -0.061(6); 0:0:C(4,4) = 0.020(7)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1025 (14)0.3842 (7)0.2342 (11)0.030*
C20.1218 (17)0.2808 (7)0.2617 (10)0.030*
C30.1696 (9)0.2738 (5)0.3463 (6)0.030000*
C40.1944 (15)0.1670 (6)0.3637 (8)0.030000*
C50.234 (2)0.1472 (9)0.4497 (10)0.030000*
C60.0758 (11)0.3156 (8)0.4336 (9)0.030000*
H70.031190.240040.278150.039*
H80.191530.243010.201120.039*
H90.107890.123340.369680.039*
H100.270950.137890.302010.039*
O110.1735 (14)0.4478 (9)0.2382 (12)0.030000*
O120.0273 (13)0.3949 (9)0.1903 (11)0.030000*
O130.2195 (16)0.2142 (10)0.5088 (10)0.030000*
O140.2699 (15)0.0654 (9)0.4606 (10)0.030000*
O150.0211 (11)0.2702 (11)0.4695 (11)0.030000*
O160.0950 (13)0.3999 (9)0.4574 (11)0.030000*
O170.2813 (10)0.3277 (9)0.3297 (9)0.030000*
H180.270140.386950.298650.039*
Ba190.13690 (18)0.40567 (15)0.61015 (14)0.0206 (3)*
Ba200.13661 (19)0.56012 (14)0.07100 (16)0.0206*
C210.8413 (9)0.4134 (14)0.8464 (12)0.030000*
C220.7053 (10)0.4247 (7)0.7965 (11)0.030000*
C230.6437 (8)0.3321 (6)0.7475 (6)0.030000*
C240.5045 (8)0.3466 (9)0.7101 (10)0.030000*
C250.4557 (11)0.4271 (9)0.6402 (9)0.030000*
C260.6710 (16)0.2470 (7)0.8181 (7)0.030000*
H270.656160.446000.848820.039*
H280.692120.485150.742640.039*
H290.459790.277390.673620.039*
H300.469330.359670.772030.039*
O310.8872 (12)0.4619 (12)0.9199 (9)0.030000*
O320.9015 (12)0.3548 (11)0.8130 (11)0.030000*
O330.5172 (14)0.4590 (11)0.5921 (12)0.030000*
O340.3680 (12)0.4732 (10)0.6521 (12)0.030000*
O350.6922 (17)0.1668 (8)0.7892 (10)0.030000*
O360.6695 (17)0.2652 (10)0.8982 (8)0.030000*
O370.6907 (13)0.3101 (9)0.6718 (9)0.030000*
H380.76690.30790.69980.039*
Ba390.33612 (17)0.39258 (15)0.49603 (15)0.0206*
O400.532 (2)0.4922 (15)0.1197 (15)0.088 (4)*
O410.601 (2)0.1767 (15)0.0858 (18)0.088*
O420.0959 (19)0.5739 (16)0.3574 (17)0.088*
O430.375 (2)0.3603 (14)0.0222 (17)0.088*
O440.676 (2)0.8072 (15)0.9286 (18)0.088*
H450.600870.472090.104080.144*
H460.56830.48870.17780.144*
H470.53500.18220.10010.144*
H480.60000.23840.08550.144*
H490.117240.512490.371580.144*
H500.08440.588770.300930.144*
H510.41220.39000.07200.144*
H520.404600.302900.028460.144*
H530.71310.86840.93420.144*
H540.72360.79420.98230.144*
Geometric parameters (Å, º) top
C1—C21.515 (4)Ba20—O43ix2.88 (2)
C1—O111.210 (6)C21—C221.520 (4)
C1—O121.246 (4)C21—O311.263 (5)
C2—C11.515 (4)C21—O321.262 (5)
C2—C31.538 (3)C22—C211.520 (4)
C3—C21.538 (3)C22—C231.533 (3)
C3—C41.5334 (11)C23—C221.533 (3)
C3—C61.537 (2)C23—C241.537 (3)
C3—O171.435 (3)C23—C261.549 (3)
C4—C31.5334 (11)C23—O371.436 (4)
C4—C51.523 (6)C24—C231.537 (3)
C5—C41.523 (6)C24—C251.514 (4)
C5—O131.259 (9)C25—C241.514 (4)
C5—O141.228 (6)C25—O331.237 (6)
C6—C31.537 (2)C25—O341.248 (4)
C6—O151.246 (4)C26—C231.549 (3)
C6—O161.253 (3)C26—O351.236 (7)
O11—C11.210 (6)C26—O361.240 (7)
O11—Ba19i2.982 (16)O31—Ba20x2.736 (13)
O12—C11.246 (4)O31—Ba20vi2.840 (15)
O12—Ba202.933 (14)O31—C211.263 (5)
O13—C51.259 (9)O32—Ba20vi2.971 (15)
O13—Ba392.772 (16)O32—C211.262 (5)
O14—C51.228 (6)O33—C251.237 (6)
O14—Ba19ii2.805 (13)O33—Ba39xi2.695 (14)
O14—Ba39iii2.660 (15)O33—Ba39i2.927 (14)
O15—C61.246 (4)O34—Ba192.697 (15)
O15—Ba192.833 (14)O34—C251.248 (4)
O15—Ba39iv2.730 (13)O34—Ba39i2.835 (14)
O16—C61.253 (3)O35—Ba19iv2.767 (14)
O16—Ba192.942 (13)O35—Ba20xii2.799 (14)
O16—Ba19i2.850 (15)O35—C261.236 (7)
O16—Ba392.999 (16)O36—Ba20xii2.901 (13)
O17—C31.435 (3)O36—C261.240 (7)
O17—Ba392.909 (13)O37—C231.436 (4)
Ba19—O11i2.982 (16)O37—Ba39xi2.815 (12)
Ba19—O14iv2.805 (13)Ba39—O132.772 (16)
Ba19—O152.833 (14)Ba39—O14xiii2.660 (15)
Ba19—O162.942 (13)Ba39—O15ii2.730 (13)
Ba19—O16i2.850 (15)Ba39—O162.999 (16)
Ba19—O342.697 (15)Ba39—O172.909 (13)
Ba19—O35ii2.767 (14)Ba39—O33xiv2.695 (14)
Ba19—O42i2.87 (2)Ba39—O33i2.927 (14)
Ba20—O122.933 (14)Ba39—O34i2.835 (14)
Ba20—O31v2.736 (13)Ba39—O37xiv2.815 (12)
Ba20—O31vi2.840 (15)Ba39—O42i3.00 (2)
Ba20—O32vi2.971 (15)O41—Ba20xv2.99 (2)
Ba20—O35vii2.799 (14)O42—Ba19i2.87 (2)
Ba20—O36vii2.901 (13)O42—Ba39i3.00 (2)
Ba20—O41viii2.99 (2)O43—Ba20ix2.88 (2)
C2—C1—O11120.5 (6)C22—C21—O31118.1 (5)
C2—C1—O12116.1 (3)C22—C21—O32118.2 (5)
O11—C1—O12121.8 (5)O31—C21—O32123.7 (5)
C1—C2—C3114.0 (4)C21—C22—C23114.0 (5)
C2—C3—C4109.5 (2)C22—C23—C24110.1 (5)
C2—C3—C6110.7 (2)C22—C23—C26109.2 (4)
C4—C3—C6109.3 (2)C24—C23—C26108.7 (5)
C2—C3—O17110.4 (2)C22—C23—O37109.2 (4)
C4—C3—O17108.8 (3)C24—C23—O37109.6 (4)
C6—C3—O17108.2 (3)C26—C23—O37110.0 (4)
C3—C4—C5115.8 (2)C23—C24—C25118.3 (5)
C4—C5—O13117.8 (3)C24—C25—O33120.8 (5)
C4—C5—O14118.6 (4)C24—C25—O34114.5 (4)
O13—C5—O14123.44 (11)O33—C25—O34122.3 (5)
C3—C6—O15119.0 (4)C23—C26—O35116.8 (5)
C3—C6—O16117.0 (5)C23—C26—O36117.3 (3)
O15—C6—O16123.4 (7)O35—C26—O36125.9 (5)
C5—O14—Ba39iii134.7 (18)
Symmetry codes: (i) x, y+1, z+1; (ii) x1/2, y+1/2, z; (iii) x1/2, y1/2, z+1; (iv) x+1/2, y+1/2, z; (v) x1, y, z1; (vi) x+1, y+1, z+1; (vii) x+1/2, y+1/2, z+1; (viii) x+1/2, y+1/2, z; (ix) x, y+1, z; (x) x+1, y, z+1; (xi) x+1, y, z; (xii) x+1/2, y1/2, z+1; (xiii) x1/2, y+1/2, z+1; (xiv) x1, y, z; (xv) x+1/2, y1/2, z.
Barium carbonate (II) top
Crystal data top
Ba2+·CO32V = 304.24 Å3
Mr = 197.34Z = 4
Orthorhombic, PmcnDx = 4.308 Mg m3
Hall symbol: -P 2n 2aSynchrotron radiation
a = 5.307826 ÅT = 295 K
b = 8.91479 Åcylinder, 3.0 × 1.5 mm
c = 6.429736 Å
Data collection top
11-BM, APS
diffractometer
Data collection mode: transmission
Specimen mounting: Kapton capillaryScan method: step
Refinement top
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.000, 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 6653.476, 1.000,Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1]
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.250000.416600.753000.004*
C20.250000.755500.081700.010*
O30.250000.899900.092300.010*
O40.459600.683100.079400.010*
(I_DFT) top
Crystal data top
C12H20Ba3O19b = 13.75185 Å
Mr = 880.26c = 15.09415 Å
Monoclinic, P21/aβ = 107.7751°
Hall symbol: -P 2yabV = 2268.57 Å3
a = 11.47665 ÅZ = 4
Data collection top
DFT calculationk =
h = l =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.116880.383410.221660.03000*
C20.119710.280830.261100.03000*
C30.172940.273750.344000.03000*
C40.199830.167880.361210.03000*
C50.238790.149050.447770.03000*
C60.076880.317970.430480.03000*
H70.026220.252030.282170.03000*
H80.171560.234390.203310.03000*
H90.119300.122490.367980.03000*
H100.271840.140850.300390.03000*
O110.168330.452720.249960.03000*
O120.067100.393340.157450.03000*
O130.221490.211260.511640.03000*
O140.286230.065980.452920.03000*
O150.015830.266830.470450.03000*
O160.093830.403710.455170.03000*
O170.286640.324660.324740.03000*
H180.270140.386950.298650.03000*
Ba190.133850.401670.611960.03000*
Ba200.133110.579820.057920.03000*
C210.839870.417120.846610.03000*
C220.705180.429710.792940.03000*
C230.645240.335050.746250.03000*
C240.505730.345410.704740.03000*
C250.460450.438000.649580.03000*
C260.667540.251600.817970.03000*
H270.655610.458910.838160.03000*
H280.699590.483060.737910.03000*
H290.470980.284970.656610.03000*
H300.464970.339720.761160.03000*
O310.885190.460540.922410.03000*
O320.904160.363750.809630.03000*
O330.513250.469060.592930.03000*
O340.367090.479670.661470.03000*
O350.681830.166800.790360.03000*
O360.664540.271270.898870.03000*
O370.696300.306730.673850.03000*
H380.784870.307320.706370.03000*
Ba390.329830.389420.497230.03000*
O400.540190.477680.137000.03000*
O410.551970.208090.056810.03000*
O420.089490.579770.356130.03000*
O430.358510.354040.047150.03000*
O440.805230.906710.965870.03000*
H450.600870.472090.104080.03000*
H460.584080.487180.202660.03000*
H470.516300.183790.104180.03000*
H480.599570.265910.080790.03000*
H490.117240.512490.371580.03000*
H500.082210.591470.290230.03000*
H510.422340.398130.085540.03000*
H520.404600.302900.028460.03000*
H530.725130.878140.936040.03000*
H540.834080.872821.025990.03000*
Bond lengths (Å) top
C1—C21.536C23—C261.544
C1—O111.263C23—O371.442
C1—O121.274C24—C251.525
C2—C31.552C24—H291.096
C2—H71.096C24—H301.092
C2—H81.098C25—C241.525
C3—C41.528C25—O331.265
C3—C61.553C25—O341.275
C3—O171.430C26—O351.265
C4—C51.526C26—O361.255
C4—H91.094H29—C241.096
C4—H101.096H30—C241.092
C5—O131.258O33—C251.265
C5—O141.278O37—H380.980
C6—O151.264O40—H450.968
C6—O161.271O40—H460.973
O13—C51.258O41—H470.981
O17—H180.977O41—H480.974
C21—C221.520O42—H490.983
C21—O311.255O42—H500.985
C21—O321.283O43—H510.986
C22—C231.539O43—H520.972
C22—H271.090O44—H530.973
C22—H281.095O44—H540.983
C23—C241.539
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H18···O110.991.802.675146
O37—H38···O320.981.902.742142
O40—H45···O44i0.971.942.862156
O40—H46···O34ii0.972.012.959165
O41—H47···O12iii0.981.782.718159
O41—H48···O44i0.972.433.257143
O42—H49···O14iii0.981.752.629147
O42—H50···O32ii0.991.682.642164
O43—H51···O400.991.732.711171
O43—H52···O410.972.072.963151
O44—H53···O12iv0.971.942.804146
O44—H54···O36v0.981.802.707152
C4—H9···O33vi1.092.423.411150
C22—H27···O40ii1.092.543.534151
Symmetry codes: (i) x+3/2, y1/2, z+1; (ii) x+1, y+1, z+1; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z+1; (v) x+3/2, y+1/2, z+2; (vi) x+1/2, y1/2, z+1.
 

Acknowledgements

Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02–06CH11357. I thank Lynn Ribaud and Saul Lapidus for their assistance in the data collection and Andrey Rogachev at Illinois Inst.

References

First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCrystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDassault Systems (2020). Materials Studio. BIOVIA, San Diego CA, USA.  Google Scholar
First citationDavid, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S. & Cole, J. C. (2006). J. Appl. Cryst. 39, 910–915.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDovesi, R., Erba, A., Orlando, R., Zicovich-Wilson, C. M., Civalleri, B., Maschio, L., Rérat, M., Casassa, S., Baima, J., Salustro, S. & Kirtman, B. (2018). WIREs Comput. Mol. Sci. 8, e1360.  Google Scholar
First citationDrzewiecka-Antonik, A., Koziol, A. E., Rejmak, P., Lawniczak-Jablonska, K., Nittler, L. & Lis, T. (2017). Polyhedron, 132, 1–11.  CAS Google Scholar
First citationGates-Rector, S. & Blanton, T. N. (2019). Powder Diffr. 34, 352–360.  CAS Google Scholar
First citationGatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHanawalt, J. D., Rinn, H. & Frevel, L. (1938). Anal. Chem. 10, 457–512.  CAS Google Scholar
First citationKaduk, J. A. (2018). Powd. Diffr. 33, 237–243.  Google Scholar
First citationKaduk, J. A. (2020a). Acta Cryst. E76, 1611–1616.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaduk, J. A. (2020b). Acta Cryst. E76, 1689–1693.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKaduk, J. A. & Mueller, P. (2020). CSD Communication (deposition number 2032093). CCDC, Cambridge, England.  Google Scholar
First citationLouër, D. & Boultif, A. (2007). Z. Kristallogr. Suppl. pp. 191–196.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMDI (2020). JADE Pro. Materials Data, Livermore CA, USA.  Google Scholar
First citationPiskunov, S., Heifets, E., Eglitis, R. I. & Borstel, G. (2004). Comput. Mater. Sci. 29, 165–178.  Web of Science CrossRef CAS Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239–252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStreek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J. & Wood, P. A. (2011). J. Appl. Cryst. 44, 882–886.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544–549.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds