research communications
Tribarium dicitrate pentahydrate, [Ba3(C6H5O7)2(H2O)4]·H2O
aDepartment of Physics, North Central College, 131 S. Loomis St., Naperville IL 60540 , USA, and bDepartment of Chemistry, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago IL 60616 , USA
*Correspondence e-mail: kaduk@polycrystallography.com
The 3(C6H5O7)2(H2O)4]·H2O, has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. The BaO9 and BaO10 coordination polyhedra share edges and corners to form a three-dimensional network. All of the active hydrogen atoms act as donors in O—H⋯O hydrogen bonds. Most of the acceptors are carboxylate oxygen atoms, but there are also water⋯water hydrogen bonds. Both of the citrate hydroxyl groups form intramolecular O—H⋯O hydrogen bonds to terminal carboxyl groups.
of tribarium dicitrate pentahydrate, [BaKeywords: powder diffraction; citrate; barium; Rietveld refinement; density functional theory.
1. Chemical context
A systematic study of the crystal structures of Group 1 (alkali metal) citrate salts has been reported in Rammohan & Kaduk (2018). The study was extended to mixed Group 1 citrates and to alkali/ammonium citrates in a series of papers, to magnesium citrates in Kaduk (2020a), and to calcium citrates in Kaduk (2018) and Kaduk (2020b). This paper represents a further extension to barium citrates and describes the synthesis and structure of the title compound, (I).
2. Structural commentary
The 3(C6H5O7)2(H2O)4](H2O), has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques (Fig. 1). The root-mean-square Cartesian displacements of the non-H atoms in the Rietveld-refined and DFT-optimized structures of the two crystallographically distinct citrate anions are 0.155 and 0.093 Å (Fig. 2). The absolute differences in the positions of the three unique Ba2+ cations are 0.075, 0.345, and 0.081 Å. The good agreement between the structures is evidence that the experimental structure is correct (van de Streek & Neumann, 2014). The rest of the discussion will emphasize the DFT-optimized structure. Almost all of the citrate bond distances, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul Geometry Check (Macrae et al., 2020). The O13—C5—O14 bond angle of 122.1° is flagged as unusual [average = 123.8 (4)°, Z-score = 3.3]. The on this average is exceptionally-small, inflating the Z-score. The C22—C23—C24—C25 torsion angle is flagged as unusual; it lies on the tail of a minor gauche population in a mainly trans distribution of similar torsion angles. Citrate anion 1 (atoms C1–H18) occurs in the trans,trans-conformation (about C2—C3 and C3—C4), which is one of the two low-energy conformations of an isolated citrate anion (Rammohan & Kaduk, 2018), while citrate anion 2 (C21–H38) is the in the trans, gauche conformation, which is the other low-energy arrangement. For the larger Group 1 cations, the trans,trans conformation is more typical. The central carboxylate groups and the hydroxyl groups exhibit significant twists of −20 and −24° from the normal planar arrangement.
of tribarium dicitrate pentahydrate, [BaThe three barium cations Ba19, Ba20, and Ba39 are ten-, nine- and ten-coordinate, respectively. Ba19 is coordinated to one water molecule, eight carboxylate oxygen atoms and one hydroxyl group. Ba20 is coordinated to three water molecules and six carboxylate oxygen atoms. Ba39 is coordinated to one water molecule, seven carboxylate oxygen atoms and two hydroxyl groups. Water molecule O40 is uncoordinated. The bond-valence sums (in valence units) for Ba19, Ba20 and Ba39 are 2.20, 2.15 and 2.20, respectively. The Mulliken overlap populations indicate that the Ba—O bonds are ionic. Citrate anion 1 triply chelates to Ba19 through the terminal carboxylate atom O13, the central carboxylate O16 and the hydroxyl group O17. It doubly chelates to another Ba19 cation through the terminal carboxylate O11 and the central carboxylate O16. The terminal carboxylate O13/O14 chelates to a third Ba19, and the central carboxylate O15/O16 chelates to a fourth Ba19. Citrate 1 also chelates to Ba39 through the terminal carboxylate O13 and the hydroxyl group O17. Citrate 2 chelates to Ba39 through the terminal carboxylate O33 and the hydroxyl group O37. The terminal carboxylate O33/O34 chelates to Ba39, the terminal carboxylate O31/O32 chelates to Ba20 and the central carboxylate O35/O36 chelates to another Ba20 cation.
3. Supramolecular features
The Ba coordination polyhedra share edges and corners to form a three-dimensional framework (Fig. 3). The framework contains edge-sharing layers propagating in the ab plane. These layers share corners to form the framework. All of the active hydrogen atoms act as donors in O—H⋯O hydrogen bonds: most of the acceptors are carboxylate oxygen atoms, but there are also water⋯water hydrogen bonds (Table 1). Both of the hydroxyl groups form intramolecular hydrogen bonds to terminal carboxyl groups. Two weak C—H⋯O hydrogen bonds also contribute to the packing.
4. Database survey
Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2018). A search of the Cambridge Structural Database (CSD, version 2020.3.0 from Dec 2020; Groom et al., 2016) using a citrate fragment and the elements Ba, C, H, and O only yielded [Ba5(C6H5O7)2(HC6H5O7)2(H2O)6)](H2O)2 (Drzewiecka-Antonik et al., 2017; refcode QASXAM), the structure of which was also determined independently (Kaduk & Mueller, 2020). A search of the Powder Diffraction File (Gates-Rector & Blanton, 2019) for barium citrates yielded only entry 00-001-0009 for barium citrate heptahydrate (Hanawalt et al., 1938), one of the compounds in the first group of entries in the PDF. This powder pattern differs from that of the current compound.
5. Synthesis and crystallization
Tribarium dicitrate pentahydrate was synthesized by dissolving 2.0818 g (10.0 mmol) of citric acid monohydrate in 25 ml of water, and adding 2.9615 g (15.0 mmol) of BaCO3 to the clear solution. After slow fizzing, some solid remained, so the slurry was heated to boiling, and additional fizzing occurred. The slurry was filtered and dried at room temperature to yield the title compound as a white powder.
6. Refinement
Crystal data, data collection and structure . A laboratory pattern, measured using Cu Kα radiation, was indexed using DICVOL06 (Louër & Boultif, 2007) on a primitive monoclinic cell with a = 11.4741, b = 13.7366, c = 15.0626 Å, β = 107.944°, V = 2258.62 Å3, and Z = 4. After attempts to solve the structure using the laboratory data were unsuccessful, the powder pattern was measured at beamline 11-BM at the Advanced Photon Source, Argonne National Laboratory using a wavelength of 0.413891 Å and was indexed on a similar cell (Fig. 4). The structure was solved using Monte Carlo simulated annealing techniques as implemented in DASH (David et al., 2006). Three Ba atoms and two citrate anions were used as fragments. Oxygen atoms of water molecules were placed in voids located by Mercury (Macrae et al., 2020). Approximate positions of the hydrogen atoms were determined by analysis of potential hydrogen-bonding patterns.
details are summarized in Table 2
|
The structure was refined by the GSAS-II (Toby & Von Dreele, 2013). The initial clarified the presence of extra peaks, which were identified as witherite, BaCO3, which was added as a second phase; its contribution refined to 9.2 wt%. All non-H bond distances and angles in the citrate anions were subjected to restraints, based on a Mercury Mogul Geometry Check (Sykes et al., 2011; Bruno et al., 2004); the Ba—O distances were not restrained. The Mogul average and standard deviation for each quantity were used as the restraint parameters. The restraints contributed 1.5% to the final χ2. The hydrogen atoms were included in calculated positions, which were recalculated during the using Materials Studio (Dassault Systems, 2020). The Uiso values (Å2) were grouped by chemical similarity; the Uiso for the H atoms were fixed at 1.3 × the Uiso of the heavy atoms to which they are attached. Attempts to refine the Uiso of the C and O atoms of the citrate anions led to values very close to zero, so these were fixed at reasonable values based on experience. The generalized microstrain model was used to describe the peak profiles. A 4th-order spherical harmonics model was included; the texture index refined to 1.006. The background was described by a six-term shifted Chebyshev polynomial, with a peak at 5.60° to describe the scattering from the Kapton capillary and any amorphous component. The largest errors in the fit (Fig. 5) are in the positions and shapes of some of the strong low-angle peaks, and suggest that the specimen changed during exposure to the X-ray beam.
usingA density functional geometry optimization (fixed experimental unit cell) was carried out using CRYSTAL09 (Dovesi et al., 2018). The basis sets for the H, C and O atoms were those of Gatti et al. (1994), and the basis set for Ba was that of Piskunov et al. (2004). The calculation used 8 k-points and the B3LYP functional, and took ∼10.5 days on a 2.4 GHz PC.
Supporting information
[Ba3(C6H5O7)2(H2O)4]·H2O | V = 2268.57 (2) Å3 |
Mr = 880.26 | Z = 4 |
Monoclinic, P21/a | Dx = 2.577 Mg m−3 |
Hall symbol: -P 2yab | Synchrotron radiation |
a = 11.4768 (2) Å | µ = 0.57 mm−1 |
b = 13.75186 (7) Å | T = 295 K |
c = 15.0943 (4) Å | cylinder, 3.0 × 1.5 mm |
β = 107.7746 (7)° |
11-BM, APS diffractometer | Data collection mode: transmission |
Specimen mounting: Kapton capillary | Scan method: step |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.000, 1.000, Microstrain, "generalized" model (106 * delta Q/Q) parameters: S400, S040, S004, S220, S202, S022, S301, S103, S121, G/L mix 335.804, 65.612, 324.354, 213.281, 392.656, 323.823, 45.812, 408.669, 280.544, 1.000, | Preferred orientation correction: Simple spherical harmonic correction Order = 4 Coefficients: 0:0:C(2,-2) = -0.042(4); 0:0:C(2,0) = 0.073(7); 0:0:C(2,2) = -0.088(5); 0:0:C(4,-4) = -0.024(7); 0:0:C(4,-2) = 0.001(6); 0:0:C(4,0) = 0.156(8); 0:0:C(4,2) = -0.061(6); 0:0:C(4,4) = 0.020(7) |
x | y | z | Uiso*/Ueq | ||
C1 | −0.1025 (14) | 0.3842 (7) | 0.2342 (11) | 0.030* | |
C2 | −0.1218 (17) | 0.2808 (7) | 0.2617 (10) | 0.030* | |
C3 | −0.1696 (9) | 0.2738 (5) | 0.3463 (6) | 0.030000* | |
C4 | −0.1944 (15) | 0.1670 (6) | 0.3637 (8) | 0.030000* | |
C5 | −0.234 (2) | 0.1472 (9) | 0.4497 (10) | 0.030000* | |
C6 | −0.0758 (11) | 0.3156 (8) | 0.4336 (9) | 0.030000* | |
H7 | −0.03119 | 0.24004 | 0.27815 | 0.039* | |
H8 | −0.19153 | 0.24301 | 0.20112 | 0.039* | |
H9 | −0.10789 | 0.12334 | 0.36968 | 0.039* | |
H10 | −0.27095 | 0.13789 | 0.30201 | 0.039* | |
O11 | −0.1735 (14) | 0.4478 (9) | 0.2382 (12) | 0.030000* | |
O12 | −0.0273 (13) | 0.3949 (9) | 0.1903 (11) | 0.030000* | |
O13 | −0.2195 (16) | 0.2142 (10) | 0.5088 (10) | 0.030000* | |
O14 | −0.2699 (15) | 0.0654 (9) | 0.4606 (10) | 0.030000* | |
O15 | 0.0211 (11) | 0.2702 (11) | 0.4695 (11) | 0.030000* | |
O16 | −0.0950 (13) | 0.3999 (9) | 0.4574 (11) | 0.030000* | |
O17 | −0.2813 (10) | 0.3277 (9) | 0.3297 (9) | 0.030000* | |
H18 | −0.27014 | 0.38695 | 0.29865 | 0.039* | |
Ba19 | 0.13690 (18) | 0.40567 (15) | 0.61015 (14) | 0.0206 (3)* | |
Ba20 | −0.13661 (19) | 0.56012 (14) | 0.07100 (16) | 0.0206* | |
C21 | 0.8413 (9) | 0.4134 (14) | 0.8464 (12) | 0.030000* | |
C22 | 0.7053 (10) | 0.4247 (7) | 0.7965 (11) | 0.030000* | |
C23 | 0.6437 (8) | 0.3321 (6) | 0.7475 (6) | 0.030000* | |
C24 | 0.5045 (8) | 0.3466 (9) | 0.7101 (10) | 0.030000* | |
C25 | 0.4557 (11) | 0.4271 (9) | 0.6402 (9) | 0.030000* | |
C26 | 0.6710 (16) | 0.2470 (7) | 0.8181 (7) | 0.030000* | |
H27 | 0.65616 | 0.44600 | 0.84882 | 0.039* | |
H28 | 0.69212 | 0.48515 | 0.74264 | 0.039* | |
H29 | 0.45979 | 0.27739 | 0.67362 | 0.039* | |
H30 | 0.46933 | 0.35967 | 0.77203 | 0.039* | |
O31 | 0.8872 (12) | 0.4619 (12) | 0.9199 (9) | 0.030000* | |
O32 | 0.9015 (12) | 0.3548 (11) | 0.8130 (11) | 0.030000* | |
O33 | 0.5172 (14) | 0.4590 (11) | 0.5921 (12) | 0.030000* | |
O34 | 0.3680 (12) | 0.4732 (10) | 0.6521 (12) | 0.030000* | |
O35 | 0.6922 (17) | 0.1668 (8) | 0.7892 (10) | 0.030000* | |
O36 | 0.6695 (17) | 0.2652 (10) | 0.8982 (8) | 0.030000* | |
O37 | 0.6907 (13) | 0.3101 (9) | 0.6718 (9) | 0.030000* | |
H38 | 0.7669 | 0.3079 | 0.6998 | 0.039* | |
Ba39 | −0.33612 (17) | 0.39258 (15) | 0.49603 (15) | 0.0206* | |
O40 | 0.532 (2) | 0.4922 (15) | 0.1197 (15) | 0.088 (4)* | |
O41 | 0.601 (2) | 0.1767 (15) | 0.0858 (18) | 0.088* | |
O42 | 0.0959 (19) | 0.5739 (16) | 0.3574 (17) | 0.088* | |
O43 | 0.375 (2) | 0.3603 (14) | 0.0222 (17) | 0.088* | |
O44 | 0.676 (2) | 0.8072 (15) | 0.9286 (18) | 0.088* | |
H45 | 0.60087 | 0.47209 | 0.10408 | 0.144* | |
H46 | 0.5683 | 0.4887 | 0.1778 | 0.144* | |
H47 | 0.5350 | 0.1822 | 0.1001 | 0.144* | |
H48 | 0.6000 | 0.2384 | 0.0855 | 0.144* | |
H49 | 0.11724 | 0.51249 | 0.37158 | 0.144* | |
H50 | 0.0844 | 0.58877 | 0.30093 | 0.144* | |
H51 | 0.4122 | 0.3900 | 0.0720 | 0.144* | |
H52 | 0.40460 | 0.30290 | 0.02846 | 0.144* | |
H53 | 0.7131 | 0.8684 | 0.9342 | 0.144* | |
H54 | 0.7236 | 0.7942 | 0.9823 | 0.144* |
C1—C2 | 1.515 (4) | Ba20—O43ix | 2.88 (2) |
C1—O11 | 1.210 (6) | C21—C22 | 1.520 (4) |
C1—O12 | 1.246 (4) | C21—O31 | 1.263 (5) |
C2—C1 | 1.515 (4) | C21—O32 | 1.262 (5) |
C2—C3 | 1.538 (3) | C22—C21 | 1.520 (4) |
C3—C2 | 1.538 (3) | C22—C23 | 1.533 (3) |
C3—C4 | 1.5334 (11) | C23—C22 | 1.533 (3) |
C3—C6 | 1.537 (2) | C23—C24 | 1.537 (3) |
C3—O17 | 1.435 (3) | C23—C26 | 1.549 (3) |
C4—C3 | 1.5334 (11) | C23—O37 | 1.436 (4) |
C4—C5 | 1.523 (6) | C24—C23 | 1.537 (3) |
C5—C4 | 1.523 (6) | C24—C25 | 1.514 (4) |
C5—O13 | 1.259 (9) | C25—C24 | 1.514 (4) |
C5—O14 | 1.228 (6) | C25—O33 | 1.237 (6) |
C6—C3 | 1.537 (2) | C25—O34 | 1.248 (4) |
C6—O15 | 1.246 (4) | C26—C23 | 1.549 (3) |
C6—O16 | 1.253 (3) | C26—O35 | 1.236 (7) |
O11—C1 | 1.210 (6) | C26—O36 | 1.240 (7) |
O11—Ba19i | 2.982 (16) | O31—Ba20x | 2.736 (13) |
O12—C1 | 1.246 (4) | O31—Ba20vi | 2.840 (15) |
O12—Ba20 | 2.933 (14) | O31—C21 | 1.263 (5) |
O13—C5 | 1.259 (9) | O32—Ba20vi | 2.971 (15) |
O13—Ba39 | 2.772 (16) | O32—C21 | 1.262 (5) |
O14—C5 | 1.228 (6) | O33—C25 | 1.237 (6) |
O14—Ba19ii | 2.805 (13) | O33—Ba39xi | 2.695 (14) |
O14—Ba39iii | 2.660 (15) | O33—Ba39i | 2.927 (14) |
O15—C6 | 1.246 (4) | O34—Ba19 | 2.697 (15) |
O15—Ba19 | 2.833 (14) | O34—C25 | 1.248 (4) |
O15—Ba39iv | 2.730 (13) | O34—Ba39i | 2.835 (14) |
O16—C6 | 1.253 (3) | O35—Ba19iv | 2.767 (14) |
O16—Ba19 | 2.942 (13) | O35—Ba20xii | 2.799 (14) |
O16—Ba19i | 2.850 (15) | O35—C26 | 1.236 (7) |
O16—Ba39 | 2.999 (16) | O36—Ba20xii | 2.901 (13) |
O17—C3 | 1.435 (3) | O36—C26 | 1.240 (7) |
O17—Ba39 | 2.909 (13) | O37—C23 | 1.436 (4) |
Ba19—O11i | 2.982 (16) | O37—Ba39xi | 2.815 (12) |
Ba19—O14iv | 2.805 (13) | Ba39—O13 | 2.772 (16) |
Ba19—O15 | 2.833 (14) | Ba39—O14xiii | 2.660 (15) |
Ba19—O16 | 2.942 (13) | Ba39—O15ii | 2.730 (13) |
Ba19—O16i | 2.850 (15) | Ba39—O16 | 2.999 (16) |
Ba19—O34 | 2.697 (15) | Ba39—O17 | 2.909 (13) |
Ba19—O35ii | 2.767 (14) | Ba39—O33xiv | 2.695 (14) |
Ba19—O42i | 2.87 (2) | Ba39—O33i | 2.927 (14) |
Ba20—O12 | 2.933 (14) | Ba39—O34i | 2.835 (14) |
Ba20—O31v | 2.736 (13) | Ba39—O37xiv | 2.815 (12) |
Ba20—O31vi | 2.840 (15) | Ba39—O42i | 3.00 (2) |
Ba20—O32vi | 2.971 (15) | O41—Ba20xv | 2.99 (2) |
Ba20—O35vii | 2.799 (14) | O42—Ba19i | 2.87 (2) |
Ba20—O36vii | 2.901 (13) | O42—Ba39i | 3.00 (2) |
Ba20—O41viii | 2.99 (2) | O43—Ba20ix | 2.88 (2) |
C2—C1—O11 | 120.5 (6) | C22—C21—O31 | 118.1 (5) |
C2—C1—O12 | 116.1 (3) | C22—C21—O32 | 118.2 (5) |
O11—C1—O12 | 121.8 (5) | O31—C21—O32 | 123.7 (5) |
C1—C2—C3 | 114.0 (4) | C21—C22—C23 | 114.0 (5) |
C2—C3—C4 | 109.5 (2) | C22—C23—C24 | 110.1 (5) |
C2—C3—C6 | 110.7 (2) | C22—C23—C26 | 109.2 (4) |
C4—C3—C6 | 109.3 (2) | C24—C23—C26 | 108.7 (5) |
C2—C3—O17 | 110.4 (2) | C22—C23—O37 | 109.2 (4) |
C4—C3—O17 | 108.8 (3) | C24—C23—O37 | 109.6 (4) |
C6—C3—O17 | 108.2 (3) | C26—C23—O37 | 110.0 (4) |
C3—C4—C5 | 115.8 (2) | C23—C24—C25 | 118.3 (5) |
C4—C5—O13 | 117.8 (3) | C24—C25—O33 | 120.8 (5) |
C4—C5—O14 | 118.6 (4) | C24—C25—O34 | 114.5 (4) |
O13—C5—O14 | 123.44 (11) | O33—C25—O34 | 122.3 (5) |
C3—C6—O15 | 119.0 (4) | C23—C26—O35 | 116.8 (5) |
C3—C6—O16 | 117.0 (5) | C23—C26—O36 | 117.3 (3) |
O15—C6—O16 | 123.4 (7) | O35—C26—O36 | 125.9 (5) |
C5—O14—Ba39iii | 134.7 (18) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1/2, −y+1/2, z; (iii) −x−1/2, y−1/2, −z+1; (iv) x+1/2, −y+1/2, z; (v) x−1, y, z−1; (vi) −x+1, −y+1, −z+1; (vii) −x+1/2, y+1/2, −z+1; (viii) −x+1/2, y+1/2, −z; (ix) −x, −y+1, −z; (x) x+1, y, z+1; (xi) x+1, y, z; (xii) −x+1/2, y−1/2, −z+1; (xiii) −x−1/2, y+1/2, −z+1; (xiv) x−1, y, z; (xv) −x+1/2, y−1/2, −z. |
Ba2+·CO32− | V = 304.24 Å3 |
Mr = 197.34 | Z = 4 |
Orthorhombic, Pmcn | Dx = 4.308 Mg m−3 |
Hall symbol: -P 2n 2a | Synchrotron radiation |
a = 5.307826 Å | T = 295 K |
b = 8.91479 Å | cylinder, 3.0 × 1.5 mm |
c = 6.429736 Å |
11-BM, APS diffractometer | Data collection mode: transmission |
Specimen mounting: Kapton capillary | Scan method: step |
Profile function: Crystallite size in microns with "isotropic" model: parameters: Size, G/L mix 1.000, 1.000, Microstrain, "isotropic" model (106 * delta Q/Q) parameters: Mustrain, G/L mix 6653.476, 1.000, | Preferred orientation correction: March-Dollase correction coef. = 1.000 axis = [0, 0, 1] |
x | y | z | Uiso*/Ueq | ||
Ba1 | 0.25000 | 0.41660 | 0.75300 | 0.004* | |
C2 | 0.25000 | 0.75550 | −0.08170 | 0.010* | |
O3 | 0.25000 | 0.89990 | −0.09230 | 0.010* | |
O4 | 0.45960 | 0.68310 | −0.07940 | 0.010* |
C12H20Ba3O19 | b = 13.75185 Å |
Mr = 880.26 | c = 15.09415 Å |
Monoclinic, P21/a | β = 107.7751° |
Hall symbol: -P 2yab | V = 2268.57 Å3 |
a = 11.47665 Å | Z = 4 |
x | y | z | Uiso*/Ueq | ||
C1 | −0.11688 | 0.38341 | 0.22166 | 0.03000* | |
C2 | −0.11971 | 0.28083 | 0.26110 | 0.03000* | |
C3 | −0.17294 | 0.27375 | 0.34400 | 0.03000* | |
C4 | −0.19983 | 0.16788 | 0.36121 | 0.03000* | |
C5 | −0.23879 | 0.14905 | 0.44777 | 0.03000* | |
C6 | −0.07688 | 0.31797 | 0.43048 | 0.03000* | |
H7 | −0.02622 | 0.25203 | 0.28217 | 0.03000* | |
H8 | −0.17156 | 0.23439 | 0.20331 | 0.03000* | |
H9 | −0.11930 | 0.12249 | 0.36798 | 0.03000* | |
H10 | −0.27184 | 0.14085 | 0.30039 | 0.03000* | |
O11 | −0.16833 | 0.45272 | 0.24996 | 0.03000* | |
O12 | −0.06710 | 0.39334 | 0.15745 | 0.03000* | |
O13 | −0.22149 | 0.21126 | 0.51164 | 0.03000* | |
O14 | −0.28623 | 0.06598 | 0.45292 | 0.03000* | |
O15 | 0.01583 | 0.26683 | 0.47045 | 0.03000* | |
O16 | −0.09383 | 0.40371 | 0.45517 | 0.03000* | |
O17 | −0.28664 | 0.32466 | 0.32474 | 0.03000* | |
H18 | −0.27014 | 0.38695 | 0.29865 | 0.03000* | |
Ba19 | 0.13385 | 0.40167 | 0.61196 | 0.03000* | |
Ba20 | −0.13311 | 0.57982 | 0.05792 | 0.03000* | |
C21 | 0.83987 | 0.41712 | 0.84661 | 0.03000* | |
C22 | 0.70518 | 0.42971 | 0.79294 | 0.03000* | |
C23 | 0.64524 | 0.33505 | 0.74625 | 0.03000* | |
C24 | 0.50573 | 0.34541 | 0.70474 | 0.03000* | |
C25 | 0.46045 | 0.43800 | 0.64958 | 0.03000* | |
C26 | 0.66754 | 0.25160 | 0.81797 | 0.03000* | |
H27 | 0.65561 | 0.45891 | 0.83816 | 0.03000* | |
H28 | 0.69959 | 0.48306 | 0.73791 | 0.03000* | |
H29 | 0.47098 | 0.28497 | 0.65661 | 0.03000* | |
H30 | 0.46497 | 0.33972 | 0.76116 | 0.03000* | |
O31 | 0.88519 | 0.46054 | 0.92241 | 0.03000* | |
O32 | 0.90416 | 0.36375 | 0.80963 | 0.03000* | |
O33 | 0.51325 | 0.46906 | 0.59293 | 0.03000* | |
O34 | 0.36709 | 0.47967 | 0.66147 | 0.03000* | |
O35 | 0.68183 | 0.16680 | 0.79036 | 0.03000* | |
O36 | 0.66454 | 0.27127 | 0.89887 | 0.03000* | |
O37 | 0.69630 | 0.30673 | 0.67385 | 0.03000* | |
H38 | 0.78487 | 0.30732 | 0.70637 | 0.03000* | |
Ba39 | −0.32983 | 0.38942 | 0.49723 | 0.03000* | |
O40 | 0.54019 | 0.47768 | 0.13700 | 0.03000* | |
O41 | 0.55197 | 0.20809 | 0.05681 | 0.03000* | |
O42 | 0.08949 | 0.57977 | 0.35613 | 0.03000* | |
O43 | 0.35851 | 0.35404 | 0.04715 | 0.03000* | |
O44 | 0.80523 | 0.90671 | 0.96587 | 0.03000* | |
H45 | 0.60087 | 0.47209 | 0.10408 | 0.03000* | |
H46 | 0.58408 | 0.48718 | 0.20266 | 0.03000* | |
H47 | 0.51630 | 0.18379 | 0.10418 | 0.03000* | |
H48 | 0.59957 | 0.26591 | 0.08079 | 0.03000* | |
H49 | 0.11724 | 0.51249 | 0.37158 | 0.03000* | |
H50 | 0.08221 | 0.59147 | 0.29023 | 0.03000* | |
H51 | 0.42234 | 0.39813 | 0.08554 | 0.03000* | |
H52 | 0.40460 | 0.30290 | 0.02846 | 0.03000* | |
H53 | 0.72513 | 0.87814 | 0.93604 | 0.03000* | |
H54 | 0.83408 | 0.87282 | 1.02599 | 0.03000* |
C1—C2 | 1.536 | C23—C26 | 1.544 |
C1—O11 | 1.263 | C23—O37 | 1.442 |
C1—O12 | 1.274 | C24—C25 | 1.525 |
C2—C3 | 1.552 | C24—H29 | 1.096 |
C2—H7 | 1.096 | C24—H30 | 1.092 |
C2—H8 | 1.098 | C25—C24 | 1.525 |
C3—C4 | 1.528 | C25—O33 | 1.265 |
C3—C6 | 1.553 | C25—O34 | 1.275 |
C3—O17 | 1.430 | C26—O35 | 1.265 |
C4—C5 | 1.526 | C26—O36 | 1.255 |
C4—H9 | 1.094 | H29—C24 | 1.096 |
C4—H10 | 1.096 | H30—C24 | 1.092 |
C5—O13 | 1.258 | O33—C25 | 1.265 |
C5—O14 | 1.278 | O37—H38 | 0.980 |
C6—O15 | 1.264 | O40—H45 | 0.968 |
C6—O16 | 1.271 | O40—H46 | 0.973 |
O13—C5 | 1.258 | O41—H47 | 0.981 |
O17—H18 | 0.977 | O41—H48 | 0.974 |
C21—C22 | 1.520 | O42—H49 | 0.983 |
C21—O31 | 1.255 | O42—H50 | 0.985 |
C21—O32 | 1.283 | O43—H51 | 0.986 |
C22—C23 | 1.539 | O43—H52 | 0.972 |
C22—H27 | 1.090 | O44—H53 | 0.973 |
C22—H28 | 1.095 | O44—H54 | 0.983 |
C23—C24 | 1.539 |
D—H···A | D—H | H···A | D···A | D—H···A |
O17—H18···O11 | 0.99 | 1.80 | 2.675 | 146 |
O37—H38···O32 | 0.98 | 1.90 | 2.742 | 142 |
O40—H45···O44i | 0.97 | 1.94 | 2.862 | 156 |
O40—H46···O34ii | 0.97 | 2.01 | 2.959 | 165 |
O41—H47···O12iii | 0.98 | 1.78 | 2.718 | 159 |
O41—H48···O44i | 0.97 | 2.43 | 3.257 | 143 |
O42—H49···O14iii | 0.98 | 1.75 | 2.629 | 147 |
O42—H50···O32ii | 0.99 | 1.68 | 2.642 | 164 |
O43—H51···O40 | 0.99 | 1.73 | 2.711 | 171 |
O43—H52···O41 | 0.97 | 2.07 | 2.963 | 151 |
O44—H53···O12iv | 0.97 | 1.94 | 2.804 | 146 |
O44—H54···O36v | 0.98 | 1.80 | 2.707 | 152 |
C4—H9···O33vi | 1.09 | 2.42 | 3.411 | 150 |
C22—H27···O40ii | 1.09 | 2.54 | 3.534 | 151 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x+1/2, −y+1/2, z; (iv) −x+1/2, y+1/2, −z+1; (v) −x+3/2, y+1/2, −z+2; (vi) −x+1/2, y−1/2, −z+1. |
Acknowledgements
Use of the Advanced Photon Source at Argonne National Laboratory was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02–06CH11357. I thank Lynn Ribaud and Saul Lapidus for their assistance in the data collection and Andrey Rogachev at Illinois Inst.
References
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. Web of Science CrossRef PubMed CAS Google Scholar
Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dassault Systems (2020). Materials Studio. BIOVIA, San Diego CA, USA. Google Scholar
David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S. & Cole, J. C. (2006). J. Appl. Cryst. 39, 910–915. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dovesi, R., Erba, A., Orlando, R., Zicovich-Wilson, C. M., Civalleri, B., Maschio, L., Rérat, M., Casassa, S., Baima, J., Salustro, S. & Kirtman, B. (2018). WIREs Comput. Mol. Sci. 8, e1360. Google Scholar
Drzewiecka-Antonik, A., Koziol, A. E., Rejmak, P., Lawniczak-Jablonska, K., Nittler, L. & Lis, T. (2017). Polyhedron, 132, 1–11. CAS Google Scholar
Gates-Rector, S. & Blanton, T. N. (2019). Powder Diffr. 34, 352–360. CAS Google Scholar
Gatti, C., Saunders, V. R. & Roetti, C. (1994). J. Chem. Phys. 101, 10686–10696. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hanawalt, J. D., Rinn, H. & Frevel, L. (1938). Anal. Chem. 10, 457–512. CAS Google Scholar
Kaduk, J. A. (2018). Powd. Diffr. 33, 237–243. Google Scholar
Kaduk, J. A. (2020a). Acta Cryst. E76, 1611–1616. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kaduk, J. A. (2020b). Acta Cryst. E76, 1689–1693. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kaduk, J. A. & Mueller, P. (2020). CSD Communication (deposition number 2032093). CCDC, Cambridge, England. Google Scholar
Louër, D. & Boultif, A. (2007). Z. Kristallogr. Suppl. pp. 191–196. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
MDI (2020). JADE Pro. Materials Data, Livermore CA, USA. Google Scholar
Piskunov, S., Heifets, E., Eglitis, R. I. & Borstel, G. (2004). Comput. Mater. Sci. 29, 165–178. Web of Science CrossRef CAS Google Scholar
Rammohan, A. & Kaduk, J. A. (2018). Acta Cryst. B74, 239–252. Web of Science CSD CrossRef IUCr Journals Google Scholar
Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032. Web of Science CrossRef IUCr Journals Google Scholar
Sykes, R. A., McCabe, P., Allen, F. H., Battle, G. M., Bruno, I. J. & Wood, P. A. (2011). J. Appl. Cryst. 44, 882–886. Web of Science CrossRef CAS IUCr Journals Google Scholar
Toby, B. H. & Von Dreele, R. B. (2013). J. Appl. Cryst. 46, 544–549. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.