research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A copper complex of an unusual hy­dr­oxy–carboxyl­ate ligand: [Cu(bpy)(C4H4O6)]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: maverick@lsu.edu

Edited by S. Parkin, University of Kentucky, USA (Received 14 January 2021; accepted 2 February 2021; online 19 February 2021)

A copper(II) complex, (2,2′-bi­pyridine-κ2N,N′)[2-hy­droxy-2-(hy­droxy­methyl-κO)propane­dioato-κ2O1,O3]copper(II), [Cu(C4H4O6)(C10H8N2)], containing the unusual anionic chelating ligand 2-(hy­droxy­meth­yl)tartronate, has been synthesized. [Cu(bpy)2(NO3)](NO3) was mixed with ascorbic acid and Dabco (1,4-di­aza­bicyclo­[2.2.2]octa­ne) in DMF (dimethylformamide) solution in the presence of air to produce the title compound. The structure consists of square-pyramidal complexes that are joined by Cu⋯O contacts [2.703 (2) Å] into centrosymmetric dimers. The C4H4O62− ligand, which occupies three coordination sites at Cu, has previously been identified as an oxidation product of ascorbate ion.

1. Chemical context

Copper complexes have drawn recent attention owing to applications in redox reactions (Zubair et al., 2019[Zubair, S., Asghar, F., Badshah, A., Lal, B., Hussain, R. A., Tabassum, S. & Tahir, M. N. (2019). J. Organomet. Chem. 879, 60-68.]; Maity et al., 2010[Maity, B., Roy, M., Banik, B., Majumdar, R., Dighe, R. R. & Chakravarty, A. R. (2010). Organometallics, 29, 3632-3641.]; Wang et al., 2006[Wang, X. Q., Rodriguez, J. A., Hanson, J. C., Gamarra, D., Martínez-Arias, A. & Fernández-García, M. (2006). J. Phys. Chem. B, 110, 428-434.]) and oxygen transport (Sheykhi et al., 2018[Sheykhi, H., Hossaini Sadr, M. & Soltani, B. (2018). Rev. Roum. Chim. 63, 309-313.]; Liu et al., 2016[Liu, S. Q., Zhou, S. S., Chen, Z. G., Liu, C. B., Chen, F. & Wu, Z. Y. (2016). Catal. Commun. 73, 7-11.]; Tadsanaprasittipol et al., 1998[Tadsanaprasittipol, A., Kraatz, H. B. & Enright, G. D. (1998). Inorg. Chim. Acta, 278, 143-149.]; Kato et al., 2016[Kato, M., Oyaizu, N., Shimazu, K. & Yagi, I. (2016). J. Phys. Chem. C, 120, 15814-15822.]). The 2,2′-bi­pyridine ligand has been used in a variety of supra­molecular architectures (Fei et al., 2013[Fei, B.-L., Li, W., Xu, W.-S., Li, Y.-G., Long, J.-Y., Liu, Q.-B., Shao, K.-Z., Su, Z.-M. & Sun, W.-Y. (2013). J. Photochem. Photobiol. B, 125, 32-41.]; John et al., 2004[John, R. P., Sreekanth, A., Rajakannan, V., Ajith, T. A. & Kurup, M. R. P. (2004). Polyhedron, 23, 2549-2559.]; Seco et al., 2000[Seco, J. M., Amador, U. & Garmendia, M. J. G. (2000). Inorg. Chim. Acta, 303, 256-264.]; Barquín et al., 2010[Barquín, M., Cocera, N., González Garmendia, M. J., Larrínaga, L., Pinilla, E., Seco, J. M. & Torres, M. R. (2010). Inorg. Chim. Acta, 363, 127-133.]; Yuan et al., 2008[Yuan, L., Qin, C., Wang, X., Wang, E. & Chang, S. (2008). Eur. J. Inorg. Chem. pp. 4936-4942.]).

[Scheme 1]

As a common reducing reagent, ascorbic acid has also been investigated in complex synthesis and redox reactions (Creutz, 1981[Creutz, C. (1981). Inorg. Chem. 20, 4449-4452.]; Niemelä, 1987[Niemelä, K. (1987). J. Chromatogr. A, 399, 235-243.]; Sorouraddin et al., 2000[Sorouraddin, H. M., Hibara, A., Proskurnin, M. A. & Kitamori, T. (2000). Anal. Sci. 16, 1033-1037.]). For example, we have recently observed that mixtures of Cu complexes and ascorbate react with O2 to produce CuII oxalate complexes (Khamespanah et al., 2021[Khamespanah, F., Marx, M., Crochet, D. B., Pokharel, U. R., Fronczek, F. R., Maverick, A. W. & Beller, M. (2021). Submitted for publication.]). However, to our knowledge, the particular degradation product of ascorbic acid observed here, 2-(hy­droxy­meth­yl)tartronic acid [2-(hy­droxy­meth­yl)-2-hy­droxy-1,3-propane­dioic acid], has been reported only a few times. It was identified by mass spectrometry as a product of oxidation of ascorbic acid (Niemelä, 1987[Niemelä, K. (1987). J. Chromatogr. A, 399, 235-243.]; Löwendahl & Petersson, 1976[Löwendahl, L. & Petersson, G. (1976). Anal. Biochem. 72, 623-628.]) and two carbohydrates (Löwendahl et al., 1975a[Löwendahl, L., Petersson, G. & Samuelson, O. (1975a). Acta Chem. Scand. 29B, 526-527.],b[Löwendahl, L., Petersson, G. & Samuelson, O. (1975b). Acta Chem. Scand. 29B, 975-980.]). We have now isolated compound (I)[link], a copper(II) complex of the 2-(hy­droxy­meth­yl)tartronate anion (see Scheme), and its crystal structure is reported here.

The preparation of the title complex is shown in Fig. 1[link]. A solution of [(bpy)2Cu(ONO2)]NO3 and Dabco (1,4-di­aza­bicyclo­[2.2.2]octa­ne) turned from blue to dark brown on addition of ascorbic acid, suggesting reduction of CuII to CuI. The solution was then exposed to air. It turned green over a period of several days, and the title compound (I)[link] could be crystallized (Fig. 2[link]).

[Figure 1]
Figure 1
Preparation of the title compound, Cu(bpy)(C4H4O6) (I)[link], with [DabcoH2](NO3)2 (II) as byproduct.
[Figure 2]
Figure 2
Crystal structure of (I)[link]. Ellipsoids are drawn at the 50% probability level; hydrogen atoms are displayed but not labeled. Primed and unprimed atoms are related by an inversion center, which brings the two square-pyramidal Cu(bpy)(C4H4O6) moieties into contact [Cu⋯O1′ = 2.703 (2) Å]. The inset is a schematic illustration of the dimerization.

In this procedure, Dabco also crystallizes, in its doubly protonated form as colorless [DabcoH2](NO3)2 (II). We could not isolate the title compound (I)[link] when Dabco was omitted from the reaction mixture. We determined the structure of (II) as well (Gao et al., 2020[Gao, S., Fronczek, F. R. & Maverick, A. W. (2020). CSD Communication (CCDC 1993697). CCDC, Cambridge, England. htps://doi.org/10.5517/ccdc.csd.cc24xlth.]). Although this structure was reported previously by Knope & Cahill (2007[Knope, K. E. & Cahill, C. L. (2007). Acta Cryst. E63, o2955.]), the new structure provides improved resolution.

2. Structural commentary

The Cu atom in (I)[link] adopts a square-pyramidal geometry, with coordination to two bpy N atoms and three O atoms from the 2-(hy­droxy­meth­yl)tartronate anion (C4H4O62–).

The two inversion-related complexes in the unit cell make a dimer via two Cu⋯O contacts: Cu1⋯O1′ = 2.703 (2) Å. This kind of dimerization (see inset in Fig. 2[link]) is commonly observed in 4- and 5-coordinate CuII complexes. It is discussed further in the Database survey section.

3. Supra­molecular features

The structure of (I)[link] includes two O—H⋯O hydrogen bonds, one intra­molecular and one inter­molecular; see Table 1[link]. The inter­molecular hydrogen bonds form centrosymmetric hydrogen-bonded dimers with graph set R22(12) (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). These dimers are linked into chains in the [100] direction, as illustrated in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O4i 0.88 (2) 1.85 (2) 2.723 (3) 169 (4)
O5—H5O⋯O6 0.93 (2) 1.80 (3) 2.549 (3) 136 (3)
Symmetry code: (i) [-x+2, -y+1, -z+1].
[Figure 3]
Figure 3
Packing structure of (I)[link], showing the inter­molecular O2—H2O⋯O4 hydrogen bonds.

4. Database survey

A survey of the Cambridge Structural Database (Version 5.40; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded four five-coordinate CuII complexes with 2,2′-bi­pyridine, one alcohol, and two carboxyl­ate ligands [CSD refcodes DAXVED (Antolini et al., 1984[Antolini, L., Menabue, L., Pellacani, G. C., Saladini, M., Sola, M., Battaglia, L. P. & Corradi, A. B. (1984). J. Chem. Soc. Dalton Trans. pp. 2319-2323.]), SEKXAI (Devereux et al., 2006[Devereux, M., McCann, M., O'Shea, D., O'Connor, M., Kiely, E., McKee, V., Naughton, D., Fisher, A., Kellett, A., Walsh, M., Egan, D. & Deegan, C. (2006). Bioinorg. Chem. Appl. 080283.]), TERTEQ (Ma et al., 2006[Ma, X.-Y., Dong, X.-D., Li, Y.-P. & Zhang, Z.-G. (2006). Acta Cryst. E62, m3467-m3469.]), and VAJTIL (Zhang et al., 2010[Zhang, Y.-N., Wang, Y.-Y., Hou, L., Liu, P., Liu, J.-Q. & Shi, Q.-Z. (2010). CrystEngComm, 12, 3840-3851.])]. The Cu atoms in these structures have a square-pyramidal geometry, with the alcohol ligand in the apical position, as in (I)[link], with the following average angles and distances: N—Cu—N, 81.3 (10)°; Cu—N, 2.004 (13) Å; Cu—O(carboxyl­ate), 1.949 (15) Å; and Cu—O(alcohol), 2.32 (6) Å. These are similar to values in (I)[link]: N—Cu—N, 81.35 (9)°; Cu—N, 1.985 (2), 1.990 (2) Å; Cu—O, 1.9587 (19), 1.935 (2), and 2.384 (2) Å, respectively.

Another group of structures closely related to (I)[link] is Cu(bpy)(malonate) (malonate = 1,3-propane­dioate); see Fig. 4[link]. There are 14 such structures in the CSD, in all of which [as in (I)] the malonate C—O bonds are bent significantly out of the CuN2O2 coordination plane. Of these, seven [FIXDUM (Cui et al., 2005[Cui, G.-H., Li, J.-R., Hu, T.-L. & Bu, X.-H. (2005). J. Mol. Struct. 738, 183-187.]), SAYCUQ (Gasque et al., 1998[Gasque, L., Moreno-Esparza, R., Mollins, E., Briansó-Penalva, J. L., Ruiz-Ramírez, L. & Medina-Dickinson, G. (1998). Acta Cryst. C54, 1848-1850.]), TIPZAT02 (Cernak, 2016[Cernak, J. (2016). CSD Communication (CCDC 832930). CCDC, Cambridge, England. htps://doi.org/10.5517/ccdc.csd.ccwyqq7.]), UNOJOY, UNOJUE, UNOKAL (Jaramillo-García et al., 2016[Jaramillo-García, J., Téllez-López, A., Martínez-Domínguez, R., Morales-Luckie, R. A., Martínez-Otero, D., Sánchez-Mendieta, V. & Escudero, R. (2016). J. Coord. Chem. 69, 1525-1540.]), and XECFOC (Manochitra et al., 2012[Manochitra, P., Manikandan, N., Murugavel, S., Sreeshailam, R. & Sambasiva Rao, P. (2012). Acta Cryst. E68, m884-m885.])] are monomeric, with R2 = H and syn H2O ligands [Fig. 4[link](b)]. This arrangement is similar to that observed in the Cu(bpy)(C4H4O6) moiety of (I)[link], except that (I)[link] contains an apical alcohol ligand rather than H2O. Because the alcohol in (I)[link] is part of a small chelate ring, its coordination is bent slightly away from perpendicularity to the CuO2N2 plane [N1—Cu1—O2 104.04 (9), N2—Cu1—O2 91.77 (9)°]; the average N—Cu—OH2 angle in the above seven published structures is 93 (3)°.

[Figure 4]
Figure 4
Generalized structures of [Cu(bpy)(malonate)] complexes: (a) showing the typical bending of the malonate ligand, with syn and anti coordination sites; (b) an example with H2O in the syn position, as can occur when R2 is small.

In four structures [PUJJUC (Ghosh et al., 2020[Ghosh, D., Dhibar, S., Dey, A., Manna, P., Mahata, P. & Dey, B. (2020). ChemistrySelect 5, 75-82.]), CIJNEQ (Dey et al., 2013[Dey, B., Saha, R. & Mukherjee, P. (2013). Chem. Commun. 49, 7064-7066.]), MEHYON (Guan et al., 1998a[Guan, W., Sun, J.-Y., Zhang, X.-D. & Liu, Q.-T. (1998a). Gaodeng Xuexiao Huaxue Xuebao, 19, 5-8.],b[Guan, W., Sun, J.-Y., Zhang, X.-D. & Liu, Q.-T. (1998b). Chem. Abstr. 85467.]), and WAHVOR (Pasán et al., 2004[Pasán, J., Sanchiz, J., Ruiz-Pérez, C., Lloret, F. & Julve, M. (2004). Eur. J. Inorg. Chem. pp. 4081-4090.])], bulky R2 groups prevent syn coordination, and there are anti H2O ligands. In four structures [PUJJUC (Ghosh et al., 2020[Ghosh, D., Dhibar, S., Dey, A., Manna, P., Mahata, P. & Dey, B. (2020). ChemistrySelect 5, 75-82.]), CELSIW01 (Reinoso et al., 2007[Reinoso, S., Vitoria, P., San Felices, L., Montero, A., Lezama, L. & Gutiérrez-Zorrilla, J. M. (2007). Inorg. Chem. 46, 1237-1249.]), CIJNEQ (Dey et al., 2013[Dey, B., Saha, R. & Mukherjee, P. (2013). Chem. Commun. 49, 7064-7066.]), and PESBAR (Baldomá et al., 2006[Baldomá, R., Monfort, M., Ribas, J., Solans, X. & Maestro, M. A. (2006). Inorg. Chem. 45, 8144-8155.])], dimers form as illustrated in Fig. 2[link], with Cu⋯O distances ranging from 2.315 (2) to 2.494 (3) Å. (Note: PUJJUC and CIJNEQ each contain two mol­ecules in the asymmetric unit, one a five-coordinate monomer and the other a dimer of four-coordinate complexes.) As far as we are aware, the present complex [Cu(bpy)(C4H4O6)] (I)[link] is the only example of a Cu(bpy)(malonate) in which a five-coordinate species dimerizes. Our structure shows a considerably larger Cu⋯O distance in its dimers than the above four published examples. This is likely because of the apical alcohol ligand in (I)[link]: a five-coordinate species is less likely to form strong Cu⋯O associations than a four-coordinate species.

5. Synthesis and crystallization

General procedures. Reagents were used as received, from Sigma–Aldrich. FTIR spectra were recorded on a Bruker Tensor 27 spectrometer in attenuated total reflectance mode.

Synthesis of Cu(bpy)(C4H4O6). To a mixture of [Cu(bpy)2(NO3)](NO3) (Marjani et al., 2005[Marjani, K., Davies, S. C., Durrant, M. C., Hughes, D. L., Khodamorad, N. & Samodi, A. (2005). Acta Cryst. E61, m11-m14.]) (25.5 mg, 0.075 mmol, in 2 mL of DMF) and Dabco (8.4 mg, 0.075 mmol, in 1 mL of DMF), ascorbic acid (13.2 mg, 0.075 mmol, in 1 mL of DMF) was added. The mixture turned to dark brownish-red. It was stirred for two days in air, during which time it turned green, and filtered. The filtrate was used for vapor diffusion with diethyl ether. Crystals of Cu(bpy)(C4H4O6) [(I), blue] and [DabcoH2](NO3)2 [(II), colorless] formed, which were suitable for X-ray analysis.

Cu(bpy)(C4H4O6). FTIR (cm−1) 3036m, 2853w, 1704s, 1667m, 1612m, 1412m, 1391m, 1362m, 1312m, 1204s, 1149s, 1055m, 1036m, 778m, 732m, 639w.

6. Refinement

Crystal data, data collection, and structure refinement are summarized in Table 2[link]. All H atoms were visible in difference-Fourier maps. Coordinates of those on O were refined with O—H distances restrained to 0.88 (2) Å. Those on C were positioned geometrically (C—H = 0.95 Å for aromatic C, 0.99 Å for CH2) and treated as riding. Displacement parameters for H were assigned as Ueq(H) = 1.2Ueq(C) and 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula [Cu(C4H4O6)(C10H8N2)]
Mr 367.80
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 90
a, b, c (Å) 7.6516 (5), 9.9272 (6), 10.0722 (6)
α, β, γ (°) 95.204 (4), 107.729 (4), 111.462 (4)
V3) 660.34 (7)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.69
Crystal size (mm) 0.15 × 0.09 × 0.07
 
Data collection
Diffractometer Bruker Kappa APEXII DUO CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.838, 0.891
No. of measured, independent and observed [I > 2σ(I)] reflections 18442, 4041, 2675
Rint 0.063
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.105, 1.02
No. of reflections 4041
No. of parameters 214
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.74, −0.56
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). SAINT and APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

(2,2'-Bipyridine-κ2N,N')[2-hydroxy-2-(hydroxymethyl-κO)propanedioato-κ2O1,O3]copper(II) top
Crystal data top
[Cu(C4H4O6)(C10H8N2)]Z = 2
Mr = 367.80F(000) = 374
Triclinic, P1Dx = 1.850 Mg m3
a = 7.6516 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9272 (6) ÅCell parameters from 3354 reflections
c = 10.0722 (6) Åθ = 2.2–29.3°
α = 95.204 (4)°µ = 1.69 mm1
β = 107.729 (4)°T = 90 K
γ = 111.462 (4)°Fragment, light blue
V = 660.34 (7) Å30.15 × 0.09 × 0.07 mm
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
4041 independent reflections
Radiation source: fine-focus sealed tube2675 reflections with I > 2σ(I)
TRIUMPH curved graphite monochromatorRint = 0.063
φ and ω scansθmax = 30.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1010
Tmin = 0.838, Tmax = 0.891k = 1414
18442 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: mixed
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.3982P]
where P = (Fo2 + 2Fc2)/3
4041 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.74 e Å3
2 restraintsΔρmin = 0.56 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.60628 (6)0.63056 (4)0.41304 (4)0.01841 (12)
O10.7261 (3)0.5158 (2)0.52799 (19)0.0200 (5)
O20.9188 (3)0.7153 (3)0.3763 (2)0.0247 (5)
H2O0.931 (6)0.635 (3)0.346 (4)0.037*
O30.7221 (3)0.7944 (2)0.5778 (2)0.0241 (5)
O40.9916 (3)0.5149 (2)0.6990 (2)0.0239 (5)
O51.2089 (3)0.8062 (3)0.7594 (2)0.0296 (5)
H5O1.178 (6)0.869 (4)0.813 (3)0.044*
O60.9741 (4)0.9263 (3)0.7840 (2)0.0337 (6)
N10.4537 (4)0.7282 (3)0.2933 (2)0.0170 (5)
N20.4699 (4)0.4750 (3)0.2317 (2)0.0166 (5)
C10.4522 (5)0.8585 (3)0.3373 (3)0.0201 (6)
H10.53080.91160.43370.024*
C20.3410 (5)0.9188 (3)0.2483 (3)0.0217 (7)
H20.34091.01090.28330.026*
C30.2293 (4)0.8435 (3)0.1071 (3)0.0195 (6)
H30.15270.88360.04330.023*
C40.2309 (4)0.7080 (3)0.0597 (3)0.0180 (6)
H40.15670.65480.03720.022*
C50.3422 (4)0.6519 (3)0.1558 (3)0.0142 (6)
C60.3512 (4)0.5078 (3)0.1208 (3)0.0142 (6)
C70.2500 (4)0.4119 (3)0.0127 (3)0.0155 (6)
H70.16760.43650.08920.019*
C80.2703 (4)0.2792 (3)0.0335 (3)0.0180 (6)
H80.20000.21070.12390.022*
C90.3938 (5)0.2480 (3)0.0789 (3)0.0191 (6)
H90.41090.15830.06650.023*
C100.4924 (4)0.3482 (3)0.2098 (3)0.0180 (6)
H100.57880.32670.28660.022*
C110.9051 (5)0.5800 (3)0.6238 (3)0.0217 (7)
C121.0222 (5)0.7493 (4)0.6426 (3)0.0247 (7)
C130.8962 (5)0.8297 (4)0.6718 (3)0.0258 (7)
C141.0784 (5)0.7878 (4)0.5103 (3)0.0284 (7)
H14A1.12630.89650.51950.034*
H14B1.19170.76140.51170.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0245 (2)0.0195 (2)0.00897 (15)0.01379 (17)0.00134 (13)0.00131 (13)
O10.0255 (12)0.0221 (12)0.0104 (9)0.0137 (10)0.0002 (8)0.0018 (8)
O20.0272 (12)0.0276 (13)0.0172 (10)0.0135 (11)0.0035 (9)0.0032 (9)
O30.0257 (12)0.0268 (13)0.0147 (10)0.0143 (11)0.0012 (9)0.0040 (9)
O40.0247 (12)0.0272 (12)0.0202 (10)0.0155 (10)0.0031 (9)0.0053 (9)
O50.0283 (13)0.0337 (14)0.0213 (11)0.0169 (11)0.0006 (9)0.0024 (10)
O60.0366 (14)0.0325 (14)0.0221 (11)0.0185 (12)0.0035 (10)0.0070 (10)
N10.0182 (13)0.0181 (13)0.0128 (10)0.0084 (11)0.0030 (9)0.0005 (10)
N20.0212 (13)0.0163 (13)0.0129 (11)0.0104 (11)0.0045 (10)0.0013 (10)
C10.0244 (17)0.0168 (15)0.0183 (13)0.0108 (13)0.0051 (12)0.0005 (12)
C20.0279 (18)0.0163 (16)0.0237 (15)0.0138 (14)0.0079 (13)0.0037 (12)
C30.0195 (16)0.0195 (16)0.0223 (14)0.0123 (13)0.0052 (12)0.0071 (12)
C40.0149 (15)0.0242 (17)0.0143 (13)0.0095 (13)0.0034 (11)0.0031 (12)
C50.0136 (14)0.0142 (14)0.0145 (12)0.0063 (12)0.0046 (10)0.0005 (11)
C60.0125 (14)0.0167 (15)0.0113 (12)0.0060 (12)0.0022 (10)0.0019 (11)
C70.0116 (14)0.0165 (15)0.0140 (12)0.0038 (12)0.0020 (10)0.0005 (11)
C80.0173 (15)0.0170 (15)0.0142 (12)0.0039 (12)0.0040 (11)0.0016 (11)
C90.0241 (16)0.0142 (15)0.0214 (14)0.0101 (13)0.0092 (12)0.0022 (12)
C100.0202 (16)0.0201 (16)0.0155 (13)0.0108 (13)0.0056 (11)0.0044 (12)
C110.0310 (18)0.0229 (17)0.0115 (12)0.0158 (15)0.0035 (12)0.0006 (12)
C120.0257 (17)0.0276 (18)0.0162 (13)0.0123 (15)0.0010 (12)0.0019 (13)
C130.0288 (18)0.0260 (18)0.0209 (15)0.0149 (15)0.0036 (13)0.0015 (14)
C140.0271 (18)0.0294 (19)0.0235 (15)0.0108 (16)0.0049 (13)0.0008 (14)
Geometric parameters (Å, º) top
Cu1—O31.935 (2)C2—H20.9500
Cu1—O11.9587 (19)C3—C41.391 (4)
Cu1—N11.985 (2)C3—H30.9500
Cu1—N21.990 (2)C4—C51.383 (4)
Cu1—O22.384 (2)C4—H40.9500
O1—C111.288 (3)C5—C61.474 (4)
O2—C141.417 (4)C6—C71.381 (4)
O2—H2O0.880 (18)C7—C81.387 (4)
O3—C131.275 (4)C7—H70.9500
O4—C111.236 (3)C8—C91.377 (4)
O5—C121.417 (4)C8—H80.9500
O5—H5O0.929 (18)C9—C101.380 (4)
O6—C131.236 (4)C9—H90.9500
N1—C11.334 (4)C10—H100.9500
N1—C51.355 (3)C11—C121.549 (5)
N2—C101.339 (4)C12—C131.532 (4)
N2—C61.358 (3)C12—C141.558 (4)
C1—C21.375 (4)C14—H14A0.9900
C1—H10.9500C14—H14B0.9900
C2—C31.383 (4)
O3—Cu1—O191.06 (8)N1—C5—C6114.2 (2)
O3—Cu1—N191.97 (9)C4—C5—C6124.4 (2)
O1—Cu1—N1173.29 (10)N2—C6—C7121.5 (3)
O3—Cu1—N2173.32 (9)N2—C6—C5114.4 (2)
O1—Cu1—N295.56 (9)C7—C6—C5124.1 (2)
N1—Cu1—N281.35 (9)C6—C7—C8119.1 (3)
O3—Cu1—O290.05 (9)C6—C7—H7120.4
O1—Cu1—O281.94 (8)C8—C7—H7120.4
N1—Cu1—O2104.04 (9)C9—C8—C7119.0 (3)
N2—Cu1—O291.77 (9)C9—C8—H8120.5
C11—O1—Cu1120.61 (19)C7—C8—H8120.5
C14—O2—Cu1108.93 (18)C8—C9—C10119.5 (3)
C14—O2—H2O106 (2)C8—C9—H9120.3
Cu1—O2—H2O106 (2)C10—C9—H9120.3
C13—O3—Cu1121.7 (2)N2—C10—C9121.9 (3)
C12—O5—H5O96 (2)N2—C10—H10119.1
C1—N1—C5119.1 (2)C9—C10—H10119.1
C1—N1—Cu1125.71 (19)O4—C11—O1124.3 (3)
C5—N1—Cu1115.18 (19)O4—C11—C12117.9 (3)
C10—N2—C6119.0 (2)O1—C11—C12117.8 (2)
C10—N2—Cu1126.08 (19)O5—C12—C13108.3 (2)
C6—N2—Cu1114.81 (18)O5—C12—C11111.3 (2)
N1—C1—C2122.5 (3)C13—C12—C11109.2 (3)
N1—C1—H1118.8O5—C12—C14105.0 (3)
C2—C1—H1118.8C13—C12—C14110.5 (3)
C1—C2—C3119.0 (3)C11—C12—C14112.4 (2)
C1—C2—H2120.5O6—C13—O3125.2 (3)
C3—C2—H2120.5O6—C13—C12117.0 (3)
C2—C3—C4119.0 (3)O3—C13—C12117.8 (3)
C2—C3—H3120.5O2—C14—C12114.7 (3)
C4—C3—H3120.5O2—C14—H14A108.6
C5—C4—C3119.0 (3)C12—C14—H14A108.6
C5—C4—H4120.5O2—C14—H14B108.6
C3—C4—H4120.5C12—C14—H14B108.6
N1—C5—C4121.4 (3)H14A—C14—H14B107.6
C5—N1—C1—C20.1 (5)C6—N2—C10—C92.0 (4)
Cu1—N1—C1—C2179.4 (2)Cu1—N2—C10—C9178.8 (2)
N1—C1—C2—C31.3 (5)C8—C9—C10—N20.8 (5)
C1—C2—C3—C40.8 (5)Cu1—O1—C11—O4179.0 (2)
C2—C3—C4—C50.8 (4)Cu1—O1—C11—C121.0 (4)
C1—N1—C5—C41.5 (4)O4—C11—C12—O56.9 (4)
Cu1—N1—C5—C4178.9 (2)O1—C11—C12—O5175.0 (2)
C1—N1—C5—C6178.4 (3)O4—C11—C12—C13126.3 (3)
Cu1—N1—C5—C61.2 (3)O1—C11—C12—C1355.6 (3)
C3—C4—C5—N12.0 (4)O4—C11—C12—C14110.7 (3)
C3—C4—C5—C6177.9 (3)O1—C11—C12—C1467.4 (4)
C10—N2—C6—C71.6 (4)Cu1—O3—C13—O6175.1 (3)
Cu1—N2—C6—C7178.7 (2)Cu1—O3—C13—C126.5 (4)
C10—N2—C6—C5178.2 (3)O5—C12—C13—O61.0 (4)
Cu1—N2—C6—C51.1 (3)C11—C12—C13—O6122.3 (3)
N1—C5—C6—N20.1 (4)C14—C12—C13—O6113.5 (3)
C4—C5—C6—N2179.9 (3)O5—C12—C13—O3179.6 (3)
N1—C5—C6—C7179.9 (3)C11—C12—C13—O359.1 (4)
C4—C5—C6—C70.3 (5)C14—C12—C13—O365.1 (4)
N2—C6—C7—C80.0 (4)Cu1—O2—C14—C1219.3 (3)
C5—C6—C7—C8179.8 (3)O5—C12—C14—O2167.8 (3)
C6—C7—C8—C91.2 (4)C13—C12—C14—O275.7 (3)
C7—C8—C9—C100.8 (4)C11—C12—C14—O246.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O4i0.88 (2)1.85 (2)2.723 (3)169 (4)
O5—H5O···O60.93 (2)1.80 (3)2.549 (3)136 (3)
Symmetry code: (i) x+2, y+1, z+1.
 

Funding information

Funding for this research was provided by the West Professorship, Louisiana State University. The diffractometer purchase and upgrades were made possible by grants from the Louisiana Board of Regents.

References

First citationAntolini, L., Menabue, L., Pellacani, G. C., Saladini, M., Sola, M., Battaglia, L. P. & Corradi, A. B. (1984). J. Chem. Soc. Dalton Trans. pp. 2319–2323.  CSD CrossRef Google Scholar
First citationBaldomá, R., Monfort, M., Ribas, J., Solans, X. & Maestro, M. A. (2006). Inorg. Chem. 45, 8144–8155.  PubMed Google Scholar
First citationBarquín, M., Cocera, N., González Garmendia, M. J., Larrínaga, L., Pinilla, E., Seco, J. M. & Torres, M. R. (2010). Inorg. Chim. Acta, 363, 127–133.  Google Scholar
First citationBruker (2016). SAINT and APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCernak, J. (2016). CSD Communication (CCDC 832930). CCDC, Cambridge, England. htps://doi.org/10.5517/ccdc.csd.ccwyqq7.  Google Scholar
First citationCreutz, C. (1981). Inorg. Chem. 20, 4449–4452.  CrossRef CAS Google Scholar
First citationCui, G.-H., Li, J.-R., Hu, T.-L. & Bu, X.-H. (2005). J. Mol. Struct. 738, 183–187.  Web of Science CSD CrossRef CAS Google Scholar
First citationDevereux, M., McCann, M., O'Shea, D., O'Connor, M., Kiely, E., McKee, V., Naughton, D., Fisher, A., Kellett, A., Walsh, M., Egan, D. & Deegan, C. (2006). Bioinorg. Chem. Appl. 080283.  Google Scholar
First citationDey, B., Saha, R. & Mukherjee, P. (2013). Chem. Commun. 49, 7064–7066.  CSD CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFei, B.-L., Li, W., Xu, W.-S., Li, Y.-G., Long, J.-Y., Liu, Q.-B., Shao, K.-Z., Su, Z.-M. & Sun, W.-Y. (2013). J. Photochem. Photobiol. B, 125, 32–41.  CrossRef CAS PubMed Google Scholar
First citationGao, S., Fronczek, F. R. & Maverick, A. W. (2020). CSD Communication (CCDC 1993697). CCDC, Cambridge, England. htps://doi.org/10.5517/ccdc.csd.cc24xlth.  Google Scholar
First citationGasque, L., Moreno-Esparza, R., Mollins, E., Briansó-Penalva, J. L., Ruiz-Ramírez, L. & Medina-Dickinson, G. (1998). Acta Cryst. C54, 1848–1850.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGhosh, D., Dhibar, S., Dey, A., Manna, P., Mahata, P. & Dey, B. (2020). ChemistrySelect 5, 75–82.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuan, W., Sun, J.-Y., Zhang, X.-D. & Liu, Q.-T. (1998a). Gaodeng Xuexiao Huaxue Xuebao, 19, 5–8.  CAS Google Scholar
First citationGuan, W., Sun, J.-Y., Zhang, X.-D. & Liu, Q.-T. (1998b). Chem. Abstr. 85467.  Google Scholar
First citationJaramillo-García, J., Téllez-López, A., Martínez-Domínguez, R., Morales-Luckie, R. A., Martínez-Otero, D., Sánchez-Mendieta, V. & Escudero, R. (2016). J. Coord. Chem. 69, 1525–1540.  Google Scholar
First citationJohn, R. P., Sreekanth, A., Rajakannan, V., Ajith, T. A. & Kurup, M. R. P. (2004). Polyhedron, 23, 2549–2559.  Web of Science CSD CrossRef CAS Google Scholar
First citationKato, M., Oyaizu, N., Shimazu, K. & Yagi, I. (2016). J. Phys. Chem. C, 120, 15814–15822.  CrossRef CAS Google Scholar
First citationKhamespanah, F., Marx, M., Crochet, D. B., Pokharel, U. R., Fronczek, F. R., Maverick, A. W. & Beller, M. (2021). Submitted for publication.  Google Scholar
First citationKnope, K. E. & Cahill, C. L. (2007). Acta Cryst. E63, o2955.  CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLiu, S. Q., Zhou, S. S., Chen, Z. G., Liu, C. B., Chen, F. & Wu, Z. Y. (2016). Catal. Commun. 73, 7–11.  CrossRef CAS Google Scholar
First citationLöwendahl, L. & Petersson, G. (1976). Anal. Biochem. 72, 623–628.  PubMed Google Scholar
First citationLöwendahl, L., Petersson, G. & Samuelson, O. (1975a). Acta Chem. Scand. 29B, 526–527.  Google Scholar
First citationLöwendahl, L., Petersson, G. & Samuelson, O. (1975b). Acta Chem. Scand. 29B, 975–980.  Google Scholar
First citationMa, X.-Y., Dong, X.-D., Li, Y.-P. & Zhang, Z.-G. (2006). Acta Cryst. E62, m3467–m3469.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaity, B., Roy, M., Banik, B., Majumdar, R., Dighe, R. R. & Chakravarty, A. R. (2010). Organometallics, 29, 3632–3641.  Web of Science CSD CrossRef CAS Google Scholar
First citationManochitra, P., Manikandan, N., Murugavel, S., Sreeshailam, R. & Sambasiva Rao, P. (2012). Acta Cryst. E68, m884–m885.  CSD CrossRef IUCr Journals Google Scholar
First citationMarjani, K., Davies, S. C., Durrant, M. C., Hughes, D. L., Khodamorad, N. & Samodi, A. (2005). Acta Cryst. E61, m11–m14.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNiemelä, K. (1987). J. Chromatogr. A, 399, 235–243.  Google Scholar
First citationPasán, J., Sanchiz, J., Ruiz-Pérez, C., Lloret, F. & Julve, M. (2004). Eur. J. Inorg. Chem. pp. 4081–4090.  Google Scholar
First citationReinoso, S., Vitoria, P., San Felices, L., Montero, A., Lezama, L. & Gutiérrez-Zorrilla, J. M. (2007). Inorg. Chem. 46, 1237–1249.  CSD CrossRef PubMed CAS Google Scholar
First citationSeco, J. M., Amador, U. & Garmendia, M. J. G. (2000). Inorg. Chim. Acta, 303, 256–264.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheykhi, H., Hossaini Sadr, M. & Soltani, B. (2018). Rev. Roum. Chim. 63, 309–313.  Google Scholar
First citationSorouraddin, H. M., Hibara, A., Proskurnin, M. A. & Kitamori, T. (2000). Anal. Sci. 16, 1033–1037.  CrossRef CAS Google Scholar
First citationTadsanaprasittipol, A., Kraatz, H. B. & Enright, G. D. (1998). Inorg. Chim. Acta, 278, 143–149.  CSD CrossRef CAS Google Scholar
First citationWang, X. Q., Rodriguez, J. A., Hanson, J. C., Gamarra, D., Martínez-Arias, A. & Fernández-García, M. (2006). J. Phys. Chem. B, 110, 428–434.  CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYuan, L., Qin, C., Wang, X., Wang, E. & Chang, S. (2008). Eur. J. Inorg. Chem. pp. 4936–4942.  CSD CrossRef Google Scholar
First citationZhang, Y.-N., Wang, Y.-Y., Hou, L., Liu, P., Liu, J.-Q. & Shi, Q.-Z. (2010). CrystEngComm, 12, 3840–3851.  CSD CrossRef CAS Google Scholar
First citationZubair, S., Asghar, F., Badshah, A., Lal, B., Hussain, R. A., Tabassum, S. & Tahir, M. N. (2019). J. Organomet. Chem. 879, 60–68.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds