research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-n-but­yl[N′-(3-meth­­oxy-2-oxido­benzyl­­idene)-N-phenyl­carbamohydrazono­thio­ato]tin(IV): crystal structure, Hirshfeld surface analysis and computational study

CROSSMARK_Color_square_no_text.svg

aChemistry Section, School of Distance Education, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia, bDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia, cResearch Centre for Crystalline Materials, School of Medical and Life Sciences, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, dCentre for Drug Research, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia, eSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia, and fFoundry of Reticular Materials for Sustainability (FORMS), Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul, Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 February 2021; accepted 15 February 2021; online 23 February 2021)

The title diorganotin Schiff base derivative, [Sn(C4H9)2(C15H13N3O2S)], features a penta-coordinated tin centre defined by the N,O,S-donor atoms of the di-anionic Schiff base ligand and two methyl­ene-C atoms of the n-butyl substituents. The resultant C2NOS donor set defines a geometry inter­mediate between trigonal–bipyramidal and square-pyramidal. In the crystal, amine-N—H⋯O(meth­oxy) hydrogen bonding is found in a helical, supra­molecular chain propagating along the b-axis direction. The chains are assembled into a layer parallel to ([\overline{1}]01) with methyl­ene-C—H⋯π(phen­yl) inter­actions prominent; layers stack without directional inter­actions between them. The analysis of the calculated Hirshfeld surface showed the presence of weak methyl­ene-C—H⋯π(phen­yl) inter­actions and short H⋯H contacts in the inter-layer region. Consistent with the nature of the identified contacts, the stabilization of the crystal is dominated by the dispersion energy term.

1. Chemical context

Thio­semicarbazones are an important class of compounds that have received wide attention due to their many biological and pharmacological properties, such as anti-bacterial, anti-viral, anti-neoplastic and anti-malarial activities (Kovala-Demerzi et al., 1997[Kovala-Demertzi, D., Domopoulou, A., Demertzis, M. A., Valle, G. & Papageorgiou, A. (1997). J. Inorg. Biochem. 68, 147-155.]; Hu et al., 2006[Hu, W., Zhou, W., Xia, C. & Wen, X. (2006). Bioorg. Med. Chem. Lett. 16, 2213-2218.]; Khan & Yusuf, 2009[Khan, S. A. & Yusuf, M. (2009). Eur. J. Med. Chem. 44, 2270-2274.]). Thio­semicarbazone Schiff bases are similar to their di­thio­carbazate counterparts in that complexation with a metal centre is achieved via the nitro­gen and sulfur atoms following deprotonation of the S—H and N—H groups (Đilović et al., 2008[Đilović, I., Rubčić, M., Vrdoljak, V., Pavelić, S. K., Kralj, M., Piantanida, I. & Cindrić, M. (2008). Bioorg. Med. Chem. 16, 5189-5198.]; Wiecek et al., 2009[Wiecek, J., Dokorou, V., Ciunik, Z. & Kovala-Demertzi, D. (2009). Polyhedron, 28, 3298-3304.]; Pavan et al., 2010[Pavan, F. R., Maia, P. I. da S., Leite, S. R. A., Deflon, V. M., Batista, A. A., Sato, D. N., Franzblau, S. G. & Leite, C. Q. F. (2010). Eur. J. Med. Chem. 45, 1898-1905.]; Parrilha et al., 2011[Parrilha, G. L., da Silva, J. G., Gouveia, L. F., Gasparoto, A. K., Dias, R. P., Rocha, W. R., Santos, D. A., Speziali, N. L. & Beraldo, H. (2011). Eur. J. Med. Chem. 46, 1473-1482.]; Singh et al., 2016[Singh, H. L., Singh, J. B. & Bhanuka, S. (2016). Res. Chem. Intermed. 42, 997-1015.]; Palanimuthu et al., 2017[Palanimuthu, D., Poon, R., Sahni, S., Anjum, R., Hibbs, D., Lin, H. Y., Bernhardt, P. V., Kalinowski, D. S. & Richardson, D. R. (2017). Eur. J. Med. Chem. 139, 612-632.]). Tin(IV) compounds of 3-meth­oxy­salicyl­aldehyde thio­semicarbazone have been evaluated for their in vitro cytotoxicity against a line of human T lymphocyte cells, Jurkat cells (Khandani et al., 2013[Khandani, M., Sedaghat, T., Erfani, N., Haghshenas, M. R. & Khavasi, H. R. (2013). J. Mol. Struct. 1037, 136-143.]): in this study, a structure–activity analysis for the di­alkyl­tin(IV) compounds indicated that cytotoxicity increased with the length of the alkyl carbon chain of the tin-bound substituents. Thus, the cytotoxicity was in the order of dibutyl > diphenyl > dimethyl (Khandani et al., 2013[Khandani, M., Sedaghat, T., Erfani, N., Haghshenas, M. R. & Khavasi, H. R. (2013). J. Mol. Struct. 1037, 136-143.]). The ability of the 2-acetyl­pyridine N(4)-cyclo­hexyl­thio­semicarbazone Schiff base (LH2) and its distorted penta­gonal bipyramidal tin(IV) compound, [Ph2Sn(L)(OAc)]·EtOH, to inhibit tumour cell growth against HepG2 cells has also been reported (Liu et al., 2017[Liu, K., Yan, H., Chang, G., Li, Z., Niu, M. & Hong, M. (2017). Inorg. Chim. Acta, 464, 137-146.]). This study showed the tin(IV) compound to exhibit threefold higher cytotoxic potency compared to the free ligand, i.e. with IC50 values of 3.32±0.52 and 10.10±2.07 µM, respectively, and to be more potent than the reference drug mitoxantone (IC50 = 5.3±2.38 µM). Significant activity was also observed in an in vitro cytotoxic assay of tin(IV) compounds of 2-hy­droxy-5-meth­oxy­benzaldehyde-N(4)-meth­yl­thio­semicarbazone (Salam et al., 2016[Salam, M. A., Hussein, M. A., Ramli, I. & Islam, S. (2016). J. Organomet. Chem. 813, 71-77.]), di­phenyl­tin(IV) compounds of 2-benzoyl­pyridine N(4)-phenyl thio­semi­carbazone and 2-acetyl­pyrazine N(4)-phenyl­thio­semi­carbazone (Li et al., 2011[Li, M. X., Zhang, D., Zhang, L. Z., Niu, J. Y. & Ji, B. S. (2011). J. Organomet. Chem. 696, 852-858.]) in comparison to the standard drugs used. It may be concluded that the coordination of the Schiff base ligand to the tin(IV) centre enhanced cytotoxic activity, where the reported IC50 values were better than standard drugs.

[Scheme 1]

Further, the enhancement of cytotoxicity in the di­phenyl­tin derivatives has been attributed to the presence of these phenyl groups, which suggested inter­actions between the tin-bound phenyl groups with intra-cellular biomacromolecules. An independent biological study suggested that the diffusion, lipophilic character and steric effects associated with the ligand could also be factors in determining cytotoxic activity (Salam et al., 2016[Salam, M. A., Hussein, M. A., Ramli, I. & Islam, S. (2016). J. Organomet. Chem. 813, 71-77.]). The improvement of cytotoxic activity was also suggested to be due to the presence of OH/NH groups, which enabled hydrogen bonding with DNA base pairs (Haque et al., 2015[Haque, R. A., Salam, M. A. & Arafath, M. A. (2015). J. Coord. Chem. 68, 2953-2967.]). As part of our on-going studies in the structural elucidation and cytotoxic activity of tin(IV) compounds containing thio­semicarbazones Schiff base (Yusof et al., 2020[Yusof, E. N. M., Page, A. J., Sakoff, J. A., Simone, M. I., Veerakumarasivam, A., Tiekink, E. R. T. & Ravoof, T. B. S. A. (2020). Polyhedron, 189 article No. 114729.]), herein are described the synthesis of the title di­butyl­tin(IV) derivative, (I)[link], its single crystal X-ray diffraction analysis and a detailed study of supra­molecular association by an analysis of the calculated Hirshfeld surfaces and computational chemistry.

2. Structural commentary

The mol­ecular structure of (I)[link], Sn(C15H13N3O2S)(C4H9)2 (Fig. 1[link]), comprises a five-coordinate tin centre, being coordin­ated by a tridentate Schiff base di-anion and two n-butyl groups leading to a C2NOS donor set. Selected geometric parameters for (I)[link] are collated in Table 1[link]. While the direct acid analogue for the Schiff base in (I)[link] has yet to be characterized crystallographically, the 4-meth­oxy analogue is known (Rubčić et al., 2008[Rubčić, M., Đilović, I., Cindrić, M. & Matković-Čalogović, D. (2008). Acta Cryst. C64, o570-o573.]). Compared to the S1—C1 [1.747 (3) Å], C1—N1 [1.304 (3) Å] and C2—N2 [1.311 (3) Å] bond lengths in (I)[link], the equivalent bonds in the acid are 1.6769 (14), 1.3441 (17) and 1.2798 (18) Å, respectively (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), consistent with elongation, shortening and elongation in (I)[link], respectively, confirming the presence of the thiol­ate-S1 and imine-N1 atoms. The angles subtended at the tin centre, Table 1[link], indicate a highly distorted coordination geometry. The angle closest to a trans angle is 157.56 (5)°, for S1—Sn—O1, with the next two widest angles being N2—Sn—C16 [126.42 (9)°] and C16—Sn—C20 [124.08 (11)°]. The distortion from the ideal square-pyramidal and trigonal-bipyramidal geometries is qu­anti­fied by the value of τ, with values of 0.0 and 1.0, respectively (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). For (I)[link], this computes to 0.52, being almost exactly between the two extreme values.

Table 1
Selected geometric parameters (Å, °)

Sn—S1 2.5598 (7) Sn—C20 2.140 (3)
Sn—O1 2.1089 (16) S1—C1 1.747 (3)
Sn—N2 2.212 (2) N1—C1 1.304 (3)
Sn—C16 2.136 (3) N2—C2 1.311 (3)
       
S1—Sn—O1 157.56 (5) O1—Sn—C16 88.11 (8)
S1—Sn—N2 77.04 (5) O1—Sn—C20 93.08 (9)
S1—Sn—C16 96.03 (8) N2—Sn—C16 126.42 (9)
S1—Sn—C20 102.61 (8) N2—Sn—C20 109.11 (10)
O1—Sn—N2 82.75 (7) C16—Sn—C20 124.08 (11)
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

The N,O,S mode of coordination of the Schiff base di-anion gives rise to the formation of five- and six-membered chelate rings, the acute chelate angles, Table 1; these are partly responsible for the observed distortions in the coordination environment. The former ring, comprising the Sn, S1, N1, N2 and C1 atoms is almost planar, presenting a r.m.s. deviation of 0.0087 Å: atom N3 lies 0.016 (3) Å out of this plane. By contrast, distortions are evident in the six-membered chelate ring, defined by the Sn, O1, N2, C2–C4 atoms. The simplest description for the conformation is that of an envelope with the tin atom lying 0.519 (3) Å out of the plane defined by the remaining five atoms (r.m.s. deviation = 0.0379 Å). The dihedral angle between the five-membered chelate ring and the best plane through the five approximately co-planar atoms of the six-membered chelate ring is 13.59 (12)°, that between the five-membered and N-bound phenyl ring is 6.92 (12)° and that between the peripheral C6 rings is 19.63 (13)°, highlighting the observation the Schiff base di-anion deviates significantly from co-planarity.

3. Supra­molecular features

Conventional hydrogen bonding is noted in the crystal of (I)[link], Table 2[link]. Thus, amine-N—H⋯O(meth­oxy) hydrogen bonds assemble mol­ecules into a helical, supra­molecular chain propagating along the b-axis direction, Fig. 2[link](a). The only other directional inter­actions based on an analysis of the points of contact between mol­ecules in the crystal (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), are methyl­ene-C—H⋯π(phen­yl) inter­actions. These lead to a supra­molecular layer parallel to ([\overline{1}]01), Fig. 2[link](b). Layers stack without specific inter­actions between them, Fig. 2[link](c).

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the (C10–C15) ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O2i 0.87 (2) 2.21 (2) 2.990 (3) 150 (2)
C18—H18ACg1ii 0.99 2.81 3.730 (3) 154
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Mol­ecular packing in (I)[link]: (a) the helical, supra­molecular chain sustained by amine-NHO(meth­oxy) hydrogen bonding shown as orange dashed lines (non-participating H atoms omitted), (b) the supra­molecular layer parallel to ([\overline{1}]01) whereby the chains of (a) are connected by methyl­ene-C—H⋯π(phen­yl) inter­actions shown as purple dashed lines and (c) a view of the unit-cell contents shown in projection down the b-axis direction.

4. Analysis of the Hirshfeld surfaces

The Hirshfeld surface analysis for (I)[link] was conducted to ascertain further information on the supra­molecular association between mol­ecules in the crystal, in particular in the inter-layer region. The calculated Hirshfeld surface was mapped over the normalized contact distance dnorm (McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]) and electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]), and the associated two-dimensional fingerprint plots were calculated using Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) following a literature procedure (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). The electrostatic potentials were calculated using the STO-3G basis set at the Hartree–Fock level of theory. The only red spots observed on the Hirshfeld surface mapped over dnorm, Fig. 3[link], arose as a result of the conventional amine-N3—H3N⋯O2(meth­oxy) hydrogen bond. This hydrogen bond is also reflected in the Hirshfeld surface mapped over the electrostatic potential, Fig. 4[link], where the positive electrostatic potential (blue) and negative electrostatic potential (red) regions are evident around the amine-H3N and meth­oxy-O2 atoms, respectively. Complementing the methyl­ene-C18—H18ACg1 contact listed in Table 2[link], is a longer methyl­ene-C22—H22BCg1 contact in the inter-layer region, Table 3[link]. Each inter­action is observed as an orange `hollow' on the Hirshfeld surface mapped over shape-index property, Fig. 5[link].

