research communications
and Hirshfeld surface analysis of ethyl 2-[9-(2-hydroxyphenyl)-3,3,6,6-tetramethyl-1,8-dioxo-2,3,4,4a,5,6,7,8a,9,9a,10,10a-dodecahydroacridin-10-yl]acetate
aChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, eChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, and fFaculty of Science, Department of Bio Chemistry, Beni Suef University, Beni Suef, Egypt
*Correspondence e-mail: shaabankamel@yahoo.com
In the title compound, C27H33NO5, a 3,3,6,6-tetramethyltetrahydroacridine-1,8-dione ring system carries an ethyl acetate substituent on the acridine N atom and an o-hydroxyphenyl ring on the central methine C atom of the dihydropyridine ring. The benzene ring is inclined to the acridine ring system at an angle of 80.45 (7)° and this conformation is stabilized by an intramolecular O—H⋯O hydrogen bond between the hydroxy substituent on the benzene ring and one of the carbonyl groups of the acridinedione unit. The ester C=O oxygen atom is disordered over major and minor orientations in a 0.777 (9):0.223 (9) ratio and the terminal –CH3 unit of the ethyl side chain is disordered over two sets of sites in a 0.725 (5): 0.275 (5) ratio. In the crystal, C—H⋯O hydrogen bonds combine to link the molecules into a three-dimensional network. van der Waals H⋯H contacts contribute the most to the Hirshfeld surface (66.9%) followed by O⋯H/H⋯O (22.1%) contacts associated with weak hydrogen bonds.
Keywords: crystal structure; 3,3,6,6-tetramethyltetrahydroacridine-1,8-dione; C—H⋯O hydrogen bonds; O—H⋯O hydrogen bonds; acridines.
CCDC reference: 2061379
1. Chemical context
Acridine derivatives occur in a number of compounds of importance in medicinal chemistry such as bucricaine, which used for surface anesthesia of the eye and given by injection for infiltration anesthesia, peripheral nerve block and spinal anesthesia (Ramesh et al., 2012). Quinacrine, also known as mepacrine, is used as a gametocytocide and acts as an antimalarial agent (Valdés, 2011). Proflavin is also found to be active as a bacteriostatic agent (Patel et al., 2010) and nitracrine is as anticancer agent (Cholewinski et al., 2011). Acriflavin is used as an antiseptic for skin and mucous membranes (Ramesh et al., 2012). As part of our studies in this area, we report herein the synthesis and of the title compound, C27H33NO5.
2. Structural commentary
As shown in Fig.1, the 3,3,6,6-tetramethyltetrahydroacridine-1,8-dione ring system carries an ethyl acetate substituent on the acridine N1 atom and an o-hydroxyphenyl ring on the central methine C7 atom of the C1/C6–C8/C13/N1 dihydropyridine ring. The acridinedione ring system deviates significantly from planarity with an r.m.s. deviation of 0.404 Å for the thirteen C atoms and one N atom of the acridine unit. The benzene ring is inclined to the acridine ring system at a dihedral angle of 80.45 (7)°.
The outer C1–C6 and C8–C13 cyclohexenone rings both adopt flattened chair conformations with the C4 and C11 atoms displaced in the same direction, by 0.308 (2) and 0.338 (2) Å, respectively, from the best-fit planes through the remaining five C atoms. In contrast, the central C13/N1/C1/C6–C8 ring can best be described as a flattened boat with N1 and C7 displaced by 0.146 (1) and 0.191 (14) Å, respectively, from the remaining four C atoms. The bond lengths and angles in the title molecule agree reasonably well with those found in closely related molecules (Abdelhamid et al., 2011, 2014; Khalilov et al., 2011).
The molecular conformation of the title compound is stabilized by an intramolecular O5—H5⋯O1 hydrogen bond between the hydroxy substituent on the benzene ring and one of the carbonyl groups of the acridinedione unit (Table 1; Fig. 1). Atom O3 is disordered over major and minor orientations in a 0.777 (9):0.223 (9) ratio and the terminal C17 methyl group is disordered over two sets of sites in a 0.725 (5):0.275 (5) ratio.
3. Supramolecular features
In the crystal, a number of C—H⋯O hydrogen bonds link the molecules into a three-dimensional network (Table 1; Fig. 2); all the oxygen atoms in the molecule except O4 accept at least one of these bonds.
4. Hirshfeld surface analysis
The CrystalExplorer software (Wolff et al., 2012) was used to produce the dnorm-mapped Hirshfeld surfaces and the electrostatic potential for the title compound. The contact distances, di and de, from the Hirshfeld surface to the nearest atom, inside and outside, respectively, enable the analysis of the intermolecular interactions through the mapping of dnorm. An illustration of the inter-molecular contacts in the crystal is given by two-dimensional fingerprint plots.
The bright-red spots on the Hirshfeld surface mapped over dnorm (Fig. 3), with labels H27B, H12B, H14A, H14B, H2A and H2B on the surface represent donors for potential C—H⋯O hydrogen bonds (see Table 1); the corresponding acceptors on the surface appear as bright-red spots at atoms O1, O2 and O5. Short H⋯H contacts are given in Table 2.
|
The overall two-dimensional fingerprint plot is illustrated in Fig. 4a, and those delineated into H⋯H, O⋯H/H⋯O and C⋯H/H⋯C in Fig. 4b–d, respectively. The greatest contribution to the overall Hirshfeld surface, i.e. 66.9%, is due to H⋯H contacts (Fig. 4b). The relative contributions of the other interactions in descending order are: O⋯H/H⋯O (22.1%), C⋯H/H⋯C (9.2%), O⋯O (1.3%), N⋯H/H⋯N (0.2%) and N⋯C/C⋯N (0.2%). This illustrates that the C—H⋯O interactions contribute significantly to the crystal packing.
5. Database survey
Compounds similar to the title compound with a octahydroacridin moiety are [9-(2-hydroxyphenyl)-1,8-dioxo-2,3,4,5,6,7,8,9-octahydroacridin-10(1H)-yl]acetic acid [Cambridge Structural Database (Groom et al., 2016)] refcode DABSAD; Akkurt et al., 2015), ethyl [9-(5-bromo-2-hydroxyphenyl)-3,3,6,6-tetramethyl-1,8-dioxo-2,3,4,5,6,7,8,9-octahydroacridin-10(1H)-yl]acetate (VANBUK; Mohamed et al., 2017), 9-(3-bromo-5-chloro-2-hydroxyphenyl)-10-(2-hydroxyethyl)-3,6-diphenyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (SILBIB; Abdelhamid et al., 2018) and 10-benzyl-9-(3,4-dimethoxyphenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione (PUSJEU; Sureshbabu et al., 2015).
The DABSAD compound crystallizes with two molecules in the S(8) ring. In the crystal, the molecules are linked by O—H⋯O, C—H⋯O and C—H⋯π interactions, forming a three-dimensional network. In VANBUK, the central 1,4-dihydropyridine ring adopts a shallow sofa conformation (with the C atom bearing the bromophenol ring as the flap), whereas the pendant cyclohexene rings both have twisted-boat conformations. The molecule features an intramolecular O—H⋯O hydrogen bond, which closes an S(8) ring. In the crystal, molecules are linked by C—H⋯O interactions, forming C(12) chains propagating along the c-axis direction. In the crystal of SILBIB, O—H⋯O, C—H⋯O and C—H⋯π(ring) hydrogen bonds combine with an Br—O and unusual C—Br⋯π(ring) halogen bonds to generate a three dimensional network with molecules stacked along the a-axis direction. In the acridinedione moiety of PUSJEU, the central dihydropyridine ring adopts a flattened-boat conformation, with the N atom and the methine C atom displaced from the mean plane of the other four atoms by 0.0513 (14) and 0.1828 (18) Å, respectively. The two cyclohexenone rings adopt envelope conformations, with the tetrasubsituted C atoms as the flap atoms. In the crystal, molecules are linked via a pair of C—H⋯O hydrogen bonds, forming inversion dimers, which are, in turn, linked by C—H⋯O hydrogen bonds, forming slabs lying parallel to (001).
In each molecule, the central 1,4-dihydropyridine ring adopts a shallow sofa conformation (with the C atom bearing the phenol ring as the flap), whereas the pendant cyclohexene rings both have twisted-boat conformations. Each molecule features an intramolecular O—H⋯O hydrogen bond, which closes an6. Synthesis and crystallization
To a mixture of dimedone (1.12 g, 0.008 mol), ethyl glycinate hydrochloride (0.56 g, 0.004 mol) and salicaldehyde (0.43 ml, 0.004 mol) in ethanol (20 ml), triethyl amine (1.12 ml, 0.008 mol) was added. The reaction mixture was heated under reflux for 5 h at 353–358 K then left to cool. The separated solid was filtered off, dried and recrystallized from ethanol solution as yellow plates of the title compound, yield 68%, m.p. 497 K.
7. Refinement
Crystal data, data collection and structure . All H atoms were placed in idealized locations and and refined using a riding model with C—H = 0.9–1.00 Å Uiso(H) = 1.2Ueq (C) and O—H = 0.84 Å, Uiso(H) = 1.5Ueq (O). Atom O3 of the oxo group and terminal methyl group (C17) of the ethyl acetate substituent are disordered over two sites in 0.777 (9):0.223 (9) (for O3 and O3A) and 0.725 (5):0.275 (5) (for C17 and C17A) ratios, respectively.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2061379
https://doi.org/10.1107/S2056989021001341/hb7967sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021001341/hb7967Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021001341/hb7967Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2015); cell
CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015b); program(s) used to refine structure: SHELXL (Sheldrick, 2015a); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C27H33NO5 | F(000) = 968 |
Mr = 451.54 | Dx = 1.229 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54184 Å |
a = 9.5289 (2) Å | Cell parameters from 3784 reflections |
b = 18.6653 (5) Å | θ = 4.0–71.4° |
c = 13.8046 (3) Å | µ = 0.68 mm−1 |
β = 96.410 (2)° | T = 173 K |
V = 2439.93 (10) Å3 | Plate, yellow |
Z = 4 | 0.48 × 0.22 × 0.08 mm |
Rigaku Oxford Diffraction EOS diffractometer | 4648 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 3949 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
Detector resolution: 16.0416 pixels mm-1 | θmax = 71.2°, θmin = 4.0° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (CrysalisPro; Rigaku OD, 2015) | k = −22→14 |
Tmin = 0.861, Tmax = 1.000 | l = −16→16 |
9527 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.126 | w = 1/[σ2(Fo2) + (0.0643P)2 + 0.6477P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
4648 reflections | Δρmax = 0.27 e Å−3 |
313 parameters | Δρmin = −0.23 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
O1 | 0.65518 (12) | 0.22713 (7) | 0.50403 (8) | 0.0373 (3) | |
O2 | 0.21715 (14) | 0.36821 (7) | 0.51857 (8) | 0.0426 (3) | |
O3 | 0.3445 (5) | 0.11473 (19) | 0.83632 (16) | 0.0636 (11) | 0.777 (9) |
O3A | 0.2813 (17) | 0.1388 (6) | 0.8394 (7) | 0.0636 (11) | 0.223 (9) |
O4 | 0.35606 (14) | 0.14006 (6) | 0.99586 (9) | 0.0406 (3) | |
O5 | 0.41985 (13) | 0.19489 (7) | 0.39430 (8) | 0.0389 (3) | |
H5 | 0.4887 | 0.2122 | 0.4300 | 0.058* | |
N1 | 0.44568 (13) | 0.24991 (6) | 0.79603 (8) | 0.0236 (2) | |
C1 | 0.54686 (14) | 0.22154 (7) | 0.74277 (10) | 0.0228 (3) | |
C2 | 0.66871 (16) | 0.18305 (8) | 0.79873 (11) | 0.0292 (3) | |
H2A | 0.6309 | 0.1464 | 0.8407 | 0.035* | |
H2B | 0.7234 | 0.2179 | 0.8419 | 0.035* | |
C3 | 0.76892 (16) | 0.14645 (9) | 0.73461 (12) | 0.0328 (3) | |
C4 | 0.79512 (16) | 0.19849 (9) | 0.65285 (12) | 0.0356 (4) | |
H4A | 0.8424 | 0.2421 | 0.6814 | 0.043* | |
H4B | 0.8587 | 0.1758 | 0.6098 | 0.043* | |
C5 | 0.65908 (16) | 0.21917 (8) | 0.59366 (11) | 0.0286 (3) | |
C6 | 0.53718 (15) | 0.23162 (8) | 0.64433 (10) | 0.0245 (3) | |
C7 | 0.40195 (15) | 0.25806 (8) | 0.58758 (10) | 0.0244 (3) | |
H7 | 0.4283 | 0.2880 | 0.5323 | 0.029* | |
C8 | 0.32755 (14) | 0.30588 (7) | 0.65354 (10) | 0.0237 (3) | |
C9 | 0.22950 (16) | 0.35939 (8) | 0.60657 (11) | 0.0291 (3) | |
C10 | 0.14223 (16) | 0.40152 (9) | 0.67124 (12) | 0.0323 (3) | |
H10A | 0.0581 | 0.3731 | 0.6833 | 0.039* | |
H10B | 0.1091 | 0.4463 | 0.6376 | 0.039* | |
C11 | 0.22671 (16) | 0.42010 (8) | 0.76873 (11) | 0.0280 (3) | |
C12 | 0.27846 (15) | 0.34965 (8) | 0.81805 (10) | 0.0263 (3) | |
H12A | 0.3461 | 0.3608 | 0.8758 | 0.032* | |
H12B | 0.1970 | 0.3245 | 0.8411 | 0.032* | |
C13 | 0.34886 (14) | 0.30040 (7) | 0.75185 (10) | 0.0222 (3) | |
C14 | 0.43949 (15) | 0.22835 (8) | 0.89738 (10) | 0.0256 (3) | |
H14A | 0.3858 | 0.2646 | 0.9304 | 0.031* | |
H14B | 0.5365 | 0.2265 | 0.9315 | 0.031* | |
C15 | 0.37019 (19) | 0.15605 (9) | 0.90423 (12) | 0.0368 (4) | |
C16 | 0.2856 (3) | 0.07304 (12) | 1.01388 (17) | 0.0641 (7) | |
H16A | 0.3553 | 0.0335 | 1.0218 | 0.077* | 0.725 (5) |
H16B | 0.2146 | 0.0615 | 0.9581 | 0.077* | 0.725 (5) |
H16C | 0.2872 | 0.0420 | 0.9559 | 0.077* | 0.275 (5) |
H16D | 0.3405 | 0.0485 | 1.0693 | 0.077* | 0.275 (5) |
C17 | 0.2157 (4) | 0.08124 (19) | 1.1040 (3) | 0.0665 (9) | 0.725 (5) |
H17A | 0.2875 | 0.0880 | 1.1598 | 0.100* | 0.725 (5) |
H17B | 0.1604 | 0.0381 | 1.1141 | 0.100* | 0.725 (5) |
H17C | 0.1530 | 0.1230 | 1.0976 | 0.100* | 0.725 (5) |
C17A | 0.1551 (11) | 0.0790 (5) | 1.0331 (8) | 0.0665 (9) | 0.275 (5) |
H17D | 0.1499 | 0.1142 | 1.0853 | 0.100* | 0.275 (5) |
H17E | 0.1217 | 0.0324 | 1.0541 | 0.100* | 0.275 (5) |
H17F | 0.0956 | 0.0947 | 0.9745 | 0.100* | 0.275 (5) |
C18 | 0.30828 (15) | 0.19663 (8) | 0.54418 (10) | 0.0258 (3) | |
C19 | 0.32270 (16) | 0.16932 (9) | 0.45105 (11) | 0.0307 (3) | |
C20 | 0.23375 (19) | 0.11504 (10) | 0.41156 (13) | 0.0405 (4) | |
H20 | 0.2428 | 0.0976 | 0.3479 | 0.049* | |
C21 | 0.13242 (18) | 0.08647 (9) | 0.46441 (14) | 0.0410 (4) | |
H21 | 0.0723 | 0.0493 | 0.4371 | 0.049* | |
C22 | 0.11833 (17) | 0.11164 (9) | 0.55659 (13) | 0.0356 (4) | |
H22 | 0.0494 | 0.0916 | 0.5933 | 0.043* | |
C23 | 0.20564 (16) | 0.16652 (8) | 0.59556 (11) | 0.0295 (3) | |
H23 | 0.1949 | 0.1839 | 0.6590 | 0.035* | |
C24 | 0.7045 (2) | 0.07682 (10) | 0.69143 (15) | 0.0469 (4) | |
H24A | 0.6894 | 0.0436 | 0.7443 | 0.070* | |
H24B | 0.7688 | 0.0550 | 0.6493 | 0.070* | |
H24C | 0.6139 | 0.0872 | 0.6531 | 0.070* | |
C25 | 0.9082 (2) | 0.12973 (11) | 0.79789 (14) | 0.0468 (4) | |
H25A | 0.9533 | 0.1746 | 0.8214 | 0.070* | |
H25B | 0.9713 | 0.1036 | 0.7590 | 0.070* | |
H25C | 0.8887 | 0.1003 | 0.8537 | 0.070* | |
C26 | 0.13320 (19) | 0.45952 (9) | 0.83469 (13) | 0.0405 (4) | |
H26A | 0.0495 | 0.4305 | 0.8424 | 0.061* | |
H26B | 0.1038 | 0.5057 | 0.8052 | 0.061* | |
H26C | 0.1864 | 0.4677 | 0.8987 | 0.061* | |
C27 | 0.35163 (17) | 0.46822 (8) | 0.75087 (12) | 0.0340 (3) | |
H27A | 0.4061 | 0.4799 | 0.8133 | 0.051* | |
H27B | 0.3163 | 0.5125 | 0.7187 | 0.051* | |
H27C | 0.4123 | 0.4431 | 0.7092 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0375 (6) | 0.0503 (7) | 0.0266 (6) | −0.0016 (5) | 0.0144 (4) | −0.0032 (5) |
O2 | 0.0548 (7) | 0.0469 (7) | 0.0249 (6) | 0.0155 (6) | −0.0006 (5) | 0.0006 (5) |
O3 | 0.114 (3) | 0.0437 (16) | 0.0360 (8) | −0.0364 (17) | 0.0192 (12) | −0.0122 (10) |
O3A | 0.114 (3) | 0.0437 (16) | 0.0360 (8) | −0.0364 (17) | 0.0192 (12) | −0.0122 (10) |
O4 | 0.0571 (7) | 0.0352 (6) | 0.0317 (6) | −0.0098 (5) | 0.0158 (5) | 0.0055 (5) |
O5 | 0.0448 (6) | 0.0485 (7) | 0.0245 (5) | 0.0025 (5) | 0.0080 (5) | −0.0075 (5) |
N1 | 0.0288 (6) | 0.0242 (6) | 0.0189 (5) | 0.0020 (5) | 0.0069 (4) | −0.0005 (4) |
C1 | 0.0248 (6) | 0.0203 (6) | 0.0241 (7) | −0.0020 (5) | 0.0064 (5) | −0.0023 (5) |
C2 | 0.0305 (7) | 0.0316 (7) | 0.0257 (7) | 0.0041 (6) | 0.0035 (6) | −0.0014 (6) |
C3 | 0.0324 (8) | 0.0323 (8) | 0.0344 (8) | 0.0071 (6) | 0.0065 (6) | −0.0027 (6) |
C4 | 0.0290 (8) | 0.0417 (9) | 0.0382 (9) | 0.0041 (6) | 0.0125 (6) | −0.0014 (7) |
C5 | 0.0309 (7) | 0.0280 (7) | 0.0287 (7) | −0.0025 (6) | 0.0109 (6) | −0.0038 (6) |
C6 | 0.0269 (7) | 0.0244 (7) | 0.0233 (7) | −0.0005 (5) | 0.0073 (5) | −0.0025 (5) |
C7 | 0.0303 (7) | 0.0246 (7) | 0.0190 (6) | 0.0010 (6) | 0.0065 (5) | −0.0012 (5) |
C8 | 0.0260 (6) | 0.0226 (7) | 0.0233 (7) | −0.0010 (5) | 0.0059 (5) | −0.0021 (5) |
C9 | 0.0312 (7) | 0.0294 (7) | 0.0261 (7) | 0.0006 (6) | 0.0010 (6) | −0.0025 (6) |
C10 | 0.0304 (7) | 0.0318 (8) | 0.0345 (8) | 0.0063 (6) | 0.0028 (6) | −0.0016 (6) |
C11 | 0.0327 (7) | 0.0243 (7) | 0.0277 (7) | 0.0043 (6) | 0.0072 (6) | −0.0017 (6) |
C12 | 0.0323 (7) | 0.0241 (7) | 0.0236 (7) | 0.0020 (6) | 0.0088 (5) | −0.0016 (5) |
C13 | 0.0245 (6) | 0.0195 (6) | 0.0232 (7) | −0.0018 (5) | 0.0064 (5) | −0.0010 (5) |
C14 | 0.0325 (7) | 0.0267 (7) | 0.0187 (6) | 0.0019 (6) | 0.0068 (5) | 0.0003 (5) |
C15 | 0.0492 (9) | 0.0353 (8) | 0.0269 (8) | −0.0090 (7) | 0.0085 (6) | 0.0001 (6) |
C16 | 0.0987 (18) | 0.0460 (12) | 0.0520 (12) | −0.0294 (12) | 0.0280 (12) | 0.0052 (9) |
C17 | 0.082 (2) | 0.0543 (16) | 0.070 (2) | −0.0088 (15) | 0.0384 (17) | 0.0188 (17) |
C17A | 0.082 (2) | 0.0543 (16) | 0.070 (2) | −0.0088 (15) | 0.0384 (17) | 0.0188 (17) |
C18 | 0.0286 (7) | 0.0242 (7) | 0.0239 (7) | 0.0051 (5) | −0.0003 (5) | −0.0014 (5) |
C19 | 0.0338 (8) | 0.0323 (8) | 0.0256 (7) | 0.0080 (6) | 0.0015 (6) | −0.0029 (6) |
C20 | 0.0479 (9) | 0.0391 (9) | 0.0326 (8) | 0.0063 (7) | −0.0039 (7) | −0.0137 (7) |
C21 | 0.0388 (9) | 0.0307 (8) | 0.0503 (10) | 0.0005 (7) | −0.0097 (7) | −0.0093 (7) |
C22 | 0.0344 (8) | 0.0281 (8) | 0.0434 (9) | 0.0008 (6) | −0.0001 (7) | 0.0019 (7) |
C23 | 0.0328 (7) | 0.0274 (7) | 0.0280 (7) | 0.0026 (6) | 0.0021 (6) | −0.0002 (6) |
C24 | 0.0588 (11) | 0.0312 (9) | 0.0514 (11) | 0.0062 (8) | 0.0094 (8) | −0.0059 (8) |
C25 | 0.0405 (10) | 0.0533 (11) | 0.0463 (10) | 0.0185 (8) | 0.0037 (8) | −0.0019 (8) |
C26 | 0.0469 (10) | 0.0344 (8) | 0.0418 (9) | 0.0118 (7) | 0.0124 (7) | −0.0053 (7) |
C27 | 0.0409 (8) | 0.0247 (7) | 0.0363 (8) | −0.0019 (6) | 0.0034 (6) | 0.0005 (6) |
O1—C5 | 1.2426 (19) | C12—C13 | 1.5057 (18) |
O2—C9 | 1.2185 (19) | C14—H14A | 0.9900 |
O3—C15 | 1.217 (3) | C14—H14B | 0.9900 |
O3A—C15 | 1.205 (11) | C14—C15 | 1.510 (2) |
O4—C15 | 1.321 (2) | C16—H16A | 0.9900 |
O4—C16 | 1.454 (2) | C16—H16B | 0.9900 |
O5—H5 | 0.8400 | C16—H16C | 0.9900 |
O5—C19 | 1.364 (2) | C16—H16D | 0.9900 |
N1—C1 | 1.3816 (18) | C16—C17 | 1.483 (4) |
N1—C13 | 1.4091 (18) | C16—C17A | 1.305 (9) |
N1—C14 | 1.4633 (17) | C17—H17A | 0.9800 |
C1—C2 | 1.504 (2) | C17—H17B | 0.9800 |
C1—C6 | 1.365 (2) | C17—H17C | 0.9800 |
C2—H2A | 0.9900 | C17A—H17D | 0.9800 |
C2—H2B | 0.9900 | C17A—H17E | 0.9800 |
C2—C3 | 1.533 (2) | C17A—H17F | 0.9800 |
C3—C4 | 1.531 (2) | C18—C19 | 1.404 (2) |
C3—C24 | 1.530 (2) | C18—C23 | 1.389 (2) |
C3—C25 | 1.537 (2) | C19—C20 | 1.392 (2) |
C4—H4A | 0.9900 | C20—H20 | 0.9500 |
C4—H4B | 0.9900 | C20—C21 | 1.381 (3) |
C4—C5 | 1.504 (2) | C21—H21 | 0.9500 |
C5—C6 | 1.4401 (19) | C21—C22 | 1.377 (3) |
C6—C7 | 1.514 (2) | C22—H22 | 0.9500 |
C7—H7 | 1.0000 | C22—C23 | 1.390 (2) |
C7—C8 | 1.5074 (18) | C23—H23 | 0.9500 |
C7—C18 | 1.5334 (19) | C24—H24A | 0.9800 |
C8—C9 | 1.468 (2) | C24—H24B | 0.9800 |
C8—C13 | 1.354 (2) | C24—H24C | 0.9800 |
C9—C10 | 1.507 (2) | C25—H25A | 0.9800 |
C10—H10A | 0.9900 | C25—H25B | 0.9800 |
C10—H10B | 0.9900 | C25—H25C | 0.9800 |
C10—C11 | 1.529 (2) | C26—H26A | 0.9800 |
C11—C12 | 1.537 (2) | C26—H26B | 0.9800 |
C11—C26 | 1.532 (2) | C26—H26C | 0.9800 |
C11—C27 | 1.533 (2) | C27—H27A | 0.9800 |
C12—H12A | 0.9900 | C27—H27B | 0.9800 |
C12—H12B | 0.9900 | C27—H27C | 0.9800 |
C15—O4—C16 | 117.16 (15) | O3—C15—O4 | 124.13 (18) |
C19—O5—H5 | 109.5 | O3—C15—C14 | 124.71 (17) |
C1—N1—C13 | 119.22 (11) | O3A—C15—O4 | 120.8 (5) |
C1—N1—C14 | 120.56 (12) | O3A—C15—C14 | 117.9 (5) |
C13—N1—C14 | 120.23 (11) | O4—C15—C14 | 110.73 (13) |
N1—C1—C2 | 117.03 (12) | O4—C16—H16A | 110.0 |
C6—C1—N1 | 120.23 (13) | O4—C16—H16B | 110.0 |
C6—C1—C2 | 122.68 (13) | O4—C16—H16C | 108.4 |
C1—C2—H2A | 108.7 | O4—C16—H16D | 108.4 |
C1—C2—H2B | 108.7 | O4—C16—C17 | 108.3 (2) |
C1—C2—C3 | 114.28 (12) | H16A—C16—H16B | 108.4 |
H2A—C2—H2B | 107.6 | H16C—C16—H16D | 107.5 |
C3—C2—H2A | 108.7 | C17—C16—H16A | 110.0 |
C3—C2—H2B | 108.7 | C17—C16—H16B | 110.0 |
C2—C3—C25 | 108.42 (13) | C17A—C16—O4 | 115.5 (4) |
C4—C3—C2 | 107.84 (13) | C17A—C16—H16C | 108.4 |
C4—C3—C25 | 110.27 (14) | C17A—C16—H16D | 108.4 |
C24—C3—C2 | 110.77 (14) | C16—C17—H17A | 109.5 |
C24—C3—C4 | 110.08 (14) | C16—C17—H17B | 109.5 |
C24—C3—C25 | 109.43 (15) | C16—C17—H17C | 109.5 |
C3—C4—H4A | 109.4 | H17A—C17—H17B | 109.5 |
C3—C4—H4B | 109.4 | H17A—C17—H17C | 109.5 |
H4A—C4—H4B | 108.0 | H17B—C17—H17C | 109.5 |
C5—C4—C3 | 111.22 (13) | C16—C17A—H17D | 109.5 |
C5—C4—H4A | 109.4 | C16—C17A—H17E | 109.5 |
C5—C4—H4B | 109.4 | C16—C17A—H17F | 109.5 |
O1—C5—C4 | 119.99 (13) | H17D—C17A—H17E | 109.5 |
O1—C5—C6 | 121.89 (14) | H17D—C17A—H17F | 109.5 |
C6—C5—C4 | 118.08 (13) | H17E—C17A—H17F | 109.5 |
C1—C6—C5 | 119.53 (13) | C19—C18—C7 | 121.14 (13) |
C1—C6—C7 | 121.28 (12) | C23—C18—C7 | 121.01 (13) |
C5—C6—C7 | 119.16 (12) | C23—C18—C19 | 117.85 (14) |
C6—C7—H7 | 107.8 | O5—C19—C18 | 122.76 (14) |
C6—C7—C18 | 112.53 (11) | O5—C19—C20 | 116.89 (14) |
C8—C7—C6 | 108.12 (11) | C20—C19—C18 | 120.34 (15) |
C8—C7—H7 | 107.8 | C19—C20—H20 | 119.8 |
C8—C7—C18 | 112.73 (11) | C21—C20—C19 | 120.35 (15) |
C18—C7—H7 | 107.8 | C21—C20—H20 | 119.8 |
C9—C8—C7 | 117.07 (12) | C20—C21—H21 | 119.9 |
C13—C8—C7 | 122.19 (13) | C22—C21—C20 | 120.17 (15) |
C13—C8—C9 | 120.73 (13) | C22—C21—H21 | 119.9 |
O2—C9—C8 | 121.20 (14) | C21—C22—H22 | 120.2 |
O2—C9—C10 | 121.44 (14) | C21—C22—C23 | 119.56 (16) |
C8—C9—C10 | 117.34 (13) | C23—C22—H22 | 120.2 |
C9—C10—H10A | 109.3 | C18—C23—C22 | 121.71 (14) |
C9—C10—H10B | 109.3 | C18—C23—H23 | 119.1 |
C9—C10—C11 | 111.62 (12) | C22—C23—H23 | 119.1 |
H10A—C10—H10B | 108.0 | C3—C24—H24A | 109.5 |
C11—C10—H10A | 109.3 | C3—C24—H24B | 109.5 |
C11—C10—H10B | 109.3 | C3—C24—H24C | 109.5 |
C10—C11—C12 | 107.90 (12) | H24A—C24—H24B | 109.5 |
C10—C11—C26 | 110.38 (13) | H24A—C24—H24C | 109.5 |
C10—C11—C27 | 109.47 (13) | H24B—C24—H24C | 109.5 |
C26—C11—C12 | 109.08 (12) | C3—C25—H25A | 109.5 |
C26—C11—C27 | 109.14 (13) | C3—C25—H25B | 109.5 |
C27—C11—C12 | 110.87 (12) | C3—C25—H25C | 109.5 |
C11—C12—H12A | 108.9 | H25A—C25—H25B | 109.5 |
C11—C12—H12B | 108.9 | H25A—C25—H25C | 109.5 |
H12A—C12—H12B | 107.7 | H25B—C25—H25C | 109.5 |
C13—C12—C11 | 113.34 (12) | C11—C26—H26A | 109.5 |
C13—C12—H12A | 108.9 | C11—C26—H26B | 109.5 |
C13—C12—H12B | 108.9 | C11—C26—H26C | 109.5 |
N1—C13—C12 | 117.39 (12) | H26A—C26—H26B | 109.5 |
C8—C13—N1 | 120.15 (12) | H26A—C26—H26C | 109.5 |
C8—C13—C12 | 122.36 (13) | H26B—C26—H26C | 109.5 |
N1—C14—H14A | 109.3 | C11—C27—H27A | 109.5 |
N1—C14—H14B | 109.3 | C11—C27—H27B | 109.5 |
N1—C14—C15 | 111.74 (12) | C11—C27—H27C | 109.5 |
H14A—C14—H14B | 107.9 | H27A—C27—H27B | 109.5 |
C15—C14—H14A | 109.3 | H27A—C27—H27C | 109.5 |
C15—C14—H14B | 109.3 | H27B—C27—H27C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5···O1 | 0.84 | 1.81 | 2.6319 (17) | 166 |
C2—H2A···O2i | 0.99 | 2.52 | 3.1663 (19) | 123 |
C2—H2B···O5i | 0.99 | 2.53 | 3.457 (2) | 157 |
C12—H12B···O1ii | 0.99 | 2.52 | 3.2708 (17) | 133 |
C14—H14A···O1ii | 0.99 | 2.53 | 3.3299 (18) | 138 |
C14—H14B···O2i | 0.99 | 2.66 | 3.473 (2) | 140 |
C27—H27B···O3iii | 0.98 | 2.51 | 3.452 (3) | 161 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) x−1/2, −y+1/2, z+1/2; (iii) −x+1/2, y+1/2, −z+3/2. |
Contact | Distance | Symmetry operation |
H21···H27A | 2.26 | -1/2 + x, 1/2 - y, -1/2 + z |
H22···H27A | 2.46 | 1/2 - x, -1/2 + y, 3/2 - z |
H22···H4B | 2.43 | -1 + x, y, z |
Funding information
JPJ would like to acknowledge the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X ray diffractometer.
References
Abdelhamid, A. A., Hawaiz, F. E., Mohamed, A. F., Mohamed, S. K. & Simpson, J. (2018). Acta Cryst. E74, 1218–1221. Web of Science CSD CrossRef IUCr Journals Google Scholar
Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. Web of Science CSD CrossRef IUCr Journals Google Scholar
Abdelhamid, A. A., Mohamed, S. K. & Simpson, J. (2014). Acta Cryst. E70, 44–47. CSD CrossRef IUCr Journals Google Scholar
Akkurt, M., Jasinski, J. P., Mohamed, S. K., Allah, O. A. A., Tamam, A. H. A. & Albayati, M. R. (2015). Acta Cryst. E71, o963–o964. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cholewiński, G., Dzierzbicka, K. & Kołodziejczyk, A. M. (2011). Pharmacol. Rep. 63, 305–336. Web of Science PubMed Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Khalilov, A. N., Abdelhamid, A. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o1146. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mohamed, S. K., Dege, N., Akkurt, M., Allah, O. A. A. & Albayati, M. R. (2017). IUCrData, 2, x170573. Google Scholar
Patel, M. M. M. D., Mali, M. D. & Patel, S. K. (2010). Bioorg. Med. Chem. Lett. 20, 6324–6326. Web of Science CrossRef CAS PubMed Google Scholar
Ramesh, K., Mandeep, K. & Meena, K. (2012). Acta Pol. Pharm. Drug Res. 69, 3–9. Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sureshbabu, N. & Sughanya, V. (2015). Acta Cryst. E71, o688–o689. Web of Science CSD CrossRef IUCr Journals Google Scholar
Valdés, A. Fernández-Calienes (2011). Open Med. Chem. J. 5, 11–20. PubMed Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Australia. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.