research communications
A copper complex of an unusual hydroxy–carboxylate ligand: [Cu(bpy)(C4H4O6)]
aDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
*Correspondence e-mail: maverick@lsu.edu
A copper(II) complex, (2,2′-bipyridine-κ2N,N′)[2-hydroxy-2-(hydroxymethyl-κO)propanedioato-κ2O1,O3]copper(II), [Cu(C4H4O6)(C10H8N2)], containing the unusual anionic chelating ligand 2-(hydroxymethyl)tartronate, has been synthesized. [Cu(bpy)2(NO3)](NO3) was mixed with ascorbic acid and Dabco (1,4-diazabicyclo[2.2.2]octane) in DMF (dimethylformamide) solution in the presence of air to produce the title compound. The structure consists of square-pyramidal complexes that are joined by Cu⋯O contacts [2.703 (2) Å] into centrosymmetric dimers. The C4H4O62− ligand, which occupies three coordination sites at Cu, has previously been identified as an oxidation product of ascorbate ion.
Keywords: crystal structure; copper(II) complex; tartronate; square pyramidal; dimerization.
CCDC reference: 1966752
1. Chemical context
Copper complexes have drawn recent attention owing to applications in redox reactions (Zubair et al., 2019; Maity et al., 2010; Wang et al., 2006) and oxygen transport (Sheykhi et al., 2018; Liu et al., 2016; Tadsanaprasittipol et al., 1998; Kato et al., 2016). The 2,2′-bipyridine ligand has been used in a variety of supramolecular architectures (Fei et al., 2013; John et al., 2004; Seco et al., 2000; Barquín et al., 2010; Yuan et al., 2008).
As a common reducing reagent, ascorbic acid has also been investigated in complex synthesis and redox reactions (Creutz, 1981; Niemelä, 1987; Sorouraddin et al., 2000). For example, we have recently observed that mixtures of Cu complexes and ascorbate react with O2 to produce CuII oxalate complexes (Khamespanah et al., 2021). However, to our knowledge, the particular degradation product of ascorbic acid observed here, 2-(hydroxymethyl)tartronic acid [2-(hydroxymethyl)-2-hydroxy-1,3-propanedioic acid], has been reported only a few times. It was identified by as a product of oxidation of ascorbic acid (Niemelä, 1987; Löwendahl & Petersson, 1976) and two (Löwendahl et al., 1975a,b). We have now isolated compound (I), a copper(II) complex of the 2-(hydroxymethyl)tartronate anion (see Scheme), and its is reported here.
The preparation of the title complex is shown in Fig. 1. A solution of [(bpy)2Cu(ONO2)]NO3 and Dabco (1,4-diazabicyclo[2.2.2]octane) turned from blue to dark brown on addition of ascorbic acid, suggesting reduction of CuII to CuI. The solution was then exposed to air. It turned green over a period of several days, and the title compound (I) could be crystallized (Fig. 2).
In this procedure, Dabco also crystallizes, in its doubly protonated form as colorless [DabcoH2](NO3)2 (II). We could not isolate the title compound (I) when Dabco was omitted from the reaction mixture. We determined the structure of (II) as well (Gao et al., 2020). Although this structure was reported previously by Knope & Cahill (2007), the new structure provides improved resolution.
2. Structural commentary
The Cu atom in (I) adopts a square-pyramidal geometry, with coordination to two bpy N atoms and three O atoms from the 2-(hydroxymethyl)tartronate anion (C4H4O62–).
The two inversion-related complexes in the via two Cu⋯O contacts: Cu1⋯O1′ = 2.703 (2) Å. This kind of dimerization (see inset in Fig. 2) is commonly observed in 4- and 5-coordinate CuII complexes. It is discussed further in the Database survey section.
make a dimer3. Supramolecular features
The structure of (I) includes two O—H⋯O hydrogen bonds, one intramolecular and one intermolecular; see Table 1. The intermolecular hydrogen bonds form centrosymmetric hydrogen-bonded dimers with graph set R22(12) (Etter et al., 1990). These dimers are linked into chains in the [100] direction, as illustrated in Fig. 3.
4. Database survey
A survey of the Cambridge Structural Database (Version 5.40; Groom et al., 2016) yielded four five-coordinate CuII complexes with 2,2′-bipyridine, one alcohol, and two carboxylate ligands [CSD refcodes DAXVED (Antolini et al., 1984), SEKXAI (Devereux et al., 2006), TERTEQ (Ma et al., 2006), and VAJTIL (Zhang et al., 2010)]. The Cu atoms in these structures have a square-pyramidal geometry, with the alcohol ligand in the apical position, as in (I), with the following average angles and distances: N—Cu—N, 81.3 (10)°; Cu—N, 2.004 (13) Å; Cu—O(carboxylate), 1.949 (15) Å; and Cu—O(alcohol), 2.32 (6) Å. These are similar to values in (I): N—Cu—N, 81.35 (9)°; Cu—N, 1.985 (2), 1.990 (2) Å; Cu—O, 1.9587 (19), 1.935 (2), and 2.384 (2) Å, respectively.
Another group of structures closely related to (I) is Cu(bpy)(malonate) (malonate = 1,3-propanedioate); see Fig. 4. There are 14 such structures in the CSD, in all of which [as in (I)] the malonate C—O bonds are bent significantly out of the CuN2O2 coordination plane. Of these, seven [FIXDUM (Cui et al., 2005), SAYCUQ (Gasque et al., 1998), TIPZAT02 (Cernak, 2016), UNOJOY, UNOJUE, UNOKAL (Jaramillo-García et al., 2016), and XECFOC (Manochitra et al., 2012)] are monomeric, with R2 = H and syn H2O ligands [Fig. 4(b)]. This arrangement is similar to that observed in the Cu(bpy)(C4H4O6) moiety of (I), except that (I) contains an apical alcohol ligand rather than H2O. Because the alcohol in (I) is part of a small chelate ring, its coordination is bent slightly away from perpendicularity to the CuO2N2 plane [N1—Cu1—O2 104.04 (9), N2—Cu1—O2 91.77 (9)°]; the average N—Cu—OH2 angle in the above seven published structures is 93 (3)°.
In four structures [PUJJUC (Ghosh et al., 2020), CIJNEQ (Dey et al., 2013), MEHYON (Guan et al., 1998a,b), and WAHVOR (Pasán et al., 2004)], bulky R2 groups prevent syn coordination, and there are anti H2O ligands. In four structures [PUJJUC (Ghosh et al., 2020), CELSIW01 (Reinoso et al., 2007), CIJNEQ (Dey et al., 2013), and PESBAR (Baldomá et al., 2006)], dimers form as illustrated in Fig. 2, with Cu⋯O distances ranging from 2.315 (2) to 2.494 (3) Å. (Note: PUJJUC and CIJNEQ each contain two molecules in the one a five-coordinate monomer and the other a dimer of four-coordinate complexes.) As far as we are aware, the present complex [Cu(bpy)(C4H4O6)] (I) is the only example of a Cu(bpy)(malonate) in which a five-coordinate species dimerizes. Our structure shows a considerably larger Cu⋯O distance in its dimers than the above four published examples. This is likely because of the apical alcohol ligand in (I): a five-coordinate species is less likely to form strong Cu⋯O associations than a four-coordinate species.
5. Synthesis and crystallization
General procedures. Reagents were used as received, from Sigma–Aldrich. FTIR spectra were recorded on a Bruker Tensor 27 spectrometer in attenuated total reflectance mode.
Synthesis of Cu(bpy)(C4H4O6). To a mixture of [Cu(bpy)2(NO3)](NO3) (Marjani et al., 2005) (25.5 mg, 0.075 mmol, in 2 mL of DMF) and Dabco (8.4 mg, 0.075 mmol, in 1 mL of DMF), ascorbic acid (13.2 mg, 0.075 mmol, in 1 mL of DMF) was added. The mixture turned to dark brownish-red. It was stirred for two days in air, during which time it turned green, and filtered. The filtrate was used for vapor diffusion with diethyl ether. Crystals of Cu(bpy)(C4H4O6) [(I), blue] and [DabcoH2](NO3)2 [(II), colorless] formed, which were suitable for X-ray analysis.
Cu(bpy)(C4H4O6). FTIR (cm−1) 3036m, 2853w, 1704s, 1667m, 1612m, 1412m, 1391m, 1362m, 1312m, 1204s, 1149s, 1055m, 1036m, 778m, 732m, 639w.
6. Refinement
Crystal data, data collection, and structure . All H atoms were visible in difference-Fourier maps. Coordinates of those on O were refined with O—H distances restrained to 0.88 (2) Å. Those on C were positioned geometrically (C—H = 0.95 Å for aromatic C, 0.99 Å for CH2) and treated as riding. Displacement parameters for H were assigned as Ueq(H) = 1.2Ueq(C) and 1.5Ueq(O).
are summarized in Table 2Supporting information
CCDC reference: 1966752
https://doi.org/10.1107/S2056989021001286/pk2655sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021001286/pk2655Isup2.hkl
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).[Cu(C4H4O6)(C10H8N2)] | Z = 2 |
Mr = 367.80 | F(000) = 374 |
Triclinic, P1 | Dx = 1.850 Mg m−3 |
a = 7.6516 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.9272 (6) Å | Cell parameters from 3354 reflections |
c = 10.0722 (6) Å | θ = 2.2–29.3° |
α = 95.204 (4)° | µ = 1.69 mm−1 |
β = 107.729 (4)° | T = 90 K |
γ = 111.462 (4)° | Fragment, light blue |
V = 660.34 (7) Å3 | 0.15 × 0.09 × 0.07 mm |
Bruker Kappa APEXII DUO CCD diffractometer | 4041 independent reflections |
Radiation source: fine-focus sealed tube | 2675 reflections with I > 2σ(I) |
TRIUMPH curved graphite monochromator | Rint = 0.063 |
φ and ω scans | θmax = 30.6°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −10→10 |
Tmin = 0.838, Tmax = 0.891 | k = −14→14 |
18442 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: mixed |
wR(F2) = 0.105 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0436P)2 + 0.3982P] where P = (Fo2 + 2Fc2)/3 |
4041 reflections | (Δ/σ)max < 0.001 |
214 parameters | Δρmax = 0.74 e Å−3 |
2 restraints | Δρmin = −0.56 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.60628 (6) | 0.63056 (4) | 0.41304 (4) | 0.01841 (12) | |
O1 | 0.7261 (3) | 0.5158 (2) | 0.52799 (19) | 0.0200 (5) | |
O2 | 0.9188 (3) | 0.7153 (3) | 0.3763 (2) | 0.0247 (5) | |
H2O | 0.931 (6) | 0.635 (3) | 0.346 (4) | 0.037* | |
O3 | 0.7221 (3) | 0.7944 (2) | 0.5778 (2) | 0.0241 (5) | |
O4 | 0.9916 (3) | 0.5149 (2) | 0.6990 (2) | 0.0239 (5) | |
O5 | 1.2089 (3) | 0.8062 (3) | 0.7594 (2) | 0.0296 (5) | |
H5O | 1.178 (6) | 0.869 (4) | 0.813 (3) | 0.044* | |
O6 | 0.9741 (4) | 0.9263 (3) | 0.7840 (2) | 0.0337 (6) | |
N1 | 0.4537 (4) | 0.7282 (3) | 0.2933 (2) | 0.0170 (5) | |
N2 | 0.4699 (4) | 0.4750 (3) | 0.2317 (2) | 0.0166 (5) | |
C1 | 0.4522 (5) | 0.8585 (3) | 0.3373 (3) | 0.0201 (6) | |
H1 | 0.5308 | 0.9116 | 0.4337 | 0.024* | |
C2 | 0.3410 (5) | 0.9188 (3) | 0.2483 (3) | 0.0217 (7) | |
H2 | 0.3409 | 1.0109 | 0.2833 | 0.026* | |
C3 | 0.2293 (4) | 0.8435 (3) | 0.1071 (3) | 0.0195 (6) | |
H3 | 0.1527 | 0.8836 | 0.0433 | 0.023* | |
C4 | 0.2309 (4) | 0.7080 (3) | 0.0597 (3) | 0.0180 (6) | |
H4 | 0.1567 | 0.6548 | −0.0372 | 0.022* | |
C5 | 0.3422 (4) | 0.6519 (3) | 0.1558 (3) | 0.0142 (6) | |
C6 | 0.3512 (4) | 0.5078 (3) | 0.1208 (3) | 0.0142 (6) | |
C7 | 0.2500 (4) | 0.4119 (3) | −0.0127 (3) | 0.0155 (6) | |
H7 | 0.1676 | 0.4365 | −0.0892 | 0.019* | |
C8 | 0.2703 (4) | 0.2792 (3) | −0.0335 (3) | 0.0180 (6) | |
H8 | 0.2000 | 0.2107 | −0.1239 | 0.022* | |
C9 | 0.3938 (5) | 0.2480 (3) | 0.0789 (3) | 0.0191 (6) | |
H9 | 0.4109 | 0.1583 | 0.0665 | 0.023* | |
C10 | 0.4924 (4) | 0.3482 (3) | 0.2098 (3) | 0.0180 (6) | |
H10 | 0.5788 | 0.3267 | 0.2866 | 0.022* | |
C11 | 0.9051 (5) | 0.5800 (3) | 0.6238 (3) | 0.0217 (7) | |
C12 | 1.0222 (5) | 0.7493 (4) | 0.6426 (3) | 0.0247 (7) | |
C13 | 0.8962 (5) | 0.8297 (4) | 0.6718 (3) | 0.0258 (7) | |
C14 | 1.0784 (5) | 0.7878 (4) | 0.5103 (3) | 0.0284 (7) | |
H14A | 1.1263 | 0.8965 | 0.5195 | 0.034* | |
H14B | 1.1917 | 0.7614 | 0.5117 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0245 (2) | 0.0195 (2) | 0.00897 (15) | 0.01379 (17) | −0.00134 (13) | −0.00131 (13) |
O1 | 0.0255 (12) | 0.0221 (12) | 0.0104 (9) | 0.0137 (10) | −0.0002 (8) | 0.0018 (8) |
O2 | 0.0272 (12) | 0.0276 (13) | 0.0172 (10) | 0.0135 (11) | 0.0035 (9) | 0.0032 (9) |
O3 | 0.0257 (12) | 0.0268 (13) | 0.0147 (10) | 0.0143 (11) | −0.0012 (9) | −0.0040 (9) |
O4 | 0.0247 (12) | 0.0272 (12) | 0.0202 (10) | 0.0155 (10) | 0.0031 (9) | 0.0053 (9) |
O5 | 0.0283 (13) | 0.0337 (14) | 0.0213 (11) | 0.0169 (11) | −0.0006 (9) | −0.0024 (10) |
O6 | 0.0366 (14) | 0.0325 (14) | 0.0221 (11) | 0.0185 (12) | −0.0035 (10) | −0.0070 (10) |
N1 | 0.0182 (13) | 0.0181 (13) | 0.0128 (10) | 0.0084 (11) | 0.0030 (9) | 0.0005 (10) |
N2 | 0.0212 (13) | 0.0163 (13) | 0.0129 (11) | 0.0104 (11) | 0.0045 (10) | 0.0013 (10) |
C1 | 0.0244 (17) | 0.0168 (15) | 0.0183 (13) | 0.0108 (13) | 0.0051 (12) | −0.0005 (12) |
C2 | 0.0279 (18) | 0.0163 (16) | 0.0237 (15) | 0.0138 (14) | 0.0079 (13) | 0.0037 (12) |
C3 | 0.0195 (16) | 0.0195 (16) | 0.0223 (14) | 0.0123 (13) | 0.0052 (12) | 0.0071 (12) |
C4 | 0.0149 (15) | 0.0242 (17) | 0.0143 (13) | 0.0095 (13) | 0.0034 (11) | 0.0031 (12) |
C5 | 0.0136 (14) | 0.0142 (14) | 0.0145 (12) | 0.0063 (12) | 0.0046 (10) | 0.0005 (11) |
C6 | 0.0125 (14) | 0.0167 (15) | 0.0113 (12) | 0.0060 (12) | 0.0022 (10) | 0.0019 (11) |
C7 | 0.0116 (14) | 0.0165 (15) | 0.0140 (12) | 0.0038 (12) | 0.0020 (10) | 0.0005 (11) |
C8 | 0.0173 (15) | 0.0170 (15) | 0.0142 (12) | 0.0039 (12) | 0.0040 (11) | −0.0016 (11) |
C9 | 0.0241 (16) | 0.0142 (15) | 0.0214 (14) | 0.0101 (13) | 0.0092 (12) | 0.0022 (12) |
C10 | 0.0202 (16) | 0.0201 (16) | 0.0155 (13) | 0.0108 (13) | 0.0056 (11) | 0.0044 (12) |
C11 | 0.0310 (18) | 0.0229 (17) | 0.0115 (12) | 0.0158 (15) | 0.0035 (12) | 0.0006 (12) |
C12 | 0.0257 (17) | 0.0276 (18) | 0.0162 (13) | 0.0123 (15) | 0.0010 (12) | 0.0019 (13) |
C13 | 0.0288 (18) | 0.0260 (18) | 0.0209 (15) | 0.0149 (15) | 0.0036 (13) | 0.0015 (14) |
C14 | 0.0271 (18) | 0.0294 (19) | 0.0235 (15) | 0.0108 (16) | 0.0049 (13) | 0.0008 (14) |
Cu1—O3 | 1.935 (2) | C2—H2 | 0.9500 |
Cu1—O1 | 1.9587 (19) | C3—C4 | 1.391 (4) |
Cu1—N1 | 1.985 (2) | C3—H3 | 0.9500 |
Cu1—N2 | 1.990 (2) | C4—C5 | 1.383 (4) |
Cu1—O2 | 2.384 (2) | C4—H4 | 0.9500 |
O1—C11 | 1.288 (3) | C5—C6 | 1.474 (4) |
O2—C14 | 1.417 (4) | C6—C7 | 1.381 (4) |
O2—H2O | 0.880 (18) | C7—C8 | 1.387 (4) |
O3—C13 | 1.275 (4) | C7—H7 | 0.9500 |
O4—C11 | 1.236 (3) | C8—C9 | 1.377 (4) |
O5—C12 | 1.417 (4) | C8—H8 | 0.9500 |
O5—H5O | 0.929 (18) | C9—C10 | 1.380 (4) |
O6—C13 | 1.236 (4) | C9—H9 | 0.9500 |
N1—C1 | 1.334 (4) | C10—H10 | 0.9500 |
N1—C5 | 1.355 (3) | C11—C12 | 1.549 (5) |
N2—C10 | 1.339 (4) | C12—C13 | 1.532 (4) |
N2—C6 | 1.358 (3) | C12—C14 | 1.558 (4) |
C1—C2 | 1.375 (4) | C14—H14A | 0.9900 |
C1—H1 | 0.9500 | C14—H14B | 0.9900 |
C2—C3 | 1.383 (4) | ||
O3—Cu1—O1 | 91.06 (8) | N1—C5—C6 | 114.2 (2) |
O3—Cu1—N1 | 91.97 (9) | C4—C5—C6 | 124.4 (2) |
O1—Cu1—N1 | 173.29 (10) | N2—C6—C7 | 121.5 (3) |
O3—Cu1—N2 | 173.32 (9) | N2—C6—C5 | 114.4 (2) |
O1—Cu1—N2 | 95.56 (9) | C7—C6—C5 | 124.1 (2) |
N1—Cu1—N2 | 81.35 (9) | C6—C7—C8 | 119.1 (3) |
O3—Cu1—O2 | 90.05 (9) | C6—C7—H7 | 120.4 |
O1—Cu1—O2 | 81.94 (8) | C8—C7—H7 | 120.4 |
N1—Cu1—O2 | 104.04 (9) | C9—C8—C7 | 119.0 (3) |
N2—Cu1—O2 | 91.77 (9) | C9—C8—H8 | 120.5 |
C11—O1—Cu1 | 120.61 (19) | C7—C8—H8 | 120.5 |
C14—O2—Cu1 | 108.93 (18) | C8—C9—C10 | 119.5 (3) |
C14—O2—H2O | 106 (2) | C8—C9—H9 | 120.3 |
Cu1—O2—H2O | 106 (2) | C10—C9—H9 | 120.3 |
C13—O3—Cu1 | 121.7 (2) | N2—C10—C9 | 121.9 (3) |
C12—O5—H5O | 96 (2) | N2—C10—H10 | 119.1 |
C1—N1—C5 | 119.1 (2) | C9—C10—H10 | 119.1 |
C1—N1—Cu1 | 125.71 (19) | O4—C11—O1 | 124.3 (3) |
C5—N1—Cu1 | 115.18 (19) | O4—C11—C12 | 117.9 (3) |
C10—N2—C6 | 119.0 (2) | O1—C11—C12 | 117.8 (2) |
C10—N2—Cu1 | 126.08 (19) | O5—C12—C13 | 108.3 (2) |
C6—N2—Cu1 | 114.81 (18) | O5—C12—C11 | 111.3 (2) |
N1—C1—C2 | 122.5 (3) | C13—C12—C11 | 109.2 (3) |
N1—C1—H1 | 118.8 | O5—C12—C14 | 105.0 (3) |
C2—C1—H1 | 118.8 | C13—C12—C14 | 110.5 (3) |
C1—C2—C3 | 119.0 (3) | C11—C12—C14 | 112.4 (2) |
C1—C2—H2 | 120.5 | O6—C13—O3 | 125.2 (3) |
C3—C2—H2 | 120.5 | O6—C13—C12 | 117.0 (3) |
C2—C3—C4 | 119.0 (3) | O3—C13—C12 | 117.8 (3) |
C2—C3—H3 | 120.5 | O2—C14—C12 | 114.7 (3) |
C4—C3—H3 | 120.5 | O2—C14—H14A | 108.6 |
C5—C4—C3 | 119.0 (3) | C12—C14—H14A | 108.6 |
C5—C4—H4 | 120.5 | O2—C14—H14B | 108.6 |
C3—C4—H4 | 120.5 | C12—C14—H14B | 108.6 |
N1—C5—C4 | 121.4 (3) | H14A—C14—H14B | 107.6 |
C5—N1—C1—C2 | 0.1 (5) | C6—N2—C10—C9 | −2.0 (4) |
Cu1—N1—C1—C2 | −179.4 (2) | Cu1—N2—C10—C9 | −178.8 (2) |
N1—C1—C2—C3 | −1.3 (5) | C8—C9—C10—N2 | 0.8 (5) |
C1—C2—C3—C4 | 0.8 (5) | Cu1—O1—C11—O4 | −179.0 (2) |
C2—C3—C4—C5 | 0.8 (4) | Cu1—O1—C11—C12 | −1.0 (4) |
C1—N1—C5—C4 | 1.5 (4) | O4—C11—C12—O5 | −6.9 (4) |
Cu1—N1—C5—C4 | −178.9 (2) | O1—C11—C12—O5 | 175.0 (2) |
C1—N1—C5—C6 | −178.4 (3) | O4—C11—C12—C13 | −126.3 (3) |
Cu1—N1—C5—C6 | 1.2 (3) | O1—C11—C12—C13 | 55.6 (3) |
C3—C4—C5—N1 | −2.0 (4) | O4—C11—C12—C14 | 110.7 (3) |
C3—C4—C5—C6 | 177.9 (3) | O1—C11—C12—C14 | −67.4 (4) |
C10—N2—C6—C7 | 1.6 (4) | Cu1—O3—C13—O6 | −175.1 (3) |
Cu1—N2—C6—C7 | 178.7 (2) | Cu1—O3—C13—C12 | 6.5 (4) |
C10—N2—C6—C5 | −178.2 (3) | O5—C12—C13—O6 | 1.0 (4) |
Cu1—N2—C6—C5 | −1.1 (3) | C11—C12—C13—O6 | 122.3 (3) |
N1—C5—C6—N2 | −0.1 (4) | C14—C12—C13—O6 | −113.5 (3) |
C4—C5—C6—N2 | −179.9 (3) | O5—C12—C13—O3 | 179.6 (3) |
N1—C5—C6—C7 | −179.9 (3) | C11—C12—C13—O3 | −59.1 (4) |
C4—C5—C6—C7 | 0.3 (5) | C14—C12—C13—O3 | 65.1 (4) |
N2—C6—C7—C8 | 0.0 (4) | Cu1—O2—C14—C12 | 19.3 (3) |
C5—C6—C7—C8 | 179.8 (3) | O5—C12—C14—O2 | 167.8 (3) |
C6—C7—C8—C9 | −1.2 (4) | C13—C12—C14—O2 | −75.7 (3) |
C7—C8—C9—C10 | 0.8 (4) | C11—C12—C14—O2 | 46.6 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2O···O4i | 0.88 (2) | 1.85 (2) | 2.723 (3) | 169 (4) |
O5—H5O···O6 | 0.93 (2) | 1.80 (3) | 2.549 (3) | 136 (3) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
Funding information
Funding for this research was provided by the West Professorship, Louisiana State University. The diffractometer purchase and upgrades were made possible by grants from the Louisiana Board of Regents.
References
Antolini, L., Menabue, L., Pellacani, G. C., Saladini, M., Sola, M., Battaglia, L. P. & Corradi, A. B. (1984). J. Chem. Soc. Dalton Trans. pp. 2319–2323. CSD CrossRef Google Scholar
Baldomá, R., Monfort, M., Ribas, J., Solans, X. & Maestro, M. A. (2006). Inorg. Chem. 45, 8144–8155. PubMed Google Scholar
Barquín, M., Cocera, N., González Garmendia, M. J., Larrínaga, L., Pinilla, E., Seco, J. M. & Torres, M. R. (2010). Inorg. Chim. Acta, 363, 127–133. Google Scholar
Bruker (2016). SAINT and APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cernak, J. (2016). CSD Communication (CCDC 832930). CCDC, Cambridge, England. htps://doi.org/10.5517/ccdc.csd.ccwyqq7. Google Scholar
Creutz, C. (1981). Inorg. Chem. 20, 4449–4452. CrossRef CAS Google Scholar
Cui, G.-H., Li, J.-R., Hu, T.-L. & Bu, X.-H. (2005). J. Mol. Struct. 738, 183–187. Web of Science CSD CrossRef CAS Google Scholar
Devereux, M., McCann, M., O'Shea, D., O'Connor, M., Kiely, E., McKee, V., Naughton, D., Fisher, A., Kellett, A., Walsh, M., Egan, D. & Deegan, C. (2006). Bioinorg. Chem. Appl. 080283. Google Scholar
Dey, B., Saha, R. & Mukherjee, P. (2013). Chem. Commun. 49, 7064–7066. CSD CrossRef CAS Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Fei, B.-L., Li, W., Xu, W.-S., Li, Y.-G., Long, J.-Y., Liu, Q.-B., Shao, K.-Z., Su, Z.-M. & Sun, W.-Y. (2013). J. Photochem. Photobiol. B, 125, 32–41. CrossRef CAS PubMed Google Scholar
Gao, S., Fronczek, F. R. & Maverick, A. W. (2020). CSD Communication (CCDC 1993697). CCDC, Cambridge, England. htps://doi.org/10.5517/ccdc.csd.cc24xlth. Google Scholar
Gasque, L., Moreno-Esparza, R., Mollins, E., Briansó-Penalva, J. L., Ruiz-Ramírez, L. & Medina-Dickinson, G. (1998). Acta Cryst. C54, 1848–1850. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ghosh, D., Dhibar, S., Dey, A., Manna, P., Mahata, P. & Dey, B. (2020). ChemistrySelect 5, 75–82. CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Guan, W., Sun, J.-Y., Zhang, X.-D. & Liu, Q.-T. (1998a). Gaodeng Xuexiao Huaxue Xuebao, 19, 5–8. CAS Google Scholar
Guan, W., Sun, J.-Y., Zhang, X.-D. & Liu, Q.-T. (1998b). Chem. Abstr. 85467. Google Scholar
Jaramillo-García, J., Téllez-López, A., Martínez-Domínguez, R., Morales-Luckie, R. A., Martínez-Otero, D., Sánchez-Mendieta, V. & Escudero, R. (2016). J. Coord. Chem. 69, 1525–1540. Google Scholar
John, R. P., Sreekanth, A., Rajakannan, V., Ajith, T. A. & Kurup, M. R. P. (2004). Polyhedron, 23, 2549–2559. Web of Science CSD CrossRef CAS Google Scholar
Kato, M., Oyaizu, N., Shimazu, K. & Yagi, I. (2016). J. Phys. Chem. C, 120, 15814–15822. CrossRef CAS Google Scholar
Khamespanah, F., Marx, M., Crochet, D. B., Pokharel, U. R., Fronczek, F. R., Maverick, A. W. & Beller, M. (2021). Submitted for publication. Google Scholar
Knope, K. E. & Cahill, C. L. (2007). Acta Cryst. E63, o2955. CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Liu, S. Q., Zhou, S. S., Chen, Z. G., Liu, C. B., Chen, F. & Wu, Z. Y. (2016). Catal. Commun. 73, 7–11. CrossRef CAS Google Scholar
Löwendahl, L. & Petersson, G. (1976). Anal. Biochem. 72, 623–628. PubMed Google Scholar
Löwendahl, L., Petersson, G. & Samuelson, O. (1975a). Acta Chem. Scand. 29B, 526–527. Google Scholar
Löwendahl, L., Petersson, G. & Samuelson, O. (1975b). Acta Chem. Scand. 29B, 975–980. Google Scholar
Ma, X.-Y., Dong, X.-D., Li, Y.-P. & Zhang, Z.-G. (2006). Acta Cryst. E62, m3467–m3469. CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Maity, B., Roy, M., Banik, B., Majumdar, R., Dighe, R. R. & Chakravarty, A. R. (2010). Organometallics, 29, 3632–3641. Web of Science CSD CrossRef CAS Google Scholar
Manochitra, P., Manikandan, N., Murugavel, S., Sreeshailam, R. & Sambasiva Rao, P. (2012). Acta Cryst. E68, m884–m885. CSD CrossRef IUCr Journals Google Scholar
Marjani, K., Davies, S. C., Durrant, M. C., Hughes, D. L., Khodamorad, N. & Samodi, A. (2005). Acta Cryst. E61, m11–m14. Web of Science CSD CrossRef IUCr Journals Google Scholar
Niemelä, K. (1987). J. Chromatogr. A, 399, 235–243. Google Scholar
Pasán, J., Sanchiz, J., Ruiz-Pérez, C., Lloret, F. & Julve, M. (2004). Eur. J. Inorg. Chem. pp. 4081–4090. Google Scholar
Reinoso, S., Vitoria, P., San Felices, L., Montero, A., Lezama, L. & Gutiérrez-Zorrilla, J. M. (2007). Inorg. Chem. 46, 1237–1249. CSD CrossRef PubMed CAS Google Scholar
Seco, J. M., Amador, U. & Garmendia, M. J. G. (2000). Inorg. Chim. Acta, 303, 256–264. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheykhi, H., Hossaini Sadr, M. & Soltani, B. (2018). Rev. Roum. Chim. 63, 309–313. Google Scholar
Sorouraddin, H. M., Hibara, A., Proskurnin, M. A. & Kitamori, T. (2000). Anal. Sci. 16, 1033–1037. CrossRef CAS Google Scholar
Tadsanaprasittipol, A., Kraatz, H. B. & Enright, G. D. (1998). Inorg. Chim. Acta, 278, 143–149. CSD CrossRef CAS Google Scholar
Wang, X. Q., Rodriguez, J. A., Hanson, J. C., Gamarra, D., Martínez-Arias, A. & Fernández-García, M. (2006). J. Phys. Chem. B, 110, 428–434. CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yuan, L., Qin, C., Wang, X., Wang, E. & Chang, S. (2008). Eur. J. Inorg. Chem. pp. 4936–4942. CSD CrossRef Google Scholar
Zhang, Y.-N., Wang, Y.-Y., Hou, L., Liu, P., Liu, J.-Q. & Shi, Q.-Z. (2010). CrystEngComm, 12, 3840–3851. CSD CrossRef CAS Google Scholar
Zubair, S., Asghar, F., Badshah, A., Lal, B., Hussain, R. A., Tabassum, S. & Tahir, M. N. (2019). J. Organomet. Chem. 879, 60–68. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.