Table 3
A summary of short inter­atomic contacts (Å) for (I)a

Contact Distance Symmetry operation
N3—H3N⋯O2 2.09 x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]
C18—H18ACg1 2.81 x − [{1\over 2}], −y − [{3\over 2}], z − [{1\over 2}]
C22—H22BCg1 3.28 x + [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]
H6⋯H22A 2.32 x + [{3\over 2}], y − [{1\over 2}], −z + [{1\over 2}]
H7⋯H17A 2.32 x + 1, −y + 1, −z + 1
Note: (a) The inter­atomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) with the X—H bond lengths adjusted to their neutron values.
[Figure 3]
Figure 3
A view of the Hirshfeld surface for (I)[link] mapped over dnorm in the range −0.40 to +1.61 arbitrary units, highlighting red spots due to N3—H3N⋯O2 hydrogen bonds.
[Figure 4]
Figure 4
A view of the Hirshfeld surface mapped over the calculated electrostatic potential for (I)[link] in the range −0.095 to 0.095 a.u.
[Figure 5]
Figure 5
Views of the Hirshfeld surface for (I)[link] mapped over the shape-index property. The influence of the (a) H18ACg1 and (b) H22BCg1 contacts are highlighted by the hollows emphasized by the red circles.

The overall two-dimensional fingerprint plot for the Hirshfeld surface of (I)[link] is shown with characteristic pseudo-symmetric wings in the upper left and lower right sides of the de and di diagonal axes, respectively, in Fig. 6[link](a). The individual H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯N/N⋯H and H⋯S/S⋯H contacts are illustrated in the delineated fingerprint plots in Fig. 6[link](b)–(f), respectively. The percentage contributions for the different inter­atomic contacts to the Hirshfeld surface are included in Fig. 6[link]. The greatest contribution to the overall Hirshfeld surface is from H⋯H contacts, i.e. 66.2%. The H⋯H contacts appear as a beak-like distrib­ution tipped at de + di ∼2.4 Å in Fig. 6[link](b), with the short value corresponding to the H6⋯H22A and H7⋯H17A contacts, with details listed in Table 3[link]. The H⋯C/C⋯H contacts contribute 17.8% and appear as two sharp-symmetric wings at de + di ∼2.7 Å, Fig. 6[link](c). This feature reflects the C—H⋯ π contacts as discussed above. Although H⋯O/O⋯H contacts only contribute 5.2% to the overall Hirshfeld surface, they appear as the shortest contacts at de + di ∼2.1 Å, being 0.6 Å shorter than the sum of their van der Waals radii, Fig. 6[link](d), and reflect the conventional hydrogen bonding leading to the supra­molecular chain. The H⋯N/N⋯H and H⋯S/S⋯H contacts contribute 4.6 and 4.3%, respectively, to the overall Hirshfeld surface. These contacts are reflected as pseudo-mirrored features at de + di ∼3.0 Å in each of Fig. 6[link](e) and (f), with the minimum distance being around the sum of their respective van der Waals radii. The other inter­atomic contacts, i.e. C⋯C and C⋯N/N⋯C, have a negligible effect on the mol­ecular packing and their contributions to the overall Hirshfeld surface are 1.7 and 0.2%, respectively.

[Figure 6]
Figure 6
(a) A comparison of the full two-dimensional fingerprint plot for (I)[link] and those delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯N/N⋯H and (f) H⋯S/S⋯H contacts.

5. Computational chemistry

In the present analysis, the pairwise inter­action energies between the mol­ecules in the crystal of (I)[link] were calculated using the wave function at the B3LYP/DGDZVP level of theory. The total inter­action energies (Etot) as well as individual energy components, namely electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) are collated in Table 4[link]. The most significant stabilization energies in the intra-layer region arise from the amine-N3—H3N⋯O2(meth­oxy) hydrogen bond (Etot = −83.4 kJ mol−1). In addition to the methyl­ene-C18—H18ACg1 contacts, mol­ecules in the intra-layer region are stabilized by a number of H⋯H contacts, notably H7⋯H17A contacts with a separation of 2.32 Å, Table 3[link]. Therefore, the dispersion term, i.e. Edis, makes the major contribution to the overall inter­action energy in the intra-layer region.

Table 4
A summary of inter­action energies (kJ mol−1) calculated for (I)

Contact R (Å) Eele Epol Edis Erep Etot
Intra-layer region            
N3—H3N⋯O2i 8.36 −51.6 −10.0 −77.3 74.2 −83.4
H7⋯H17Aiv +            
H9C⋯H11iv +            
H9C⋯H12iv 7.54 −30.2 −3.3 −88.0 78.5 −62.5
C18—H18ACg1ii+            
H8⋯H21Av 7.93 −19.5 −2.6 −49.7 43.0 −39.2
H16A⋯H18Bvi +            
H16B⋯H18Avi 10.52 −4.3 −0.1 −24.5 18.6 −14.5
             
Inter-layer region            
C22—H22BCg1iii 11.00 −6.8 −1.3 −32.0 16.7 −25.7
H9A⋯H22Bvii+            
H9A⋯H23Avii 11.46 −2.9 −0.7 −18.7 12.0 −12.6
H14⋯H15viii 15.83 −6.7 −0.7 −14.1 18.3 −8.6
H6⋯H22Aix+            
H7⋯H23Bix 12.63 −1.5 −0.4 −11.6 6.0 −8.3
H9A⋯H19Cx 11.27 −1.3 −0.2 −6.4 3.1 −5.2
H12⋯H23Axi 14.28 −2.2 −0.1 −7.2 6.1 −4.9
Symmetry operations: (i) −x + [{1\over 2}], y + [{1\over 2}], −z + [{1\over 2}]; (ii) x − [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (iii) x + [{1\over 2}], −y + [{3\over 2}], z − [{1\over 2}]; (iv) −x + 1, −y + 1, −z + 1; (v) x + [{1\over 2}], −y + [{3\over 2}], z + [{1\over 2}]; (vi) −x, −y + 1, −z; (vii) −x + 1, −y + 1, −z; (viii) −x, −y + 2, −z + 1; (ix) −x + [{3\over 2}], y − [{1\over 2}], −z + [{1\over 2}]; (x) x + 1, y, z; (xi) x, y, z + 1.

The greatest stabilization energies in the inter-layer region relate to the weak methyl­ene-C22—H22BCg1 contact (Etot = −25.7 kJ mol−1) with the remaining inter­molecular contacts between mol­ecules being stabilizing H⋯H contacts. The nature of these contacts leads to the dominance of the Edis component in the mol­ecular packing, Table 4[link]. This observation is also highlighted in the energy framework diagrams of Fig. 7[link], where the magnitudes of inter­molecular energies are represented graphically in the form of cylinders; the wider the cylinder, the greater the energy. The total Eele and Edis components of all pairwise inter­actions sum to −127.0 and −329.5 kJ mol−1, respectively.

[Figure 7]
Figure 7
Perspective views of the energy frameworks calculated for (I)[link] showing (a) electrostatic potential force, (b) dispersion force and (c) total energy, each plotted down the b axis. The radii of the cylinders are proportional to the relative magnitudes of the corresponding energies and were adjusted to the same scale factor of 55 with a cut-off value of 5 kJ mol−1.

6. Database survey

The crystal structure determination of (I)[link] represents the fourth example of a diorganotin derivative containing the same Schiff base ligand, i.e. RR'Sn(L). Each of the literature structures were reported during 2020, i.e. R = R′ = Me (II) and Ph (III) (Cambridge Structural Database refcodes MUWQED and MUWQAZ, respectively; Yusof et al., 2020[Yusof, E. N. M., Page, A. J., Sakoff, J. A., Simone, M. I., Veerakumarasivam, A., Tiekink, E. R. T. & Ravoof, T. B. S. A. (2020). Polyhedron, 189 article No. 114729.]) and R = n-Bu and R′ = CH2SiMe3 (IV; CUJHIB; Xie et al., 2020[Xie, B., Yao, H., Liao, Q.-H., Deng, R.-H., Lin, S. & Yan, Z.-H. (2020). Chin. J. Inorg. Chem. 36, 819-826.]). It is noted that the R = R′ = Ph derivative (III) co-crystallized with one-half mole equivalent of 3-meth­oxy­salicyl­aldehyde azine (Yusof et al., 2020[Yusof, E. N. M., Page, A. J., Sakoff, J. A., Simone, M. I., Veerakumarasivam, A., Tiekink, E. R. T. & Ravoof, T. B. S. A. (2020). Polyhedron, 189 article No. 114729.]). Also, two positions were modelled for the tin atom in (IV), with the major component having a site occupancy factor = 0.523 and is designated hereafter as (IVa). Selected geometric parameters for the four structures are collated in Table 5[link] and an overlay diagram for (I)–(IVa) is shown in Fig. 8[link]. None of the mol­ecules has crystallographic symmetry and all present distorted C2NOS coordination geometries. With the exception of (II), the mol­ecules have inter­mediate coordination geometries with τ (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) ranging from 0.52 in (I)[link] to 0.60 in each of (III) and (IVa). The standout mol­ecule is the di­methyl­tin derivative (II) which, with τ = 0.00, is well described as having a square-pyramidal geometry. The S1—Sn—O1 angles span a range greater than 15°, i.e. 145.67 (9) in (II) to 161.81 (7)° in (III).

Table 5
A comparison of key geometric parameters (Å, °) in structures related to (I)[link]

Compound R, R Sn—S Sn—O1 Sn—N2 S1—Sn—O1 C—Sn—C τ Ref.
(I) nBu, nBu 2.5598 (7) 2.1089 (16) 2.212 (2) 157.56 (5) 124.08 (11) 0.52 This work
(II) Me, Me 2.4982 (12) 2.085 (3) 2.257 (3) 145.67 (9) 114.82 (18) 0.00 Yusof et al. (2020[Yusof, E. N. M., Page, A. J., Sakoff, J. A., Simone, M. I., Veerakumarasivam, A., Tiekink, E. R. T. & Ravoof, T. B. S. A. (2020). Polyhedron, 189 article No. 114729.])
(III) Ph, Ph 2.5475 (8) 2.0853 (19) 2.176 (3) 161.81 (7) 121.46 (12) 0.60 Yusof et al. (2020[Yusof, E. N. M., Page, A. J., Sakoff, J. A., Simone, M. I., Veerakumarasivam, A., Tiekink, E. R. T. & Ravoof, T. B. S. A. (2020). Polyhedron, 189 article No. 114729.])
(IV)a nBu, CH2SiM3 2.485 (5) 2.152 (6) 2.184 (6) 159.4 (2) 121.6 (4) 0.60 Xie et al. (2020[Xie, B., Yao, H., Liao, Q.-H., Deng, R.-H., Lin, S. & Yan, Z.-H. (2020). Chin. J. Inorg. Chem. 36, 819-826.])
(IV)b   2.587 (4) 2.063 (6) 2.218 (7) 157.6 (3) 123.8 (4) 0.56  
Notes: (a) major component of the disorder with a site occupancy = 0.527 and (b) minor component with occupancy 0.473.
[Figure 8]
Figure 8
An overlay diagram of (I)[link] red image, (II) green, (III) blue and (IVa) pink. The mol­ecules have been overlapped so that the Sn, S1 and N2 atoms of each mol­ecule are coincident.

The hydrogen-bonding patterns formed in the crystals of (I)–(IV) are also distinct. Supra­molecular helical chains, sustained by amine-H⋯O(meth­oxy) hydrogen bonds are found in each of (I)[link] and (IV). However, in (II), the inter­actions leading to a helical chain are of the type amine-H⋯O(phenoxide). A further distinction is noted in the crystal of (III) in that dimeric aggregates are formed, featuring amine-N—H⋯S(thiol­ate) hydrogen bonding.

7. Synthesis and crystallization

The synthesis of the Schiff base precursor, [2-(2-hy­droxy-3-meth­oxy­benzyl­idene)-N-phenyl­hydrazine carbo­thio­amide] was according to the procedure described in the literature (Đilović et al., 2008[Đilović, I., Rubčić, M., Vrdoljak, V., Pavelić, S. K., Kralj, M., Piantanida, I. & Cindrić, M. (2008). Bioorg. Med. Chem. 16, 5189-5198.]; Kalaivani et al., 2012[Kalaivani, P., Prabhakaran, R., Ramachandran, E., Dallemer, F., Paramaguru, G., Renganathan, R., Poornima, P., Vijaya Padma, V. & Natarajan, K. (2012). Dalton Trans. 41, 2486-2499.]) with some modifications (Yusof et al., 2020[Yusof, E. N. M., Page, A. J., Sakoff, J. A., Simone, M. I., Veerakumarasivam, A., Tiekink, E. R. T. & Ravoof, T. B. S. A. (2020). Polyhedron, 189 article No. 114729.]). 4-Phenyl­thio­semicarbazide (1.67 g, 10 mmol) was dissolved in methanol (40 ml) with stirring and heating (313 K) over a period of 30 min. 2-Hy­droxy-3-meth­oxy­benzaldehyde (1.52 g, 10 mmol) in methanol (10 ml) was added to the thio­semicarbazide solution and stirred at room temperature for 4 h. Upon cooling, a crystalline product began to form which was filtered, washed with cold methanol and dried in a desiccator over anhydrous silica gel.

Synthesis of (I)[link]: The Schiff base (0.60 g, 2 mmol) was dissolved in a mixture of ethanol:DMF (7:3; 100 ml). Then, Et3N (0.28 ml, 2 mmol) was added dropwise followed by reflux for 2 h. Then, di­butyl­tin(IV) dichloride (0.61 g, 2 mmol) was added to the mixture followed by reflux for 6 h. The mixture was filtered while hot to remove the [Et3NH]Cl salt that formed and the filtrate was kept at room temperature until bright-yellow crystals appeared. Yield 62%, m.p. 384–385 K. FT–IR (ATR, cm−1): 3322 ν(N—H), 1582 ν(C=N), 1076 ν(N—N), 853 ν(C=S). 1H NMR (CDCl3, 700 MHz) δ: 8.63 (s, 1H, NH), 7.54 (s, 1H, N—CH), 6.65–7.32 (m, 8H, Ar—H), 3.85 (s, 3H, O—CH3), n-Bu: 1.68 [t, 4H, Hα], 1.61 [m, 4H, Hβ], 1.34 [m, 4H, Hγ], 0.87 [t, 6H, Hδ]. 13C NMR (CDCl3, 175 MHz) δ: 162.5 (S2C), 159.0 (C=N), 151.3, 139.6, 128.9, 125.4, 123.1, 120.4, 120.0, 116.9, 116.3, 115.7 (Ar—C), 56.3 (O—CH3), n-Bu: 27.5 (Cα), 26.5 (Cβ), 26.0 (Cγ), 13.6 (Cδ).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 6[link]. The carbon-bound H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The N-bound H atom was located in a difference-Fourier map, but was refined with a N—H = 0.88±0.01 Å distance restraint, and with Uiso(H) set to 1.2Ueq(N). The maximum and minimum residual electron density peaks of 1.63 and 0.52 e Å−3, respectively, were located 0.97 and 0.53 Å from the Sn atom.

Table 6
Experimental details

Crystal data
Chemical formula [Sn(C4H9)2(C15H13N3O2S)]
Mr 532.26
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 11.2720 (3), 16.1954 (3), 14.2778 (3)
β (°) 111.180 (3)
V3) 2430.41 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.16
Crystal size (mm) 0.15 × 0.10 × 0.06
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Eos, Gemini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.850, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 26999, 5967, 4699
Rint 0.051
(sin θ/λ)max−1) 0.689
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.076, 1.04
No. of reflections 5967
No. of parameters 277
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.63, −0.52
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Di-n-butyl[N'-(3-methoxy-2-oxidobenzylidene)-N-phenylcarbamohydrazonothioato]tin(IV) top
Crystal data top
[Sn(C4H9)2(C15H13N3O2S)]F(000) = 1088
Mr = 532.26Dx = 1.455 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.2720 (3) ÅCell parameters from 9470 reflections
b = 16.1954 (3) Åθ = 3.8–28.9°
c = 14.2778 (3) ŵ = 1.16 mm1
β = 111.180 (3)°T = 150 K
V = 2430.41 (10) Å3Prism, yellow
Z = 40.15 × 0.10 × 0.06 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur, Eos, Gemini
diffractometer
5967 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source4699 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 16.1952 pixels mm-1θmax = 29.3°, θmin = 3.8°
ω scansh = 1514
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 2122
Tmin = 0.850, Tmax = 1.000l = 1918
26999 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: mixed
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0297P)2 + 1.1545P]
where P = (Fo2 + 2Fc2)/3
5967 reflections(Δ/σ)max = 0.001
277 parametersΔρmax = 1.63 e Å3
1 restraintΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.30782 (2)0.63922 (2)0.20843 (2)0.02658 (7)
S10.17922 (7)0.76839 (5)0.21316 (5)0.03737 (18)
O10.41536 (16)0.53123 (10)0.26242 (13)0.0299 (4)
O20.55992 (16)0.40842 (10)0.25269 (13)0.0279 (4)
N10.3367 (2)0.74015 (12)0.40760 (15)0.0271 (5)
N20.38235 (19)0.67314 (12)0.36939 (15)0.0245 (5)
N30.1999 (2)0.85096 (13)0.37649 (16)0.0278 (5)
H3N0.142 (2)0.8768 (15)0.3282 (15)0.033*
C10.2476 (2)0.78406 (15)0.34279 (18)0.0267 (6)
C20.4807 (2)0.63876 (15)0.43827 (19)0.0266 (5)
H20.5072010.6631950.5030890.032*
C30.5533 (2)0.56903 (15)0.42817 (18)0.0253 (5)
C40.5195 (2)0.51976 (14)0.34156 (18)0.0231 (5)
C50.5993 (2)0.45193 (15)0.34154 (18)0.0240 (5)
C60.7057 (2)0.43422 (16)0.4235 (2)0.0315 (6)
H60.7584650.3889360.4217490.038*
C70.7367 (3)0.48344 (17)0.5104 (2)0.0373 (7)
H70.8094900.4705580.5677690.045*
C80.6629 (2)0.54928 (16)0.51260 (19)0.0320 (6)
H80.6851300.5823700.5713840.038*
C90.6339 (3)0.33893 (18)0.2478 (2)0.0414 (7)
H9A0.7202140.3569150.2562990.062*
H9B0.5950200.3118700.1823950.062*
H9C0.6376870.2999620.3013090.062*
C100.2229 (2)0.87931 (15)0.47493 (19)0.0246 (5)
C110.3071 (3)0.84289 (16)0.5628 (2)0.0321 (6)
H110.3564860.7963500.5591000.039*
C120.3174 (3)0.87544 (17)0.6549 (2)0.0355 (7)
H120.3743280.8504890.7143800.043*
C130.2475 (3)0.94306 (17)0.6629 (2)0.0353 (6)
H130.2544240.9637020.7269720.042*
C140.1671 (3)0.98029 (17)0.5762 (2)0.0331 (6)
H140.1199451.0278090.5805930.040*
C150.1547 (2)0.94894 (16)0.4831 (2)0.0286 (6)
H150.0990620.9751530.4240640.034*
C160.1475 (2)0.56202 (17)0.13464 (19)0.0320 (6)
H16A0.0733730.5977050.0995690.038*
H16B0.1656150.5291570.0828910.038*
C170.1111 (3)0.50319 (18)0.2027 (2)0.0368 (7)
H17A0.0788650.5353720.2474680.044*
H17B0.1877260.4726970.2453670.044*
C180.0095 (3)0.44156 (18)0.1427 (2)0.0408 (7)
H18A0.0673970.4722730.1010100.049*
H18B0.0413120.4104710.0969020.049*
C190.0267 (3)0.3812 (2)0.2085 (3)0.0630 (11)
H19A0.0468230.3464520.2447210.095*
H19B0.0968540.3463340.1666410.095*
H19C0.0533860.4116100.2568660.095*
C200.4355 (3)0.68370 (17)0.1396 (2)0.0348 (6)
H20A0.5101090.7083540.1927190.042*
H20B0.4665110.6356930.1120940.042*
C210.3833 (3)0.74679 (18)0.0563 (2)0.0385 (7)
H21A0.3454170.7931500.0810610.046*
H21B0.3149020.7209230.0007290.046*
C220.4850 (3)0.7805 (2)0.0194 (2)0.0487 (8)
H22A0.5550870.8040350.0773080.058*
H22B0.5204270.7342510.0075210.058*
C230.4367 (5)0.8464 (2)0.0612 (3)0.0684 (11)
H23A0.3607250.8261000.1153080.103*
H23B0.5029350.8593070.0883380.103*
H23C0.4152270.8963850.0319580.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.02994 (10)0.02799 (11)0.01860 (10)0.00565 (7)0.00492 (7)0.00006 (7)
S10.0463 (4)0.0399 (4)0.0204 (3)0.0194 (3)0.0054 (3)0.0010 (3)
O10.0297 (9)0.0269 (9)0.0246 (9)0.0067 (7)0.0003 (7)0.0032 (7)
O20.0323 (9)0.0233 (9)0.0253 (9)0.0031 (7)0.0069 (8)0.0037 (7)
N10.0342 (12)0.0242 (11)0.0205 (11)0.0081 (9)0.0068 (9)0.0008 (9)
N20.0308 (11)0.0213 (10)0.0201 (11)0.0058 (9)0.0076 (9)0.0001 (8)
N30.0339 (12)0.0270 (12)0.0213 (11)0.0122 (9)0.0086 (9)0.0040 (9)
C10.0315 (13)0.0262 (13)0.0229 (13)0.0041 (11)0.0104 (11)0.0024 (10)
C20.0313 (13)0.0267 (13)0.0191 (12)0.0018 (11)0.0059 (10)0.0007 (10)
C30.0277 (12)0.0239 (13)0.0221 (13)0.0028 (10)0.0065 (10)0.0027 (10)
C40.0235 (12)0.0219 (12)0.0223 (13)0.0006 (10)0.0062 (10)0.0014 (10)
C50.0275 (12)0.0211 (12)0.0225 (13)0.0022 (10)0.0079 (10)0.0009 (10)
C60.0323 (14)0.0263 (14)0.0337 (15)0.0081 (11)0.0093 (12)0.0002 (11)
C70.0353 (15)0.0399 (16)0.0259 (15)0.0094 (12)0.0019 (12)0.0005 (12)
C80.0353 (14)0.0299 (14)0.0224 (13)0.0051 (11)0.0004 (11)0.0045 (11)
C90.0522 (18)0.0321 (15)0.0359 (17)0.0140 (13)0.0109 (14)0.0065 (13)
C100.0283 (12)0.0249 (13)0.0225 (13)0.0001 (10)0.0114 (10)0.0011 (10)
C110.0428 (16)0.0264 (14)0.0266 (14)0.0062 (11)0.0119 (12)0.0015 (11)
C120.0498 (17)0.0332 (15)0.0219 (14)0.0005 (13)0.0108 (12)0.0007 (11)
C130.0468 (17)0.0341 (15)0.0292 (15)0.0028 (13)0.0187 (13)0.0071 (12)
C140.0334 (14)0.0320 (14)0.0391 (16)0.0016 (12)0.0193 (13)0.0049 (12)
C150.0268 (13)0.0303 (14)0.0295 (14)0.0034 (11)0.0111 (11)0.0024 (11)
C160.0296 (13)0.0392 (15)0.0215 (13)0.0030 (12)0.0024 (11)0.0001 (12)
C170.0366 (15)0.0454 (17)0.0230 (14)0.0027 (13)0.0041 (11)0.0043 (12)
C180.0341 (15)0.0447 (17)0.0377 (17)0.0015 (13)0.0059 (13)0.0018 (14)
C190.048 (2)0.059 (2)0.071 (3)0.0058 (17)0.0099 (19)0.0203 (19)
C200.0392 (15)0.0353 (15)0.0329 (16)0.0039 (12)0.0168 (13)0.0008 (12)
C210.0435 (16)0.0439 (17)0.0300 (15)0.0005 (13)0.0155 (13)0.0009 (13)
C220.059 (2)0.056 (2)0.0358 (17)0.0094 (17)0.0237 (16)0.0045 (15)
C230.106 (3)0.060 (2)0.055 (2)0.008 (2)0.048 (2)0.0049 (19)
Geometric parameters (Å, º) top
Sn—S12.5598 (7)C11—H110.9500
Sn—O12.1089 (16)C12—C131.378 (4)
Sn—N22.212 (2)C12—H120.9500
Sn—C162.136 (3)C13—C141.381 (4)
Sn—C202.140 (3)C13—H130.9500
S1—C11.747 (3)C14—C151.382 (4)
O1—C41.316 (3)C14—H140.9500
O2—C51.377 (3)C15—H150.9500
O2—C91.417 (3)C16—C171.519 (4)
N1—C11.304 (3)C16—H16A0.9900
N1—N21.394 (3)C16—H16B0.9900
N2—C21.311 (3)C17—C181.528 (4)
N3—C11.371 (3)C17—H17A0.9900
N3—C101.411 (3)C17—H17B0.9900
N3—H3N0.866 (10)C18—C191.510 (4)
C2—C31.432 (3)C18—H18A0.9900
C2—H20.9500C18—H18B0.9900
C3—C41.404 (3)C19—H19A0.9800
C3—C81.416 (3)C19—H19B0.9800
C4—C51.420 (3)C19—H19C0.9800
C5—C61.370 (3)C20—C211.516 (4)
C6—C71.408 (4)C20—H20A0.9900
C6—H60.9500C20—H20B0.9900
C7—C81.359 (4)C21—C221.525 (4)
C7—H70.9500C21—H21A0.9900
C8—H80.9500C21—H21B0.9900
C9—H9A0.9800C22—C231.519 (5)
C9—H9B0.9800C22—H22A0.9900
C9—H9C0.9800C22—H22B0.9900
C10—C151.393 (3)C23—H23A0.9800
C10—C111.400 (4)C23—H23B0.9800
C11—C121.382 (4)C23—H23C0.9800
S1—Sn—O1157.56 (5)C11—C12—H12119.1
S1—Sn—N277.04 (5)C12—C13—C14118.8 (3)
S1—Sn—C1696.03 (8)C12—C13—H13120.6
S1—Sn—C20102.61 (8)C14—C13—H13120.6
O1—Sn—N282.75 (7)C13—C14—C15120.5 (3)
O1—Sn—C1688.11 (8)C13—C14—H14119.8
O1—Sn—C2093.08 (9)C15—C14—H14119.8
N2—Sn—C16126.42 (9)C14—C15—C10120.7 (2)
N2—Sn—C20109.11 (10)C14—C15—H15119.6
C16—Sn—C20124.08 (11)C10—C15—H15119.6
C1—S1—Sn96.29 (8)C17—C16—Sn115.28 (17)
C4—O1—Sn130.37 (15)C17—C16—H16A108.5
C5—O2—C9116.9 (2)Sn—C16—H16A108.5
C1—N1—N2116.5 (2)C17—C16—H16B108.5
C2—N2—N1111.6 (2)Sn—C16—H16B108.5
C2—N2—Sn125.07 (17)H16A—C16—H16B107.5
N1—N2—Sn123.00 (14)C16—C17—C18111.8 (2)
C1—N3—C10130.7 (2)C16—C17—H17A109.2
C1—N3—H3N112.2 (19)C18—C17—H17A109.2
C10—N3—H3N116.8 (19)C16—C17—H17B109.2
N1—C1—N3118.8 (2)C18—C17—H17B109.2
N1—C1—S1127.2 (2)H17A—C17—H17B107.9
N3—C1—S1114.06 (17)C19—C18—C17113.0 (3)
N2—C2—C3128.2 (2)C19—C18—H18A109.0
N2—C2—H2115.9C17—C18—H18A109.0
C3—C2—H2115.9C19—C18—H18B109.0
C4—C3—C8119.8 (2)C17—C18—H18B109.0
C4—C3—C2123.6 (2)H18A—C18—H18B107.8
C8—C3—C2116.5 (2)C18—C19—H19A109.5
O1—C4—C3123.4 (2)C18—C19—H19B109.5
O1—C4—C5118.6 (2)H19A—C19—H19B109.5
C3—C4—C5118.0 (2)C18—C19—H19C109.5
C6—C5—O2124.8 (2)H19A—C19—H19C109.5
C6—C5—C4121.4 (2)H19B—C19—H19C109.5
O2—C5—C4113.7 (2)C21—C20—Sn116.88 (19)
C5—C6—C7119.7 (2)C21—C20—H20A108.1
C5—C6—H6120.1Sn—C20—H20A108.1
C7—C6—H6120.1C21—C20—H20B108.1
C8—C7—C6120.4 (2)Sn—C20—H20B108.1
C8—C7—H7119.8H20A—C20—H20B107.3
C6—C7—H7119.8C20—C21—C22112.7 (3)
C7—C8—C3120.7 (2)C20—C21—H21A109.1
C7—C8—H8119.7C22—C21—H21A109.1
C3—C8—H8119.7C20—C21—H21B109.1
O2—C9—H9A109.5C22—C21—H21B109.1
O2—C9—H9B109.5H21A—C21—H21B107.8
H9A—C9—H9B109.5C23—C22—C21113.9 (3)
O2—C9—H9C109.5C23—C22—H22A108.8
H9A—C9—H9C109.5C21—C22—H22A108.8
H9B—C9—H9C109.5C23—C22—H22B108.8
C15—C10—C11118.8 (2)C21—C22—H22B108.8
C15—C10—N3116.0 (2)H22A—C22—H22B107.7
C11—C10—N3125.2 (2)C22—C23—H23A109.5
C12—C11—C10119.2 (3)C22—C23—H23B109.5
C12—C11—H11120.4H23A—C23—H23B109.5
C10—C11—H11120.4C22—C23—H23C109.5
C13—C12—C11121.9 (3)H23A—C23—H23C109.5
C13—C12—H12119.1H23B—C23—H23C109.5
C1—N1—N2—C2173.0 (2)O1—C4—C5—O24.0 (3)
C1—N1—N2—Sn1.2 (3)C3—C4—C5—O2178.7 (2)
N2—N1—C1—N3179.6 (2)O2—C5—C6—C7179.8 (2)
N2—N1—C1—S10.2 (4)C4—C5—C6—C70.7 (4)
C10—N3—C1—N16.2 (4)C5—C6—C7—C81.3 (4)
C10—N3—C1—S1174.3 (2)C6—C7—C8—C30.6 (5)
Sn—S1—C1—N11.1 (3)C4—C3—C8—C70.7 (4)
Sn—S1—C1—N3179.43 (18)C2—C3—C8—C7179.1 (3)
N1—N2—C2—C3180.0 (2)C1—N3—C10—C15177.9 (3)
Sn—N2—C2—C36.0 (4)C1—N3—C10—C111.8 (4)
N2—C2—C3—C47.4 (4)C15—C10—C11—C121.8 (4)
N2—C2—C3—C8174.2 (3)N3—C10—C11—C12177.9 (3)
Sn—O1—C4—C326.6 (4)C10—C11—C12—C130.2 (4)
Sn—O1—C4—C5156.24 (18)C11—C12—C13—C141.5 (4)
C8—C3—C4—O1175.9 (2)C12—C13—C14—C151.6 (4)
C2—C3—C4—O12.4 (4)C13—C14—C15—C100.0 (4)
C8—C3—C4—C51.2 (4)C11—C10—C15—C141.7 (4)
C2—C3—C4—C5179.5 (2)N3—C10—C15—C14178.0 (2)
C9—O2—C5—C61.9 (4)Sn—C16—C17—C18171.27 (19)
C9—O2—C5—C4179.0 (2)C16—C17—C18—C19178.9 (3)
O1—C4—C5—C6176.8 (2)Sn—C20—C21—C22174.5 (2)
C3—C4—C5—C60.5 (4)C20—C21—C22—C23177.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the (C10–C15) ring.
D—H···AD—HH···AD···AD—H···A
N3—H3N···O2i0.87 (2)2.21 (2)2.990 (3)150 (2)
C18—H18A···Cg1ii0.992.813.730 (3)154
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+3/2, z1/2.
A summary of short interatomic contacts (Å) for (I)a top
ContactDistanceSymmetry operation
N3—H3N···O22.09-x + 1/2, y + 1/2, -z + 1/2
C18—H18A···Cg12.81x - 1/2, -y - 3/2, z - 1/2
C22—H22B···Cg13.28x + 1/2, -y + 3/2, z - 1/2
H6···H22A2.32-x + 3/2, y - 1/2, -z + 1/2
H7···H17A2.32-x + 1, -y + 1, -z + 1
Note: (a) The interatomic distances are calculated in Crystal Explorer 17 (Turner et al., 2017) with the X—H bond lengths adjusted to their neutron values.
A summary of interaction energies (kJ mol-1) calculated for (I) top
ContactR (Å)EeleEpolEdisErepEtot
Intra-layer region
N3—H3N···O2i8.36-51.6-10.0-77.374.2-83.4
H7···H17Aiv +
H9C···H11iv +
H9C···H12iv7.54-30.2-3.3-88.078.5-62.5
C18—H18A···Cg1ii+
H8···H21Av7.93-19.5-2.6-49.743.0-39.2
H16A···H18Bvi +
H16B···H18Avi10.52-4.3-0.1-24.518.6-14.5
Inter-layer region
C22—H22B···Cg1iii11.00-6.8-1.3-32.016.7-25.7
H9A···H22Bvii+
H9A···H23Avii11.46-2.9-0.7-18.712.0-12.6
H14···H15viii15.83-6.7-0.7-14.118.3-8.6
H6···H22Aix+
H7···H23Bix12.63-1.5-0.4-11.66.0-8.3
H9A···H19Cx11.27-1.3-0.2-6.43.1-5.2
H12···H23Axi14.28-2.2-0.1-7.26.1-4.9
Symmetry operations: (i) -x + 1/2, y + 1/2, -z + 1/2; (ii) x - 1/2, -y + 3/2, z - 1/2; (iii) x + 1/2, -y + 3/2, z - 1/2; (iv) -x + 1, -y + 1, -z + 1; (v) x + 1/2, -y + 3/2, z + 1/2; (vi) -x, -y + 1, -z; (vii) -x + 1, -y + 1, -z; (viii) -x, -y + 2, -z + 1; (ix) -x + 3/2, y - 1/2, -z + 1/2; (x) x + 1, y, z; (xi) x, y, z + 1.
A comparison of key geometric parameters (Å, °) in structures related to (I). top
CompoundR, R'Sn—SSn—O1Sn—N2S1—Sn—O1C—Sn—CτRef.
(I)nBu, nBu2.5598 (7)2.1089 (16)2.212 (2)157.56 (5)124.08 (11)0.52This work
(II)Me, Me2.4982 (12)2.085 (3)2.257 (3)145.67 (9)114.82 (18)0.00Yusof et al. (2020)
(III)Ph, Ph2.5475 (8)2.0853 (19)2.176 (3)161.81 (7)121.46 (12)0.60Yusof et al. (2020)
(IV)anBu, CH2SiM32.485 (5)2.152 (6)2.184 (6)159.4 (2)121.6 (4)0.60Xie et al. (2020)
(IV)b2.587 (4)2.063 (6)2.218 (7)157.6 (3)123.8 (4)0.56
Notes: (a) major component of the disorder with a site occupancy = 0.527 and (b) minor component with occupancy 0.473.
 

Footnotes

Additional correspondence author, email: thahira301@yahoo.com.

Acknowledgements

The authors thank the School of Distance Education, Universiti Sains Malaysia and the Department of Chemistry, Universiti Putra Malaysia for providing research facilities and technical support.

Funding information

This research was funded by Universiti Putra Malaysia under the Putra Group Initiative (IPB No. 9581001). Crystallographic research at Sunway University is supported by Sunway University Sdn Bhd (Grant No. GRTIN-IRG-01–2021).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationĐilović, I., Rubčić, M., Vrdoljak, V., Pavelić, S. K., Kralj, M., Piantanida, I. & Cindrić, M. (2008). Bioorg. Med. Chem. 16, 5189–5198.  Web of Science PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHaque, R. A., Salam, M. A. & Arafath, M. A. (2015). J. Coord. Chem. 68, 2953–2967.  Web of Science CSD CrossRef CAS Google Scholar
First citationHu, W., Zhou, W., Xia, C. & Wen, X. (2006). Bioorg. Med. Chem. Lett. 16, 2213–2218.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKalaivani, P., Prabhakaran, R., Ramachandran, E., Dallemer, F., Paramaguru, G., Renganathan, R., Poornima, P., Vijaya Padma, V. & Natarajan, K. (2012). Dalton Trans. 41, 2486–2499.  CSD CrossRef CAS PubMed Google Scholar
First citationKhan, S. A. & Yusuf, M. (2009). Eur. J. Med. Chem. 44, 2270–2274.  CrossRef PubMed CAS Google Scholar
First citationKhandani, M., Sedaghat, T., Erfani, N., Haghshenas, M. R. & Khavasi, H. R. (2013). J. Mol. Struct. 1037, 136–143.  CSD CrossRef CAS Google Scholar
First citationKovala-Demertzi, D., Domopoulou, A., Demertzis, M. A., Valle, G. & Papageorgiou, A. (1997). J. Inorg. Biochem. 68, 147–155.  CAS PubMed Google Scholar
First citationLi, M. X., Zhang, D., Zhang, L. Z., Niu, J. Y. & Ji, B. S. (2011). J. Organomet. Chem. 696, 852–858.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, K., Yan, H., Chang, G., Li, Z., Niu, M. & Hong, M. (2017). Inorg. Chim. Acta, 464, 137–146.  CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPalanimuthu, D., Poon, R., Sahni, S., Anjum, R., Hibbs, D., Lin, H. Y., Bernhardt, P. V., Kalinowski, D. S. & Richardson, D. R. (2017). Eur. J. Med. Chem. 139, 612–632.  CrossRef CAS PubMed Google Scholar
First citationParrilha, G. L., da Silva, J. G., Gouveia, L. F., Gasparoto, A. K., Dias, R. P., Rocha, W. R., Santos, D. A., Speziali, N. L. & Beraldo, H. (2011). Eur. J. Med. Chem. 46, 1473–1482.  CSD CrossRef CAS PubMed Google Scholar
First citationPavan, F. R., Maia, P. I. da S., Leite, S. R. A., Deflon, V. M., Batista, A. A., Sato, D. N., Franzblau, S. G. & Leite, C. Q. F. (2010). Eur. J. Med. Chem. 45, 1898–1905.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationRubčić, M., Đilović, I., Cindrić, M. & Matković-Čalogović, D. (2008). Acta Cryst. C64, o570–o573.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSalam, M. A., Hussein, M. A., Ramli, I. & Islam, S. (2016). J. Organomet. Chem. 813, 71–77.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, H. L., Singh, J. B. & Bhanuka, S. (2016). Res. Chem. Intermed. 42, 997–1015.  CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., Mckinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiecek, J., Dokorou, V., Ciunik, Z. & Kovala-Demertzi, D. (2009). Polyhedron, 28, 3298–3304.  CSD CrossRef CAS Google Scholar
First citationXie, B., Yao, H., Liao, Q.-H., Deng, R.-H., Lin, S. & Yan, Z.-H. (2020). Chin. J. Inorg. Chem. 36, 819–826.  Google Scholar
First citationYusof, E. N. M., Page, A. J., Sakoff, J. A., Simone, M. I., Veerakumarasivam, A., Tiekink, E. R. T. & Ravoof, T. B. S. A. (2020). Polyhedron, 189 article No. 114729.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds