research communications
H-isoindol-1-one
and Hirshfeld surface analysis of 2-benzyl-4,5-dibromo-2,3,3a,4,5,6,7,7a-octahydro-3a,6-epoxy-1aDepartment of Organic Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198, Moscow, Russian Federation, bFrumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31, bld. 4, Moscow, 119071, Russian Federation, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
*Correspondence e-mail: sixberth.mlowe@duce.ac.tz
The title compound, C15H15Br2NO2, crystallizes with two molecules in the of the In both molecules, the tetrahydrofuran rings adopt an with the O atom as the flap and the pyrrolidine rings adopt an In the crystal, molecules are linked by weak C—H⋯O hydrogen bonds, forming sheets lying parallel to the (002) plane. These sheets are connected only by weak van der Waals interactions. The most important contributions to the surface contacts are from H⋯H (44.6%), Br⋯H/H⋯Br (24.1%), O⋯H/H⋯O (13.5%) and C⋯H/H⋯C (11.2%) interactions, as concluded from a Hirshfeld surface analysis.
Keywords: crystal structure; pyrrolidine ring; tetrahydrofuran ring; epoxyisoindole moiety; Hirshfeld surface analysis.
CCDC reference: 2061968
1. Chemical context
Halogenation is a chemical reaction that involves the introduction of one or more halogen atoms to an organic molecule. The pathway and stereochemistry of halogenation reactions is dependent on the configuration of the starting olefine and the halogenating agent. The role/behavior of the attached halogen atom in olefines can be classified into the following types: (1) as an electron-withdrawing substituent, (2) as a halogen-bond donor center, and (3) as a non-covalent bond acceptor site. Thus, not only hydrogen bonding (Gurbanov et al., 2018; Kopylovich et al., 2011) or other types of non-covalent interactions (Afkhami et al., 2017; Asadov et al., 2016; Ma et al., 2017a,b; 2020; Mahmudov et al., 2010; 2019; 2020, but also halogen bonding can be used in the design of olefines. In this work, we proposed and tested inexpensive and readily available bis[N,N-dimethylacetamide] hydrogen dibromobromate [(Me2NCOMe)2H]Br3 as a bromine initiator and a source of a positively charged bromine ion (Rodygin et al., 1992; Prokop'eva et al., 1994; Prokop'eva, 2008). The choice of [(Me2NCOMe)2H]Br3, obtained by one-pot synthesis from N,N-dimethylacetamide, hydrobromic acid and bromine, is down to the simplicity of the synthesis and isolation, and the unambiguous direction of the bromination process. In addition, [(Me2NCOMe)2H]Br3 is an excellent reagent for functionalization of and anilines (Rodygin et al., 1992; Mikhailov et al., 1993), and is also used in the synthesis of mono-bromo-substituted (Rodygin et al., 1994; Burakov et al., 2001) and for the bromination of various and (Rodygin et al., 1994; Zaytsev et al., 2017). The present work is aimed at accumulating experimental data and establishing the rules of the halogenation in bridged epoxy-isoindolones (Zubkov et al., 2018; Zaytsev et al., 2020). The reaction of N-benzyltetrahydroepoxyisoindolone (1) with [(Me2NCOMe)2H]Br3 in dry chloroform under reflux leads to the corresponding 2-benzyl-4,5-dibromohexahydro-3a,6-epoxyisoindol-1(4H)-one (2) (Fig. 1).
2. Structural commentary
The ) contains two molecules of similar shape, hereafter referred to as molecules A (including atom C1A) and B (including atom C1B). The conformational differences between molecules A and B are highlighted in an overlay diagram shown in Fig. 3. The r.m.s. deviation of the overlay between the molecules A and B is 0.114 Å.
of the title compound (Fig. 2In both molecules A and B, the pyrrolidine rings (N1A/C5A–C8A and N1B/C5B–C8B), tetrahydrofuran rings (O1A/C1A–C3A/C6A, O1A/C3A–C6A and O1B/C1B–C3B/C6B, O1B/C3B–C6B) and six-membered rings (C1A–C6A and C1B–C6B), which generate epoxyisoindole moieties (O1A/N1A/C1A–C8A and O1B/N1B/C1B–C8B), are puckered. In molecule A, both tetrahydrofuran rings adopt an with puckering parameters (Cremer & Pople, 1975) Q(2) = 0.575 (3) Å, φ(2) = 182.2 (4)° for (O1A/C1A–C3A/C6A) and Q(2) = 0.558 (4) Å, φ(2) = 3.8 (4)° for (O1A/C3A–C6A), respectively. In molecule B, both tetrahydrofuran rings also adopt an with puckering parameters Q(2) = 0.575 (4) Å, φ(2) = 182.7 (4)° for (O1B/C1B–C3B/C6B) and Q(2) = 0.556 (4) Å, φ(2) = 3.7 (4)° for (O1B/C3B–C6B).
The five-membered pyrrolidine rings also exhibit an A [puckering parameters Q(2) = 0.248 (4) Å, φ(2) = 77.7 (8)°] for molecule A and 0.153 (3) Å at C6B [puckering parameters Q(2) = 0.243 (4) Å, φ(2) = 75.0 (9)°] for molecule B. In both molecules, the six-membered ring has a boat conformation [QT = 0.921 (4) Å, θ = 91.8 (2)°, φ = 119.3 (2)° for molecule A; QT = 0.919 (4) Å, θ = 91.9 (2)°, φ = 119.6 (3)° for molecule B].
with a maximum deviation from the mean plane of 0.155 (3) Å at C63. Supramolecular features
In the crystal, molecules are linked by weak C—H⋯O hydrogen bonds, forming sheets lying parallel to the (002) plane (Table 1, Figs. 4 and 5). These sheets are connected only by weak van der Waals interactions.
4. Hirshfeld surface analysis
The intermolecular interactions (Table 2) were investigated quantitatively and visualized with Crystal Explorer 3.1 (Wolff et al., 2012; Spackman et al., 2009). The Hirshfeld surface plotted over dnorm in the range −0.0815 to 0.9926 a.u. is shown in Fig. 6. The red spots on the Hirshfeld surface represent C—H⋯O contacts. Fig. 7 shows the full two-dimensional fingerprint plot and those delineated into the major contacts: the H⋯H (44.6%) interactions are the major factor in the crystal packing with Br⋯H/H⋯Br (24.1%), O⋯H/H⋯O (13.5%) and C⋯H/H⋯C (11.2%) interactions representing the next highest contributions. The percentage contributions of other weak interactions are listed in Table 3.
|
|
5. Database survey
A search of the Cambridge Structural Database (CSD version 5.40, update of September 2019; Groom et al., 2016) for structures having the epoxyisoindole moiety gave six hits, which closely resemble the title compound, viz. (3aR,6S,7aR)-7a-chloro-2-[(4-nitrophenyl)sulfonyl]-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole (CSD refcode AGONUH; Temel et al., 2013), (3aR,6S,7aR)-7a-chloro-6-methyl-2-[(4-nitrophenyl)sulfonyl]-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole (TIJMIK; Demircan et al., 2013), 5-chloro-7-methyl-3-[(4-methylphenyl)sulfonyl]-10-oxa-3-azatricyclo[5.2.1.01,5]dec-8-ene (YAXCIL; Temel et al., 2012), (3aR,6S,7aR)-7a-bromo-2-[(4-methylphenyl)sulfonyl]-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole (UPAQEI; Koşar et al., 2011), (3aR,6S,7aR)-7a-bromo-2-methylsulfonyl-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole (ERIVIL; Temel et al., 2011) and tert-butyl 3a-chloroperhydro-2,6a-epoxyoxireno(e)isoindole-5-carboxylate (MIGTIG; Koşar et al., 2007).
In the crystal of AGONUH, the molecules are linked by C—H⋯O hydrogen bonds into zigzag chains running along the b-axis direction. In TIJMIK, two types of C—H⋯O hydrogen bonds generate R22(20) and R44(26) rings, with adjacent rings running parallel to ac plane. In addition C—H⋯O hydrogen bonds form a C(6) chain, linking the molecules in the b-axis direction. In YAXCIL and UPAQEI, molecules are also linked by C—H⋯O hydrogen bonds. In the crystal of ERIVIL, weak intermolecular C—H⋯O hydrogen bonds link the molecules into R22(8) and R22(14) rings along the b-axis direction. In MIGTIG, the molecules are linked only by weak van der Waals interactions.
6. Synthesis and crystallization
A solution of isoindolone 1 (4 mmol) and the brominating agent (4 mmol) in dry chloroform (15 mL) was heated under reflux for 18 h (TLC control, EtOAc–hexane, 1:1). The reaction mixture was poured into H2O (50 mL) and extracted with CHCl3 (3 × 20 mL). The combined organic fractions were dried over anhydrous Na2SO4, the solvent was evaporated under reduced pressure, and the residue was purified by (SiO2, 15 × 1.8 cm, hexane/EtOAc, 10:1). Colourless hexagonal prisms. Yield 0.46 g (29%), m.p. > 428 K (decomposition).
IR (KBr), ν (cm−1): 1693 (N—C=O), 627 (C—Br). 1H NMR (CDCl3, 600 MHz, 301 K): δ = 7.37–7.34 (m, 2H, H-Ph), 7.32–7.29 (m, 1H, H-Ph), 7.24–7.22 (m, 2H, H-Ph), 4.71 (t, 1H, H6, J = 5.0), 4.54 (d, 1H, CH2Ph, J = 15.1) and 4.48 (d, 1H, CH2Ph, J = 15.1), 4.46 (ddd, 1H, H5, J = 1.5, J = 2.5, J = 5.0), 4.17 (d, 1H, H4, J = 2.5), 3.50 (d, 1H, J = 12.1) and 3.47 (d, 1H, H3, J = 12.1), 2.81 (dd, 1H, H7A, J = 4.7, J = 9.3), 2.73 (dd, 1H, H7B, J = 9.3, J = 12.8), 2.25–2.21 (m, 1H, H7A). 13C NMR (CDCl3, 150.9 MHz, 301 K): δ = 172.9, 135.5, 128.8 (2C), 127.9 (2C), 127.7, 90.0, 80.6, 55.1, 48.9, 48.4, 46.5, 33.8, 30.2. MS (APCI): m/z = 400 [M + H]+ (81Br), 402 [M + H]+ (81Br, 79Br), 404 [M + H]+ (79Br).
7. Refinement
Crystal data, data collection and structure . C-bound H atoms were positioned geometrically, with C—H = 0.93 Å (for aromatic H atoms), C—H = 0.98 Å (for methine H atoms), 0.97 Å (for methylene H atoms) and 0.96 Å (for methyl H atoms), and constrained to ride on their parent atoms, with Uiso(H) =1.2Ueq(C) or 1.5Ueq(C-methyl). Ten reflections (101), (01), (111), (002), (11), (110), (200), (03), (02) and (12) were obscured by the beam stop and omitted during the final cycle.
details are summarized in Table 4
|
Supporting information
CCDC reference: 2061968
https://doi.org/10.1107/S2056989021001481/jy2005sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021001481/jy2005Isup2.hkl
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: PLATON (Spek, 2020).C15H15Br2NO2 | F(000) = 1584 |
Mr = 401.10 | Dx = 1.777 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 17.4839 (5) Å | Cell parameters from 5179 reflections |
b = 8.2993 (3) Å | θ = 2.7–22.8° |
c = 21.5120 (7) Å | µ = 5.41 mm−1 |
β = 106.115 (2)° | T = 296 K |
V = 2998.83 (17) Å3 | Hexagonal prisms, colourless |
Z = 8 | 0.14 × 0.13 × 0.13 mm |
Bruker Kappa APEXII area-detector diffractometer | 3997 reflections with I > 2σ(I) |
ω– and φ–scans | Rint = 0.053 |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | θmax = 27.8°, θmin = 2.7° |
Tmin = 0.224, Tmax = 0.294 | h = −22→22 |
32806 measured reflections | k = −10→10 |
6995 independent reflections | l = −28→27 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.043 | w = 1/[σ2(Fo2) + (0.0333P)2 + 1.282P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.091 | (Δ/σ)max = 0.001 |
S = 1.02 | Δρmax = 0.83 e Å−3 |
6995 reflections | Δρmin = −0.65 e Å−3 |
362 parameters | Extinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00111 (12) |
Primary atom site location: inferred from neighbouring sites |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1A | 0.8852 (2) | 0.3745 (4) | 0.38724 (16) | 0.0370 (9) | |
H1A | 0.900973 | 0.406568 | 0.348719 | 0.044* | |
C2A | 0.9420 (2) | 0.2461 (5) | 0.42647 (17) | 0.0449 (10) | |
H2A | 0.959259 | 0.280858 | 0.471765 | 0.054* | |
C3A | 0.8874 (2) | 0.0992 (5) | 0.42168 (18) | 0.0482 (10) | |
H3A | 0.907172 | 0.020343 | 0.456328 | 0.058* | |
C4A | 0.8625 (2) | 0.0245 (5) | 0.35457 (19) | 0.0519 (11) | |
H4AA | 0.833459 | −0.075272 | 0.354065 | 0.062* | |
H4AB | 0.907972 | 0.004926 | 0.338033 | 0.062* | |
C5A | 0.8091 (2) | 0.1574 (4) | 0.31692 (16) | 0.0362 (9) | |
H5A | 0.831483 | 0.203675 | 0.283872 | 0.043* | |
C6A | 0.80785 (19) | 0.2812 (4) | 0.36906 (15) | 0.0309 (8) | |
C7A | 0.72741 (19) | 0.3587 (4) | 0.34938 (16) | 0.0373 (9) | |
H7AA | 0.707948 | 0.380283 | 0.386626 | 0.045* | |
H7AB | 0.728396 | 0.458539 | 0.326150 | 0.045* | |
C8A | 0.7213 (2) | 0.1203 (5) | 0.28926 (16) | 0.0413 (9) | |
C9A | 0.5932 (2) | 0.2502 (5) | 0.28436 (17) | 0.0511 (11) | |
H9AA | 0.574028 | 0.171921 | 0.250087 | 0.061* | |
H9AB | 0.579798 | 0.356414 | 0.265650 | 0.061* | |
C10A | 0.5498 (2) | 0.2245 (4) | 0.33480 (17) | 0.0381 (9) | |
C11A | 0.4700 (2) | 0.2679 (5) | 0.31950 (19) | 0.0495 (10) | |
H11A | 0.445253 | 0.311234 | 0.279045 | 0.059* | |
C12A | 0.4276 (2) | 0.2472 (5) | 0.3638 (2) | 0.0607 (12) | |
H12A | 0.374225 | 0.276410 | 0.353302 | 0.073* | |
C13A | 0.4637 (3) | 0.1837 (5) | 0.4234 (2) | 0.0606 (12) | |
H13A | 0.434686 | 0.168605 | 0.453196 | 0.073* | |
C14A | 0.5425 (3) | 0.1423 (5) | 0.4392 (2) | 0.0573 (11) | |
H14A | 0.567212 | 0.100717 | 0.479959 | 0.069* | |
C15A | 0.5855 (2) | 0.1619 (5) | 0.39485 (17) | 0.0454 (10) | |
H15A | 0.638886 | 0.132644 | 0.405694 | 0.055* | |
N1A | 0.67922 (17) | 0.2373 (4) | 0.30754 (13) | 0.0413 (8) | |
O1A | 0.81551 (14) | 0.1790 (3) | 0.42508 (10) | 0.0424 (6) | |
O2A | 0.69344 (17) | 0.0056 (3) | 0.25485 (13) | 0.0602 (8) | |
Br1A | 0.87859 (2) | 0.56161 (5) | 0.44107 (2) | 0.05631 (15) | |
Br2A | 1.03562 (3) | 0.20912 (6) | 0.39717 (3) | 0.07454 (18) | |
C1B | 0.7908 (2) | 0.1347 (4) | 0.61250 (16) | 0.0372 (9) | |
H1B | 0.829984 | 0.094825 | 0.651364 | 0.045* | |
C2B | 0.8272 (2) | 0.2662 (5) | 0.57905 (17) | 0.0440 (10) | |
H2B | 0.815399 | 0.240013 | 0.532932 | 0.053* | |
C3B | 0.7797 (2) | 0.4175 (5) | 0.58646 (19) | 0.0520 (11) | |
H3B | 0.780526 | 0.501711 | 0.554716 | 0.062* | |
C4B | 0.7985 (3) | 0.4797 (5) | 0.6555 (2) | 0.0576 (12) | |
H4BA | 0.772113 | 0.581506 | 0.657849 | 0.069* | |
H4BB | 0.855305 | 0.491715 | 0.674785 | 0.069* | |
C5B | 0.7640 (2) | 0.3436 (4) | 0.68693 (16) | 0.0379 (9) | |
H5B | 0.806381 | 0.287933 | 0.719270 | 0.045* | |
C6B | 0.7267 (2) | 0.2315 (4) | 0.63022 (15) | 0.0342 (8) | |
C7B | 0.6560 (2) | 0.1563 (5) | 0.64522 (17) | 0.0435 (9) | |
H7BA | 0.612042 | 0.144230 | 0.606419 | 0.052* | |
H7BB | 0.669218 | 0.051786 | 0.665507 | 0.052* | |
C8B | 0.6947 (2) | 0.3797 (5) | 0.71379 (18) | 0.0454 (10) | |
C9B | 0.5654 (2) | 0.2577 (6) | 0.71072 (19) | 0.0575 (12) | |
H9BA | 0.568277 | 0.335108 | 0.745061 | 0.069* | |
H9BB | 0.564186 | 0.150991 | 0.728853 | 0.069* | |
C10B | 0.4888 (2) | 0.2840 (4) | 0.65875 (18) | 0.0419 (9) | |
C11B | 0.4196 (2) | 0.2234 (5) | 0.6684 (2) | 0.0561 (11) | |
H11B | 0.421680 | 0.166181 | 0.705987 | 0.067* | |
C12B | 0.3474 (3) | 0.2465 (6) | 0.6231 (3) | 0.0698 (14) | |
H12B | 0.301036 | 0.205823 | 0.630294 | 0.084* | |
C13B | 0.3441 (3) | 0.3291 (6) | 0.5677 (3) | 0.0691 (14) | |
H13B | 0.295513 | 0.343200 | 0.536779 | 0.083* | |
C14B | 0.4122 (3) | 0.3918 (5) | 0.5572 (2) | 0.0618 (12) | |
H14B | 0.409600 | 0.449397 | 0.519547 | 0.074* | |
C15B | 0.4852 (2) | 0.3686 (5) | 0.60312 (19) | 0.0509 (10) | |
H15B | 0.531509 | 0.410312 | 0.596131 | 0.061* | |
N1B | 0.63674 (18) | 0.2718 (4) | 0.68980 (14) | 0.0465 (8) | |
O1B | 0.70287 (14) | 0.3452 (3) | 0.57735 (11) | 0.0503 (7) | |
O2B | 0.69187 (17) | 0.4868 (4) | 0.75178 (14) | 0.0648 (8) | |
Br1B | 0.74753 (3) | −0.04142 (6) | 0.55333 (2) | 0.06418 (16) | |
Br2B | 0.94187 (2) | 0.28604 (6) | 0.61425 (2) | 0.06177 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1A | 0.037 (2) | 0.040 (2) | 0.036 (2) | −0.0011 (18) | 0.0147 (17) | −0.0043 (17) |
C2A | 0.038 (2) | 0.055 (3) | 0.039 (2) | 0.0064 (19) | 0.0054 (18) | −0.0034 (19) |
C3A | 0.046 (2) | 0.048 (2) | 0.048 (2) | 0.008 (2) | 0.008 (2) | 0.013 (2) |
C4A | 0.052 (3) | 0.039 (2) | 0.065 (3) | −0.002 (2) | 0.017 (2) | −0.010 (2) |
C5A | 0.037 (2) | 0.039 (2) | 0.035 (2) | −0.0019 (17) | 0.0145 (17) | −0.0052 (17) |
C6A | 0.0317 (19) | 0.037 (2) | 0.0262 (18) | 0.0007 (17) | 0.0116 (15) | 0.0010 (16) |
C7A | 0.034 (2) | 0.043 (2) | 0.038 (2) | −0.0003 (18) | 0.0151 (17) | −0.0061 (18) |
C8A | 0.047 (2) | 0.051 (3) | 0.027 (2) | −0.010 (2) | 0.0127 (18) | −0.0056 (19) |
C9A | 0.034 (2) | 0.074 (3) | 0.039 (2) | −0.003 (2) | 0.0010 (18) | 0.004 (2) |
C10A | 0.031 (2) | 0.042 (2) | 0.039 (2) | −0.0070 (17) | 0.0072 (17) | −0.0031 (18) |
C11A | 0.038 (2) | 0.056 (3) | 0.051 (2) | −0.004 (2) | 0.005 (2) | −0.001 (2) |
C12A | 0.038 (2) | 0.059 (3) | 0.088 (4) | −0.004 (2) | 0.022 (3) | −0.009 (3) |
C13A | 0.061 (3) | 0.065 (3) | 0.068 (3) | −0.016 (3) | 0.038 (3) | −0.014 (3) |
C14A | 0.061 (3) | 0.066 (3) | 0.045 (3) | −0.011 (2) | 0.015 (2) | 0.002 (2) |
C15A | 0.038 (2) | 0.055 (3) | 0.043 (2) | −0.0004 (19) | 0.0104 (19) | 0.0004 (19) |
N1A | 0.0313 (16) | 0.058 (2) | 0.0347 (17) | −0.0048 (15) | 0.0094 (14) | −0.0095 (15) |
O1A | 0.0450 (15) | 0.0525 (16) | 0.0315 (14) | −0.0023 (13) | 0.0140 (12) | 0.0063 (12) |
O2A | 0.0576 (19) | 0.071 (2) | 0.0518 (17) | −0.0166 (16) | 0.0157 (15) | −0.0287 (15) |
Br1A | 0.0431 (2) | 0.0517 (3) | 0.0735 (3) | −0.0083 (2) | 0.0150 (2) | −0.0237 (2) |
Br2A | 0.0425 (3) | 0.0729 (3) | 0.1129 (4) | 0.0071 (2) | 0.0293 (3) | −0.0161 (3) |
C1B | 0.034 (2) | 0.045 (2) | 0.0293 (19) | −0.0019 (18) | 0.0033 (16) | −0.0069 (17) |
C2B | 0.033 (2) | 0.066 (3) | 0.032 (2) | −0.0049 (19) | 0.0068 (17) | −0.0002 (19) |
C3B | 0.049 (3) | 0.055 (3) | 0.052 (3) | 0.004 (2) | 0.014 (2) | 0.019 (2) |
C4B | 0.057 (3) | 0.039 (2) | 0.079 (3) | −0.003 (2) | 0.021 (2) | −0.007 (2) |
C5B | 0.0310 (19) | 0.045 (2) | 0.034 (2) | 0.0007 (17) | 0.0029 (16) | −0.0066 (17) |
C6B | 0.0319 (19) | 0.041 (2) | 0.0261 (19) | 0.0007 (17) | 0.0029 (15) | 0.0007 (16) |
C7B | 0.031 (2) | 0.054 (3) | 0.042 (2) | −0.0040 (18) | 0.0058 (17) | −0.0103 (19) |
C8B | 0.039 (2) | 0.059 (3) | 0.034 (2) | 0.008 (2) | 0.0017 (18) | −0.004 (2) |
C9B | 0.041 (2) | 0.088 (3) | 0.048 (2) | 0.003 (2) | 0.019 (2) | 0.005 (2) |
C10B | 0.038 (2) | 0.041 (2) | 0.049 (2) | 0.0043 (19) | 0.0166 (19) | −0.0047 (19) |
C11B | 0.046 (3) | 0.051 (3) | 0.077 (3) | 0.005 (2) | 0.027 (2) | 0.004 (2) |
C12B | 0.038 (3) | 0.062 (3) | 0.112 (4) | −0.002 (2) | 0.024 (3) | −0.010 (3) |
C13B | 0.043 (3) | 0.068 (3) | 0.085 (4) | 0.016 (2) | −0.001 (3) | −0.026 (3) |
C14B | 0.076 (3) | 0.054 (3) | 0.053 (3) | 0.017 (3) | 0.014 (3) | −0.005 (2) |
C15B | 0.046 (3) | 0.057 (3) | 0.051 (3) | −0.002 (2) | 0.016 (2) | −0.004 (2) |
N1B | 0.0353 (18) | 0.069 (2) | 0.0368 (18) | −0.0002 (17) | 0.0119 (15) | −0.0119 (17) |
O1B | 0.0382 (15) | 0.0691 (19) | 0.0386 (15) | 0.0098 (14) | 0.0022 (12) | 0.0128 (13) |
O2B | 0.0585 (19) | 0.078 (2) | 0.0557 (18) | 0.0063 (16) | 0.0126 (15) | −0.0312 (16) |
Br1B | 0.0532 (3) | 0.0681 (3) | 0.0736 (3) | −0.0076 (2) | 0.0215 (2) | −0.0344 (2) |
Br2B | 0.0391 (2) | 0.0748 (3) | 0.0719 (3) | −0.0073 (2) | 0.0161 (2) | 0.0053 (2) |
C1A—C6A | 1.513 (5) | C1B—C6B | 1.512 (5) |
C1A—C2A | 1.539 (5) | C1B—C2B | 1.539 (5) |
C1A—Br1A | 1.959 (3) | C1B—Br1B | 1.948 (3) |
C1A—H1A | 0.9800 | C1B—H1B | 0.9800 |
C2A—C3A | 1.534 (5) | C2B—C3B | 1.538 (5) |
C2A—Br2A | 1.935 (4) | C2B—Br2B | 1.943 (3) |
C2A—H2A | 0.9800 | C2B—H2B | 0.9800 |
C3A—O1A | 1.440 (4) | C3B—O1B | 1.434 (4) |
C3A—C4A | 1.520 (5) | C3B—C4B | 1.520 (5) |
C3A—H3A | 0.9800 | C3B—H3B | 0.9800 |
C4A—C5A | 1.525 (5) | C4B—C5B | 1.524 (5) |
C4A—H4AA | 0.9700 | C4B—H4BA | 0.9700 |
C4A—H4AB | 0.9700 | C4B—H4BB | 0.9700 |
C5A—C8A | 1.516 (5) | C5B—C8B | 1.510 (5) |
C5A—C6A | 1.526 (4) | C5B—C6B | 1.529 (4) |
C5A—H5A | 0.9800 | C5B—H5B | 0.9800 |
C6A—O1A | 1.449 (4) | C6B—O1B | 1.447 (4) |
C6A—C7A | 1.497 (4) | C6B—C7B | 1.497 (5) |
C7A—N1A | 1.455 (4) | C7B—N1B | 1.459 (4) |
C7A—H7AA | 0.9700 | C7B—H7BA | 0.9700 |
C7A—H7AB | 0.9700 | C7B—H7BB | 0.9700 |
C8A—O2A | 1.221 (4) | C8B—O2B | 1.218 (4) |
C8A—N1A | 1.341 (5) | C8B—N1B | 1.343 (5) |
C9A—N1A | 1.452 (4) | C9B—N1B | 1.443 (4) |
C9A—C10A | 1.501 (5) | C9B—C10B | 1.504 (5) |
C9A—H9AA | 0.9700 | C9B—H9BA | 0.9700 |
C9A—H9AB | 0.9700 | C9B—H9BB | 0.9700 |
C10A—C15A | 1.371 (5) | C10B—C15B | 1.374 (5) |
C10A—C11A | 1.389 (5) | C10B—C11B | 1.378 (5) |
C11A—C12A | 1.371 (5) | C11B—C12B | 1.377 (6) |
C11A—H11A | 0.9300 | C11B—H11B | 0.9300 |
C12A—C13A | 1.368 (6) | C12B—C13B | 1.362 (6) |
C12A—H12A | 0.9300 | C12B—H12B | 0.9300 |
C13A—C14A | 1.369 (6) | C13B—C14B | 1.374 (6) |
C13A—H13A | 0.9300 | C13B—H13B | 0.9300 |
C14A—C15A | 1.377 (5) | C14B—C15B | 1.394 (5) |
C14A—H14A | 0.9300 | C14B—H14B | 0.9300 |
C15A—H15A | 0.9300 | C15B—H15B | 0.9300 |
C6A—C1A—C2A | 100.4 (3) | C6B—C1B—C2B | 100.0 (3) |
C6A—C1A—Br1A | 111.3 (2) | C6B—C1B—Br1B | 112.5 (2) |
C2A—C1A—Br1A | 111.1 (2) | C2B—C1B—Br1B | 111.3 (2) |
C6A—C1A—H1A | 111.2 | C6B—C1B—H1B | 110.9 |
C2A—C1A—H1A | 111.2 | C2B—C1B—H1B | 110.9 |
Br1A—C1A—H1A | 111.2 | Br1B—C1B—H1B | 110.9 |
C3A—C2A—C1A | 102.6 (3) | C3B—C2B—C1B | 103.0 (3) |
C3A—C2A—Br2A | 114.8 (3) | C3B—C2B—Br2B | 114.8 (3) |
C1A—C2A—Br2A | 114.0 (2) | C1B—C2B—Br2B | 113.2 (2) |
C3A—C2A—H2A | 108.4 | C3B—C2B—H2B | 108.5 |
C1A—C2A—H2A | 108.4 | C1B—C2B—H2B | 108.5 |
Br2A—C2A—H2A | 108.4 | Br2B—C2B—H2B | 108.5 |
O1A—C3A—C4A | 102.3 (3) | O1B—C3B—C4B | 102.4 (3) |
O1A—C3A—C2A | 99.6 (3) | O1B—C3B—C2B | 99.0 (3) |
C4A—C3A—C2A | 113.4 (3) | C4B—C3B—C2B | 113.7 (3) |
O1A—C3A—H3A | 113.4 | O1B—C3B—H3B | 113.4 |
C4A—C3A—H3A | 113.4 | C4B—C3B—H3B | 113.4 |
C2A—C3A—H3A | 113.4 | C2B—C3B—H3B | 113.4 |
C3A—C4A—C5A | 100.4 (3) | C3B—C4B—C5B | 100.2 (3) |
C3A—C4A—H4AA | 111.7 | C3B—C4B—H4BA | 111.7 |
C5A—C4A—H4AA | 111.7 | C5B—C4B—H4BA | 111.7 |
C3A—C4A—H4AB | 111.7 | C3B—C4B—H4BB | 111.7 |
C5A—C4A—H4AB | 111.7 | C5B—C4B—H4BB | 111.7 |
H4AA—C4A—H4AB | 109.5 | H4BA—C4B—H4BB | 109.5 |
C8A—C5A—C4A | 117.8 (3) | C8B—C5B—C4B | 118.7 (3) |
C8A—C5A—C6A | 101.9 (3) | C8B—C5B—C6B | 102.4 (3) |
C4A—C5A—C6A | 103.2 (3) | C4B—C5B—C6B | 103.3 (3) |
C8A—C5A—H5A | 111.1 | C8B—C5B—H5B | 110.5 |
C4A—C5A—H5A | 111.1 | C4B—C5B—H5B | 110.5 |
C6A—C5A—H5A | 111.1 | C6B—C5B—H5B | 110.5 |
O1A—C6A—C7A | 110.5 (3) | O1B—C6B—C7B | 111.5 (3) |
O1A—C6A—C1A | 102.4 (3) | O1B—C6B—C1B | 102.7 (3) |
C7A—C6A—C1A | 123.7 (3) | C7B—C6B—C1B | 123.2 (3) |
O1A—C6A—C5A | 101.6 (3) | O1B—C6B—C5B | 101.3 (3) |
C7A—C6A—C5A | 106.6 (3) | C7B—C6B—C5B | 106.1 (3) |
C1A—C6A—C5A | 109.9 (3) | C1B—C6B—C5B | 110.0 (3) |
N1A—C7A—C6A | 102.4 (3) | N1B—C7B—C6B | 102.9 (3) |
N1A—C7A—H7AA | 111.3 | N1B—C7B—H7BA | 111.2 |
C6A—C7A—H7AA | 111.3 | C6B—C7B—H7BA | 111.2 |
N1A—C7A—H7AB | 111.3 | N1B—C7B—H7BB | 111.2 |
C6A—C7A—H7AB | 111.3 | C6B—C7B—H7BB | 111.2 |
H7AA—C7A—H7AB | 109.2 | H7BA—C7B—H7BB | 109.1 |
O2A—C8A—N1A | 125.7 (4) | O2B—C8B—N1B | 125.3 (4) |
O2A—C8A—C5A | 125.9 (3) | O2B—C8B—C5B | 126.0 (4) |
N1A—C8A—C5A | 108.4 (3) | N1B—C8B—C5B | 108.7 (3) |
N1A—C9A—C10A | 115.1 (3) | N1B—C9B—C10B | 115.1 (3) |
N1A—C9A—H9AA | 108.5 | N1B—C9B—H9BA | 108.5 |
C10A—C9A—H9AA | 108.5 | C10B—C9B—H9BA | 108.5 |
N1A—C9A—H9AB | 108.5 | N1B—C9B—H9BB | 108.5 |
C10A—C9A—H9AB | 108.5 | C10B—C9B—H9BB | 108.5 |
H9AA—C9A—H9AB | 107.5 | H9BA—C9B—H9BB | 107.5 |
C15A—C10A—C11A | 119.0 (3) | C15B—C10B—C11B | 119.2 (4) |
C15A—C10A—C9A | 123.1 (3) | C15B—C10B—C9B | 122.5 (3) |
C11A—C10A—C9A | 117.9 (3) | C11B—C10B—C9B | 118.3 (4) |
C12A—C11A—C10A | 120.3 (4) | C12B—C11B—C10B | 120.9 (4) |
C12A—C11A—H11A | 119.9 | C12B—C11B—H11B | 119.6 |
C10A—C11A—H11A | 119.9 | C10B—C11B—H11B | 119.6 |
C13A—C12A—C11A | 120.2 (4) | C13B—C12B—C11B | 119.8 (4) |
C13A—C12A—H12A | 119.9 | C13B—C12B—H12B | 120.1 |
C11A—C12A—H12A | 119.9 | C11B—C12B—H12B | 120.1 |
C12A—C13A—C14A | 120.0 (4) | C12B—C13B—C14B | 120.5 (4) |
C12A—C13A—H13A | 120.0 | C12B—C13B—H13B | 119.8 |
C14A—C13A—H13A | 120.0 | C14B—C13B—H13B | 119.8 |
C13A—C14A—C15A | 120.2 (4) | C13B—C14B—C15B | 119.7 (4) |
C13A—C14A—H14A | 119.9 | C13B—C14B—H14B | 120.2 |
C15A—C14A—H14A | 119.9 | C15B—C14B—H14B | 120.2 |
C10A—C15A—C14A | 120.3 (4) | C10B—C15B—C14B | 120.0 (4) |
C10A—C15A—H15A | 119.8 | C10B—C15B—H15B | 120.0 |
C14A—C15A—H15A | 119.8 | C14B—C15B—H15B | 120.0 |
C8A—N1A—C9A | 123.6 (3) | C8B—N1B—C9B | 124.0 (3) |
C8A—N1A—C7A | 114.4 (3) | C8B—N1B—C7B | 113.8 (3) |
C9A—N1A—C7A | 121.9 (3) | C9B—N1B—C7B | 121.9 (3) |
C3A—O1A—C6A | 96.2 (2) | C3B—O1B—C6B | 96.4 (2) |
C6A—C1A—C2A—C3A | 2.0 (3) | C6B—C1B—C2B—C3B | 2.6 (3) |
Br1A—C1A—C2A—C3A | 119.8 (3) | Br1B—C1B—C2B—C3B | 121.6 (3) |
C6A—C1A—C2A—Br2A | 126.7 (2) | C6B—C1B—C2B—Br2B | 127.1 (2) |
Br1A—C1A—C2A—Br2A | −115.4 (2) | Br1B—C1B—C2B—Br2B | −113.9 (2) |
C1A—C2A—C3A—O1A | −37.2 (3) | C1B—C2B—C3B—O1B | −37.7 (3) |
Br2A—C2A—C3A—O1A | −161.4 (2) | Br2B—C2B—C3B—O1B | −161.2 (2) |
C1A—C2A—C3A—C4A | 70.7 (4) | C1B—C2B—C3B—C4B | 70.2 (4) |
Br2A—C2A—C3A—C4A | −53.5 (4) | Br2B—C2B—C3B—C4B | −53.2 (4) |
O1A—C3A—C4A—C5A | 37.9 (3) | O1B—C3B—C4B—C5B | 37.9 (4) |
C2A—C3A—C4A—C5A | −68.4 (4) | C2B—C3B—C4B—C5B | −67.9 (4) |
C3A—C4A—C5A—C8A | −114.6 (3) | C3B—C4B—C5B—C8B | −116.0 (3) |
C3A—C4A—C5A—C6A | −3.4 (4) | C3B—C4B—C5B—C6B | −3.5 (4) |
C2A—C1A—C6A—O1A | 33.9 (3) | C2B—C1B—C6B—O1B | 33.4 (3) |
Br1A—C1A—C6A—O1A | −83.8 (3) | Br1B—C1B—C6B—O1B | −84.7 (3) |
C2A—C1A—C6A—C7A | 159.2 (3) | C2B—C1B—C6B—C7B | 160.0 (3) |
Br1A—C1A—C6A—C7A | 41.5 (4) | Br1B—C1B—C6B—C7B | 41.9 (4) |
C2A—C1A—C6A—C5A | −73.4 (3) | C2B—C1B—C6B—C5B | −73.8 (3) |
Br1A—C1A—C6A—C5A | 168.9 (2) | Br1B—C1B—C6B—C5B | 168.1 (2) |
C8A—C5A—C6A—O1A | 91.0 (3) | C8B—C5B—C6B—O1B | 92.6 (3) |
C4A—C5A—C6A—O1A | −31.6 (3) | C4B—C5B—C6B—O1B | −31.4 (3) |
C8A—C5A—C6A—C7A | −24.7 (3) | C8B—C5B—C6B—C7B | −24.0 (4) |
C4A—C5A—C6A—C7A | −147.3 (3) | C4B—C5B—C6B—C7B | −147.9 (3) |
C8A—C5A—C6A—C1A | −161.1 (3) | C8B—C5B—C6B—C1B | −159.3 (3) |
C4A—C5A—C6A—C1A | 76.3 (3) | C4B—C5B—C6B—C1B | 76.8 (3) |
O1A—C6A—C7A—N1A | −86.1 (3) | O1B—C6B—C7B—N1B | −86.1 (3) |
C1A—C6A—C7A—N1A | 152.2 (3) | C1B—C6B—C7B—N1B | 151.2 (3) |
C5A—C6A—C7A—N1A | 23.4 (3) | C5B—C6B—C7B—N1B | 23.4 (4) |
C4A—C5A—C8A—O2A | −52.9 (5) | C4B—C5B—C8B—O2B | −52.6 (5) |
C6A—C5A—C8A—O2A | −164.9 (3) | C6B—C5B—C8B—O2B | −165.6 (4) |
C4A—C5A—C8A—N1A | 128.8 (3) | C4B—C5B—C8B—N1B | 128.6 (4) |
C6A—C5A—C8A—N1A | 16.8 (4) | C6B—C5B—C8B—N1B | 15.6 (4) |
N1A—C9A—C10A—C15A | −12.7 (5) | N1B—C9B—C10B—C15B | −22.1 (6) |
N1A—C9A—C10A—C11A | 166.8 (3) | N1B—C9B—C10B—C11B | 159.4 (4) |
C15A—C10A—C11A—C12A | −0.5 (6) | C15B—C10B—C11B—C12B | 0.1 (6) |
C9A—C10A—C11A—C12A | −179.9 (4) | C9B—C10B—C11B—C12B | 178.7 (4) |
C10A—C11A—C12A—C13A | 0.0 (6) | C10B—C11B—C12B—C13B | 0.5 (7) |
C11A—C12A—C13A—C14A | 0.7 (6) | C11B—C12B—C13B—C14B | −1.0 (7) |
C12A—C13A—C14A—C15A | −1.0 (6) | C12B—C13B—C14B—C15B | 0.9 (6) |
C11A—C10A—C15A—C14A | 0.1 (6) | C11B—C10B—C15B—C14B | −0.2 (6) |
C9A—C10A—C15A—C14A | 179.6 (4) | C9B—C10B—C15B—C14B | −178.8 (4) |
C13A—C14A—C15A—C10A | 0.6 (6) | C13B—C14B—C15B—C10B | −0.3 (6) |
O2A—C8A—N1A—C9A | −5.0 (6) | O2B—C8B—N1B—C9B | −6.4 (6) |
C5A—C8A—N1A—C9A | 173.3 (3) | C5B—C8B—N1B—C9B | 172.4 (3) |
O2A—C8A—N1A—C7A | 179.3 (3) | O2B—C8B—N1B—C7B | −179.9 (4) |
C5A—C8A—N1A—C7A | −2.4 (4) | C5B—C8B—N1B—C7B | −1.0 (4) |
C10A—C9A—N1A—C8A | 113.6 (4) | C10B—C9B—N1B—C8B | 119.8 (4) |
C10A—C9A—N1A—C7A | −71.0 (4) | C10B—C9B—N1B—C7B | −67.2 (5) |
C6A—C7A—N1A—C8A | −13.4 (4) | C6B—C7B—N1B—C8B | −14.3 (4) |
C6A—C7A—N1A—C9A | 170.8 (3) | C6B—C7B—N1B—C9B | 172.0 (3) |
C4A—C3A—O1A—C6A | −58.3 (3) | C4B—C3B—O1B—C6B | −58.5 (3) |
C2A—C3A—O1A—C6A | 58.3 (3) | C2B—C3B—O1B—C6B | 58.4 (3) |
C7A—C6A—O1A—C3A | 167.7 (3) | C7B—C6B—O1B—C3B | 167.3 (3) |
C1A—C6A—O1A—C3A | −58.7 (3) | C1B—C6B—O1B—C3B | −59.0 (3) |
C5A—C6A—O1A—C3A | 54.9 (3) | C5B—C6B—O1B—C3B | 54.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1A—H1A···O2Ai | 0.98 | 2.51 | 3.175 (4) | 125 |
C4A—H4AB···Br2A | 0.97 | 2.81 | 3.287 (4) | 111 |
C5A—H5A···O2Ai | 0.98 | 2.64 | 3.271 (4) | 123 |
C7A—H7AB···O2Ai | 0.97 | 2.53 | 3.186 (4) | 125 |
C1B—H1B···O2Bii | 0.98 | 2.39 | 3.104 (4) | 129 |
C2B—H2B···O1A | 0.98 | 2.38 | 3.341 (4) | 168 |
C4B—H4BB···Br2B | 0.97 | 2.83 | 3.301 (4) | 111 |
C5B—H5B···O2Bii | 0.98 | 2.57 | 3.247 (5) | 126 |
C7B—H7BB···O2Bii | 0.97 | 2.64 | 3.270 (5) | 123 |
Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+3/2. |
Contact | Distance | Symmetry operation |
H2A···Br1A | 3.21 | 2 - x, 1 - y, 1 - z |
Br1A···Br2B | 3.8655 | 2 - x, 1 - y, 1 - z |
Br2A···Br1B | 3.8993 | 2 - x, -y, 1 - z |
O1A···H2B | 2.38 | x, y, z |
O2A···H1A | 2.51 | 3/2 - x, -1/2 + y, 1/2 - z |
O2A···H11B | 2.78 | 1 - x, - y, 1 - z |
H7AA···C13B | 2.85 | 1 - x, 1 - y, 1 - z |
H11A···H5B | 2.55 | -1/2 + x, 1/2 - y, -1/2 + z |
H13B···Br1B | 3.13 | 1 - x, -y, 1 - z |
O2B···H1B | 2.39 | 3/2 - x, 1/2 + y, 3/2 - z |
H13B···H3B | 2.42 | 1 - x, 1 - y, 1 - z |
Contact | Percentage contribution |
H···H | 44.6 |
Br···H/H···Br | 24.1 |
O···H/H···O | 13.5 |
C···H/H···C | 11.2 |
Br···Br | 3.9 |
C···C | 2.0 |
N···H/H···N | 0.5 |
Br···C/C···Br | 0.3 |
Funding information
The authors are grateful to the Russian Foundation for Basic Research (RFBR) (award No. 19–03-00807) for financial support of this research.
References
Afkhami, F. A., Khandar, A. A., Mahmoudi, G., Maniukiewicz, W., Gurbanov, A. V., Zubkov, F. I., Şahin, O., Yeşilel, O. Z. & Frontera, A. (2017). CrystEngComm, 19, 1389–1399. Web of Science CSD CrossRef CAS Google Scholar
Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfactants Deterg. 19, 145–153. Web of Science CrossRef CAS Google Scholar
Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2013). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burakov, N. I., Kanibolotskii, A. L., Osichenko, G. Yu., Mikhailov, V. A., Savelova, V. A. & Kosmynin, V. V. (2001). Russ. J. Org. Chem. 37, 1210–1219. Web of Science CrossRef CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Demircan, A., Temel, E., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1628–o1629. CSD CrossRef IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136. Web of Science CSD CrossRef CAS Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248–7250. Web of Science CrossRef CAS Google Scholar
Koşar, B., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o994–o995. Web of Science CSD CrossRef IUCr Journals Google Scholar
Koşar, B., Karaarslan, M., Demir, I. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3323. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938. Web of Science CrossRef CAS Google Scholar
Mikhailov, V. A., Savelova, V. A. & Rodygin, M. Yu. (1993). Zh. Org. Khim. 29, 2251–2254. CAS Google Scholar
Prokop'eva, T. M., Mikhailov, V. A., Turovskaya, M. K., Karpichev, E. A., Burakov, N. I., Savelova, V. A., Kapitanov, I. V. & Popov, A. F. (2008). Russ. J. Org. Chem. 44, 637–646. CAS Google Scholar
Prokop'eva, T. M., Mikhailov, V. A., Turovskaya, M. K., Karpichev, E. A., Burakov, N. I., Savelova, V. A., Rodygin, M. Yu., Mikhailov, V. A. & Savelova, V. A. (1994). Zh. Org. Khim. 30, 827–832. Google Scholar
Rodygin, M. Yu., Mikhailov, V. A., Savelova, V. A. & Chernovol, P. A. (1992). J. Org. Chem. USSR (Engl. Transl.), 28, 1543–1544 [(1992). Zh. Org. Khim., 28, 1926–1927]. Google Scholar
Rodygin, M. Yu., Mikhailov, V. A., Zurbritskii, M. Yu. & Savelova, V. A. (1994). Zh. Org. Khim. 30, 339–343. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Temel, E., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1304–o1305. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Temel, E., Demircan, A., Beyazova, G. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1102–o1103. CSD CrossRef CAS IUCr Journals Google Scholar
Temel, E., Demircan, A., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1551–o1552. CSD CrossRef IUCr Journals Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia. Google Scholar
Zaytsev, V. P., Mertsalov, D. F., Trunova, A. M., Khanova, A. V., Nikitina, E. V., Sinelshchikova, A. A. & Grigoriev, M. S. (2020). Chem. Heterocycl. Compd, 56, 930–935. Web of Science CSD CrossRef CAS Google Scholar
Zaytsev, V. P., Revutskaya, E. L., Nikanorova, T. V., Nikitina, E. V., Dorovatovskii, P. V., Khrustalev, V. N., Yagafarov, N. Z., Zubkov, F. I. & Varlamov, A. V. (2017). Synthesis, 49, 3749–3767. Web of Science CSD CrossRef CAS Google Scholar
Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.