research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A redetermination of the structure and Hirshfeld surface analysis of poly[di­aquadi-μ-hydroxido-tetra­kis­(μ-nicotinato N-oxide)tricopper(II)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 9177948974, Mashhad, Iran, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: mirzaeesh@um.ac.ir

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 20 January 2021; accepted 19 February 2021; online 26 February 2021)

The product obtained from the reaction of pyridine-2,3-di­carb­oxy­lic acid and hydrated copper(II) chloride in hot aqueous NaOH solution was determined by low temperature X-ray diffraction to be [Cu3(C6H4NO3)4(OH)2(H2O)2]n or [Cu3(μ-OH)2(μ-nicNO)4(H2O)2]n (nicNO is pyridine-3-carboxyl­ate N-oxide), a structure obtained from room temperature data and reported previously. The present determination is improved in quality and treatment of the H atoms. A Hirshfeld surface analysis of the inter­molecular inter­actions is presented.

1. Chemical context

N-oxidation of the pyridine ring can significantly increase its electron-donating ability because the charge-polarized pyridine-N-oxide moiety can donate three pairs of electrons while a neutral nitro­gen atom in pyridine only gives one pair of electrons. Therefore, it is expected that N-oxidation can increase the coordination capacities and flexibility of the ligand. Metal complexes of pyridine-N-oxide ligands have been found to be particularly useful in the selective adsorption and separation of gases (CO2 over CH4) and as anti-HIV and luminescent agents (Noro et al., 2015[Noro, S., Mizutani, J., Hijikata, Y., Matsuda, R., Sato, H., Kitagawa, S., Sugimoto, K., Inubushi, Y., Kubo, K. & Nakamura, T. (2015). Nat. Commun. 6, 5851.]; Xiong et al., 2014[Xiong, Y., Fan, Y.-Z., Yang, R., Chen, S., Pan, M., Jiang, J.-J. & Su, C.-Y. (2014). Chem. Commun. 50, 14631-14634.]; Balzarini et al., 2005[Balzarini, J., Stevens, M., De Clercq, E., Schols, D. & Pannecouque, C. (2005). J. Antimicrob. Chemother. 55, 135-138.]; Lis et al., 2002[Lis, S., Hnatejko, Z., Barczynski, P. & Elbanowski, M. (2002). J. Alloys Compd. 344, 70-74.]). These features have motivated our inter­est in the chemistry of carb­oxy­lic acid derivatives of pyridine-N-oxide for investigating the influence of the N-oxide moiety on the coordination mode(s) in the crystal lattice (Mirzaei et al., 2020[Mirzaei, M., Sadeghi, F., Molčanov, K., Zaręba, J. K., Gomila, R. M. & Frontera, A. (2020). Cryst. Growth Des. 20, 1738-1751.]; Hosseini-Hashemi et al., 2018[Hosseini Hashemi, Z., Mirzaei, M., Eshtiagh-Hosseini, H., Fereshteh, S., Shamsipur, M., Ardalani, M. & Blake, A. J. (2018). J. Coord. Chem. 71, 4058-4071.], 2019[Hosseini-Hashemi, Z., Mirzaei, M., Jafari, A., Hosseinpour, P., Yousefi, M., Frontera, A., Lari Dashtbayaz, M., Shamsipur, M. & Ardalani, M. (2019). RSC Adv. 9, 25382-25404.]; Baza­rgan et al., 2016[Bazargan, M., Mirzaei, M., Eshtiagh-Hosseini, H., Mague, J. T., Bauzá, A. & Frontera, A. (2016). Inorg. Chim. Acta, 449, 44-51.], 2020[Bazargan, M., Mirzaei, M., Aghamohamadi, M., Tahmasebi, M. & Frontera, A. (2020). J. Mol. Struct. 1202, 127243.]; Mirzaei, Eshtiagh-Hosseini, Baza­rgan et al., 2015[Mirzaei, M., Eshtiagh-Hosseini, H., Bazargan, M., Mehrzad, F., Shahbazi, M., Mague, J. T., Bauzá, A. & Frontera, A. (2015). Inorg. Chim. Acta, 438, 135-145.]; Shahbazi et al., 2017[Shahbazi, M., Mehrzad, F., Mirzaei, M., Eshtiagh-Hosseini, H., Mague, J. T., Ardalani, M. & Shamsipur, M. (2017). Inorg. Chim. Acta, 458, 84-96.]; Mirzaei, Eshtiagh-Hosseini, & Baza­rgan, 2015[Mirzaei, M., Eshtiagh-Hosseini, H. & Bazargan, M. (2015). Res. Chem. Intermed. 41, 9785-9803.]). Here, we report the isolation and X-ray crystal structure of the coordination polymer [Cu3(μ-OH)2(H2O)2(μ-nicNO)4]n (1) (nicNO is pyridine-3-carboxyl­ate N-oxide) as the unexpected product from the reaction of pyridine-2,3-di­carb­oxy­lic acid with hydrated CuII chloride. It appears that oxidation and deca­rboxylation of the starting acid occurred during the reaction, as has been seen previously (Hosseini-Hashemi et al., 2018[Hosseini Hashemi, Z., Mirzaei, M., Eshtiagh-Hosseini, H., Fereshteh, S., Shamsipur, M., Ardalani, M. & Blake, A. J. (2018). J. Coord. Chem. 71, 4058-4071.]; Mirzaei, Eshtiagh-Hosseini et al., 2015[Mirzaei, M., Eshtiagh-Hosseini, H., Alipour, M., Bauzá, A., Mague, J. T., Korabik, M. & Frontera, A. (2015). Dalton Trans. 44, 8824-8832.]). During the course of this work, we found two prior reports of this structure [NICTCU (Knuutilla, 1981[Knuutilla, H. (1981). Inorg. Chim. Acta, 50, 221-225.]) and NICTCU01 (Kang et al., 2020[Kang, Y.-F., Wang, Y.-L., Xu, L., Zhang, W.-Q., Cuo, L.-L. & Ma, Y.-M. (2020). J. Solid State Chem. 291, 121260.])], both obtained with room-temperature data. Overall, the present structure is the same as the previous ones, but with some differences in metrical parameters as a result of the lower temperature of the data collection used here, a lower R value [0.0250 for all reflections (3592) vs 0.0416 for 2525 with I > 3σ(I) in NICTCU and 0.0538 for 3349 with I > 2σ(I) in NICTCU01. The present structure has slightly better s.u.'s on all derived parameters than obtained for NICTCU and significantly better ones than those obtained by Kang et al.. One deficiency of the NICTCU structure is the free refinement of hydrogen-atom parameters, a risky procedure with room-temperature data when heavy atoms are present, which led to C—H distances for the aromatic rings varying from 0.97 (2) to 0.84 (3) Å and O—H distances of 0.77 (3) to 0.41 (4) Å, the last three being particularly unrealistic. In addition, there was no absorption correction despite a linear absorption coefficient of 2.422 mm−1. Kang et al. performed an absorption correction and treated hydrogen atoms appropriately, but with an Rint of 0.0780 their data are clearly of poorer quality than in the present case (Rint = 0.0208).

[Scheme 1]

2. Structural commentary

The monomer unit plus one N-oxide atom from the bridging nicotinato-N-oxido ligand on each end copper atom (O3ii and O3iii) is shown in Fig. 1[link]. This moiety is centrosymmetric with Cu2 lying on the crystallographic center of symmetry. The coordination about Cu1 is square pyramidal with the N-oxide atom from the bridging nicotinato-N-oxido ligand (O3ii) in the apical site and the basal sites occupied by the bridging hydroxide (O7—H7) and the water mol­ecule (O8) in trans positions, and a carboxyl­ate oxygen atom from the bridging nicotinato-N-oxido ligand (O1) and the bridging nicotinato-N-oxide ligand (O5i). The Cu1—O distances and bond angles are in line with those typically seen for tetra­gonally elongated, square-pyramidal CuII. Cu2 is coordinated by the bridging hydroxide (O7—H7) and a carboxyl­ate oxygen of the nicotinato-N-oxide ligand (O4) and their symmetry-related counterparts. Although rigorously planar, the coordination about Cu2 shows a rhombic distortion from square geometry due to the difference in the Cu2—O4 [1.9687 (11) Å] and Cu2—O7 [1.9240 (11) Å] bond lengths and the O4—Cu2—O7 angle of 87.69 (5)°. This geometry is quite comparable to those in the previously reported structures (Table 1[link]). One feature noted by Kang et al. (2020[Kang, Y.-F., Wang, Y.-L., Xu, L., Zhang, W.-Q., Cuo, L.-L. & Ma, Y.-M. (2020). J. Solid State Chem. 291, 121260.]) but not by Knuutilla (1981[Knuutilla, H. (1981). Inorg. Chim. Acta, 50, 221-225.]) is a weak contact by the N-oxide oxygen atoms coordinated to Cu1 (O3ii and O3iii) to Cu2 with the Cu2—O3ii distance of 2.6828 (15) Å being considerably longer than the Cu1—O3ii distance [2.4208 (13) Å] but definitely shorter than the sum of the van der Waals radii (2.92 Å), indicating a short contact. The O7—Cu2—O3ii and O7i—Cu2—O3ii angles of 81.66 (5) and 98.34 (5)°, which differ greatly from 90°, suggest the coordination of Cu2 should not be described as an elongated octa­hedron. There are close to 100 structures listed in the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with Cu—O distances of 2.69 Å or greater and we cite three examples close to those observed here: 2.693 (4) Å (Laborda et al., 2004[Laborda, S., Clérac, R., Anson, C. E. & Powell, A. K. (2004). Inorg. Chem. 43, 5931-5943.]), 2.757 (5) Å (Laza­rou et al., 2018[Lazarou, K. N., Savvidou, A., Raptopoulou, C. P. & Psycharis, V. (2018). Polyhedron, 152, 125-137.]) and 2.696 (3) Å (Procházková et al., 2017[Procházková, S., Kubíček, V., Böhmová, Z., Holá, K., Kotek, J. & Hermann, P. (2017). Dalton Trans. 46, 10484-10497.]). In these, the first involves a coordinated water mol­ecule while in the latter two, the distance is to a ligand oxygen atom bridging copper centers and so more comparable to the present work. Where commented on, the long distance is attributed to a Jahn–Teller distortion, but in our case the Cu2—O3ii distance not only is long, but also its direction is tilted away from the Cu2 coordination plane normal by ∼8°. This suggests that O3ii is close to Cu2 for sterical convenience, not due to the formation of a Cu2—O3ii bond. The intra­molecular O7—H7A⋯O2 hydrogen bond (Table 2[link]) belongs to a S11(6) graph set (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

Table 1
Comparison of structures (Å,°)

Metric This work NICTCU NICTCU01
Cu1—O1 1.9542 (12) 1.943 (2) 1.953 (3)
Cu1—O7 1.9003 (12) 1.925 (1) 1.893 (4)
Cu1—O8 1.9539 (12) 1.876 (1) 1.947 (4)
Cu1—O5i 1.9911 (12) 1.979 (2) 1.987 (3)
Cu1—O3ii 2.4208 (13) 2.426 (2) 2.434 (4)
Cu2—O4 1.9687 (11) 1.954 (1) 1.981 (3)
Cu2—O7 1.9240 (11) 1.912 (2) 1.922 (4)
Cu2—O3ii 2.6828 (15)   2.699 (3)
       
O1—Cu1—O5i 158.98 (5) 158.73 (7) 158.83 (16)
O1—Cu1—O7 97.79 (5) 97.55 (6) 97.87 (14)
O1—Cu1—O8 84.60 (5) 84.84 (6) 84.72 (15)
O7—Cu1—O8 176.16 (5) 176.28 (6) 176.18 (14)
O7—Cu1—O5i 92.38 (5) 92.27 (5) 92.13 (14)
O1—Cu1–O3ii 103.19 (5) 103.56 (7) 103.40 (15)
O7—Cu1—O3ii 89.57 (5) 89.84 (6) 89.24 (15)
O8—Cu1–O3ii 92.82 (5) 92.37 (6) 92.89 (15)
O5i—Cu1—O3ii 95.20 (5) 92.56 (7) 95.31 (14)
O4—Cu2—O4i 180.00 (8)    
O7—Cu2—O4i 87.69 (5) 87.28 (7) 87.79 (15)
O4—Cu2—O7i 92.31 (5) 92.72 (7) 92.21 (15)
Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x + 1, y + 1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O2 0.82 (1) 2.04 (1) 2.8057 (17) 156 (2)
O8—H8A⋯O6i 0.83 (1) 1.84 (1) 2.6684 (17) 173 (3)
O8—H8B⋯O6ii 0.84 (1) 1.88 (1) 2.6976 (18) 168 (3)
C9—H9⋯O2 0.95 2.28 3.216 (2) 168
C10—H10⋯O3iii 0.95 2.23 3.079 (2) 148
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) x+1, y+1, z; (iii) [-x, -y, -z+1].
[Figure 1]
Figure 1
A portion of the title mol­ecule showing the coordination spheres of the independent copper ions with labeling scheme and 50% probability ellipsoids [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x + 1, y + 1, z; (iii) −x, −y, −z + 1]. O—H⋯O and C—H⋯O hydrogen bonds are depicted, respectively, by red and black dashed lines while the weak Cu2⋯O3ii and Cu2⋯O3iii inter­actions are depicted by aqua/red dashed lines.

3. Supra­molecular features

The monomer units, [Cu3(μ-OH)2(H2O)2(μ-nicNO)4], are connected into chains extending along the c-axis direction by coordination of N-oxide oxygen atom O3 to atom Cu1i of the next unit (Fig. 1[link]). The chains are linked into layers parallel to (1[\overline{1}]0) by pairwise O8—H8A⋯O6i hydrogen bonds [Table 2[link] and Fig. 2[link]; graph-set R22(9)] together with offset π-stacking between inversion-related C2/C3/N1/C4/C5/C6 rings [centroid–centroid = 3.4753 (13) Å, slippage = 0.53 Å] and inversion-related N2/C9/C8/C12/C11/C10 rings [centroid–centroid = 3.6432 (12) Å, slippage = 1.5 Å] (Fig. 3[link]). The O8—H8B⋯O6ii hydrogen bond (Table 2[link]) is part of a C11(11) graph set through O4ii, Cu2ii, Cu1ii and O8ii [symmetry code: (ii) x + 1, y + 1, z) as well as a R22(18) graph set through O5ii, Cu2ii, Cu1iv, O8iv and O6i [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (iv) −x + 2, −y + 2, −z) and a C22(22) graph set through O4ii, Cu2ii, O4v, O6v, O8vi, Cu1vi, Cu2vi, Cu1vii and O8vii [symmetry codes: (v) 2 − x, 2 − y, −1 − z; (vi) 1 + x, 1 + y, −1 + z; (vii) 2 − x, 2 − y, −1 − z).

[Figure 2]
Figure 2
Plan view of one layer seen along the a-axis direction with O—H⋯O hydrogen bonds depicted by dashed lines.
[Figure 3]
Figure 3
Elevation view of a portion of two layers seen along the c-axis direction and showing the π-stacking inter­actions (orange dashed lines) holding them together. O—H⋯O and C—H⋯O hydrogen bonds within layers are depicted by red and black dashed lines, respectively.

4. Database survey

A search of the Cambridge Crystallographic Database (CSD, Version 5.41 updated to March 2020; Groom et al., 2016) using the fragments 2-, 3- and 4-carb­oxy­pyridine-N-oxide yielded 20 hits, of which 16 were complexes of 4-carb­oxy­pyridine-N-oxide, three contained 3-carb­oxy­pyridine-N-oxide, including the prior report of the title compound, and one contained 2-carb­oxy­pyridine-N-oxide. The last (IJOHAR; Wang et al., 2011[Wang, X.-Y., Zhang, X.-Q. & Wu, W.-S. (2011). Acta Cryst. E67, m225.]) is also a polymeric CuII complex in which the organic ligand chelates through one carboxyl­ate oxygen and the N-oxide oxygen and bridges to two adjacent metals through the other carboxyl­ate oxygen and the N-oxide oxygen. The other two complexes of 3-carb­oxy­pyridine-N-oxide are [Dy(H2O)(3-carb­oxy­pyridine-N-oxide)(squarate)]n (OXO­ROK; Liu et al., 2016[Liu, C.-M., Zhang, D., Hao, X. & Zhu, D.-B. (2016). ACS Omega, 1, 286-292.]) in which the 3-carb­oxy­pyridine-N-oxide chelates to one metal through the carboxyl group and bridges to a second through the N-oxide oxygen and [Tb2(3-carb­oxy­pyridine-N-oxide)4(H2O)2(oxalate)]n (QUBKEF; Yu et al., 2015[Yu, Y., Zhang, L., Zhou, Y. & Zuhra, Z. (2015). Dalton Trans. 44, 4601-4612.]). The complexes of 4-carb­oxy­pyridine-N-oxide include a dinuclear CuII complex containing bidentate bridg­ing and monodentate carboxyl­ate ligands in which the N-oxide oxygen is not coordinated (BULWIO; Knuutilla, 1983[Knuutilla, H. (1983). Inorg. Chim. Acta, 72, 11-16.]) and a polymeric CuII complex in which all three oxygen atoms of the carboxyl­ate ligand are involved in bridging coord­in­ation modes (YISLAQ; Ghosh et al., 2018[Ghosh, D., Ferfolja, K., Drabavičius, Z., Steed, J. W. & Damodaran, K. K. (2018). New J. Chem. 42, 19963-19970.]).

5. Hirshfeld surface analysis

An effective means of probing inter­molecular inter­actions is Hirshfeld surface analysis (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]), which can be conveniently carried out with Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Cryst. Explorer 17. The University of Western Australia.]). A detailed description of the use of Crystal Explorer 17 and the plots obtained has been published (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]) so will not be given here. Fig. 4[link]a presents the surface mapped over dnorm over the range −0.7162 to 1.5102 arbitrary units in which the bright-red spots indicate the strong O—H⋯O hydrogen bonds and the lighter red spots the weaker C—H⋯O hydrogen bonds listed in Table 2[link]. Mapping of the Hirshfeld surface over shape-index is illustrated in Fig. 4[link]b and provides a picture of possible π-stacking inter­actions. These are indicated by red–orange triangles surrounded by blue triangles, which occur over the pyridine rings, confirming the slipped π-stacking inter­action discussed in Section 3. This is also indicated by the surface mapped over curvature (Fig. 4[link]c) where the substanti­ally flat regions of the plot again occur over the pyridine rings. Parsing the inter­molecular inter­actions into specific types is accomplished with the fingerprint plots (Fig. 5[link]). Fig. 5[link]a shows the full fingerprint plot while Fig. 5[link]b presents the H⋯O/O⋯H inter­actions which, not surprisingly, constitute the largest of the inter­molecular inter­actions at 35.8% of the total. These are followed by H⋯H (Fig. 5[link]c, 25.9%), H⋯C/C⋯H (Fig. 5[link]d, 10.8%) and O⋯Cu (Fig. 5[link]e, 10.8%) inter­actions. Not shown are the C⋯C (7.9%) and H⋯N/N⋯H (2.5%) contacts, with the former corresponding primarily to the slipped π-stacking inter­actions.

[Figure 4]
Figure 4
The Hirshfeld surface plotted over (a) dnorm, (b) shape index and (c) curvature.
[Figure 5]
Figure 5
Fingerprint plots showing (a) all inter­molecular inter­actions and resolved into (b) H⋯O/O⋯H, (c) H⋯H, (d) H⋯C/C⋯H and (e) O⋯Cu/Cu⋯O contacts.

6. Synthesis and crystallization

An aqueous solution of CuCl2·2H2O (0.034 g, 0.2 mmol in 3.5 mL) was added to an aqueous solution (3.5 mL) containing pyridine-2,3-di­carb­oxy­lic acid (0.04 g, 0.2 mmol) and NaOH (0.2 ml, 1 mol L−1), the mixture was stirred at 333 K for 2 h and then cooled to room temperature. After standing for a week, the light-blue precipitate that formed was filtered off and dried. Dark-blue, block-like crystals were obtained by slow evaporation of a solution of the precipitate in 5 mL of distilled water at room temperature. (yield: 30.61% based on Cu). Analysis calculated for: C, 27.00; H, 1.94; N, 4.50%. Found: C, 26.86; H, 2.02; N, 4.46%. IR (cm−1 KBr): 445, 489, 547, 612, 674, 688, 768, 798, 948, 1019, 1044, 1130, 1225, 1376, 1408, 1441, 1564, 1594, 1619, 2994, 3043, 3069, 3355.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms attached to carbon were placed in idealized locations (C—H = 0.95 Å) and were included as riding contributions with Uiso(H) = 1.2Ueq(C). Those attached to oxygen were placed in locations obtained from a difference map and were refined with DFIX O—H = 0.84 (1) Å restraints.

Table 3
Experimental details

Crystal data
Chemical formula [Cu3(C6H4NO3)4(OH)2(H2O)2]
Mr 813.07
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 7.8669 (17), 9.710 (2), 10.424 (2)
α, β, γ (°) 97.016 (3), 110.701 (3), 109.049 (3)
V3) 678.2 (2)
Z 1
Radiation type Mo Kα
μ (mm−1) 2.42
Crystal size (mm) 0.31 × 0.25 × 0.22
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.50, 0.62
No. of measured, independent and observed [I > 2σ(I)] reflections 12893, 3592, 3390
Rint 0.021
(sin θ/λ)max−1) 0.685
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.065, 1.06
No. of reflections 3592
No. of parameters 226
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.52, −0.31
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Poly[diaquadi-µ-hydroxido-tetrakis(µ-pyridine-3-carboxylato N-oxide)tricopper(II)] top
Crystal data top
[Cu3(C6H4NO3)4(OH)2(H2O)2]Z = 1
Mr = 813.07F(000) = 409
Triclinic, P1Dx = 1.991 Mg m3
a = 7.8669 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.710 (2) ÅCell parameters from 9998 reflections
c = 10.424 (2) Åθ = 2.3–29.1°
α = 97.016 (3)°µ = 2.42 mm1
β = 110.701 (3)°T = 150 K
γ = 109.049 (3)°Block, blue
V = 678.2 (2) Å30.31 × 0.25 × 0.22 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3592 independent reflections
Radiation source: fine-focus sealed tube3390 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.3333 pixels mm-1θmax = 29.2°, θmin = 2.2°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1313
Tmin = 0.50, Tmax = 0.62l = 1414
12893 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: mixed
wR(F2) = 0.065H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0347P)2 + 0.5335P]
where P = (Fo2 + 2Fc2)/3
3592 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.52 e Å3
3 restraintsΔρmin = 0.31 e Å3
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° in ω, colllected at φ = 0.00, 90.00 and 180.00° and 2 sets of 800 frames, each of width 0.45° in φ, collected at ω = –30.00 and 210.00°. The scan time was 5 sec/frame.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) while those attached to oxygen were placed in locations derived from a difference map and their coordinates adjusted to give O—H = 0.84 %A. The former were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms while the latter were refined subject to the restraint DFIX 0.84 (1).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.55161 (3)0.76197 (2)0.22674 (2)0.01203 (6)
Cu20.5000000.5000000.0000000.01188 (7)
O10.44050 (18)0.71790 (14)0.36494 (13)0.0175 (2)
O20.2406 (2)0.47108 (14)0.27160 (14)0.0245 (3)
O30.22121 (19)0.36322 (14)0.73304 (14)0.0189 (2)
O40.38030 (18)0.32089 (13)0.05837 (12)0.0146 (2)
O50.35598 (18)0.12662 (13)0.09985 (12)0.0154 (2)
O60.09294 (18)0.09404 (14)0.36357 (12)0.0166 (2)
O70.35789 (17)0.59314 (13)0.07123 (12)0.0126 (2)
H7A0.308 (3)0.534 (2)0.110 (2)0.029 (6)*
O80.74783 (18)0.94425 (13)0.37813 (12)0.0152 (2)
H8A0.788 (4)0.931 (3)0.4591 (16)0.041 (8)*
H8B0.848 (3)0.981 (3)0.362 (3)0.035 (7)*
N10.2291 (2)0.47710 (16)0.67356 (14)0.0135 (3)
N20.13829 (19)0.03830 (15)0.26216 (14)0.0119 (2)
C10.3226 (2)0.59140 (18)0.36527 (17)0.0138 (3)
C20.2845 (2)0.59731 (18)0.49796 (16)0.0122 (3)
C30.2577 (2)0.47220 (18)0.55191 (17)0.0136 (3)
H30.2592120.3831220.5041070.016*
C40.2081 (2)0.59753 (19)0.73601 (17)0.0155 (3)
H40.1785730.5959010.8168020.019*
C50.2293 (3)0.7225 (2)0.68303 (17)0.0171 (3)
H50.2127680.8061080.7265780.020*
C60.2751 (2)0.72616 (19)0.56552 (17)0.0152 (3)
H60.2992410.8143140.5322090.018*
C70.3409 (2)0.18427 (17)0.00894 (16)0.0111 (3)
C80.2615 (2)0.07659 (17)0.08634 (15)0.0109 (3)
C90.2181 (2)0.13269 (17)0.19519 (16)0.0117 (3)
H90.2447840.2372230.2219980.014*
C100.0996 (2)0.11165 (18)0.22703 (17)0.0143 (3)
H100.0430950.1760280.2757730.017*
C110.1424 (2)0.17042 (18)0.12053 (18)0.0160 (3)
H110.1157820.2751460.0962370.019*
C120.2246 (2)0.07639 (18)0.04886 (17)0.0141 (3)
H120.2549370.1157270.0243370.017*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01623 (11)0.01106 (10)0.01109 (10)0.00360 (8)0.00955 (8)0.00412 (7)
Cu20.01632 (14)0.01104 (13)0.01417 (13)0.00581 (10)0.01150 (10)0.00645 (10)
O10.0224 (6)0.0161 (5)0.0160 (5)0.0030 (5)0.0142 (5)0.0056 (4)
O20.0389 (8)0.0147 (6)0.0243 (6)0.0046 (5)0.0241 (6)0.0038 (5)
O30.0230 (6)0.0195 (6)0.0238 (6)0.0098 (5)0.0156 (5)0.0165 (5)
O40.0201 (6)0.0122 (5)0.0169 (5)0.0053 (4)0.0138 (5)0.0070 (4)
O50.0228 (6)0.0136 (5)0.0134 (5)0.0048 (5)0.0131 (5)0.0053 (4)
O60.0206 (6)0.0191 (6)0.0132 (5)0.0050 (5)0.0132 (5)0.0046 (4)
O70.0149 (5)0.0125 (5)0.0134 (5)0.0043 (4)0.0099 (4)0.0044 (4)
O80.0211 (6)0.0128 (5)0.0131 (5)0.0036 (5)0.0113 (5)0.0045 (4)
N10.0124 (6)0.0157 (6)0.0148 (6)0.0050 (5)0.0073 (5)0.0090 (5)
N20.0125 (6)0.0144 (6)0.0099 (5)0.0036 (5)0.0069 (5)0.0048 (5)
C10.0169 (7)0.0156 (7)0.0157 (7)0.0087 (6)0.0110 (6)0.0075 (6)
C20.0118 (7)0.0144 (7)0.0123 (6)0.0045 (6)0.0070 (5)0.0053 (5)
C30.0151 (7)0.0144 (7)0.0151 (7)0.0060 (6)0.0096 (6)0.0059 (6)
C40.0158 (7)0.0217 (8)0.0118 (6)0.0077 (6)0.0078 (6)0.0061 (6)
C50.0222 (8)0.0187 (8)0.0148 (7)0.0106 (6)0.0102 (6)0.0047 (6)
C60.0190 (8)0.0150 (7)0.0153 (7)0.0076 (6)0.0096 (6)0.0074 (6)
C70.0107 (7)0.0135 (7)0.0111 (6)0.0041 (5)0.0064 (5)0.0060 (5)
C80.0110 (7)0.0128 (7)0.0105 (6)0.0037 (5)0.0063 (5)0.0061 (5)
C90.0126 (7)0.0116 (6)0.0110 (6)0.0025 (5)0.0065 (5)0.0046 (5)
C100.0142 (7)0.0141 (7)0.0172 (7)0.0043 (6)0.0087 (6)0.0095 (6)
C110.0177 (8)0.0128 (7)0.0208 (8)0.0064 (6)0.0100 (6)0.0078 (6)
C120.0161 (7)0.0144 (7)0.0153 (7)0.0067 (6)0.0094 (6)0.0052 (6)
Geometric parameters (Å, º) top
Cu1—O71.9003 (12)N2—C91.3462 (19)
Cu1—O81.9539 (12)N2—C101.360 (2)
Cu1—O11.9542 (12)C1—C21.513 (2)
Cu1—O5i1.9911 (12)C2—C31.386 (2)
Cu1—O3ii2.4208 (13)C2—C61.396 (2)
Cu2—O7i1.9240 (11)C3—H30.9500
Cu2—O71.9240 (11)C4—C51.379 (2)
Cu2—O41.9687 (11)C4—H40.9500
Cu2—O4i1.9688 (11)C5—C61.395 (2)
O1—C11.276 (2)C5—H50.9500
O2—C11.232 (2)C6—H60.9500
O3—N11.3270 (17)C7—C81.507 (2)
O4—C71.2541 (19)C8—C121.393 (2)
O5—C71.2638 (19)C8—C91.394 (2)
O6—N21.3381 (17)C9—H90.9500
O7—H7A0.819 (10)C10—C111.381 (2)
O8—H8A0.833 (10)C10—H100.9500
O8—H8B0.836 (10)C11—C121.390 (2)
N1—C41.354 (2)C11—H110.9500
N1—C31.362 (2)C12—H120.9500
O7—Cu1—O8176.16 (5)O1—C1—C2113.52 (14)
O7—Cu1—O197.79 (5)C3—C2—C6119.94 (14)
O8—Cu1—O184.60 (5)C3—C2—C1119.12 (14)
O7—Cu1—O5i92.38 (5)C6—C2—C1120.94 (14)
O8—Cu1—O5i84.42 (5)N1—C3—C2119.92 (15)
O1—Cu1—O5i158.98 (5)N1—C3—H3120.0
O7—Cu1—O3ii89.57 (5)C2—C3—H3120.0
O8—Cu1—O3ii92.82 (5)N1—C4—C5120.41 (15)
O1—Cu1—O3ii103.19 (5)N1—C4—H4119.8
O5i—Cu1—O3ii95.20 (5)C5—C4—H4119.8
O7i—Cu2—O7180.0C4—C5—C6119.99 (15)
O7i—Cu2—O492.31 (5)C4—C5—H5120.0
O7—Cu2—O487.69 (5)C6—C5—H5120.0
O7i—Cu2—O4i87.69 (5)C5—C6—C2118.49 (15)
O7—Cu2—O4i92.31 (5)C5—C6—H6120.8
O4—Cu2—O4i180.00 (8)C2—C6—H6120.8
C1—O1—Cu1128.46 (11)O4—C7—O5127.42 (14)
N1—O3—Cu1ii125.82 (9)O4—C7—C8116.01 (13)
C7—O4—Cu2129.98 (10)O5—C7—C8116.56 (14)
C7—O5—Cu1i125.97 (10)C12—C8—C9119.83 (14)
Cu1—O7—Cu2106.58 (6)C12—C8—C7121.94 (14)
Cu1—O7—H7A102.7 (18)C9—C8—C7118.19 (14)
Cu2—O7—H7A104.7 (18)N2—C9—C8119.81 (14)
Cu1—O8—H8A115 (2)N2—C9—H9120.1
Cu1—O8—H8B110.4 (19)C8—C9—H9120.1
H8A—O8—H8B106 (3)N2—C10—C11120.03 (14)
O3—N1—C4118.78 (13)N2—C10—H10120.0
O3—N1—C3120.31 (14)C11—C10—H10120.0
C4—N1—C3120.91 (14)C10—C11—C12120.01 (15)
O6—N2—C9118.69 (13)C10—C11—H11120.0
O6—N2—C10119.75 (13)C12—C11—H11120.0
C9—N2—C10121.54 (14)C11—C12—C8118.77 (15)
O2—C1—O1127.26 (15)C11—C12—H12120.6
O2—C1—C2119.22 (14)C8—C12—H12120.6
Cu1ii—O3—N1—C4133.95 (13)Cu2—O4—C7—O55.8 (3)
Cu1ii—O3—N1—C346.08 (19)Cu2—O4—C7—C8175.93 (10)
Cu1—O1—C1—O26.2 (3)Cu1i—O5—C7—O40.0 (2)
Cu1—O1—C1—C2174.06 (10)Cu1i—O5—C7—C8178.24 (10)
O2—C1—C2—C335.0 (2)O4—C7—C8—C12175.48 (15)
O1—C1—C2—C3145.22 (15)O5—C7—C8—C126.0 (2)
O2—C1—C2—C6144.61 (17)O4—C7—C8—C96.8 (2)
O1—C1—C2—C635.1 (2)O5—C7—C8—C9171.71 (14)
O3—N1—C3—C2173.87 (14)O6—N2—C9—C8178.18 (13)
C4—N1—C3—C26.2 (2)C10—N2—C9—C80.5 (2)
C6—C2—C3—N12.3 (2)C12—C8—C9—N20.9 (2)
C1—C2—C3—N1178.07 (14)C7—C8—C9—N2176.91 (13)
O3—N1—C4—C5175.41 (15)O6—N2—C10—C11178.72 (14)
C3—N1—C4—C54.6 (2)C9—N2—C10—C110.1 (2)
N1—C4—C5—C60.8 (3)N2—C10—C11—C120.2 (2)
C4—C5—C6—C24.5 (3)C10—C11—C12—C80.2 (2)
C3—C2—C6—C52.9 (2)C9—C8—C12—C110.8 (2)
C1—C2—C6—C5176.69 (15)C7—C8—C12—C11176.96 (14)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7A···O20.82 (1)2.04 (1)2.8057 (17)156 (2)
O8—H8A···O6ii0.83 (1)1.84 (1)2.6684 (17)173 (3)
O8—H8B···O6iii0.84 (1)1.88 (1)2.6976 (18)168 (3)
C9—H9···O20.952.283.216 (2)168
C10—H10···O3iv0.952.233.079 (2)148
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y+1, z; (iv) x, y, z+1.
Comparison of structures (Å,°) top
MetricThis workNICTCUNICTCU01
Cu1—O11.9542 (12)1.943 (2)1.953 (3)
Cu1—O71.9003 (12)1.925 (1)1.893 (4)
Cu1—O81.9539 (12)1.876 (1)1.947 (4)
Cu1—O5i1.9911 (12)1.979 (2)1.987 (3)
Cu1—O3ii2.4208 (13)2.426 (2)2.434 (4)
Cu2—O41.9687 (11)1.954 (1)1.981 (3)
Cu2—O71.9240 (11)1.912 (2)1.922 (4)
Cu2—O3ii2.6828 (15)2.699 (3)
O1—Cu1—O5i158.98 (5)158.73 (7)158.83 (16)
O1—Cu1—O797.79 (5)97.55 (6)97.87 (14)
O1—Cu1—O884.60 (5)84.84 (6)84.72 (15)
O7—Cu1—O8176.16 (5)176.28 (6)176.18 (14)
O7—Cu1—O5i92.38 (5)92.27 (5)92.13 (14)
O1—Cu1–O3ii103.19 (5)103.56 (7)103.40 (15)
O7—Cu1—O3ii89.57 (5)89.84 (6)89.24 (15)
O8—Cu1–O3ii92.82 (5)92.37 (6)92.89 (15)
O5i—Cu1—O3ii95.20 (5)92.56 (7)95.31 (14)
O4—Cu2—O4i180.00 (8)
O7—Cu2—O4i87.69 (5)87.28 (7)87.79 (15)
O4—Cu2—O7i92.31 (5)92.72 (7)92.21 (15)
Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x + 1, y + 1, z.
 

Funding information

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationBalzarini, J., Stevens, M., De Clercq, E., Schols, D. & Pannecouque, C. (2005). J. Antimicrob. Chemother. 55, 135–138.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBazargan, M., Mirzaei, M., Aghamohamadi, M., Tahmasebi, M. & Frontera, A. (2020). J. Mol. Struct. 1202, 127243.  CrossRef Google Scholar
First citationBazargan, M., Mirzaei, M., Eshtiagh-Hosseini, H., Mague, J. T., Bauzá, A. & Frontera, A. (2016). Inorg. Chim. Acta, 449, 44–51.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhosh, D., Ferfolja, K., Drabavičius, Z., Steed, J. W. & Damodaran, K. K. (2018). New J. Chem. 42, 19963–19970.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHosseini Hashemi, Z., Mirzaei, M., Eshtiagh-Hosseini, H., Fereshteh, S., Shamsipur, M., Ardalani, M. & Blake, A. J. (2018). J. Coord. Chem. 71, 4058–4071.  CrossRef CAS Google Scholar
First citationHosseini-Hashemi, Z., Mirzaei, M., Jafari, A., Hosseinpour, P., Yousefi, M., Frontera, A., Lari Dashtbayaz, M., Shamsipur, M. & Ardalani, M. (2019). RSC Adv. 9, 25382–25404.  CAS Google Scholar
First citationKang, Y.-F., Wang, Y.-L., Xu, L., Zhang, W.-Q., Cuo, L.-L. & Ma, Y.-M. (2020). J. Solid State Chem. 291, 121260.  CrossRef Google Scholar
First citationKnuutilla, H. (1981). Inorg. Chim. Acta, 50, 221–225.  Google Scholar
First citationKnuutilla, H. (1983). Inorg. Chim. Acta, 72, 11–16.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLaborda, S., Clérac, R., Anson, C. E. & Powell, A. K. (2004). Inorg. Chem. 43, 5931–5943.  CrossRef PubMed CAS Google Scholar
First citationLazarou, K. N., Savvidou, A., Raptopoulou, C. P. & Psycharis, V. (2018). Polyhedron, 152, 125–137.  Web of Science CSD CrossRef CAS Google Scholar
First citationLis, S., Hnatejko, Z., Barczynski, P. & Elbanowski, M. (2002). J. Alloys Compd. 344, 70–74.  CrossRef CAS Google Scholar
First citationLiu, C.-M., Zhang, D., Hao, X. & Zhu, D.-B. (2016). ACS Omega, 1, 286–292.  CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationMirzaei, M., Eshtiagh-Hosseini, H., Alipour, M., Bauzá, A., Mague, J. T., Korabik, M. & Frontera, A. (2015). Dalton Trans. 44, 8824–8832.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMirzaei, M., Eshtiagh-Hosseini, H. & Bazargan, M. (2015). Res. Chem. Intermed. 41, 9785–9803.  CrossRef CAS Google Scholar
First citationMirzaei, M., Eshtiagh-Hosseini, H., Bazargan, M., Mehrzad, F., Shahbazi, M., Mague, J. T., Bauzá, A. & Frontera, A. (2015). Inorg. Chim. Acta, 438, 135–145.  CrossRef CAS Google Scholar
First citationMirzaei, M., Sadeghi, F., Molčanov, K., Zaręba, J. K., Gomila, R. M. & Frontera, A. (2020). Cryst. Growth Des. 20, 1738–1751.  CrossRef CAS Google Scholar
First citationNoro, S., Mizutani, J., Hijikata, Y., Matsuda, R., Sato, H., Kitagawa, S., Sugimoto, K., Inubushi, Y., Kubo, K. & Nakamura, T. (2015). Nat. Commun. 6, 5851.  CrossRef PubMed Google Scholar
First citationProcházková, S., Kubíček, V., Böhmová, Z., Holá, K., Kotek, J. & Hermann, P. (2017). Dalton Trans. 46, 10484–10497.  PubMed Google Scholar
First citationShahbazi, M., Mehrzad, F., Mirzaei, M., Eshtiagh-Hosseini, H., Mague, J. T., Ardalani, M. & Shamsipur, M. (2017). Inorg. Chim. Acta, 458, 84–96.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Cryst. Explorer 17. The University of Western Australia.  Google Scholar
First citationWang, X.-Y., Zhang, X.-Q. & Wu, W.-S. (2011). Acta Cryst. E67, m225.  CrossRef IUCr Journals Google Scholar
First citationXiong, Y., Fan, Y.-Z., Yang, R., Chen, S., Pan, M., Jiang, J.-J. & Su, C.-Y. (2014). Chem. Commun. 50, 14631–14634.  CrossRef CAS Google Scholar
First citationYu, Y., Zhang, L., Zhou, Y. & Zuhra, Z. (2015). Dalton Trans. 44, 4601–4612.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds