research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-benzyl-4,5-di­bromo-2,3,3a,4,5,6,7,7a-octa­hydro-3a,6-ep­­oxy-1H-isoindol-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Organic Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198, Moscow, Russian Federation, bFrumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31, bld. 4, Moscow, 119071, Russian Federation, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
*Correspondence e-mail: sixberth.mlowe@duce.ac.tz

Edited by J. Reibenspies, Texas A & M University, USA (Received 25 January 2021; accepted 8 February 2021; online 12 February 2021)

The title compound, C15H15Br2NO2, crystallizes with two mol­ecules in the asymmetric unit of the unit cell. In both mol­ecules, the tetra­hydro­furan rings adopt an envelope conformation with the O atom as the flap and the pyrrolidine rings adopt an envelope conformation. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming sheets lying parallel to the (002) plane. These sheets are connected only by weak van der Waals inter­actions. The most important contributions to the surface contacts are from H⋯H (44.6%), Br⋯H/H⋯Br (24.1%), O⋯H/H⋯O (13.5%) and C⋯H/H⋯C (11.2%) inter­actions, as concluded from a Hirshfeld surface analysis.

1. Chemical context

Halogenation is a chemical reaction that involves the introduction of one or more halogen atoms to an organic mol­ecule. The pathway and stereochemistry of halogenation reactions is dependent on the configuration of the starting olefine and the halogenating agent. The role/behavior of the attached halogen atom in olefines can be classified into the following types: (1) as an electron-withdrawing substituent, (2) as a halogen-bond donor center, and (3) as a non-covalent bond acceptor site. Thus, not only hydrogen bonding (Gurbanov et al., 2018[Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130-136.]; Kopylovich et al., 2011[Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248-7250.]) or other types of non-covalent inter­actions (Afkhami et al., 2017[Afkhami, F. A., Khandar, A. A., Mahmoudi, G., Maniukiewicz, W., Gurbanov, A. V., Zubkov, F. I., Şahin, O., Yeşilel, O. Z. & Frontera, A. (2017). CrystEngComm, 19, 1389-1399.]; Asadov et al., 2016[Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfactants Deterg. 19, 145-153.]; Ma et al., 2017a[Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526-533.],b[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17-23.]; 2020[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.]; Mahmudov et al., 2010[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923-2938.]; 2019[Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32-46.]; 2020[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.], but also halogen bonding can be used in the design of olefines. In this work, we proposed and tested inexpensive and readily available bis­[N,N-di­methyl­acetamide] hydrogen di­bromo­bromate [(Me2NCOMe)2H]Br3 as a bromine initiator and a source of a positively charged bromine ion (Rodygin et al., 1992[Rodygin, M. Yu., Mikhailov, V. A., Savelova, V. A. & Chernovol, P. A. (1992). J. Org. Chem. USSR (Engl. Transl.), 28, 1543-1544 [(1992). Zh. Org. Khim., 28, 1926-1927].]; Prokop'eva et al., 1994[Prokop'eva, T. M., Mikhailov, V. A., Turovskaya, M. K., Karpichev, E. A., Burakov, N. I., Savelova, V. A., Rodygin, M. Yu., Mikhailov, V. A. & Savelova, V. A. (1994). Zh. Org. Khim. 30, 827-832.]; Prokop'eva, 2008[Prokop'eva, T. M., Mikhailov, V. A., Turovskaya, M. K., Karpichev, E. A., Burakov, N. I., Savelova, V. A., Kapitanov, I. V. & Popov, A. F. (2008). Russ. J. Org. Chem. 44, 637-646.]). The choice of [(Me2NCOMe)2H]Br3, obtained by one-pot synthesis from N,N-di­methyl­acetamide, hydro­bromic acid and bromine, is down to the simplicity of the synthesis and isolation, and the unambiguous direction of the bromination process. In addition, [(Me2NCOMe)2H]Br3 is an excellent reagent for functionalization of phenols and anilines (Rodygin et al., 1992[Rodygin, M. Yu., Mikhailov, V. A., Savelova, V. A. & Chernovol, P. A. (1992). J. Org. Chem. USSR (Engl. Transl.), 28, 1543-1544 [(1992). Zh. Org. Khim., 28, 1926-1927].]; Mikhailov et al., 1993[Mikhailov, V. A., Savelova, V. A. & Rodygin, M. Yu. (1993). Zh. Org. Khim. 29, 2251-2254.]), and is also used in the synthesis of mono-bromo-substituted ketones (Rodygin et al., 1994[Rodygin, M. Yu., Mikhailov, V. A., Zurbritskii, M. Yu. & Savelova, V. A. (1994). Zh. Org. Khim. 30, 339-343.]; Burakov et al., 2001[Burakov, N. I., Kanibolotskii, A. L., Osichenko, G. Yu., Mikhailov, V. A., Savelova, V. A. & Kosmynin, V. V. (2001). Russ. J. Org. Chem. 37, 1210-1219.]) and for the bromination of various alkenes and alkynes (Rodygin et al., 1994[Rodygin, M. Yu., Mikhailov, V. A., Zurbritskii, M. Yu. & Savelova, V. A. (1994). Zh. Org. Khim. 30, 339-343.]; Zaytsev et al., 2017[Zaytsev, V. P., Revutskaya, E. L., Nikanorova, T. V., Nikitina, E. V., Dorovatovskii, P. V., Khrustalev, V. N., Yagafarov, N. Z., Zubkov, F. I. & Varlamov, A. V. (2017). Synthesis, 49, 3749-3767.]). The present work is aimed at accumulating experimental data and establishing the rules of the halogenation in bridged ep­oxy-isoindolones (Zubkov et al., 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]; Zaytsev et al., 2020[Zaytsev, V. P., Mertsalov, D. F., Trunova, A. M., Khanova, A. V., Nikitina, E. V., Sinelshchikova, A. A. & Grigoriev, M. S. (2020). Chem. Heterocycl. Compd, 56, 930-935.]). The reaction of N-benzyl­tetra­hydro­epoxy­isoindolone (1) with [(Me2NCOMe)2H]Br3 in dry chloro­form under reflux leads to the corresponding 2-benzyl-4,5-di­bromo­hexa­hydro-3a,6-ep­oxy­isoindol-1(4H)-one (2) (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
Synthesis scheme for 2-benzyl-4,5-di­bromo­hexa­hydro-3a,6-ep­oxy­isoindol-1(4H)-one (2)

2. Structural commentary

The asymmetric unit of the title compound (Fig. 2[link]) contains two mol­ecules of similar shape, hereafter referred to as mol­ecules A (including atom C1A) and B (including atom C1B). The conformational differences between mol­ecules A and B are highlighted in an overlay diagram shown in Fig. 3[link]. The r.m.s. deviation of the overlay between the mol­ecules A and B is 0.114 Å.

[Figure 2]
Figure 2
The two mol­ecules (A and B) in the asymmetric unit of the title compound with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level.
[Figure 3]
Figure 3
Overlay image (OLEX2; Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) of the two mol­ecules (A and B) in the asymmetric unit of the title compound.

In both mol­ecules A and B, the pyrrolidine rings (N1A/C5A–C8A and N1B/C5B–C8B), tetra­hydro­furan rings (O1A/C1A–C3A/C6A, O1A/C3A–C6A and O1B/C1B–C3B/C6B, O1B/C3B–C6B) and six-membered rings (C1A–C6A and C1B–C6B), which generate ep­oxy­iso­indole moieties (O1A/N1A/C1A–C8A and O1B/N1B/C1B–C8B), are puckered. In mol­ecule A, both tetra­hydro­furan rings adopt an envelope conformation with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) Q(2) = 0.575 (3) Å, φ(2) = 182.2 (4)° for (O1A/C1A–C3A/C6A) and Q(2) = 0.558 (4) Å, φ(2) = 3.8 (4)° for (O1A/C3A–C6A), respectively. In mol­ecule B, both tetra­hydro­furan rings also adopt an envelope conformation with puckering parameters Q(2) = 0.575 (4) Å, φ(2) = 182.7 (4)° for (O1B/C1B–C3B/C6B) and Q(2) = 0.556 (4) Å, φ(2) = 3.7 (4)° for (O1B/C3B–C6B).

The five-membered pyrrolidine rings also exhibit an envelope conformation, with a maximum deviation from the mean plane of 0.155 (3) Å at C6A [puckering parameters Q(2) = 0.248 (4) Å, φ(2) = 77.7 (8)°] for mol­ecule A and 0.153 (3) Å at C6B [puckering parameters Q(2) = 0.243 (4) Å, φ(2) = 75.0 (9)°] for mol­ecule B. In both mol­ecules, the six-membered ring has a boat conformation [QT = 0.921 (4) Å, θ = 91.8 (2)°, φ = 119.3 (2)° for mol­ecule A; QT = 0.919 (4) Å, θ = 91.9 (2)°, φ = 119.6 (3)° for mol­ecule B].

3. Supra­molecular features

In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming sheets lying parallel to the (002) plane (Table 1[link], Figs. 4[link] and 5[link]). These sheets are connected only by weak van der Waals inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1A—H1A⋯O2Ai 0.98 2.51 3.175 (4) 125
C4A—H4AB⋯Br2A 0.97 2.81 3.287 (4) 111
C5A—H5A⋯O2Ai 0.98 2.64 3.271 (4) 123
C7A—H7AB⋯O2Ai 0.97 2.53 3.186 (4) 125
C1B—H1B⋯O2Bii 0.98 2.39 3.104 (4) 129
C2B—H2B⋯O1A 0.98 2.38 3.341 (4) 168
C4B—H4BB⋯Br2B 0.97 2.83 3.301 (4) 111
C5B—H5B⋯O2Bii 0.98 2.57 3.247 (5) 126
C7B—H7BB⋯O2Bii 0.97 2.64 3.270 (5) 123
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 4]
Figure 4
A view along the a axis of the inter­molecular C—H⋯O inter­actions in the title compound.
[Figure 5]
Figure 5
A view along the b axis of the inter­molecular C—H⋯O inter­actions in the title compound.

4. Hirshfeld surface analysis

The inter­molecular inter­actions (Table 2[link]) were investigated qu­anti­tatively and visualized with Crystal Explorer 3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.]; Spackman et al., 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). The Hirshfeld surface plotted over dnorm in the range −0.0815 to 0.9926 a.u. is shown in Fig. 6[link]. The red spots on the Hirshfeld surface represent C—H⋯O contacts. Fig. 7[link] shows the full two-dimensional fingerprint plot and those delineated into the major contacts: the H⋯H (44.6%) inter­actions are the major factor in the crystal packing with Br⋯H/H⋯Br (24.1%), O⋯H/H⋯O (13.5%) and C⋯H/H⋯C (11.2%) inter­actions representing the next highest contributions. The percentage contributions of other weak inter­actions are listed in Table 3[link].

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
H2A⋯Br1A 3.21 2 − x, 1 − y, 1 − z
Br1A⋯Br2B 3.8655 2 − x, 1 − y, 1 − z
Br2A⋯Br1B 3.8993 2 − x, −y, 1 − z
O1A⋯H2B 2.38 x, y, z
O2A⋯H1A 2.51 [{3\over 2}] − x, −[{1\over 2}] + y, [{1\over 2}] − z
O2A⋯H11B 2.78 1 − x, − y, 1 − z
H7AA⋯C13B 2.85 1 − x, 1 − y, 1 − z
H11A⋯H5B 2.55 [{1\over 2}] + x, [{1\over 2}] − y, −[{1\over 2}] + z
H13B⋯Br1B 3.13 1 − x, −y, 1 − z
O2B⋯H1B 2.39 [{3\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z
H13B⋯H3B 2.42 1 − x, 1 − y, 1 − z

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound

Contact Percentage contribution
H⋯H 44.6
Br⋯H/H⋯Br 24.1
O⋯H/H⋯O 13.5
C⋯H/H⋯C 11.2
Br⋯Br 3.9
C⋯C 2.0
N⋯H/H⋯N 0.5
Br⋯C/C⋯Br 0.3
[Figure 6]
Figure 6
A view of the three-dimensional Hirshfeld surface for the title compound, plotted over dnorm in the range −0.0815 to 0.9926 a.u.
[Figure 7]
Figure 7
A view of the two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) Br⋯H/H⋯Br, (d) O⋯H/H⋯O and (e) C⋯H/H⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (CSD version 5.40, update of September 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures having the ep­oxy­iso­indole moiety gave six hits, which closely resemble the title compound, viz. (3aR,6S,7aR)-7a-chloro-2-[(4-nitro­phen­yl)sulfon­yl]-1,2,3,6,7,7a-hexa­hydro-3a,6-ep­oxy­iso­indole (CSD refcode AGONUH; Temel et al., 2013[Temel, E., Demircan, A., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1551-o1552.]), (3aR,6S,7aR)-7a-chloro-6-methyl-2-[(4-nitro­phen­yl)sulfon­yl]-1,2,3,6,7,7a-hexa­hydro-3a,6-ep­oxy­iso­indole (TIJ­MIK; Demircan et al., 2013[Demircan, A., Temel, E., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1628-o1629.]), 5-chloro-7-methyl-3-[(4-methyl­phen­yl)sulfon­yl]-10-oxa-3-azatri­cyclo­[5.2.1.01,5]dec-8-ene (YAXCIL; Temel et al., 2012[Temel, E., Demircan, A., Beyazova, G. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1102-o1103.]), (3aR,6S,7aR)-7a-bromo-2-[(4-methyl­phen­yl)sulfon­yl]-1,2,3,6,7,7a-hexa­hydro-3a,6-ep­oxy­iso­indole (UPAQEI; Koşar et al., 2011[Koşar, B., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o994-o995.]), (3aR,6S,7aR)-7a-bromo-2-methyl­sulfonyl-1,2,3,6,7,7a-hexa­hydro-3a,6-ep­oxy­iso­indole (ERIVIL; Temel et al., 2011[Temel, E., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1304-o1305.]) and tert-butyl 3a-chloro­per­hydro-2,6a-ep­oxy­oxireno(e)iso­indole-5-carboxyl­ate (MIG­TIG; Koşar et al., 2007[Koşar, B., Karaarslan, M., Demir, I. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3323.]).

In the crystal of AGONUH, the mol­ecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along the b-axis direction. In TIJMIK, two types of C—H⋯O hydrogen bonds generate R22(20) and R44(26) rings, with adjacent rings running parallel to ac plane. In addition C—H⋯O hydrogen bonds form a C(6) chain, linking the mol­ecules in the b-axis direction. In YAXCIL and UPAQEI, mol­ecules are also linked by C—H⋯O hydrogen bonds. In the crystal of ERIVIL, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into R22(8) and R22(14) rings along the b-axis direction. In MIGTIG, the mol­ecules are linked only by weak van der Waals inter­actions.

6. Synthesis and crystallization

A solution of isoindolone 1 (4 mmol) and the brominating agent (4 mmol) in dry chloro­form (15 mL) was heated under reflux for 18 h (TLC control, EtOAc–hexane, 1:1). The reaction mixture was poured into H2O (50 mL) and extracted with CHCl3 (3 × 20 mL). The combined organic fractions were dried over anhydrous Na2SO4, the solvent was evaporated under reduced pressure, and the residue was purified by column chromatography (SiO2, 15 × 1.8 cm, hexa­ne/EtOAc, 10:1). Colourless hexa­gonal prisms. Yield 0.46 g (29%), m.p. > 428 K (decomposition).

IR (KBr), ν (cm−1): 1693 (N—C=O), 627 (C—Br). 1H NMR (CDCl3, 600 MHz, 301 K): δ = 7.37–7.34 (m, 2H, H-Ph), 7.32–7.29 (m, 1H, H-Ph), 7.24–7.22 (m, 2H, H-Ph), 4.71 (t, 1H, H6, J = 5.0), 4.54 (d, 1H, CH2Ph, J = 15.1) and 4.48 (d, 1H, CH2Ph, J = 15.1), 4.46 (ddd, 1H, H5, J = 1.5, J = 2.5, J = 5.0), 4.17 (d, 1H, H4, J = 2.5), 3.50 (d, 1H, J = 12.1) and 3.47 (d, 1H, H3, J = 12.1), 2.81 (dd, 1H, H7A, J = 4.7, J = 9.3), 2.73 (dd, 1H, H7B, J = 9.3, J = 12.8), 2.25–2.21 (m, 1H, H7A). 13C NMR (CDCl3, 150.9 MHz, 301 K): δ = 172.9, 135.5, 128.8 (2C), 127.9 (2C), 127.7, 90.0, 80.6, 55.1, 48.9, 48.4, 46.5, 33.8, 30.2. MS (APCI): m/z = 400 [M + H]+ (81Br), 402 [M + H]+ (81Br, 79Br), 404 [M + H]+ (79Br).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. C-bound H atoms were positioned geometrically, with C—H = 0.93 Å (for aromatic H atoms), C—H = 0.98 Å (for methine H atoms), 0.97 Å (for methyl­ene H atoms) and 0.96 Å (for methyl H atoms), and constrained to ride on their parent atoms, with Uiso(H) =1.2Ueq(C) or 1.5Ueq(C-meth­yl). Ten reflections (101), ([\overline{1}]01), (111), (002), ([\overline{1}]11), (110), (200), ([\overline{1}]03), ([\overline{2}]02) and ([\overline{1}]12) were obscured by the beam stop and omitted during the final refinement cycle.

Table 4
Experimental details

Crystal data
Chemical formula C15H15Br2NO2
Mr 401.10
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 17.4839 (5), 8.2993 (3), 21.5120 (7)
β (°) 106.115 (2)
V3) 2998.83 (17)
Z 8
Radiation type Mo Kα
μ (mm−1) 5.41
Crystal size (mm) 0.14 × 0.13 × 0.13
 
Data collection
Diffractometer Bruker Kappa APEXII area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.224, 0.294
No. of measured, independent and observed [I > 2σ(I)] reflections 32806, 6995, 3997
Rint 0.053
(sin θ/λ)max−1) 0.657
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.091, 1.02
No. of reflections 6995
No. of parameters 362
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.83, −0.66
Computer programs: APEX2 (Bruker, 2013[Bruker (2013). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: PLATON (Spek, 2020).

2-Benzyl-4,5-dibromo-2,3,3a,4,5,6,7,7a-octahydro-3a,6-epoxy-1H-isoindol-1-one top
Crystal data top
C15H15Br2NO2F(000) = 1584
Mr = 401.10Dx = 1.777 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 17.4839 (5) ÅCell parameters from 5179 reflections
b = 8.2993 (3) Åθ = 2.7–22.8°
c = 21.5120 (7) ŵ = 5.41 mm1
β = 106.115 (2)°T = 296 K
V = 2998.83 (17) Å3Hexagonal prisms, colourless
Z = 80.14 × 0.13 × 0.13 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3997 reflections with I > 2σ(I)
ω– and φ–scansRint = 0.053
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
θmax = 27.8°, θmin = 2.7°
Tmin = 0.224, Tmax = 0.294h = 2222
32806 measured reflectionsk = 1010
6995 independent reflectionsl = 2827
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0333P)2 + 1.282P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.83 e Å3
6995 reflectionsΔρmin = 0.65 e Å3
362 parametersExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00111 (12)
Primary atom site location: inferred from neighbouring sites
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.8852 (2)0.3745 (4)0.38724 (16)0.0370 (9)
H1A0.9009730.4065680.3487190.044*
C2A0.9420 (2)0.2461 (5)0.42647 (17)0.0449 (10)
H2A0.9592590.2808580.4717650.054*
C3A0.8874 (2)0.0992 (5)0.42168 (18)0.0482 (10)
H3A0.9071720.0203430.4563280.058*
C4A0.8625 (2)0.0245 (5)0.35457 (19)0.0519 (11)
H4AA0.8334590.0752720.3540650.062*
H4AB0.9079720.0049260.3380330.062*
C5A0.8091 (2)0.1574 (4)0.31692 (16)0.0362 (9)
H5A0.8314830.2036750.2838720.043*
C6A0.80785 (19)0.2812 (4)0.36906 (15)0.0309 (8)
C7A0.72741 (19)0.3587 (4)0.34938 (16)0.0373 (9)
H7AA0.7079480.3802830.3866260.045*
H7AB0.7283960.4585390.3261500.045*
C8A0.7213 (2)0.1203 (5)0.28926 (16)0.0413 (9)
C9A0.5932 (2)0.2502 (5)0.28436 (17)0.0511 (11)
H9AA0.5740280.1719210.2500870.061*
H9AB0.5797980.3564140.2656500.061*
C10A0.5498 (2)0.2245 (4)0.33480 (17)0.0381 (9)
C11A0.4700 (2)0.2679 (5)0.31950 (19)0.0495 (10)
H11A0.4452530.3112340.2790450.059*
C12A0.4276 (2)0.2472 (5)0.3638 (2)0.0607 (12)
H12A0.3742250.2764100.3533020.073*
C13A0.4637 (3)0.1837 (5)0.4234 (2)0.0606 (12)
H13A0.4346860.1686050.4531960.073*
C14A0.5425 (3)0.1423 (5)0.4392 (2)0.0573 (11)
H14A0.5672120.1007170.4799590.069*
C15A0.5855 (2)0.1619 (5)0.39485 (17)0.0454 (10)
H15A0.6388860.1326440.4056940.055*
N1A0.67922 (17)0.2373 (4)0.30754 (13)0.0413 (8)
O1A0.81551 (14)0.1790 (3)0.42508 (10)0.0424 (6)
O2A0.69344 (17)0.0056 (3)0.25485 (13)0.0602 (8)
Br1A0.87859 (2)0.56161 (5)0.44107 (2)0.05631 (15)
Br2A1.03562 (3)0.20912 (6)0.39717 (3)0.07454 (18)
C1B0.7908 (2)0.1347 (4)0.61250 (16)0.0372 (9)
H1B0.8299840.0948250.6513640.045*
C2B0.8272 (2)0.2662 (5)0.57905 (17)0.0440 (10)
H2B0.8153990.2400130.5329320.053*
C3B0.7797 (2)0.4175 (5)0.58646 (19)0.0520 (11)
H3B0.7805260.5017110.5547160.062*
C4B0.7985 (3)0.4797 (5)0.6555 (2)0.0576 (12)
H4BA0.7721130.5815060.6578490.069*
H4BB0.8553050.4917150.6747850.069*
C5B0.7640 (2)0.3436 (4)0.68693 (16)0.0379 (9)
H5B0.8063810.2879330.7192700.045*
C6B0.7267 (2)0.2315 (4)0.63022 (15)0.0342 (8)
C7B0.6560 (2)0.1563 (5)0.64522 (17)0.0435 (9)
H7BA0.6120420.1442300.6064190.052*
H7BB0.6692180.0517860.6655070.052*
C8B0.6947 (2)0.3797 (5)0.71379 (18)0.0454 (10)
C9B0.5654 (2)0.2577 (6)0.71072 (19)0.0575 (12)
H9BA0.5682770.3351080.7450610.069*
H9BB0.5641860.1509910.7288530.069*
C10B0.4888 (2)0.2840 (4)0.65875 (18)0.0419 (9)
C11B0.4196 (2)0.2234 (5)0.6684 (2)0.0561 (11)
H11B0.4216800.1661810.7059870.067*
C12B0.3474 (3)0.2465 (6)0.6231 (3)0.0698 (14)
H12B0.3010360.2058230.6302940.084*
C13B0.3441 (3)0.3291 (6)0.5677 (3)0.0691 (14)
H13B0.2955130.3432000.5367790.083*
C14B0.4122 (3)0.3918 (5)0.5572 (2)0.0618 (12)
H14B0.4096000.4493970.5195470.074*
C15B0.4852 (2)0.3686 (5)0.60312 (19)0.0509 (10)
H15B0.5315090.4103120.5961310.061*
N1B0.63674 (18)0.2718 (4)0.68980 (14)0.0465 (8)
O1B0.70287 (14)0.3452 (3)0.57735 (11)0.0503 (7)
O2B0.69187 (17)0.4868 (4)0.75178 (14)0.0648 (8)
Br1B0.74753 (3)0.04142 (6)0.55333 (2)0.06418 (16)
Br2B0.94187 (2)0.28604 (6)0.61425 (2)0.06177 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.037 (2)0.040 (2)0.036 (2)0.0011 (18)0.0147 (17)0.0043 (17)
C2A0.038 (2)0.055 (3)0.039 (2)0.0064 (19)0.0054 (18)0.0034 (19)
C3A0.046 (2)0.048 (2)0.048 (2)0.008 (2)0.008 (2)0.013 (2)
C4A0.052 (3)0.039 (2)0.065 (3)0.002 (2)0.017 (2)0.010 (2)
C5A0.037 (2)0.039 (2)0.035 (2)0.0019 (17)0.0145 (17)0.0052 (17)
C6A0.0317 (19)0.037 (2)0.0262 (18)0.0007 (17)0.0116 (15)0.0010 (16)
C7A0.034 (2)0.043 (2)0.038 (2)0.0003 (18)0.0151 (17)0.0061 (18)
C8A0.047 (2)0.051 (3)0.027 (2)0.010 (2)0.0127 (18)0.0056 (19)
C9A0.034 (2)0.074 (3)0.039 (2)0.003 (2)0.0010 (18)0.004 (2)
C10A0.031 (2)0.042 (2)0.039 (2)0.0070 (17)0.0072 (17)0.0031 (18)
C11A0.038 (2)0.056 (3)0.051 (2)0.004 (2)0.005 (2)0.001 (2)
C12A0.038 (2)0.059 (3)0.088 (4)0.004 (2)0.022 (3)0.009 (3)
C13A0.061 (3)0.065 (3)0.068 (3)0.016 (3)0.038 (3)0.014 (3)
C14A0.061 (3)0.066 (3)0.045 (3)0.011 (2)0.015 (2)0.002 (2)
C15A0.038 (2)0.055 (3)0.043 (2)0.0004 (19)0.0104 (19)0.0004 (19)
N1A0.0313 (16)0.058 (2)0.0347 (17)0.0048 (15)0.0094 (14)0.0095 (15)
O1A0.0450 (15)0.0525 (16)0.0315 (14)0.0023 (13)0.0140 (12)0.0063 (12)
O2A0.0576 (19)0.071 (2)0.0518 (17)0.0166 (16)0.0157 (15)0.0287 (15)
Br1A0.0431 (2)0.0517 (3)0.0735 (3)0.0083 (2)0.0150 (2)0.0237 (2)
Br2A0.0425 (3)0.0729 (3)0.1129 (4)0.0071 (2)0.0293 (3)0.0161 (3)
C1B0.034 (2)0.045 (2)0.0293 (19)0.0019 (18)0.0033 (16)0.0069 (17)
C2B0.033 (2)0.066 (3)0.032 (2)0.0049 (19)0.0068 (17)0.0002 (19)
C3B0.049 (3)0.055 (3)0.052 (3)0.004 (2)0.014 (2)0.019 (2)
C4B0.057 (3)0.039 (2)0.079 (3)0.003 (2)0.021 (2)0.007 (2)
C5B0.0310 (19)0.045 (2)0.034 (2)0.0007 (17)0.0029 (16)0.0066 (17)
C6B0.0319 (19)0.041 (2)0.0261 (19)0.0007 (17)0.0029 (15)0.0007 (16)
C7B0.031 (2)0.054 (3)0.042 (2)0.0040 (18)0.0058 (17)0.0103 (19)
C8B0.039 (2)0.059 (3)0.034 (2)0.008 (2)0.0017 (18)0.004 (2)
C9B0.041 (2)0.088 (3)0.048 (2)0.003 (2)0.019 (2)0.005 (2)
C10B0.038 (2)0.041 (2)0.049 (2)0.0043 (19)0.0166 (19)0.0047 (19)
C11B0.046 (3)0.051 (3)0.077 (3)0.005 (2)0.027 (2)0.004 (2)
C12B0.038 (3)0.062 (3)0.112 (4)0.002 (2)0.024 (3)0.010 (3)
C13B0.043 (3)0.068 (3)0.085 (4)0.016 (2)0.001 (3)0.026 (3)
C14B0.076 (3)0.054 (3)0.053 (3)0.017 (3)0.014 (3)0.005 (2)
C15B0.046 (3)0.057 (3)0.051 (3)0.002 (2)0.016 (2)0.004 (2)
N1B0.0353 (18)0.069 (2)0.0368 (18)0.0002 (17)0.0119 (15)0.0119 (17)
O1B0.0382 (15)0.0691 (19)0.0386 (15)0.0098 (14)0.0022 (12)0.0128 (13)
O2B0.0585 (19)0.078 (2)0.0557 (18)0.0063 (16)0.0126 (15)0.0312 (16)
Br1B0.0532 (3)0.0681 (3)0.0736 (3)0.0076 (2)0.0215 (2)0.0344 (2)
Br2B0.0391 (2)0.0748 (3)0.0719 (3)0.0073 (2)0.0161 (2)0.0053 (2)
Geometric parameters (Å, º) top
C1A—C6A1.513 (5)C1B—C6B1.512 (5)
C1A—C2A1.539 (5)C1B—C2B1.539 (5)
C1A—Br1A1.959 (3)C1B—Br1B1.948 (3)
C1A—H1A0.9800C1B—H1B0.9800
C2A—C3A1.534 (5)C2B—C3B1.538 (5)
C2A—Br2A1.935 (4)C2B—Br2B1.943 (3)
C2A—H2A0.9800C2B—H2B0.9800
C3A—O1A1.440 (4)C3B—O1B1.434 (4)
C3A—C4A1.520 (5)C3B—C4B1.520 (5)
C3A—H3A0.9800C3B—H3B0.9800
C4A—C5A1.525 (5)C4B—C5B1.524 (5)
C4A—H4AA0.9700C4B—H4BA0.9700
C4A—H4AB0.9700C4B—H4BB0.9700
C5A—C8A1.516 (5)C5B—C8B1.510 (5)
C5A—C6A1.526 (4)C5B—C6B1.529 (4)
C5A—H5A0.9800C5B—H5B0.9800
C6A—O1A1.449 (4)C6B—O1B1.447 (4)
C6A—C7A1.497 (4)C6B—C7B1.497 (5)
C7A—N1A1.455 (4)C7B—N1B1.459 (4)
C7A—H7AA0.9700C7B—H7BA0.9700
C7A—H7AB0.9700C7B—H7BB0.9700
C8A—O2A1.221 (4)C8B—O2B1.218 (4)
C8A—N1A1.341 (5)C8B—N1B1.343 (5)
C9A—N1A1.452 (4)C9B—N1B1.443 (4)
C9A—C10A1.501 (5)C9B—C10B1.504 (5)
C9A—H9AA0.9700C9B—H9BA0.9700
C9A—H9AB0.9700C9B—H9BB0.9700
C10A—C15A1.371 (5)C10B—C15B1.374 (5)
C10A—C11A1.389 (5)C10B—C11B1.378 (5)
C11A—C12A1.371 (5)C11B—C12B1.377 (6)
C11A—H11A0.9300C11B—H11B0.9300
C12A—C13A1.368 (6)C12B—C13B1.362 (6)
C12A—H12A0.9300C12B—H12B0.9300
C13A—C14A1.369 (6)C13B—C14B1.374 (6)
C13A—H13A0.9300C13B—H13B0.9300
C14A—C15A1.377 (5)C14B—C15B1.394 (5)
C14A—H14A0.9300C14B—H14B0.9300
C15A—H15A0.9300C15B—H15B0.9300
C6A—C1A—C2A100.4 (3)C6B—C1B—C2B100.0 (3)
C6A—C1A—Br1A111.3 (2)C6B—C1B—Br1B112.5 (2)
C2A—C1A—Br1A111.1 (2)C2B—C1B—Br1B111.3 (2)
C6A—C1A—H1A111.2C6B—C1B—H1B110.9
C2A—C1A—H1A111.2C2B—C1B—H1B110.9
Br1A—C1A—H1A111.2Br1B—C1B—H1B110.9
C3A—C2A—C1A102.6 (3)C3B—C2B—C1B103.0 (3)
C3A—C2A—Br2A114.8 (3)C3B—C2B—Br2B114.8 (3)
C1A—C2A—Br2A114.0 (2)C1B—C2B—Br2B113.2 (2)
C3A—C2A—H2A108.4C3B—C2B—H2B108.5
C1A—C2A—H2A108.4C1B—C2B—H2B108.5
Br2A—C2A—H2A108.4Br2B—C2B—H2B108.5
O1A—C3A—C4A102.3 (3)O1B—C3B—C4B102.4 (3)
O1A—C3A—C2A99.6 (3)O1B—C3B—C2B99.0 (3)
C4A—C3A—C2A113.4 (3)C4B—C3B—C2B113.7 (3)
O1A—C3A—H3A113.4O1B—C3B—H3B113.4
C4A—C3A—H3A113.4C4B—C3B—H3B113.4
C2A—C3A—H3A113.4C2B—C3B—H3B113.4
C3A—C4A—C5A100.4 (3)C3B—C4B—C5B100.2 (3)
C3A—C4A—H4AA111.7C3B—C4B—H4BA111.7
C5A—C4A—H4AA111.7C5B—C4B—H4BA111.7
C3A—C4A—H4AB111.7C3B—C4B—H4BB111.7
C5A—C4A—H4AB111.7C5B—C4B—H4BB111.7
H4AA—C4A—H4AB109.5H4BA—C4B—H4BB109.5
C8A—C5A—C4A117.8 (3)C8B—C5B—C4B118.7 (3)
C8A—C5A—C6A101.9 (3)C8B—C5B—C6B102.4 (3)
C4A—C5A—C6A103.2 (3)C4B—C5B—C6B103.3 (3)
C8A—C5A—H5A111.1C8B—C5B—H5B110.5
C4A—C5A—H5A111.1C4B—C5B—H5B110.5
C6A—C5A—H5A111.1C6B—C5B—H5B110.5
O1A—C6A—C7A110.5 (3)O1B—C6B—C7B111.5 (3)
O1A—C6A—C1A102.4 (3)O1B—C6B—C1B102.7 (3)
C7A—C6A—C1A123.7 (3)C7B—C6B—C1B123.2 (3)
O1A—C6A—C5A101.6 (3)O1B—C6B—C5B101.3 (3)
C7A—C6A—C5A106.6 (3)C7B—C6B—C5B106.1 (3)
C1A—C6A—C5A109.9 (3)C1B—C6B—C5B110.0 (3)
N1A—C7A—C6A102.4 (3)N1B—C7B—C6B102.9 (3)
N1A—C7A—H7AA111.3N1B—C7B—H7BA111.2
C6A—C7A—H7AA111.3C6B—C7B—H7BA111.2
N1A—C7A—H7AB111.3N1B—C7B—H7BB111.2
C6A—C7A—H7AB111.3C6B—C7B—H7BB111.2
H7AA—C7A—H7AB109.2H7BA—C7B—H7BB109.1
O2A—C8A—N1A125.7 (4)O2B—C8B—N1B125.3 (4)
O2A—C8A—C5A125.9 (3)O2B—C8B—C5B126.0 (4)
N1A—C8A—C5A108.4 (3)N1B—C8B—C5B108.7 (3)
N1A—C9A—C10A115.1 (3)N1B—C9B—C10B115.1 (3)
N1A—C9A—H9AA108.5N1B—C9B—H9BA108.5
C10A—C9A—H9AA108.5C10B—C9B—H9BA108.5
N1A—C9A—H9AB108.5N1B—C9B—H9BB108.5
C10A—C9A—H9AB108.5C10B—C9B—H9BB108.5
H9AA—C9A—H9AB107.5H9BA—C9B—H9BB107.5
C15A—C10A—C11A119.0 (3)C15B—C10B—C11B119.2 (4)
C15A—C10A—C9A123.1 (3)C15B—C10B—C9B122.5 (3)
C11A—C10A—C9A117.9 (3)C11B—C10B—C9B118.3 (4)
C12A—C11A—C10A120.3 (4)C12B—C11B—C10B120.9 (4)
C12A—C11A—H11A119.9C12B—C11B—H11B119.6
C10A—C11A—H11A119.9C10B—C11B—H11B119.6
C13A—C12A—C11A120.2 (4)C13B—C12B—C11B119.8 (4)
C13A—C12A—H12A119.9C13B—C12B—H12B120.1
C11A—C12A—H12A119.9C11B—C12B—H12B120.1
C12A—C13A—C14A120.0 (4)C12B—C13B—C14B120.5 (4)
C12A—C13A—H13A120.0C12B—C13B—H13B119.8
C14A—C13A—H13A120.0C14B—C13B—H13B119.8
C13A—C14A—C15A120.2 (4)C13B—C14B—C15B119.7 (4)
C13A—C14A—H14A119.9C13B—C14B—H14B120.2
C15A—C14A—H14A119.9C15B—C14B—H14B120.2
C10A—C15A—C14A120.3 (4)C10B—C15B—C14B120.0 (4)
C10A—C15A—H15A119.8C10B—C15B—H15B120.0
C14A—C15A—H15A119.8C14B—C15B—H15B120.0
C8A—N1A—C9A123.6 (3)C8B—N1B—C9B124.0 (3)
C8A—N1A—C7A114.4 (3)C8B—N1B—C7B113.8 (3)
C9A—N1A—C7A121.9 (3)C9B—N1B—C7B121.9 (3)
C3A—O1A—C6A96.2 (2)C3B—O1B—C6B96.4 (2)
C6A—C1A—C2A—C3A2.0 (3)C6B—C1B—C2B—C3B2.6 (3)
Br1A—C1A—C2A—C3A119.8 (3)Br1B—C1B—C2B—C3B121.6 (3)
C6A—C1A—C2A—Br2A126.7 (2)C6B—C1B—C2B—Br2B127.1 (2)
Br1A—C1A—C2A—Br2A115.4 (2)Br1B—C1B—C2B—Br2B113.9 (2)
C1A—C2A—C3A—O1A37.2 (3)C1B—C2B—C3B—O1B37.7 (3)
Br2A—C2A—C3A—O1A161.4 (2)Br2B—C2B—C3B—O1B161.2 (2)
C1A—C2A—C3A—C4A70.7 (4)C1B—C2B—C3B—C4B70.2 (4)
Br2A—C2A—C3A—C4A53.5 (4)Br2B—C2B—C3B—C4B53.2 (4)
O1A—C3A—C4A—C5A37.9 (3)O1B—C3B—C4B—C5B37.9 (4)
C2A—C3A—C4A—C5A68.4 (4)C2B—C3B—C4B—C5B67.9 (4)
C3A—C4A—C5A—C8A114.6 (3)C3B—C4B—C5B—C8B116.0 (3)
C3A—C4A—C5A—C6A3.4 (4)C3B—C4B—C5B—C6B3.5 (4)
C2A—C1A—C6A—O1A33.9 (3)C2B—C1B—C6B—O1B33.4 (3)
Br1A—C1A—C6A—O1A83.8 (3)Br1B—C1B—C6B—O1B84.7 (3)
C2A—C1A—C6A—C7A159.2 (3)C2B—C1B—C6B—C7B160.0 (3)
Br1A—C1A—C6A—C7A41.5 (4)Br1B—C1B—C6B—C7B41.9 (4)
C2A—C1A—C6A—C5A73.4 (3)C2B—C1B—C6B—C5B73.8 (3)
Br1A—C1A—C6A—C5A168.9 (2)Br1B—C1B—C6B—C5B168.1 (2)
C8A—C5A—C6A—O1A91.0 (3)C8B—C5B—C6B—O1B92.6 (3)
C4A—C5A—C6A—O1A31.6 (3)C4B—C5B—C6B—O1B31.4 (3)
C8A—C5A—C6A—C7A24.7 (3)C8B—C5B—C6B—C7B24.0 (4)
C4A—C5A—C6A—C7A147.3 (3)C4B—C5B—C6B—C7B147.9 (3)
C8A—C5A—C6A—C1A161.1 (3)C8B—C5B—C6B—C1B159.3 (3)
C4A—C5A—C6A—C1A76.3 (3)C4B—C5B—C6B—C1B76.8 (3)
O1A—C6A—C7A—N1A86.1 (3)O1B—C6B—C7B—N1B86.1 (3)
C1A—C6A—C7A—N1A152.2 (3)C1B—C6B—C7B—N1B151.2 (3)
C5A—C6A—C7A—N1A23.4 (3)C5B—C6B—C7B—N1B23.4 (4)
C4A—C5A—C8A—O2A52.9 (5)C4B—C5B—C8B—O2B52.6 (5)
C6A—C5A—C8A—O2A164.9 (3)C6B—C5B—C8B—O2B165.6 (4)
C4A—C5A—C8A—N1A128.8 (3)C4B—C5B—C8B—N1B128.6 (4)
C6A—C5A—C8A—N1A16.8 (4)C6B—C5B—C8B—N1B15.6 (4)
N1A—C9A—C10A—C15A12.7 (5)N1B—C9B—C10B—C15B22.1 (6)
N1A—C9A—C10A—C11A166.8 (3)N1B—C9B—C10B—C11B159.4 (4)
C15A—C10A—C11A—C12A0.5 (6)C15B—C10B—C11B—C12B0.1 (6)
C9A—C10A—C11A—C12A179.9 (4)C9B—C10B—C11B—C12B178.7 (4)
C10A—C11A—C12A—C13A0.0 (6)C10B—C11B—C12B—C13B0.5 (7)
C11A—C12A—C13A—C14A0.7 (6)C11B—C12B—C13B—C14B1.0 (7)
C12A—C13A—C14A—C15A1.0 (6)C12B—C13B—C14B—C15B0.9 (6)
C11A—C10A—C15A—C14A0.1 (6)C11B—C10B—C15B—C14B0.2 (6)
C9A—C10A—C15A—C14A179.6 (4)C9B—C10B—C15B—C14B178.8 (4)
C13A—C14A—C15A—C10A0.6 (6)C13B—C14B—C15B—C10B0.3 (6)
O2A—C8A—N1A—C9A5.0 (6)O2B—C8B—N1B—C9B6.4 (6)
C5A—C8A—N1A—C9A173.3 (3)C5B—C8B—N1B—C9B172.4 (3)
O2A—C8A—N1A—C7A179.3 (3)O2B—C8B—N1B—C7B179.9 (4)
C5A—C8A—N1A—C7A2.4 (4)C5B—C8B—N1B—C7B1.0 (4)
C10A—C9A—N1A—C8A113.6 (4)C10B—C9B—N1B—C8B119.8 (4)
C10A—C9A—N1A—C7A71.0 (4)C10B—C9B—N1B—C7B67.2 (5)
C6A—C7A—N1A—C8A13.4 (4)C6B—C7B—N1B—C8B14.3 (4)
C6A—C7A—N1A—C9A170.8 (3)C6B—C7B—N1B—C9B172.0 (3)
C4A—C3A—O1A—C6A58.3 (3)C4B—C3B—O1B—C6B58.5 (3)
C2A—C3A—O1A—C6A58.3 (3)C2B—C3B—O1B—C6B58.4 (3)
C7A—C6A—O1A—C3A167.7 (3)C7B—C6B—O1B—C3B167.3 (3)
C1A—C6A—O1A—C3A58.7 (3)C1B—C6B—O1B—C3B59.0 (3)
C5A—C6A—O1A—C3A54.9 (3)C5B—C6B—O1B—C3B54.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1A—H1A···O2Ai0.982.513.175 (4)125
C4A—H4AB···Br2A0.972.813.287 (4)111
C5A—H5A···O2Ai0.982.643.271 (4)123
C7A—H7AB···O2Ai0.972.533.186 (4)125
C1B—H1B···O2Bii0.982.393.104 (4)129
C2B—H2B···O1A0.982.383.341 (4)168
C4B—H4BB···Br2B0.972.833.301 (4)111
C5B—H5B···O2Bii0.982.573.247 (5)126
C7B—H7BB···O2Bii0.972.643.270 (5)123
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+3/2.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
H2A···Br1A3.212 - x, 1 - y, 1 - z
Br1A···Br2B3.86552 - x, 1 - y, 1 - z
Br2A···Br1B3.89932 - x, -y, 1 - z
O1A···H2B2.38x, y, z
O2A···H1A2.513/2 - x, -1/2 + y, 1/2 - z
O2A···H11B2.781 - x, - y, 1 - z
H7AA···C13B2.851 - x, 1 - y, 1 - z
H11A···H5B2.55-1/2 + x, 1/2 - y, -1/2 + z
H13B···Br1B3.131 - x, -y, 1 - z
O2B···H1B2.393/2 - x, 1/2 + y, 3/2 - z
H13B···H3B2.421 - x, 1 - y, 1 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound top
ContactPercentage contribution
H···H44.6
Br···H/H···Br24.1
O···H/H···O13.5
C···H/H···C11.2
Br···Br3.9
C···C2.0
N···H/H···N0.5
Br···C/C···Br0.3
 

Funding information

The authors are grateful to the Russian Foundation for Basic Research (RFBR) (award No. 19–03-00807) for financial support of this research.

References

First citationAfkhami, F. A., Khandar, A. A., Mahmoudi, G., Maniukiewicz, W., Gurbanov, A. V., Zubkov, F. I., Şahin, O., Yeşilel, O. Z. & Frontera, A. (2017). CrystEngComm, 19, 1389–1399.  Web of Science CSD CrossRef CAS Google Scholar
First citationAsadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfactants Deterg. 19, 145–153.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2013). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurakov, N. I., Kanibolotskii, A. L., Osichenko, G. Yu., Mikhailov, V. A., Savelova, V. A. & Kosmynin, V. V. (2001). Russ. J. Org. Chem. 37, 1210–1219.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDemircan, A., Temel, E., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1628–o1629.  CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248–7250.  Web of Science CrossRef CAS Google Scholar
First citationKoşar, B., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o994–o995.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoşar, B., Karaarslan, M., Demir, I. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938.  Web of Science CrossRef CAS Google Scholar
First citationMikhailov, V. A., Savelova, V. A. & Rodygin, M. Yu. (1993). Zh. Org. Khim. 29, 2251–2254.  CAS Google Scholar
First citationProkop'eva, T. M., Mikhailov, V. A., Turovskaya, M. K., Karpichev, E. A., Burakov, N. I., Savelova, V. A., Kapitanov, I. V. & Popov, A. F. (2008). Russ. J. Org. Chem. 44, 637–646.  CAS Google Scholar
First citationProkop'eva, T. M., Mikhailov, V. A., Turovskaya, M. K., Karpichev, E. A., Burakov, N. I., Savelova, V. A., Rodygin, M. Yu., Mikhailov, V. A. & Savelova, V. A. (1994). Zh. Org. Khim. 30, 827–832.  Google Scholar
First citationRodygin, M. Yu., Mikhailov, V. A., Savelova, V. A. & Chernovol, P. A. (1992). J. Org. Chem. USSR (Engl. Transl.), 28, 1543–1544 [(1992). Zh. Org. Khim., 28, 1926–1927].  Google Scholar
First citationRodygin, M. Yu., Mikhailov, V. A., Zurbritskii, M. Yu. & Savelova, V. A. (1994). Zh. Org. Khim. 30, 339–343.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTemel, E., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1304–o1305.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTemel, E., Demircan, A., Beyazova, G. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1102–o1103.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationTemel, E., Demircan, A., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1551–o1552.  CSD CrossRef IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia.  Google Scholar
First citationZaytsev, V. P., Mertsalov, D. F., Trunova, A. M., Khanova, A. V., Nikitina, E. V., Sinelshchikova, A. A. & Grigoriev, M. S. (2020). Chem. Heterocycl. Compd, 56, 930–935.  Web of Science CSD CrossRef CAS Google Scholar
First citationZaytsev, V. P., Revutskaya, E. L., Nikanorova, T. V., Nikitina, E. V., Dorovatovskii, P. V., Khrustalev, V. N., Yagafarov, N. Z., Zubkov, F. I. & Varlamov, A. V. (2017). Synthesis, 49, 3749–3767.  Web of Science CSD CrossRef CAS Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds