research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of ethyl 2-[9-(2-hy­dr­oxy­phen­yl)-3,3,6,6-tetra­methyl-1,8-dioxo-2,3,4,4a,5,6,7,8a,9,9a,10,10a-dodeca­hydro­acridin-10-yl]acetate

CROSSMARK_Color_square_no_text.svg

aChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, eChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and fFaculty of Science, Department of Bio Chemistry, Beni Suef University, Beni Suef, Egypt
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 February 2021; accepted 5 February 2021; online 12 February 2021)

In the title compound, C27H33NO5, a 3,3,6,6-tetra­methyl­tetra­hydro­acridine-1,8-dione ring system carries an ethyl acetate substituent on the acridine N atom and an o-hy­droxy­phenyl ring on the central methine C atom of the di­hydro­pyridine ring. The benzene ring is inclined to the acridine ring system at an angle of 80.45 (7)° and this conformation is stabilized by an intra­molecular O—H⋯O hydrogen bond between the hy­droxy substituent on the benzene ring and one of the carbonyl groups of the acridinedione unit. The ester C=O oxygen atom is disordered over major and minor orientations in a 0.777 (9):0.223 (9) ratio and the terminal –CH3 unit of the ethyl side chain is disordered over two sets of sites in a 0.725 (5): 0.275 (5) ratio. In the crystal, C—H⋯O hydrogen bonds combine to link the mol­ecules into a three-dimensional network. van der Waals H⋯H contacts contribute the most to the Hirshfeld surface (66.9%) followed by O⋯H/H⋯O (22.1%) contacts associated with weak hydrogen bonds.

1. Chemical context

Acridine derivatives occur in a number of compounds of importance in medicinal chemistry such as bucricaine, which used for surface anesthesia of the eye and given by injection for infiltration anesthesia, peripheral nerve block and spinal anesthesia (Ramesh et al., 2012[Ramesh, K., Mandeep, K. & Meena, K. (2012). Acta Pol. Pharm. Drug Res. 69, 3-9.]). Quinacrine, also known as mepacrine, is used as a gametocytocide and acts as an anti­malarial agent (Valdés, 2011[Valdés, A. Fernández-Calienes (2011). Open Med. Chem. J. 5, 11-20.]). Proflavin is also found to be active as a bacteriostatic agent (Patel et al., 2010[Patel, M. M. M. D., Mali, M. D. & Patel, S. K. (2010). Bioorg. Med. Chem. Lett. 20, 6324-6326.]) and nitracrine is as anti­cancer agent (Cholewinski et al., 2011[Cholewiński, G., Dzierzbicka, K. & Kołodziejczyk, A. M. (2011). Pharmacol. Rep. 63, 305-336.]). Acriflavin is used as an anti­septic for skin and mucous membranes (Ramesh et al., 2012[Ramesh, K., Mandeep, K. & Meena, K. (2012). Acta Pol. Pharm. Drug Res. 69, 3-9.]). As part of our studies in this area, we report herein the synthesis and crystal structure of the title compound, C27H33NO5.

2. Structural commentary

As shown in Fig.1, the 3,3,6,6-tetra­methyl­tetra­hydro­acridine-1,8-dione ring system carries an ethyl acetate substituent on the acridine N1 atom and an o-hy­droxy­phenyl ring on the central methine C7 atom of the C1/C6–C8/C13/N1 di­hydro­pyridine ring. The acridinedione ring system deviates significantly from planarity with an r.m.s. deviation of 0.404 Å for the thirteen C atoms and one N atom of the acridine unit. The benzene ring is inclined to the acridine ring system at a dihedral angle of 80.45 (7)°.

[Scheme 1]

The outer C1–C6 and C8–C13 cyclo­hexenone rings both adopt flattened chair conformations with the C4 and C11 atoms displaced in the same direction, by 0.308 (2) and 0.338 (2) Å, respectively, from the best-fit planes through the remaining five C atoms. In contrast, the central C13/N1/C1/C6–C8 ring can best be described as a flattened boat with N1 and C7 displaced by 0.146 (1) and 0.191 (14) Å, respectively, from the remaining four C atoms. The bond lengths and angles in the title mol­ecule agree reasonably well with those found in closely related mol­ecules (Abdelhamid et al., 2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.], 2014[Abdelhamid, A. A., Mohamed, S. K. & Simpson, J. (2014). Acta Cryst. E70, 44-47.]; Khalilov et al., 2011[Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146.]).

The mol­ecular conformation of the title compound is stabilized by an intra­molecular O5—H5⋯O1 hydrogen bond between the hy­droxy substituent on the benzene ring and one of the carbonyl groups of the acridinedione unit (Table 1[link]; Fig. 1[link]). Atom O3 is disordered over major and minor orientations in a 0.777 (9):0.223 (9) ratio and the terminal C17 methyl group is disordered over two sets of sites in a 0.725 (5):0.275 (5) ratio.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O1 0.84 1.81 2.6319 (17) 166
C2—H2A⋯O2i 0.99 2.52 3.1663 (19) 123
C2—H2B⋯O5i 0.99 2.53 3.457 (2) 157
C12—H12B⋯O1ii 0.99 2.52 3.2708 (17) 133
C14—H14A⋯O1ii 0.99 2.53 3.3299 (18) 138
C14—H14B⋯O2i 0.99 2.66 3.473 (2) 140
C27—H27B⋯O3iii 0.98 2.51 3.452 (3) 161
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The title mol­ecule with displacement ellipsoids drawn at the 30% probability level. Only the major disorder components for O3 and C17 are shown.

3. Supra­molecular features

In the crystal, a number of C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network (Table 1[link]; Fig. 2[link]); all the oxygen atoms in the mol­ecule except O4 accept at least one of these bonds.

[Figure 2]
Figure 2
The mol­ecular packing, viewed down the a-axis direction, showing hydrogen bonds as dashed lines.

4. Hirshfeld surface analysis

The CrystalExplorer software (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Australia.]) was used to produce the dnorm-mapped Hirshfeld surfaces and the electrostatic potential for the title compound. The contact distances, di and de, from the Hirshfeld surface to the nearest atom, inside and outside, respectively, enable the analysis of the inter­molecular inter­actions through the mapping of dnorm. An illustration of the inter-mol­ecular contacts in the crystal is given by two-dimensional fingerprint plots.

The bright-red spots on the Hirshfeld surface mapped over dnorm (Fig. 3[link]), with labels H27B, H12B, H14A, H14B, H2A and H2B on the surface represent donors for potential C—H⋯O hydrogen bonds (see Table 1[link]); the corresponding acceptors on the surface appear as bright-red spots at atoms O1, O2 and O5. Short H⋯H contacts are given in Table 2[link].

Table 2
Short H⋯H inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
H21⋯H27A 2.26 [{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z
H22⋯H27A 2.46 [{1\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z
H22⋯H4B 2.43 −1 + x, y, z
[Figure 3]
Figure 3
A view of the three-dimensional Hirshfeld surface for the title compound, plotted over dnorm in the range −0.14 to 1.68 a.u.

The overall two-dimensional fingerprint plot is illustrated in Fig. 4[link]a, and those delineated into H⋯H, O⋯H/H⋯O and C⋯H/H⋯C in Fig. 4[link]bd, respectively. The greatest contribution to the overall Hirshfeld surface, i.e. 66.9%, is due to H⋯H contacts (Fig. 4[link]b). The relative contributions of the other inter­actions in descending order are: O⋯H/H⋯O (22.1%), C⋯H/H⋯C (9.2%), O⋯O (1.3%), N⋯H/H⋯N (0.2%) and N⋯C/C⋯N (0.2%). This illustrates that the C—H⋯O inter­actions contribute significantly to the crystal packing.

[Figure 4]
Figure 4
A view of the two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O and (d) C⋯H/H⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

Compounds similar to the title compound with a octa­hydro­acridin moiety are [9-(2-hy­droxy­phen­yl)-1,8-dioxo-2,3,4,5,6,7,8,9-octa­hydro­acridin-10(1H)-yl]acetic acid [Cam­bridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.])] refcode DABSAD; Akkurt et al., 2015[Akkurt, M., Jasinski, J. P., Mohamed, S. K., Allah, O. A. A., Tamam, A. H. A. & Albayati, M. R. (2015). Acta Cryst. E71, o963-o964.]), ethyl [9-(5-bromo-2-hy­droxyphen­yl)-3,3,6,6-tetra­methyl-1,8-dioxo-2,3,4,5,6,7,8,9-octa­hydro­acridin-10(1H)-yl]acetate (VANBUK; Mohamed et al., 2017[Mohamed, S. K., Dege, N., Akkurt, M., Allah, O. A. A. & Albayati, M. R. (2017). IUCrData, 2, x170573.]), 9-(3-bromo-5-chloro-2-hy­droxy­phen­yl)-10-(2-hy­droxy­eth­yl)-3,6-diphenyl-3,4,6,7,9,10-hexa­hydro­acridine-1,8(2H,5H)-dione (SILBIB; Abdelhamid et al., 2018[Abdelhamid, A. A., Hawaiz, F. E., Mohamed, A. F., Mohamed, S. K. & Simpson, J. (2018). Acta Cryst. E74, 1218-1221.]) and 10-benzyl-9-(3,4-di­meth­oxy­phen­yl)-3,3,6,6-tetra­methyl-3,4,6,7,9,10-hexa­hydro­acridine-1,8(2H,5H)-dione (PUSJEU; Sureshbabu et al., 2015[Sureshbabu, N. & Sughanya, V. (2015). Acta Cryst. E71, o688-o689.]).

The DABSAD compound crystallizes with two mol­ecules in the asymmetric unit. In each mol­ecule, the central 1,4-di­hydro­pyridine ring adopts a shallow sofa conformation (with the C atom bearing the phenol ring as the flap), whereas the pendant cyclo­hexene rings both have twisted-boat conform­ations. Each mol­ecule features an intra­molecular O—H⋯O hydrogen bond, which closes an S(8) ring. In the crystal, the mol­ecules are linked by O—H⋯O, C—H⋯O and C—H⋯π inter­actions, forming a three-dimensional network. In VANBUK, the central 1,4-di­hydro­pyridine ring adopts a shallow sofa conformation (with the C atom bearing the bromo­phenol ring as the flap), whereas the pendant cyclo­hexene rings both have twisted-boat conformations. The mol­ecule features an intra­molecular O—H⋯O hydrogen bond, which closes an S(8) ring. In the crystal, mol­ecules are linked by C—H⋯O inter­actions, forming C(12) chains propagating along the c-axis direction. In the crystal of SILBIB, O—H⋯O, C—H⋯O and C—H⋯π(ring) hydrogen bonds combine with an Br—O and unusual C—Br⋯π(ring) halogen bonds to generate a three dimensional network with mol­ecules stacked along the a-axis direction. In the acridinedione moiety of PUSJEU, the central di­hydro­pyridine ring adopts a flattened-boat conformation, with the N atom and the methine C atom displaced from the mean plane of the other four atoms by 0.0513 (14) and 0.1828 (18) Å, respectively. The two cyclo­hexenone rings adopt envelope conformations, with the tetra­subsituted C atoms as the flap atoms. In the crystal, mol­ecules are linked via a pair of C—H⋯O hydrogen bonds, forming inversion dimers, which are, in turn, linked by C—H⋯O hydrogen bonds, forming slabs lying parallel to (001).

6. Synthesis and crystallization

To a mixture of dimedone (1.12 g, 0.008 mol), ethyl glycinate hydro­chloride (0.56 g, 0.004 mol) and salicaldehyde (0.43 ml, 0.004 mol) in ethanol (20 ml), triethyl amine (1.12 ml, 0.008 mol) was added. The reaction mixture was heated under reflux for 5 h at 353–358 K then left to cool. The separated solid was filtered off, dried and recrystallized from ethanol solution as yellow plates of the title compound, yield 68%, m.p. 497 K.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were placed in idealized locations and and refined using a riding model with C—H = 0.9–1.00 Å Uiso(H) = 1.2Ueq (C) and O—H = 0.84 Å, Uiso(H) = 1.5Ueq (O). Atom O3 of the oxo group and terminal methyl group (C17) of the ethyl acetate substituent are disordered over two sites in 0.777 (9):0.223 (9) (for O3 and O3A) and 0.725 (5):0.275 (5) (for C17 and C17A) ratios, respectively.

Table 3
Experimental details

Crystal data
Chemical formula C27H33NO5
Mr 451.54
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 9.5289 (2), 18.6653 (5), 13.8046 (3)
β (°) 96.410 (2)
V3) 2439.93 (10)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.68
Crystal size (mm) 0.48 × 0.22 × 0.08
 
Data collection
Diffractometer Rigaku Oxford Diffraction EOS
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.861, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9527, 4648, 3949
Rint 0.029
(sin θ/λ)max−1) 0.614
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.126, 1.04
No. of reflections 4648
No. of parameters 313
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.23
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]b), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]a) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL (Sheldrick, 2015a); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Ethyl 2-[9-(2-hydroxyphenyl)-3,3,6,6-tetramethyl-1,8-dioxo-2,3,4,4a,5,6,7,8a,9,9a,10,10a-dodecahydroacridin-10-yl]acetate top
Crystal data top
C27H33NO5F(000) = 968
Mr = 451.54Dx = 1.229 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 9.5289 (2) ÅCell parameters from 3784 reflections
b = 18.6653 (5) Åθ = 4.0–71.4°
c = 13.8046 (3) ŵ = 0.68 mm1
β = 96.410 (2)°T = 173 K
V = 2439.93 (10) Å3Plate, yellow
Z = 40.48 × 0.22 × 0.08 mm
Data collection top
Rigaku Oxford Diffraction EOS
diffractometer
4648 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source3949 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 16.0416 pixels mm-1θmax = 71.2°, θmin = 4.0°
ω scansh = 1111
Absorption correction: multi-scan
(CrysalisPro; Rigaku OD, 2015)
k = 2214
Tmin = 0.861, Tmax = 1.000l = 1616
9527 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0643P)2 + 0.6477P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4648 reflectionsΔρmax = 0.27 e Å3
313 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.65518 (12)0.22713 (7)0.50403 (8)0.0373 (3)
O20.21715 (14)0.36821 (7)0.51857 (8)0.0426 (3)
O30.3445 (5)0.11473 (19)0.83632 (16)0.0636 (11)0.777 (9)
O3A0.2813 (17)0.1388 (6)0.8394 (7)0.0636 (11)0.223 (9)
O40.35606 (14)0.14006 (6)0.99586 (9)0.0406 (3)
O50.41985 (13)0.19489 (7)0.39430 (8)0.0389 (3)
H50.48870.21220.43000.058*
N10.44568 (13)0.24991 (6)0.79603 (8)0.0236 (2)
C10.54686 (14)0.22154 (7)0.74277 (10)0.0228 (3)
C20.66871 (16)0.18305 (8)0.79873 (11)0.0292 (3)
H2A0.63090.14640.84070.035*
H2B0.72340.21790.84190.035*
C30.76892 (16)0.14645 (9)0.73461 (12)0.0328 (3)
C40.79512 (16)0.19849 (9)0.65285 (12)0.0356 (4)
H4A0.84240.24210.68140.043*
H4B0.85870.17580.60980.043*
C50.65908 (16)0.21917 (8)0.59366 (11)0.0286 (3)
C60.53718 (15)0.23162 (8)0.64433 (10)0.0245 (3)
C70.40195 (15)0.25806 (8)0.58758 (10)0.0244 (3)
H70.42830.28800.53230.029*
C80.32755 (14)0.30588 (7)0.65354 (10)0.0237 (3)
C90.22950 (16)0.35939 (8)0.60657 (11)0.0291 (3)
C100.14223 (16)0.40152 (9)0.67124 (12)0.0323 (3)
H10A0.05810.37310.68330.039*
H10B0.10910.44630.63760.039*
C110.22671 (16)0.42010 (8)0.76873 (11)0.0280 (3)
C120.27846 (15)0.34965 (8)0.81805 (10)0.0263 (3)
H12A0.34610.36080.87580.032*
H12B0.19700.32450.84110.032*
C130.34886 (14)0.30040 (7)0.75185 (10)0.0222 (3)
C140.43949 (15)0.22835 (8)0.89738 (10)0.0256 (3)
H14A0.38580.26460.93040.031*
H14B0.53650.22650.93150.031*
C150.37019 (19)0.15605 (9)0.90423 (12)0.0368 (4)
C160.2856 (3)0.07304 (12)1.01388 (17)0.0641 (7)
H16A0.35530.03351.02180.077*0.725 (5)
H16B0.21460.06150.95810.077*0.725 (5)
H16C0.28720.04200.95590.077*0.275 (5)
H16D0.34050.04851.06930.077*0.275 (5)
C170.2157 (4)0.08124 (19)1.1040 (3)0.0665 (9)0.725 (5)
H17A0.28750.08801.15980.100*0.725 (5)
H17B0.16040.03811.11410.100*0.725 (5)
H17C0.15300.12301.09760.100*0.725 (5)
C17A0.1551 (11)0.0790 (5)1.0331 (8)0.0665 (9)0.275 (5)
H17D0.14990.11421.08530.100*0.275 (5)
H17E0.12170.03241.05410.100*0.275 (5)
H17F0.09560.09470.97450.100*0.275 (5)
C180.30828 (15)0.19663 (8)0.54418 (10)0.0258 (3)
C190.32270 (16)0.16932 (9)0.45105 (11)0.0307 (3)
C200.23375 (19)0.11504 (10)0.41156 (13)0.0405 (4)
H200.24280.09760.34790.049*
C210.13242 (18)0.08647 (9)0.46441 (14)0.0410 (4)
H210.07230.04930.43710.049*
C220.11833 (17)0.11164 (9)0.55659 (13)0.0356 (4)
H220.04940.09160.59330.043*
C230.20564 (16)0.16652 (8)0.59556 (11)0.0295 (3)
H230.19490.18390.65900.035*
C240.7045 (2)0.07682 (10)0.69143 (15)0.0469 (4)
H24A0.68940.04360.74430.070*
H24B0.76880.05500.64930.070*
H24C0.61390.08720.65310.070*
C250.9082 (2)0.12973 (11)0.79789 (14)0.0468 (4)
H25A0.95330.17460.82140.070*
H25B0.97130.10360.75900.070*
H25C0.88870.10030.85370.070*
C260.13320 (19)0.45952 (9)0.83469 (13)0.0405 (4)
H26A0.04950.43050.84240.061*
H26B0.10380.50570.80520.061*
H26C0.18640.46770.89870.061*
C270.35163 (17)0.46822 (8)0.75087 (12)0.0340 (3)
H27A0.40610.47990.81330.051*
H27B0.31630.51250.71870.051*
H27C0.41230.44310.70920.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0375 (6)0.0503 (7)0.0266 (6)0.0016 (5)0.0144 (4)0.0032 (5)
O20.0548 (7)0.0469 (7)0.0249 (6)0.0155 (6)0.0006 (5)0.0006 (5)
O30.114 (3)0.0437 (16)0.0360 (8)0.0364 (17)0.0192 (12)0.0122 (10)
O3A0.114 (3)0.0437 (16)0.0360 (8)0.0364 (17)0.0192 (12)0.0122 (10)
O40.0571 (7)0.0352 (6)0.0317 (6)0.0098 (5)0.0158 (5)0.0055 (5)
O50.0448 (6)0.0485 (7)0.0245 (5)0.0025 (5)0.0080 (5)0.0075 (5)
N10.0288 (6)0.0242 (6)0.0189 (5)0.0020 (5)0.0069 (4)0.0005 (4)
C10.0248 (6)0.0203 (6)0.0241 (7)0.0020 (5)0.0064 (5)0.0023 (5)
C20.0305 (7)0.0316 (7)0.0257 (7)0.0041 (6)0.0035 (6)0.0014 (6)
C30.0324 (8)0.0323 (8)0.0344 (8)0.0071 (6)0.0065 (6)0.0027 (6)
C40.0290 (8)0.0417 (9)0.0382 (9)0.0041 (6)0.0125 (6)0.0014 (7)
C50.0309 (7)0.0280 (7)0.0287 (7)0.0025 (6)0.0109 (6)0.0038 (6)
C60.0269 (7)0.0244 (7)0.0233 (7)0.0005 (5)0.0073 (5)0.0025 (5)
C70.0303 (7)0.0246 (7)0.0190 (6)0.0010 (6)0.0065 (5)0.0012 (5)
C80.0260 (6)0.0226 (7)0.0233 (7)0.0010 (5)0.0059 (5)0.0021 (5)
C90.0312 (7)0.0294 (7)0.0261 (7)0.0006 (6)0.0010 (6)0.0025 (6)
C100.0304 (7)0.0318 (8)0.0345 (8)0.0063 (6)0.0028 (6)0.0016 (6)
C110.0327 (7)0.0243 (7)0.0277 (7)0.0043 (6)0.0072 (6)0.0017 (6)
C120.0323 (7)0.0241 (7)0.0236 (7)0.0020 (6)0.0088 (5)0.0016 (5)
C130.0245 (6)0.0195 (6)0.0232 (7)0.0018 (5)0.0064 (5)0.0010 (5)
C140.0325 (7)0.0267 (7)0.0187 (6)0.0019 (6)0.0068 (5)0.0003 (5)
C150.0492 (9)0.0353 (8)0.0269 (8)0.0090 (7)0.0085 (6)0.0001 (6)
C160.0987 (18)0.0460 (12)0.0520 (12)0.0294 (12)0.0280 (12)0.0052 (9)
C170.082 (2)0.0543 (16)0.070 (2)0.0088 (15)0.0384 (17)0.0188 (17)
C17A0.082 (2)0.0543 (16)0.070 (2)0.0088 (15)0.0384 (17)0.0188 (17)
C180.0286 (7)0.0242 (7)0.0239 (7)0.0051 (5)0.0003 (5)0.0014 (5)
C190.0338 (8)0.0323 (8)0.0256 (7)0.0080 (6)0.0015 (6)0.0029 (6)
C200.0479 (9)0.0391 (9)0.0326 (8)0.0063 (7)0.0039 (7)0.0137 (7)
C210.0388 (9)0.0307 (8)0.0503 (10)0.0005 (7)0.0097 (7)0.0093 (7)
C220.0344 (8)0.0281 (8)0.0434 (9)0.0008 (6)0.0001 (7)0.0019 (7)
C230.0328 (7)0.0274 (7)0.0280 (7)0.0026 (6)0.0021 (6)0.0002 (6)
C240.0588 (11)0.0312 (9)0.0514 (11)0.0062 (8)0.0094 (8)0.0059 (8)
C250.0405 (10)0.0533 (11)0.0463 (10)0.0185 (8)0.0037 (8)0.0019 (8)
C260.0469 (10)0.0344 (8)0.0418 (9)0.0118 (7)0.0124 (7)0.0053 (7)
C270.0409 (8)0.0247 (7)0.0363 (8)0.0019 (6)0.0034 (6)0.0005 (6)
Geometric parameters (Å, º) top
O1—C51.2426 (19)C12—C131.5057 (18)
O2—C91.2185 (19)C14—H14A0.9900
O3—C151.217 (3)C14—H14B0.9900
O3A—C151.205 (11)C14—C151.510 (2)
O4—C151.321 (2)C16—H16A0.9900
O4—C161.454 (2)C16—H16B0.9900
O5—H50.8400C16—H16C0.9900
O5—C191.364 (2)C16—H16D0.9900
N1—C11.3816 (18)C16—C171.483 (4)
N1—C131.4091 (18)C16—C17A1.305 (9)
N1—C141.4633 (17)C17—H17A0.9800
C1—C21.504 (2)C17—H17B0.9800
C1—C61.365 (2)C17—H17C0.9800
C2—H2A0.9900C17A—H17D0.9800
C2—H2B0.9900C17A—H17E0.9800
C2—C31.533 (2)C17A—H17F0.9800
C3—C41.531 (2)C18—C191.404 (2)
C3—C241.530 (2)C18—C231.389 (2)
C3—C251.537 (2)C19—C201.392 (2)
C4—H4A0.9900C20—H200.9500
C4—H4B0.9900C20—C211.381 (3)
C4—C51.504 (2)C21—H210.9500
C5—C61.4401 (19)C21—C221.377 (3)
C6—C71.514 (2)C22—H220.9500
C7—H71.0000C22—C231.390 (2)
C7—C81.5074 (18)C23—H230.9500
C7—C181.5334 (19)C24—H24A0.9800
C8—C91.468 (2)C24—H24B0.9800
C8—C131.354 (2)C24—H24C0.9800
C9—C101.507 (2)C25—H25A0.9800
C10—H10A0.9900C25—H25B0.9800
C10—H10B0.9900C25—H25C0.9800
C10—C111.529 (2)C26—H26A0.9800
C11—C121.537 (2)C26—H26B0.9800
C11—C261.532 (2)C26—H26C0.9800
C11—C271.533 (2)C27—H27A0.9800
C12—H12A0.9900C27—H27B0.9800
C12—H12B0.9900C27—H27C0.9800
C15—O4—C16117.16 (15)O3—C15—O4124.13 (18)
C19—O5—H5109.5O3—C15—C14124.71 (17)
C1—N1—C13119.22 (11)O3A—C15—O4120.8 (5)
C1—N1—C14120.56 (12)O3A—C15—C14117.9 (5)
C13—N1—C14120.23 (11)O4—C15—C14110.73 (13)
N1—C1—C2117.03 (12)O4—C16—H16A110.0
C6—C1—N1120.23 (13)O4—C16—H16B110.0
C6—C1—C2122.68 (13)O4—C16—H16C108.4
C1—C2—H2A108.7O4—C16—H16D108.4
C1—C2—H2B108.7O4—C16—C17108.3 (2)
C1—C2—C3114.28 (12)H16A—C16—H16B108.4
H2A—C2—H2B107.6H16C—C16—H16D107.5
C3—C2—H2A108.7C17—C16—H16A110.0
C3—C2—H2B108.7C17—C16—H16B110.0
C2—C3—C25108.42 (13)C17A—C16—O4115.5 (4)
C4—C3—C2107.84 (13)C17A—C16—H16C108.4
C4—C3—C25110.27 (14)C17A—C16—H16D108.4
C24—C3—C2110.77 (14)C16—C17—H17A109.5
C24—C3—C4110.08 (14)C16—C17—H17B109.5
C24—C3—C25109.43 (15)C16—C17—H17C109.5
C3—C4—H4A109.4H17A—C17—H17B109.5
C3—C4—H4B109.4H17A—C17—H17C109.5
H4A—C4—H4B108.0H17B—C17—H17C109.5
C5—C4—C3111.22 (13)C16—C17A—H17D109.5
C5—C4—H4A109.4C16—C17A—H17E109.5
C5—C4—H4B109.4C16—C17A—H17F109.5
O1—C5—C4119.99 (13)H17D—C17A—H17E109.5
O1—C5—C6121.89 (14)H17D—C17A—H17F109.5
C6—C5—C4118.08 (13)H17E—C17A—H17F109.5
C1—C6—C5119.53 (13)C19—C18—C7121.14 (13)
C1—C6—C7121.28 (12)C23—C18—C7121.01 (13)
C5—C6—C7119.16 (12)C23—C18—C19117.85 (14)
C6—C7—H7107.8O5—C19—C18122.76 (14)
C6—C7—C18112.53 (11)O5—C19—C20116.89 (14)
C8—C7—C6108.12 (11)C20—C19—C18120.34 (15)
C8—C7—H7107.8C19—C20—H20119.8
C8—C7—C18112.73 (11)C21—C20—C19120.35 (15)
C18—C7—H7107.8C21—C20—H20119.8
C9—C8—C7117.07 (12)C20—C21—H21119.9
C13—C8—C7122.19 (13)C22—C21—C20120.17 (15)
C13—C8—C9120.73 (13)C22—C21—H21119.9
O2—C9—C8121.20 (14)C21—C22—H22120.2
O2—C9—C10121.44 (14)C21—C22—C23119.56 (16)
C8—C9—C10117.34 (13)C23—C22—H22120.2
C9—C10—H10A109.3C18—C23—C22121.71 (14)
C9—C10—H10B109.3C18—C23—H23119.1
C9—C10—C11111.62 (12)C22—C23—H23119.1
H10A—C10—H10B108.0C3—C24—H24A109.5
C11—C10—H10A109.3C3—C24—H24B109.5
C11—C10—H10B109.3C3—C24—H24C109.5
C10—C11—C12107.90 (12)H24A—C24—H24B109.5
C10—C11—C26110.38 (13)H24A—C24—H24C109.5
C10—C11—C27109.47 (13)H24B—C24—H24C109.5
C26—C11—C12109.08 (12)C3—C25—H25A109.5
C26—C11—C27109.14 (13)C3—C25—H25B109.5
C27—C11—C12110.87 (12)C3—C25—H25C109.5
C11—C12—H12A108.9H25A—C25—H25B109.5
C11—C12—H12B108.9H25A—C25—H25C109.5
H12A—C12—H12B107.7H25B—C25—H25C109.5
C13—C12—C11113.34 (12)C11—C26—H26A109.5
C13—C12—H12A108.9C11—C26—H26B109.5
C13—C12—H12B108.9C11—C26—H26C109.5
N1—C13—C12117.39 (12)H26A—C26—H26B109.5
C8—C13—N1120.15 (12)H26A—C26—H26C109.5
C8—C13—C12122.36 (13)H26B—C26—H26C109.5
N1—C14—H14A109.3C11—C27—H27A109.5
N1—C14—H14B109.3C11—C27—H27B109.5
N1—C14—C15111.74 (12)C11—C27—H27C109.5
H14A—C14—H14B107.9H27A—C27—H27B109.5
C15—C14—H14A109.3H27A—C27—H27C109.5
C15—C14—H14B109.3H27B—C27—H27C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O10.841.812.6319 (17)166
C2—H2A···O2i0.992.523.1663 (19)123
C2—H2B···O5i0.992.533.457 (2)157
C12—H12B···O1ii0.992.523.2708 (17)133
C14—H14A···O1ii0.992.533.3299 (18)138
C14—H14B···O2i0.992.663.473 (2)140
C27—H27B···O3iii0.982.513.452 (3)161
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z+3/2.
Short H···H interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
H21···H27A2.26-1/2 + x, 1/2 - y, -1/2 + z
H22···H27A2.461/2 - x, -1/2 + y, 3/2 - z
H22···H4B2.43-1 + x, y, z
 

Funding information

JPJ would like to acknowledge the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X ray diffractometer.

References

First citationAbdelhamid, A. A., Hawaiz, F. E., Mohamed, A. F., Mohamed, S. K. & Simpson, J. (2018). Acta Cryst. E74, 1218–1221.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAbdelhamid, A. A., Mohamed, S. K. & Simpson, J. (2014). Acta Cryst. E70, 44–47.  CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Jasinski, J. P., Mohamed, S. K., Allah, O. A. A., Tamam, A. H. A. & Albayati, M. R. (2015). Acta Cryst. E71, o963–o964.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCholewiński, G., Dzierzbicka, K. & Kołodziejczyk, A. M. (2011). Pharmacol. Rep. 63, 305–336.  Web of Science PubMed Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKhalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Dege, N., Akkurt, M., Allah, O. A. A. & Albayati, M. R. (2017). IUCrData, 2, x170573.  Google Scholar
First citationPatel, M. M. M. D., Mali, M. D. & Patel, S. K. (2010). Bioorg. Med. Chem. Lett. 20, 6324–6326.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRamesh, K., Mandeep, K. & Meena, K. (2012). Acta Pol. Pharm. Drug Res. 69, 3–9.  Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSureshbabu, N. & Sughanya, V. (2015). Acta Cryst. E71, o688–o689.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationValdés, A. Fernández-Calienes (2011). Open Med. Chem. J. 5, 11–20.  PubMed Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds