research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of poly[[bis­­[μ4-N,N′-(1,3,5-oxadiazinane-3,5-di­yl)bis­(carbamoyl­methano­ato)]nickel(II)tetra­potassium] 4.8-hydrate]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, National Taras Shevchenko University, Volodymyrska Street 64, 01601 Kyiv, Ukraine, bDepartment of Chemistry, University of Jyvaskyla, P.O. Box 35, FI-40014 Jyvaskyla, Finland, cPBMR Labs Ukraine, Murmanska 1, 02094 Kiev, Ukraine, and dThe Faculty of Physics, Tajik National University, Rudaki Avenue 17, 734025 Dushanbe, Tajikistan
*Correspondence e-mail: plutenkom@gmail.com, voruch@eml.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 20 January 2021; accepted 22 February 2021; online 26 February 2021)

The title compound, {[K4Ni2(C7H6N4O7)2]·4.8H2O}n, was obtained as a result of a template reaction between oxalohydrazide­hydroxamic acid, formaldehyde and nickel(II) nitrate followed by partial hydrolysis of the formed inter­mediate. The two independent [Ni(C7H6N4O7)]2– complex anions exhibit pseudo-CS symmetry and consist of an almost planar metal-containing fragment and a 1,3,5-oxadiazinane ring with a chair conformation disposed nearly perpendicularly with respect to the former. The central NiII atom has a square-planar N2O2 coordination arrangement formed by two amide N and two carboxyl­ate O atoms. In the crystal, the nickel(II) complex anions form layers parallel to the ab plane. Neighboring complex anion layers are connected by layers of potassium cations for which two of the four independent cations are disordered over two sites [ratios of 0.54 (3):0.46 (3) and 0.9643 (15):0.0357 (15)]. The framework is stabilized by an extensive system of hydrogen bonds where the water mol­ecules act as donors and the carb­oxy­lic O atoms, the amide O atoms and the oxadiazinane N atoms act as acceptors.

1. Chemical context

Coordination compounds of paramagnetic metal ions based on polydentate ligands comprising amide, hydrazide and hydroxamate functional groups are of great inter­est as they often form novel oligonuclear structures with inter­esting supra­molecular features (Mezei et al., 2007[Mezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933-5003.]; Strotmeyer et al., 2003[Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529-547.]). Frequently, these compounds exhibit unusual magnetic properties (Pavlishchuk et al., 2010[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851-4858.]; Gumienna-Kontecka et al., 2007[Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Świątek-Kozłowska, J. (2007). New J. Chem. 31, 1798-1805.]; Pavlishchuk et al., 2011[Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826-4836.]; Huang et al., 2014[Huang, X.-C., Zhou, C., Shao, D. & Wang, X.-Y. (2014). Inorg. Chem. 53, 12671-12673.]) and have potential biological activity (Raja et al., 2012[Raja, D. S., Bhuvanesh, N. S. P. & Natarajan, K. (2012). Dalton Trans. 41, 4365-4377.]). The use of hydrazide metal complexes as synthons for template reactions has allowed coordination compounds with more complicated, sometimes unpredictable mol­ecular structures to be obtained (Clark et al., 1976[Clark, G. R., Skelton, B. W. & Waters, T. N. (1976). J. Chem. Soc. Dalton Trans. pp. 1528-1536.]). In particular, for ring-closure reactions, aldehydes (especially formaldehyde) can be used successfully as capping reagents for template condensation, as has been shown in several studies (Fritsky et al., 1998[Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Śwątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269-3274.], 2006[Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125-4127.]; Tomyn et al., 2017[Tomyn, S., Shylin, S. I., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon, V. & Fritsky, I. O. (2017). Nat. Commun. 8, 14099, 1-9.]). Importantly, depending on the nature and coordination preference of the metal ion, the products of the ring-closure reactions can be both macrocyclic or pseudomacrocyclic (Ni2+, Cu2+; Fritsky et al., 1998[Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Śwątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269-3274.], 2006[Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125-4127.]; Tomyn et al., 2017[Tomyn, S., Shylin, S. I., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon, V. & Fritsky, I. O. (2017). Nat. Commun. 8, 14099, 1-9.]) and macrobicylic (Fe4+; Tomyn et al., 2017[Tomyn, S., Shylin, S. I., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon, V. & Fritsky, I. O. (2017). Nat. Commun. 8, 14099, 1-9.], Shylin et al., 2019a[Shylin, S. I., Pavliuk, M. V., D'Amario, L., Fritsky, I. O. & Berggren, G. (2019a). Faraday Discuss. 215, 162-174.],b[Shylin, S. I., Pavliuk, M. V., D'Amario, L., Mamedov, F., Sá, J., Berggren, G. & Fritsky, I. O. (2019b). Chem. Commun. 55, 3335-3338.]).

[Scheme 1]

Here, we report the crystal structure of the polymeric title compound {K4[Ni(L-2H)]2·4.8H2O}n [L = N,N′-(1,3,5-oxadiazinane-3,5-di­yl)bis­(carbamoyl­methanoic acid)] (1) obtained as a result of a template reaction between oxalohydrazide­hydroxamic acid, formaldehyde and nickel(II) nitrate followed by partial hydrolysis of the formed inter­mediate. The plausible mechanism of formation for (1) includes the deprotonation of oxalohydrazide­hydroxamic acid and coord­ination to the metal ions in a tetra­dentate mode, followed by template condensation of two hydrazide moieties with three mol­ecules of formaldehyde and metal-promoted hydrolysis of the hydroxamate group of the formed inter­mediate, which eventually results in the formation of the nickel(II) complex anion [Ni(L-2H)]2− (Fig. 1[link]). The crystallization process causes the bonding of such anions with the potassium counter-cations and the water solvent mol­ecules, forming the three-dimensional coordination polymer {K4[Ni(L-2H)]2·4.8H2O}n (1).

[Figure 1]
Figure 1
The plausible mechanism for the formation of the [Ni(L-2H)]2– anion.

2. Structural commentary

The asymmetric unit of (1) (Fig. 2[link]) contains two complex anions [Ni(L-2H)]2– (which contain Ni1 and Ni1B, respectively), four potassium cations (two of which, K3 and K4, are disordered over two sites) and five solvent water mol­ecules, one of which is disordered over two sets of sites (O4WA and O4WB in a ratio of 0.8:0.2), and one (O5W) that has an occupancy of 0.8.

[Figure 2]
Figure 2
The asymmetric unit of (1) with displacement ellipsoids shown at the 50% probability level. The potassium cations K3 and K4 and the solvate water mol­ecule O4W are disordered over two positions, namely K3A and K3B, K4A and K4B, O4WA and O4WB, respectively.

Both complex anions [Ni(C7H6N4O7)]2– have a pseudo-CS symmetry with similar bond lengths and angles. Each anion consists of an almost planar metal-containing {NiN2O2} fragment [the maximum deviation of the atoms involved in the anion from the least-squares plane is 0.1232 (12) Å for the anion centred by Ni1 and −0.1510 (13) Å for the anion centred by Ni1B] and an 1,3,5-oxadizdinane ring disposed nearly perpendicularly with respect to the former. The 1,3,5-oxadizdinane ring in each anion adopts a chair conformation. The dihedral angle between the mean planes formed by the non-hydrogen atoms of these two fragments is 87.22 (5)° for the Ni1 anion and 86.89 (5)° for the Ni1B anion. Thus, the complex anions reveal an L-like shape.

The ligand mol­ecule (L-2H) coordinates in a tetra­dentate {Ocarbox­yl,Namide,Namide,Ocarbox­yl} mode, thus forming three fused chelate rings (two five-membered and one six-membered). The central NiII atom of the complex anion has a square-planar coordination arrangement with an N2O2 chromophore. The deviation of the NiII atom from the mean plane defined by the four donor atoms is 0.0098 (8) and 0.0116 (9) Å for Ni1 and Ni1B, respectively. The Ni—N and Ni—O bond lengths (Table 1[link]) are in the range 1.8429 (15)–1.8479 (15) and 1.8830 (13)–1.9012 (13) Å, respectively, typical for square-planar nickel(II) complexes with similar tetra­dentate ligands (Fritsky et al., 2004[Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Y. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746-3752.]; Sliva et al., 1997a[Sliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 273-276.],b[Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritskii, I. O. & Kozłowski, H. (1997b). J. Inorg. Biochem. 65, 287-294.]; Duda et al., 1997[Duda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853-3860.]). The bite angles O1—Ni1—N4, N1—Ni1—O2 and N1—Ni1—N4 for both anions (Table 1[link]) deviate from the ideal value of 90°, conditioned by the formation of five-membered chelate rings. N—N′, N—C and C—O and C=O bond lengths within the (L-2H) ligand indicate values typical for the coordinating deprotonated hydrazide and carboxyl groups.

Table 1
Selected geometric parameters (Å, °)

Ni1—N4 1.8429 (15) Ni1B—N1B 1.8436 (16)
Ni1—N1 1.8479 (15) Ni1B—N4B 1.8463 (16)
Ni1—O1 1.8830 (13) Ni1B—O2B 1.8922 (14)
Ni1—O2 1.9012 (13) Ni1B—O1B 1.8975 (14)
       
N4—Ni1—N1 96.01 (7) N1B—Ni1B—N4B 95.98 (7)
N4—Ni1—O1 85.25 (6) N1B—Ni1B—O2B 85.01 (6)
N1—Ni1—O1 178.74 (6) N4B—Ni1B—O2B 177.89 (7)
N4—Ni1—O2 178.28 (7) N1B—Ni1B—O1B 178.86 (7)
N1—Ni1—O2 85.10 (6) N4B—Ni1B—O1B 85.08 (7)
O1—Ni1—O2 93.65 (6) O2B—Ni1B—O1B 93.94 (6)

3. Supra­molecular features

In the crystal, the nickel(II) complex anions [Ni(L-2H)]2− form layers parallel to ab plane (Fig. 3[link]). Neighboring complex anion layers are sandwiched by layers of potassium counter-cations (Fig. 4[link]). Thus, complex anion layers and potassium layers are stacked along the c-axis direction (Fig. 5[link]).

[Figure 3]
Figure 3
Layers formed by the anionic nickel(II) complexes.
[Figure 4]
Figure 4
The layer of potassium cations and their coordination arrangement. The minor disordered components of K3 and K4 atoms (K3A and K4B) are omitted for clarity. [Symmetry codes: (i) x − [{1\over 2}], −y + [{1\over 2}], −z + 1; (iii) x − [{1\over 2}], y, −z + [{1\over 2}]; (vi) x, −y + [{1\over 2}], z + [{1\over 2}]; (vii) x + [{1\over 2}], −y + [{1\over 2}], −z + 1; (x) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (xi) −x + [{1\over 2}], y + [{1\over 2}], −z; (xii) −x + [{3\over 2}], y + [{1\over 2}], z; (xiii) x + 1, −y + 1, −z + 1; (xiv) −x + [{2\over 3}], −y + 1, z + [{1\over 2}]].
[Figure 5]
Figure 5
Crystal packing of the title compound in a stick model, showing the coordination polyhedra of the potassium cations in lilac. H atoms of the C—H groups and minor disordered components (K3A and K4B, O4WB water mol­ecule) are omitted for clarity.

The potassium cations are bound to the nickel(II) complex anions through the amide and the carb­oxy­lic O atoms (K1, K4A) or through the amide O and the oxadiazinane N atoms (K2, K3B). In addition, the potassium cations have contacts with the O atoms of the water mol­ecules, with the amide and the carb­oxy­lic O atoms, and with the oxadiazinane N atoms of neighboring complex anions. For definition of the coordination spheres around the cations, K—O and K—N contacts that do not exceed the sum of the ionic radii by more than 0.2 Å were defined as bonding contacts [the values of the ionic radii were taken from Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.])]. The K1, K2 and K4A cations exhibit O6, O6N2 and O6 coordination sets. As a result of the disorder of the water mol­ecules, the K3B site has an O6N or O7N coordination set. In addition, there are K1⋯O2W, K1⋯O7B and K2⋯O2B remote non-bonding contacts, which are significantly greater than the sum of the ionic radii.

For an evaluation of the coordination geometry of each potassium cation, the SHAPE 2.1 software (Llunell et al., 2013[Llunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Universitat de Barcelona, Barcelona, Spain.]) was used. A SHAPE analysis of the potassium coordination sphere (Table 2[link], Fig. 6[link]) yields the lowest continuous shape measure (CShM) value for a distorted trigonal prism (4.697 for K1), a distorted triangular dodeca­hedron (4.992 for K2), a distorted hexa­gonal bipyramid (13.393 for K3B) and a distorted octa­hedron (4.985 for K4A). For K2 and K3B, comparable CShM values were obtained for a biaugmented trigonal prism (5.698) and an elongated trigonal bipyramid (13.966), respectively.

Table 2
Values for continuous shapes measures (CShM) of the polyhedra centred by the potassium cations (only major components for the disordered parts are considered)

Shape CShM  
  K1 K4A
Hexagon (D6h) 30.965 33.688
Penta­gonal pyramid (C5v) 9.924 22.357
Octa­hedron (Oh) 13.859 4.985
Trigonal prism (D3h) 4.697 10.581
Johnson penta­gonal pyramid J2 (C5v) 13.919 26.100
  K2 K3B
Octa­gon (D8h) 32.591 28.712
Heptagonal pyramid (C7v) 18.314 20.510
Hexagonal bipyramid (D6h) 14.891 13.393
Cube (Oh) 14.913 14.525
Square anti­prism (D4d) 6.805 19.105
Triangular dodeca­hedron (D2d) 4.992 17.608
Johnson gyrobifastigium J26 (D2d) 10.479 16.378
Johnson elongated triangular bipyramid J14 (D3h) 23.441 18.219
Biaugmented trigonal prism J50 (C2v) 6.800 16.341
Biaugmented trigonal prism (C2v) 5.698 16.739
Snub diphenoid J84 (D2d) 6.894 15.895
Triakis tetra­hedron (Td) 15.016 14.550
Elongated trigonal bipyramid (D3h) 17.893 13.966
[Figure 6]
Figure 6
Polyhedral views of the coordination environments for the potassium cations; the minor disordered components of atoms K3 and K4 (K3A and K4B) are omitted for clarity. [Symmetry codes: (i) x − [{1\over 2}], −y + [{1\over 2}], −z + 1; (ii) −x + 1, −y, −z + 1; (iii) x − [{1\over 2}], y, −z + [{1\over 2}]; (iv) x + [{1\over 2}], y, −z + [{1\over 2}]; (v) −x + [{3\over 2}], −y, z − [{1\over 2}]; (vi) x, −y + [{1\over 2}], z + [{1\over 2}]].

The polyhedra around neighboring potassium cations are connected with each other through common vertices (K1 with K2, K1 with K4A, K3B with K4A), edges (K1 with K1, K1 with K2, K1 with K3B) and faces (K2 with K4A). The K—O and K—N bond lengths are normal for potassium cations and close to those reported in the structures of related carboxyl­ate and amide complexes (Fritsky et al., 1998[Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Śwątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269-3274.]; Świątek-Kozłowska et al., 2000[Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064-4068.]; Mokhir et al., 2002[Mokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113-121.]).

The polymeric framework is stabilized by an extensive system of hydrogen-bonding inter­actions where the water mol­ecules act as donors and the carb­oxy­lic O atoms, the amide O atoms and the oxadizdinane N atoms act as acceptors (Table 3[link], Fig. 7[link]).

Table 3
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O6i 0.92 1.94 2.840 (2) 166
O1W—H2W1⋯O5Wii 0.83 2.61 3.120 (4) 121
O1W—H2W1⋯O3Biii 0.83 2.23 3.001 (2) 154
O2W—H2W2⋯O4iv 0.93 1.83 2.754 (2) 171
O4WA—H2W4⋯O4Bii 0.91 2.44 2.993 (2) 119
O4WA—H2W4⋯N2Bii 0.91 2.02 2.895 (3) 161
O5W—H5WC⋯O6Bv 0.85 1.95 2.774 (3) 162
O4WB—H3W4⋯O4Bii 0.85 2.09 2.848 (9) 149
O4WB—H4W4⋯O6Bv 0.88 2.15 3.024 (9) 174
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [-x+1, -y, -z+1]; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].
[Figure 7]
Figure 7
Crystal packing of the title compound. Hydrogen bonds are indicated by dashed lines. H atoms of the C—H groups and minor disordered components (K3A and K4B, O4WB water mol­ecule) are omitted for clarity.

4. Hirshfeld analysis

The Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was performed and the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were obtained with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]). The Hirshfeld surfaces of the complex anions are colour-mapped with the normalized contact distance (dnorm) from red (distances shorter than the sum of the van der Waals radii) through white to blue (distances longer than the sum of the van der Waals radii). The Hirshfeld surface mapped over dnorm, in the colour range −0.6411 to 0.9651 a.u. for the anion centred by Ni1 (A) and −0,6382 to 0.9607 a.u. for the anion centred by Ni1B (B) is shown in Fig. 8[link]. Both complex anions are connected to the other moieties of the crystal structure mainly through the amide and the carb­oxy­lic O atoms.

[Figure 8]
Figure 8
The Hirshfeld surfaces of the two complex anions (A = Ni and B = NiB) mapped over dnorm.

A two-dimensional fingerprint plot contains information related to specific inter­molecular inter­actions. The blue colour refers to the frequency of occurrence of the (di, de) pair with the full fingerprint plot outlined in gray. Figs. 9[link]a and 10a[link] show the two-dimensional fingerprint plots for the anion centred by Ni1 (A) and by Ni1B (B), represented by the sum of the contacts contributing to the Hirshfeld surface in normal mode. The most significant contribution to the Hirshfeld surface is from O⋯H/H⋯O contacts (41.3% for complex A and 41.0% for complex B, respectively; Fig. 9[link]b and 10b). In addition, O⋯K/K⋯O (15.8% for complex anions A and B; Fig. 9[link]c and 10c) and H⋯H (13.7% for complex anion A and 15.1% for complex anion B; Fig. 9[link]d and 10d) are other significant contributions to the total Hirshfeld surface.

[Figure 9]
Figure 9
(a) Full two-dimensional fingerprint plot of the A complex anion (Ni1), and delineated into (b) O⋯H/H⋯O (41.3%) (c) O⋯K/K⋯O (15.8%) and (d) H⋯H (13.7%) contacts.
[Figure 10]
Figure 10
(a) Full two-dimensional fingerprint plot of the B complex anion (Ni1B), and delineated into (b) O⋯H/H⋯O (41.0%) (c) O⋯K/K⋯O (15.8%) and (d) H⋯H (15.1%) contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD version 5.41, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for complexes obtained by hydrazide, aldehyde and 3d-metal salt inter­actions gave eleven hits for structures with full atomic coordinates. All these compounds include macrocyclic or pseudo-macrocyclic ligands formed by template binding of several hydrazide groups by aldehyde mol­ecules. The 3d-metal ions of these complexes are often in high oxidation states: CuIII (Oliver et al., 1982[Oliver, K. J. & Waters, T. N. (1982). J. Chem. Soc. Chem. Commun. pp. 1111-1112.]; Fritsky et al., 1998[Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Śwątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269-3274.], 2006[Fritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125-4127.]) and FeIV (Tomyn et al., 2017[Tomyn, S., Shylin, S. I., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon, V. & Fritsky, I. O. (2017). Nat. Commun. 8, 14099, 1-9.]) complexes have been described.

6. Synthesis and crystallization

A solution of Ni(NO3)2·6H2O (0.073 g, 0.25 mmol) in 5 ml of water was added to a warm solution of oxalohydrazide­hydroxamic acid (0.06 g, 0.5 mmol) in 5 ml of water. The resulting light-green mixture was stirred with heating (320–330 K) for 20 min, and then 1 ml of a 4M KOH solution was added. As a result, the color of the solution changed to pink. After 5 min of stirring, 0.03 g of paraformaldehyde (1 mmol) were added, followed by stirring with heating (320–330 K) for 30 min. The resulting orange solution was left for crystallization by slow diffusion of methanol vapor. After two months, orange crystals suitable for X-ray diffraction studies were obtained. The crystals were filtered off, washed with diethyl ether and dried in air.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The potassium cations K3 and K4 were found to be disordered over two positions with occupancy factors for the major disorder component of 0.54 (3) (K3B) and 0.9643 (15) (K4A). The solvate water mol­ecule O4W appeared to be disordered over two positions with relative occupancies of 0.805 (4) (O4WA) and 0.195 (4) (O4WB). The solvate water mol­ecule O5W was found to be incompatible with the second positions of the water mol­ecule O4W and thus was refined with the same occupancy factor as the major fraction of O4W as they are linked by a hydrogen bond. The O—H hydrogen atoms were located from a difference-Fourier map and constrained to ride on their parent atoms with Uiso(H) = 1.5Ueq(O). The methyl­ene C—H hydrogen atoms were positioned geometrically and were constrained to ride on their parent atoms, with C—H = 0.99 Å, and Uiso(H) = 1.2Ueq(C).

Table 4
Experimental details

Crystal data
Chemical formula [K4Ni2(C7H6N4O7)2]·4.8H2O
Mr 876.66
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 100
a, b, c (Å) 15.0694 (3), 16.9659 (3), 22.1920 (4)
V3) 5673.74 (18)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.01
Crystal size (mm) 0.31 × 0.26 × 0.23
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.572, 0.653
No. of measured, independent and observed [I > 2σ(I)] reflections 51429, 8287, 7371
Rint 0.037
(sin θ/λ)max−1) 0.707
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.076, 1.10
No. of reflections 8287
No. of parameters 448
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.81, −0.69
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS BV., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Poly[[bis[µ4-N,N'-(1,3,5-oxadiazinane-3,5-diyl)bis(carbamoylmethanoato)]nickel(II)tetrapotassium] 4.8-hydrate] top
Crystal data top
[K4Ni2(C7H6N4O7)2]·4.8H2ODx = 2.053 Mg m3
Mr = 876.66Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 18674 reflections
a = 15.0694 (3) Åθ = 1.0–30.0°
b = 16.9659 (3) ŵ = 2.01 mm1
c = 22.1920 (4) ÅT = 100 K
V = 5673.74 (18) Å3Block, orange
Z = 80.31 × 0.26 × 0.23 mm
F(000) = 3552
Data collection top
Bruker Kappa APEXII CCD
diffractometer
8287 independent reflections
Radiation source: fine-focus sealed tube7371 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.037
Detector resolution: 16 pixels mm-1θmax = 30.2°, θmin = 2.0°
φ scans and ω scans with κ offseth = 2021
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 2319
Tmin = 0.572, Tmax = 0.653l = 3131
51429 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0165P)2 + 9.9285P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.002
8287 reflectionsΔρmax = 0.81 e Å3
448 parametersΔρmin = 0.69 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.39976 (2)0.03560 (2)0.25909 (2)0.01144 (6)
K10.42066 (3)0.10115 (3)0.50619 (2)0.01944 (9)
K20.62602 (3)0.12976 (3)0.37947 (2)0.01642 (8)
K3A0.6573 (3)0.0634 (2)0.0628 (2)0.0156 (10)0.46 (3)
K3B0.6592 (3)0.0786 (9)0.0646 (2)0.0447 (9)0.54 (3)
K4A0.81367 (4)0.18864 (3)0.48907 (2)0.02787 (14)0.9643 (15)
K4B0.8620 (12)0.1672 (10)0.4887 (6)0.02787 (14)0.0357 (15)
O10.48022 (9)0.05193 (8)0.19539 (6)0.0158 (3)
O20.48968 (8)0.03838 (8)0.31915 (6)0.0147 (3)
O30.50728 (9)0.01073 (9)0.41691 (6)0.0175 (3)
O40.32237 (9)0.00551 (9)0.42549 (6)0.0187 (3)
O50.23246 (9)0.10170 (8)0.25535 (6)0.0175 (3)
O60.29549 (9)0.06429 (10)0.09851 (6)0.0209 (3)
O70.48153 (10)0.07263 (11)0.09625 (7)0.0290 (4)
O1W0.24931 (12)0.08231 (11)0.54478 (7)0.0294 (4)
H1W10.2362690.0394930.5682450.044*
H2W10.2269690.1224930.5597450.044*
O2W0.63486 (14)0.13337 (10)0.50382 (8)0.0361 (4)
H1W20.6242920.1719550.5302190.054*
H2W20.6476970.0869650.5244200.054*
O3W0.91669 (13)0.06558 (12)0.52097 (8)0.0383 (4)
H1W30.9265100.0622800.4825960.057*
H2W30.9679210.0845410.5365160.057*
O4WA0.60586 (13)0.23598 (13)0.07782 (10)0.0309 (6)0.805 (4)
H1W40.6553530.2184520.0903990.046*0.805 (4)
H2W40.5673820.2396870.1091450.046*0.805 (4)
O5W0.5651 (2)0.16499 (15)0.03385 (13)0.0532 (9)0.805 (4)
H5WC0.5465730.2075390.0497040.080*0.805 (4)
H5WB0.5883930.1773290.0002840.080*0.805 (4)
O4WB0.5638 (6)0.2234 (6)0.0249 (4)0.032 (2)0.195 (4)
H3W40.5319300.2343220.0553840.048*0.195 (4)
H4W40.5327960.2404230.0061820.048*0.195 (4)
N10.32286 (10)0.01942 (9)0.32277 (7)0.0125 (3)
N20.22857 (10)0.01217 (10)0.31956 (7)0.0129 (3)
N30.22075 (10)0.02637 (10)0.20888 (7)0.0137 (3)
N40.31391 (10)0.03568 (10)0.19995 (7)0.0128 (3)
C10.46081 (12)0.01956 (11)0.37164 (8)0.0134 (3)
C20.35945 (12)0.00948 (11)0.37637 (8)0.0131 (3)
C30.19564 (12)0.05825 (11)0.26801 (8)0.0138 (3)
H3A0.1301030.0609140.2703320.017*
H3B0.2186260.1127390.2713340.017*
C40.20301 (13)0.07011 (12)0.31134 (9)0.0167 (4)
H4A0.2282290.1018820.3446150.020*
H4B0.1375680.0743620.3135530.020*
C50.19597 (13)0.05675 (12)0.20682 (9)0.0177 (4)
H5A0.1304670.0610030.2080060.021*
H5B0.2164170.0795340.1681700.021*
C60.34091 (12)0.05407 (11)0.14507 (8)0.0146 (3)
C70.44272 (12)0.06056 (12)0.14422 (9)0.0166 (4)
Ni1B0.85260 (2)0.23735 (2)0.24199 (2)0.01304 (6)
O1B0.77709 (9)0.22102 (9)0.17472 (6)0.0180 (3)
O2B0.75916 (9)0.23086 (8)0.29873 (6)0.0162 (3)
O3B0.73206 (9)0.26008 (9)0.39495 (7)0.0212 (3)
O4B0.91522 (10)0.28278 (10)0.41008 (7)0.0220 (3)
O5B1.01572 (10)0.37800 (8)0.24472 (7)0.0203 (3)
O6B0.96972 (11)0.21209 (10)0.08487 (7)0.0253 (3)
O7B0.78613 (11)0.19730 (10)0.07598 (7)0.0251 (3)
N1B0.92407 (10)0.25393 (10)0.30822 (7)0.0148 (3)
N2B1.01790 (10)0.26347 (10)0.30814 (7)0.0151 (3)
N3B1.03515 (10)0.25123 (10)0.19792 (7)0.0160 (3)
N4B0.94292 (10)0.23990 (10)0.18580 (7)0.0153 (3)
C1B0.78284 (12)0.25187 (11)0.35171 (9)0.0152 (3)
C2B0.88312 (12)0.26501 (11)0.36010 (9)0.0153 (3)
C3B1.05635 (12)0.21901 (12)0.25760 (9)0.0159 (3)
H3B11.1216500.2178350.2623720.019*
H3B21.0347730.1639580.2595960.019*
C4B1.04157 (13)0.34622 (12)0.30124 (9)0.0196 (4)
H4B11.0129780.3769940.3337940.024*
H4B21.1066080.3518720.3057990.024*
C5B1.05732 (13)0.33496 (12)0.19717 (10)0.0200 (4)
H5B11.1224710.3409390.2006220.024*
H5B21.0389270.3577340.1580400.024*
C6B0.92131 (13)0.22112 (12)0.13005 (9)0.0171 (4)
C7B0.82017 (13)0.21177 (12)0.12558 (9)0.0178 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00784 (10)0.01467 (12)0.01179 (11)0.00082 (8)0.00019 (7)0.00124 (8)
K10.0243 (2)0.0196 (2)0.01449 (18)0.00216 (16)0.00152 (15)0.00092 (15)
K20.01387 (17)0.0187 (2)0.01671 (18)0.00075 (14)0.00052 (14)0.00027 (14)
K3A0.0119 (9)0.018 (2)0.0172 (9)0.0053 (6)0.0008 (6)0.0050 (9)
K3B0.0199 (9)0.083 (3)0.0313 (13)0.0053 (16)0.0054 (8)0.0187 (14)
K4A0.0356 (3)0.0307 (3)0.0173 (2)0.0017 (2)0.00088 (19)0.00179 (19)
K4B0.0356 (3)0.0307 (3)0.0173 (2)0.0017 (2)0.00088 (19)0.00179 (19)
O10.0110 (6)0.0210 (7)0.0154 (6)0.0016 (5)0.0011 (5)0.0024 (5)
O20.0110 (6)0.0193 (7)0.0138 (6)0.0006 (5)0.0022 (5)0.0009 (5)
O30.0155 (6)0.0211 (7)0.0160 (6)0.0007 (5)0.0042 (5)0.0005 (5)
O40.0162 (6)0.0268 (8)0.0132 (6)0.0031 (6)0.0017 (5)0.0019 (5)
O50.0177 (7)0.0146 (7)0.0203 (7)0.0005 (5)0.0007 (5)0.0000 (5)
O60.0153 (6)0.0338 (9)0.0136 (6)0.0009 (6)0.0015 (5)0.0034 (6)
O70.0168 (7)0.0527 (11)0.0176 (7)0.0055 (7)0.0049 (6)0.0025 (7)
O1W0.0343 (9)0.0321 (9)0.0219 (7)0.0018 (7)0.0047 (7)0.0029 (7)
O2W0.0642 (13)0.0242 (9)0.0199 (8)0.0043 (8)0.0021 (8)0.0021 (6)
O3W0.0388 (10)0.0525 (12)0.0236 (8)0.0080 (9)0.0036 (7)0.0022 (8)
O4WA0.0185 (9)0.0401 (13)0.0341 (12)0.0043 (8)0.0101 (8)0.0022 (9)
O5W0.073 (2)0.0320 (14)0.0542 (17)0.0034 (13)0.0292 (15)0.0080 (12)
O4WB0.022 (4)0.039 (5)0.035 (5)0.010 (4)0.003 (3)0.012 (4)
N10.0084 (6)0.0152 (8)0.0139 (7)0.0007 (5)0.0009 (5)0.0004 (6)
N20.0081 (6)0.0157 (8)0.0150 (7)0.0004 (5)0.0000 (5)0.0016 (6)
N30.0072 (6)0.0181 (8)0.0158 (7)0.0021 (5)0.0002 (5)0.0014 (6)
N40.0083 (6)0.0167 (8)0.0133 (7)0.0014 (5)0.0004 (5)0.0021 (6)
C10.0137 (8)0.0108 (8)0.0159 (8)0.0015 (6)0.0011 (6)0.0014 (6)
C20.0123 (8)0.0126 (8)0.0143 (8)0.0026 (6)0.0006 (6)0.0001 (6)
C30.0103 (7)0.0153 (9)0.0159 (8)0.0008 (6)0.0004 (6)0.0022 (6)
C40.0146 (8)0.0171 (9)0.0184 (9)0.0031 (7)0.0008 (7)0.0036 (7)
C50.0157 (8)0.0192 (10)0.0183 (9)0.0039 (7)0.0008 (7)0.0002 (7)
C60.0120 (8)0.0169 (9)0.0151 (8)0.0006 (6)0.0002 (6)0.0008 (7)
C70.0139 (8)0.0190 (10)0.0169 (8)0.0011 (7)0.0014 (7)0.0004 (7)
Ni1B0.00973 (10)0.01497 (12)0.01442 (11)0.00085 (8)0.00058 (8)0.00124 (8)
O1B0.0152 (6)0.0210 (7)0.0179 (6)0.0014 (5)0.0030 (5)0.0007 (5)
O2B0.0114 (6)0.0196 (7)0.0175 (6)0.0014 (5)0.0002 (5)0.0011 (5)
O3B0.0159 (6)0.0268 (8)0.0210 (7)0.0019 (6)0.0040 (5)0.0030 (6)
O4B0.0181 (7)0.0302 (8)0.0177 (7)0.0016 (6)0.0019 (5)0.0070 (6)
O5B0.0196 (7)0.0133 (7)0.0280 (8)0.0002 (5)0.0034 (6)0.0014 (6)
O6B0.0247 (8)0.0331 (9)0.0180 (7)0.0001 (6)0.0047 (6)0.0061 (6)
O7B0.0276 (8)0.0291 (9)0.0186 (7)0.0036 (6)0.0072 (6)0.0003 (6)
N1B0.0099 (7)0.0166 (8)0.0178 (7)0.0002 (6)0.0007 (5)0.0028 (6)
N2B0.0091 (6)0.0160 (8)0.0202 (8)0.0001 (6)0.0006 (6)0.0044 (6)
N3B0.0118 (7)0.0170 (8)0.0191 (8)0.0014 (6)0.0017 (6)0.0022 (6)
N4B0.0122 (7)0.0154 (8)0.0183 (7)0.0016 (6)0.0004 (6)0.0021 (6)
C1B0.0144 (8)0.0139 (9)0.0172 (8)0.0006 (7)0.0011 (6)0.0004 (7)
C2B0.0136 (8)0.0146 (9)0.0178 (8)0.0006 (6)0.0001 (6)0.0016 (7)
C3B0.0109 (8)0.0144 (9)0.0224 (9)0.0018 (6)0.0005 (6)0.0024 (7)
C4B0.0153 (8)0.0188 (10)0.0248 (10)0.0027 (7)0.0010 (7)0.0064 (8)
C5B0.0158 (9)0.0186 (10)0.0255 (10)0.0024 (7)0.0047 (7)0.0002 (8)
C6B0.0187 (9)0.0143 (9)0.0183 (9)0.0002 (7)0.0008 (7)0.0009 (7)
C7B0.0210 (9)0.0131 (9)0.0193 (9)0.0012 (7)0.0034 (7)0.0003 (7)
Geometric parameters (Å, º) top
Ni1—N41.8429 (15)K4B—O3B3.263 (17)
Ni1—N11.8479 (15)K4B—C2B3.316 (14)
Ni1—O11.8830 (13)K4B—O6Bvi3.374 (15)
Ni1—O21.9012 (13)O1—C71.277 (2)
K1—O4Bi2.7086 (15)O2—C11.284 (2)
K1—O1W2.7392 (18)O3—C11.234 (2)
K1—O3ii2.7739 (14)O4—C21.251 (2)
K1—O32.8254 (15)O5—C41.424 (2)
K1—O6Biii2.8588 (16)O5—C51.430 (2)
K1—O42.9456 (15)O6—C61.252 (2)
K1—O7Biii3.1774 (17)O7—C71.232 (2)
K1—O2W3.274 (2)O1W—H1W10.9152
K1—C13.3464 (19)O1W—H2W10.8297
K1—C23.4015 (19)O2W—H1W20.8929
K1—K4Ai3.9153 (7)O2W—H2W20.9306
K1—K4Bi4.030 (16)O3W—H1W30.8662
K2—O3B2.7495 (16)O3W—H2W30.9048
K2—O2W2.7634 (17)O4WA—H1W40.8501
K2—O32.8232 (15)O4WA—H2W40.9075
K2—O6iv2.8273 (15)O5W—H5WC0.8499
K2—O6Biii2.8505 (17)O5W—H5WB0.8499
K2—O22.9013 (14)O4WB—H3W40.8501
K2—N3iv2.9932 (16)O4WB—H4W40.8827
K2—N3Biii3.0121 (17)N1—C21.322 (2)
K2—C13.1184 (19)N1—N21.428 (2)
K2—O2B3.1903 (14)N2—C41.460 (2)
K2—C1B3.2025 (19)N2—C31.472 (2)
K2—C6Biii3.459 (2)N3—N41.427 (2)
K3A—O3Wv2.625 (4)N3—C51.460 (3)
K3A—O72.755 (4)N3—C31.469 (2)
K3A—O4iv2.761 (4)N4—C61.321 (2)
K3A—O1Wiv2.779 (5)C1—C21.541 (2)
K3A—N2iv2.954 (5)C3—H3A0.9900
K3A—O7B3.003 (5)C3—H3B0.9900
K3A—O4WA3.047 (4)C4—H4A0.9900
K3A—O5W3.082 (5)C4—H4B0.9900
K3A—O4WB3.171 (9)C5—H5A0.9900
K3A—C2iv3.456 (5)C5—H5B0.9900
K3A—K4Bv4.254 (16)C6—C71.538 (3)
K3B—O72.769 (5)Ni1B—N1B1.8436 (16)
K3B—O1Wiv2.783 (5)Ni1B—N4B1.8463 (16)
K3B—O7B2.789 (13)Ni1B—O2B1.8922 (14)
K3B—O4WA2.804 (15)Ni1B—O1B1.8975 (14)
K3B—O4iv2.851 (8)O1B—C7B1.279 (2)
K3B—O3Wv2.868 (15)O2B—C1B1.279 (2)
K3B—O4WB2.979 (15)O3B—C1B1.235 (2)
K3B—O5W2.990 (7)O4B—C2B1.247 (2)
K3B—N2iv2.995 (6)O5B—C4B1.420 (3)
K3B—C2iv3.492 (6)O5B—C5B1.428 (2)
K3B—K4Bv4.51 (2)O6B—C6B1.249 (2)
K4A—K4B0.815 (18)O7B—C7B1.239 (2)
K4A—O3W2.696 (2)N1B—C2B1.320 (2)
K4A—O3B2.7100 (16)N1B—N2B1.423 (2)
K4A—O7Bvi2.7633 (17)N2B—C4B1.457 (3)
K4A—O4B2.8223 (17)N2B—C3B1.471 (2)
K4A—O2W2.872 (2)N3B—N4B1.429 (2)
K4A—O6iv2.8815 (16)N3B—C5B1.459 (3)
K4A—C1B3.265 (2)N3B—C3B1.468 (3)
K4A—C2B3.311 (2)N4B—C6B1.318 (2)
K4A—C7Bvi3.470 (2)C1B—C2B1.539 (3)
K4B—O3W2.040 (17)C3B—H3B10.9900
K4B—O4B2.744 (15)C3B—H3B20.9900
K4B—O6iv2.792 (14)C4B—H4B10.9900
K4B—O7iv3.061 (17)C4B—H4B20.9900
K4B—O4WBiv3.201 (19)C5B—H5B10.9900
K4B—O7Bvi3.216 (16)C5B—H5B20.9900
K4B—O5Wiv3.220 (18)C6B—C7B1.536 (3)
N4—Ni1—N196.01 (7)O3W—K4A—C7Bvi97.56 (5)
N4—Ni1—O185.25 (6)O3B—K4A—C7Bvi117.90 (5)
N1—Ni1—O1178.74 (6)O7Bvi—K4A—C7Bvi18.91 (4)
N4—Ni1—O2178.28 (7)O4B—K4A—C7Bvi104.56 (5)
N1—Ni1—O285.10 (6)O2W—K4A—C7Bvi94.93 (5)
O1—Ni1—O293.65 (6)O6iv—K4A—C7Bvi161.44 (5)
O4Bi—K1—O1W80.90 (5)C1B—K4A—C7Bvi131.24 (5)
O4Bi—K1—O3ii95.01 (5)C2B—K4A—C7Bvi123.72 (5)
O1W—K1—O3ii95.56 (5)O3W—K4A—K2112.75 (5)
O4Bi—K1—O3152.85 (5)O3B—K4A—K245.40 (3)
O1W—K1—O3126.25 (5)O7Bvi—K4A—K2120.72 (4)
O3ii—K1—O383.05 (4)O4B—K4A—K298.76 (3)
O4Bi—K1—O6Biii90.81 (5)O2W—K4A—K245.59 (3)
O1W—K1—O6Biii122.79 (5)O6iv—K4A—K246.85 (3)
O3ii—K1—O6Biii141.65 (5)C1B—K4A—K252.60 (3)
O3—K1—O6Biii75.07 (5)C2B—K4A—K277.78 (3)
O4Bi—K1—O4148.05 (5)C7Bvi—K4A—K2134.15 (4)
O1W—K1—O469.17 (4)O3W—K4A—K1vii117.46 (5)
O3ii—K1—O498.66 (4)O3B—K4A—K1vii78.47 (4)
O3—K1—O458.15 (4)O7Bvi—K4A—K1vii53.51 (4)
O6Biii—K1—O496.01 (4)O4B—K4A—K1vii43.77 (3)
O4Bi—K1—O7Biii90.06 (5)O2W—K4A—K1vii132.91 (4)
O1W—K1—O7Biii68.77 (5)O6iv—K4A—K1vii136.40 (3)
O3ii—K1—O7Biii162.58 (4)C1B—K4A—K1vii77.55 (4)
O3—K1—O7Biii99.85 (4)C2B—K4A—K1vii62.40 (3)
O6Biii—K1—O7Biii54.64 (4)C7Bvi—K4A—K1vii61.41 (4)
O4—K1—O7Biii69.24 (4)K2—K4A—K1vii123.652 (17)
O4Bi—K1—O2W85.38 (5)O3W—K4B—O4B135.2 (8)
O1W—K1—O2W162.52 (5)O3W—K4B—O6iv82.0 (5)
O3ii—K1—O2W74.82 (4)O4B—K4B—O6iv96.4 (4)
O3—K1—O2W67.91 (4)O3W—K4B—O7iv62.4 (4)
O6Biii—K1—O2W67.90 (4)O4B—K4B—O7iv79.1 (4)
O4—K1—O2W126.05 (4)O6iv—K4B—O7iv57.1 (3)
O7Biii—K1—O2W122.28 (4)O3W—K4B—O4WBiv84.3 (6)
O4Bi—K1—C1156.68 (5)O4B—K4B—O4WBiv56.6 (4)
O1W—K1—C1113.65 (5)O6iv—K4B—O4WBiv117.5 (5)
O3ii—K1—C1101.25 (5)O7iv—K4B—O4WBiv62.6 (4)
O3—K1—C120.96 (4)O3W—K4B—O7Bvi122.4 (5)
O6Biii—K1—C166.10 (5)O4B—K4B—O7Bvi88.6 (4)
O4—K1—C145.11 (4)O6iv—K4B—O7Bvi137.4 (7)
O7Biii—K1—C179.38 (4)O7iv—K4B—O7Bvi162.7 (6)
O2W—K1—C182.91 (4)O3W—K4B—O5Wiv59.8 (4)
O4Bi—K1—C2154.85 (5)O4B—K4B—O5Wiv85.9 (4)
O1W—K1—C287.46 (5)O6iv—K4B—O5Wiv123.3 (6)
O3ii—K1—C2108.32 (4)O7iv—K4B—O5Wiv68.1 (4)
O3—K1—C244.20 (4)O7Bvi—K4B—O5Wiv99.1 (4)
O6Biii—K1—C276.85 (5)O3W—K4B—O3B150.9 (7)
O4—K1—C221.21 (4)O4B—K4B—O3B54.9 (3)
O7Biii—K1—C264.89 (4)O6iv—K4B—O3B69.2 (3)
O2W—K1—C2109.27 (4)O7iv—K4B—O3B102.3 (4)
C1—K1—C226.38 (4)O4WBiv—K4B—O3B111.5 (5)
O4Bi—K1—K4Ai46.13 (3)O7Bvi—K4B—O3B79.9 (4)
O1W—K1—K4Ai73.12 (4)O5Wiv—K4B—O3B140.8 (5)
O3ii—K1—K4Ai140.17 (3)O3W—K4B—C2B133.3 (7)
O3—K1—K4Ai134.72 (3)O4B—K4B—C2B21.17 (12)
O6Biii—K1—K4Ai61.69 (4)O6iv—K4B—C2B75.6 (3)
O4—K1—K4Ai111.64 (3)O7iv—K4B—C2B71.1 (3)
O7Biii—K1—K4Ai44.36 (3)O4WBiv—K4B—C2B71.3 (4)
O2W—K1—K4Ai104.74 (3)O7Bvi—K4B—C2B101.2 (5)
C1—K1—K4Ai118.37 (3)O5Wiv—K4B—C2B100.5 (4)
C2—K1—K4Ai109.12 (3)O3B—K4B—C2B42.9 (2)
O4Bi—K1—K4Bi42.7 (2)O3W—K4B—O6Bvi95.5 (5)
O1W—K1—K4Bi84.2 (3)O4B—K4B—O6Bvi80.1 (4)
O3ii—K1—K4Bi137.4 (2)O6iv—K4B—O6Bvi172.1 (7)
O3—K1—K4Bi130.6 (2)O7iv—K4B—O6Bvi115.1 (5)
O6Biii—K1—K4Bi55.6 (2)O7Bvi—K4B—O6Bvi49.9 (2)
O4—K1—K4Bi120.4 (2)O5Wiv—K4B—O6Bvi49.7 (2)
O7Biii—K1—K4Bi51.4 (2)O3B—K4B—O6Bvi113.5 (5)
O2W—K1—K4Bi93.1 (3)C2B—K4B—O6Bvi101.2 (4)
C1—K1—K4Bi117.9 (2)O3W—K4B—K1vii136.5 (6)
C2—K1—K4Bi114.2 (2)O4B—K4B—K1vii42.0 (2)
K4Ai—K1—K4Bi11.7 (3)O6iv—K4B—K1vii135.1 (5)
O3B—K2—O2W80.18 (5)O7iv—K4B—K1vii113.5 (4)
O3B—K2—O3155.07 (4)O7Bvi—K4B—K1vii50.5 (2)
O2W—K2—O375.67 (5)O5Wiv—K4B—K1vii78.1 (3)
O3B—K2—O6iv76.67 (5)O3B—K4B—K1vii71.2 (3)
O2W—K2—O6iv78.03 (5)C2B—K4B—K1vii61.0 (3)
O3—K2—O6iv103.92 (4)O6Bvi—K4B—K1vii44.33 (19)
O3B—K2—O6Biii92.95 (5)C7—O1—Ni1113.55 (12)
O2W—K2—O6Biii75.63 (5)C1—O2—Ni1112.85 (11)
O3—K2—O6Biii75.23 (5)C1—O2—K287.38 (10)
O6iv—K2—O6Biii152.98 (4)Ni1—O2—K2147.29 (7)
O3B—K2—O2154.02 (4)C1—O3—K1ii143.74 (13)
O2W—K2—O2120.44 (5)C1—O3—K291.90 (11)
O3—K2—O245.94 (4)K1ii—O3—K2114.99 (5)
O6iv—K2—O2120.63 (4)C1—O3—K1104.05 (12)
O6Biii—K2—O278.74 (4)K1ii—O3—K196.95 (4)
O3B—K2—N3iv106.02 (4)K2—O3—K196.36 (5)
O2W—K2—N3iv130.10 (5)C2—O4—K3Aiii113.48 (14)
O3—K2—N3iv94.35 (4)C2—O4—K3Biii110.5 (2)
O6iv—K2—N3iv56.79 (4)C2—O4—K1100.39 (12)
O6Biii—K2—N3iv149.67 (5)K3Aiii—O4—K197.80 (11)
O2—K2—N3iv73.88 (4)K3Biii—O4—K194.6 (2)
O3B—K2—N3Biii77.60 (5)C4—O5—C5109.67 (15)
O2W—K2—N3Biii125.18 (5)C6—O6—K4Biii117.5 (4)
O3—K2—N3Biii111.66 (4)C6—O6—K2iii113.93 (12)
O6iv—K2—N3Biii141.08 (5)K4Biii—O6—K2iii101.5 (4)
O6Biii—K2—N3Biii56.45 (4)C6—O6—K4Aiii127.32 (13)
O2—K2—N3Biii77.33 (4)K2iii—O6—K4Aiii85.11 (4)
N3iv—K2—N3Biii104.14 (5)C7—O7—K3A132.83 (17)
O3B—K2—C1162.38 (5)C7—O7—K3B133.15 (17)
O2W—K2—C196.17 (6)C7—O7—K4Biii109.9 (3)
O3—K2—C123.29 (4)K3A—O7—K4Biii115.4 (3)
O6iv—K2—C1119.69 (5)K3B—O7—K4Biii113.2 (3)
O6Biii—K2—C169.48 (5)K1—O1W—K3Aiii102.44 (11)
O2—K2—C124.28 (4)K1—O1W—K3Biii100.96 (14)
N3iv—K2—C189.59 (5)K1—O1W—H1W1118.2
N3Biii—K2—C190.89 (5)K3Aiii—O1W—H1W1106.9
O3B—K2—O2B43.31 (4)K3Biii—O1W—H1W1111.9
O2W—K2—O2B121.24 (5)K1—O1W—H2W1114.3
O3—K2—O2B161.52 (4)K3Aiii—O1W—H2W1103.7
O6iv—K2—O2B74.95 (4)K3Biii—O1W—H2W199.8
O6Biii—K2—O2B114.34 (4)H1W1—O1W—H2W1109.7
O2—K2—O2B118.26 (4)K2—O2W—K4A86.48 (5)
N3iv—K2—O2B69.34 (4)K2—O2W—K187.99 (5)
N3Biii—K2—O2B66.28 (4)K4A—O2W—K1168.91 (7)
C1—K2—O2B142.47 (4)K2—O2W—H1W2131.5
O3B—K2—C1B22.33 (4)K4A—O2W—H1W290.2
O2W—K2—C1B98.18 (6)K1—O2W—H1W286.3
O3—K2—C1B170.77 (5)K2—O2W—H2W2118.8
O6iv—K2—C1B67.72 (5)K4A—O2W—H2W297.9
O6Biii—K2—C1B110.25 (5)K1—O2W—H2W293.2
O2—K2—C1B141.22 (5)H1W2—O2W—H2W2109.6
N3iv—K2—C1B84.33 (5)K4B—O3W—K3Aviii131.1 (5)
N3Biii—K2—C1B77.48 (5)K3Aviii—O3W—K4A119.59 (11)
C1—K2—C1B165.07 (5)K4B—O3W—K3Bviii132.7 (5)
O2B—K2—C1B23.09 (4)K4A—O3W—K3Bviii121.30 (15)
O3B—K2—C6Biii99.54 (5)K4B—O3W—H1W377.2
O2W—K2—C6Biii95.40 (5)K3Aviii—O3W—H1W3111.5
O3—K2—C6Biii76.89 (4)K4A—O3W—H1W383.7
O6iv—K2—C6Biii172.82 (5)K3Bviii—O3W—H1W3110.2
O6Biii—K2—C6Biii20.01 (4)K4B—O3W—H2W3100.3
O2—K2—C6Biii65.14 (4)K3Aviii—O3W—H2W3121.6
N3iv—K2—C6Biii130.38 (5)K4A—O3W—H2W3108.4
N3Biii—K2—C6Biii41.68 (4)K3Bviii—O3W—H2W3121.0
C1—K2—C6Biii63.46 (5)H1W3—O3W—H2W3104.6
O2B—K2—C6Biii106.60 (4)K3B—O4WA—H1W456.6
C1B—K2—C6Biii110.89 (5)K3A—O4WA—H1W458.4
O3Wv—K3A—O774.60 (13)K3B—O4WA—H2W4109.2
O3Wv—K3A—O4iv93.60 (12)K3A—O4WA—H2W4108.2
O7—K3A—O4iv149.9 (2)H1W4—O4WA—H2W4109.5
O3Wv—K3A—O1Wiv90.25 (12)K3B—O5W—K4Biii103.2 (3)
O7—K3A—O1Wiv134.80 (18)K3B—O5W—H5WC151.0
O4iv—K3A—O1Wiv71.35 (10)K3A—O5W—H5WC155.6
O3Wv—K3A—N2iv102.80 (15)K4Biii—O5W—H5WC78.9
O7—K3A—N2iv97.36 (14)K3A—O5W—H5WB48.8
O4iv—K3A—N2iv57.62 (10)K4Biii—O5W—H5WB96.7
O1Wiv—K3A—N2iv127.71 (15)H5WC—O5W—H5WB106.8
O3Wv—K3A—O7B159.98 (16)K3B—O4WB—K4Biii103.9 (5)
O7—K3A—O7B123.54 (12)K3A—O4WB—K4Biii101.1 (4)
O4iv—K3A—O7B74.25 (12)K3B—O4WB—H3W4102.6
O1Wiv—K3A—O7B70.95 (12)K3A—O4WB—H3W4103.2
N2iv—K3A—O7B84.34 (12)K4Biii—O4WB—H3W466.6
O3Wv—K3A—O4WA137.03 (17)K3B—O4WB—H4W4139.2
O7—K3A—O4WA70.82 (9)K3A—O4WB—H4W4136.3
O4iv—K3A—O4WA128.73 (16)K4Biii—O4WB—H4W461.3
O1Wiv—K3A—O4WA96.31 (15)H3W4—O4WB—H4W4104.5
N2iv—K3A—O4WA106.17 (12)C2—N1—N2116.68 (15)
O7B—K3A—O4WA55.03 (8)C2—N1—Ni1116.46 (12)
O3Wv—K3A—O5W91.65 (14)N2—N1—Ni1126.77 (12)
O7—K3A—O5W73.88 (12)N1—N2—C4110.56 (14)
O4iv—K3A—O5W135.11 (18)N1—N2—C3109.18 (14)
O1Wiv—K3A—O5W64.08 (12)C4—N2—C3108.78 (15)
N2iv—K3A—O5W160.64 (13)N1—N2—K3Aiii107.01 (13)
O7B—K3A—O5W86.35 (13)C4—N2—K3Aiii107.21 (13)
O4WA—K3A—O5W54.85 (10)C3—N2—K3Aiii114.08 (12)
O3Wv—K3A—O4WB115.5 (2)N1—N2—K3Biii105.80 (15)
O7—K3A—O4WB66.17 (18)C4—N2—K3Biii112.0 (3)
O4iv—K3A—O4WB142.0 (2)C3—N2—K3Biii110.5 (3)
O1Wiv—K3A—O4WB84.0 (2)N4—N3—C5110.76 (15)
N2iv—K3A—O4WB130.4 (2)N4—N3—C3109.68 (14)
O7B—K3A—O4WB70.46 (19)C5—N3—C3108.53 (15)
O3Wv—K3A—C2iv106.96 (13)N4—N3—K2iii108.26 (10)
O7—K3A—C2iv139.22 (17)C5—N3—K2iii115.07 (11)
O4iv—K3A—C2iv19.39 (5)C3—N3—K2iii104.28 (10)
O1Wiv—K3A—C2iv85.77 (11)C6—N4—N3117.21 (15)
N2iv—K3A—C2iv41.94 (7)C6—N4—Ni1116.14 (12)
O7B—K3A—C2iv65.93 (10)N3—N4—Ni1126.28 (12)
O4WA—K3A—C2iv115.84 (13)O3—C1—O2125.22 (17)
O5W—K3A—C2iv144.82 (17)O3—C1—C2119.59 (17)
O3Wv—K3A—K4Bv21.2 (3)O2—C1—C2115.18 (15)
O7—K3A—K4Bv95.2 (3)O3—C1—K264.80 (10)
O4iv—K3A—K4Bv73.1 (3)O2—C1—K268.34 (10)
O1Wiv—K3A—K4Bv78.9 (2)C2—C1—K2148.69 (12)
N2iv—K3A—K4Bv95.5 (2)O3—C1—K154.99 (10)
O7B—K3A—K4Bv141.0 (3)O2—C1—K1140.18 (13)
O4WA—K3A—K4Bv155.3 (3)C2—C1—K178.81 (10)
O5W—K3A—K4Bv102.4 (2)K2—C1—K181.17 (4)
C2iv—K3A—K4Bv88.2 (3)O4—C2—N1128.58 (17)
O3Wv—K3A—K1iv112.95 (11)O4—C2—C1121.66 (16)
O7—K3A—K1iv167.00 (15)N1—C2—C1109.76 (15)
O4iv—K3A—K1iv42.72 (7)O4—C2—K158.41 (10)
O1Wiv—K3A—K1iv38.45 (7)N1—C2—K1144.78 (13)
N2iv—K3A—K1iv91.31 (11)C1—C2—K174.82 (10)
O7B—K3A—K1iv47.58 (7)O4—C2—K3Aiii47.13 (11)
O4WA—K3A—K1iv97.50 (12)N1—C2—K3Aiii87.14 (12)
O5W—K3A—K1iv94.88 (13)C1—C2—K3Aiii150.62 (14)
C2iv—K3A—K1iv50.58 (6)K1—C2—K3Aiii77.71 (9)
K4Bv—K3A—K1iv93.6 (2)O4—C2—K3Biii49.9 (2)
O3Wv—K3A—H1W4152.5N1—C2—K3Biii86.22 (14)
O7—K3A—H1W482.7C1—C2—K3Biii147.7 (2)
O4iv—K3A—H1W4113.6K1—C2—K3Biii76.31 (12)
O1Wiv—K3A—H1W495.0N3—C3—N2114.33 (15)
N2iv—K3A—H1W495.2N3—C3—H3A108.7
O7B—K3A—H1W441.2N2—C3—H3A108.7
O4WA—K3A—H1W415.6N3—C3—H3B108.7
O5W—K3A—H1W466.9N2—C3—H3B108.7
C2iv—K3A—H1W4100.3H3A—C3—H3B107.6
K4Bv—K3A—H1W4169.3O5—C4—N2112.75 (15)
K1iv—K3A—H1W486.9O5—C4—H4A109.0
O3Wv—K3A—H5WB105.0N2—C4—H4A109.0
O7—K3A—H5WB73.7O5—C4—H4B109.0
O4iv—K3A—H5WB136.4N2—C4—H4B109.0
O1Wiv—K3A—H5WB69.6H4A—C4—H4B107.8
N2iv—K3A—H5WB147.0O5—C5—N3113.17 (15)
O7B—K3A—H5WB75.4O5—C5—H5A108.9
O4WA—K3A—H5WB40.9N3—C5—H5A108.9
O5W—K3A—H5WB14.2O5—C5—H5B108.9
C2iv—K3A—H5WB139.3N3—C5—H5B108.9
K4Bv—K3A—H5WB116.6H5A—C5—H5B107.8
K1iv—K3A—H5WB93.8O6—C6—N4128.70 (17)
H1W4—K3A—H5WB52.7O6—C6—C7121.70 (17)
O7—K3B—O1Wiv133.9 (2)N4—C6—C7109.59 (16)
O7—K3B—O7B131.8 (5)O6—C6—K2iii47.14 (10)
O1Wiv—K3B—O7B74.2 (2)N4—C6—K2iii86.88 (11)
O7—K3B—O4WA74.4 (2)C7—C6—K2iii152.63 (13)
O1Wiv—K3B—O4WA102.1 (4)O7—C7—O1125.28 (18)
O7B—K3B—O4WA60.0 (3)O7—C7—C6119.73 (17)
O7—K3B—O4iv142.7 (5)O1—C7—C6114.98 (16)
O1Wiv—K3B—O4iv69.98 (15)N1B—Ni1B—N4B95.98 (7)
O7B—K3B—O4iv76.28 (15)N1B—Ni1B—O2B85.01 (6)
O4WA—K3B—O4iv135.7 (5)N4B—Ni1B—O2B177.89 (7)
O7—K3B—O3Wv70.7 (3)N1B—Ni1B—O1B178.86 (7)
O1Wiv—K3B—O3Wv85.4 (3)N4B—Ni1B—O1B85.08 (7)
O7B—K3B—O3Wv156.9 (3)O2B—Ni1B—O1B93.94 (6)
O4WA—K3B—O3Wv137.15 (18)C7B—O1B—Ni1B112.61 (12)
O4iv—K3B—O3Wv86.7 (4)C1B—O2B—Ni1B112.81 (12)
O7—K3B—O4WB68.8 (2)C1B—O2B—K278.99 (10)
O1Wiv—K3B—O4WB87.6 (3)Ni1B—O2B—K2150.81 (7)
O7B—K3B—O4WB76.2 (4)C1B—O3B—K4A105.49 (12)
O4iv—K3B—O4WB148.3 (4)C1B—O3B—K299.92 (12)
O3Wv—K3B—O4WB114.3 (3)K4A—O3B—K290.02 (5)
O7—K3B—O5W75.20 (14)C1B—O3B—K4B93.9 (3)
O1Wiv—K3B—O5W65.33 (14)K2—O3B—K4B92.3 (3)
O7B—K3B—O5W92.1 (4)C2B—O4B—K1vii142.90 (14)
O4WA—K3B—O5W58.2 (2)C2B—O4B—K4B106.2 (3)
O4iv—K3B—O5W135.30 (19)K1vii—O4B—K4B95.3 (3)
O3Wv—K3B—O5W89.0 (2)C2B—O4B—K4A101.84 (12)
O7—K3B—N2iv96.10 (18)K1vii—O4B—K4A90.10 (5)
O1Wiv—K3B—N2iv125.9 (2)C4B—O5B—C5B109.77 (15)
O7B—K3B—N2iv87.4 (2)C6B—O6B—K2iv108.65 (13)
O4WA—K3B—N2iv111.6 (4)C6B—O6B—K1iv119.80 (13)
O4iv—K3B—N2iv56.26 (13)K2iv—O6B—K1iv95.01 (5)
O3Wv—K3B—N2iv96.2 (4)C6B—O6B—K4Bix98.8 (3)
O5W—K3B—N2iv167.8 (4)K2iv—O6B—K4Bix150.5 (3)
O7—K3B—C2iv136.7 (3)K1iv—O6B—K4Bix80.1 (3)
O1Wiv—K3B—C2iv85.01 (14)C7B—O7B—K4Aix114.78 (13)
O7B—K3B—C2iv67.41 (13)C7B—O7B—K3B120.48 (16)
O4WA—K3B—C2iv121.9 (4)K4Aix—O7B—K3B123.07 (13)
O4iv—K3B—C2iv19.60 (5)C7B—O7B—K3A120.27 (16)
O3Wv—K3B—C2iv100.7 (4)K4Aix—O7B—K3A123.98 (10)
O5W—K3B—C2iv148.1 (2)C7B—O7B—K1iv110.33 (13)
N2iv—K3B—C2iv41.43 (8)K4Aix—O7B—K1iv82.14 (4)
O7—K3B—K1iv172.3 (2)K3B—O7B—K1iv90.9 (2)
O1Wiv—K3B—K1iv39.15 (8)K3A—O7B—K1iv88.18 (8)
O7B—K3B—K1iv48.23 (8)C7B—O7B—K4Bix104.3 (3)
O4WA—K3B—K1iv102.6 (3)K3B—O7B—K4Bix134.9 (3)
O4iv—K3B—K1iv43.58 (8)K3A—O7B—K4Bix135.4 (3)
O3Wv—K3B—K1iv108.7 (3)K1iv—O7B—K4Bix78.1 (3)
O5W—K3B—K1iv97.18 (18)C2B—N1B—N2B116.70 (16)
N2iv—K3B—K1iv91.58 (11)C2B—N1B—Ni1B116.37 (13)
C2iv—K3B—K1iv50.88 (7)N2B—N1B—Ni1B126.63 (12)
O7—K3B—K4Bv89.6 (4)N1B—N2B—C4B110.68 (15)
O1Wiv—K3B—K4Bv74.3 (4)N1B—N2B—C3B109.51 (14)
O7B—K3B—K4Bv138.6 (3)C4B—N2B—C3B108.53 (15)
O4WA—K3B—K4Bv154.1 (3)N4B—N3B—C5B110.58 (15)
O4iv—K3B—K4Bv68.1 (4)N4B—N3B—C3B109.35 (15)
O3Wv—K3B—K4Bv19.4 (3)C5B—N3B—C3B108.84 (16)
O5W—K3B—K4Bv98.4 (3)N4B—N3B—K2iv104.06 (10)
N2iv—K3B—K4Bv89.9 (4)C5B—N3B—K2iv123.74 (11)
C2iv—K3B—K4Bv83.7 (4)C3B—N3B—K2iv99.25 (11)
K1iv—K3B—K4Bv90.6 (3)C6B—N4B—N3B116.71 (16)
O7—K3B—H1W487.3C6B—N4B—Ni1B116.48 (13)
O1Wiv—K3B—H1W4101.2N3B—N4B—Ni1B126.38 (12)
O7B—K3B—H1W445.0O3B—C1B—O2B124.92 (18)
O4WA—K3B—H1W416.9O3B—C1B—C2B119.87 (17)
O4iv—K3B—H1W4119.2O2B—C1B—C2B115.19 (16)
O3Wv—K3B—H1W4154.0O3B—C1B—K257.75 (10)
O5W—K3B—H1W471.5O2B—C1B—K277.92 (10)
N2iv—K3B—H1W4100.0C2B—C1B—K2142.67 (13)
C2iv—K3B—H1W4105.0O3B—C1B—K4A53.12 (10)
K1iv—K3B—H1W491.2O2B—C1B—K4A143.73 (13)
K4Bv—K3B—H1W4170.0C2B—C1B—K4A78.17 (10)
O7—K3B—H5WB75.7K2—C1B—K4A73.31 (4)
O1Wiv—K3B—H5WB71.6O4B—C2B—N1B128.98 (18)
O7B—K3B—H5WB81.8O4B—C2B—C1B121.58 (17)
O4WA—K3B—H5WB44.5N1B—C2B—C1B109.44 (16)
O4iv—K3B—H5WB139.6O4B—C2B—K4A56.53 (11)
O3Wv—K3B—H5WB102.2N1B—C2B—K4A147.78 (14)
O5W—K3B—H5WB14.0C1B—C2B—K4A74.78 (10)
N2iv—K3B—H5WB155.9O4B—C2B—K4B52.6 (3)
C2iv—K3B—H5WB145.6N1B—C2B—K4B136.4 (3)
K1iv—K3B—H5WB97.1C1B—C2B—K4B86.4 (3)
K4Bv—K3B—H5WB112.4N3B—C3B—N2B114.29 (15)
H1W4—K3B—H5WB57.6N3B—C3B—H3B1108.7
O3W—K4A—O3B144.09 (5)N2B—C3B—H3B1108.7
O3W—K4A—O7Bvi116.45 (5)N3B—C3B—H3B2108.7
O3B—K4A—O7Bvi99.01 (5)N2B—C3B—H3B2108.7
O3W—K4A—O4B106.80 (6)H3B1—C3B—H3B2107.6
O3B—K4A—O4B60.94 (4)O5B—C4B—N2B113.06 (16)
O7Bvi—K4A—O4B96.81 (5)O5B—C4B—H4B1109.0
O3W—K4A—O2W104.92 (6)N2B—C4B—H4B1109.0
O3B—K4A—O2W78.94 (5)O5B—C4B—H4B2109.0
O7Bvi—K4A—O2W90.47 (5)N2B—C4B—H4B2109.0
O4B—K4A—O2W139.85 (5)H4B1—C4B—H4B2107.8
O3W—K4A—O6iv70.42 (5)O5B—C5B—N3B112.88 (16)
O3B—K4A—O6iv76.37 (5)O5B—C5B—H5B1109.0
O7Bvi—K4A—O6iv165.73 (5)N3B—C5B—H5B1109.0
O4B—K4A—O6iv92.69 (4)O5B—C5B—H5B2109.0
O2W—K4A—O6iv75.44 (5)N3B—C5B—H5B2109.0
O3W—K4A—C1B125.55 (5)H5B1—C5B—H5B2107.8
O3B—K4A—C1B21.38 (4)O6B—C6B—N4B129.67 (19)
O7Bvi—K4A—C1B113.59 (5)O6B—C6B—C7B121.00 (18)
O4B—K4A—C1B46.47 (4)N4B—C6B—C7B109.32 (16)
O2W—K4A—C1B94.60 (5)O6B—C6B—K2iv51.34 (11)
O6iv—K4A—C1B66.25 (5)N4B—C6B—K2iv86.86 (12)
O3W—K4A—C2B110.36 (5)C7B—C6B—K2iv146.62 (13)
O3B—K4A—C2B45.75 (5)O7B—C7B—O1B124.88 (19)
O7Bvi—K4A—C2B112.13 (5)O7B—C7B—C6B119.26 (18)
O4B—K4A—C2B21.63 (4)O1B—C7B—C6B115.85 (17)
O2W—K4A—C2B121.52 (5)O7B—C7B—K4Aix46.30 (11)
O6iv—K4A—C2B74.55 (5)O1B—C7B—K4Aix132.10 (13)
C1B—K4A—C2B27.05 (5)C6B—C7B—K4Aix91.96 (11)
O3B—K4A—K4B—O3W136.2 (12)K2—C1—C2—N192.1 (2)
O7Bvi—K4A—K4B—O3W97.0 (17)K1—C1—C2—N1143.32 (14)
O4B—K4A—K4B—O3W172.4 (19)O3—C1—C2—K138.29 (16)
O2W—K4A—K4B—O3W23 (2)O2—C1—C2—K1140.55 (16)
O6iv—K4A—K4B—O3W75.9 (16)K2—C1—C2—K151.2 (2)
C1B—K4A—K4B—O3W135.8 (14)O3—C1—C2—K3Aiii59.6 (3)
C2B—K4A—K4B—O3W151.6 (18)O2—C1—C2—K3Aiii119.2 (2)
C7Bvi—K4A—K4B—O3W85.3 (17)K2—C1—C2—K3Aiii29.9 (4)
K2—K4A—K4B—O3W80.6 (18)K1—C1—C2—K3Aiii21.3 (2)
K1vii—K4A—K4B—O3W146.5 (16)O3—C1—C2—K3Biii65.7 (5)
O3W—K4A—K4B—O4B172.4 (19)O2—C1—C2—K3Biii113.1 (4)
O3B—K4A—K4B—O4B36.2 (10)K2—C1—C2—K3Biii23.8 (5)
O7Bvi—K4A—K4B—O4B90.7 (6)K1—C1—C2—K3Biii27.4 (4)
O2W—K4A—K4B—O4B149.0 (7)N4—N3—C3—N269.27 (19)
O6iv—K4A—K4B—O4B96.5 (4)C5—N3—C3—N251.86 (19)
C1B—K4A—K4B—O4B36.6 (5)K2iii—N3—C3—N2174.98 (11)
C2B—K4A—K4B—O4B20.78 (14)N1—N2—C3—N368.50 (19)
C7Bvi—K4A—K4B—O4B102.3 (3)C4—N2—C3—N352.22 (19)
K2—K4A—K4B—O4B91.7 (7)K3Aiii—N2—C3—N3171.85 (14)
K1vii—K4A—K4B—O4B41.1 (3)K3Biii—N2—C3—N3175.6 (3)
O3W—K4A—K4B—O6iv75.9 (16)C5—O5—C4—N259.19 (19)
O3B—K4A—K4B—O6iv60.3 (10)N1—N2—C4—O564.63 (19)
O7Bvi—K4A—K4B—O6iv172.8 (3)C3—N2—C4—O555.24 (19)
O4B—K4A—K4B—O6iv96.5 (4)K3Aiii—N2—C4—O5179.06 (14)
O2W—K4A—K4B—O6iv52.5 (11)K3Biii—N2—C4—O5177.64 (17)
C1B—K4A—K4B—O6iv59.9 (5)C4—O5—C5—N359.2 (2)
C2B—K4A—K4B—O6iv75.7 (3)N4—N3—C5—O565.7 (2)
C7Bvi—K4A—K4B—O6iv161.16 (10)C3—N3—C5—O554.8 (2)
K2—K4A—K4B—O6iv4.8 (9)K2iii—N3—C5—O5171.15 (11)
K1vii—K4A—K4B—O6iv137.6 (2)K4Biii—O6—C6—N4151.4 (4)
O3W—K4A—K4B—O7iv103 (3)K2iii—O6—C6—N433.0 (3)
O3B—K4A—K4B—O7iv33 (3)K4Aiii—O6—C6—N4135.77 (18)
O7Bvi—K4A—K4B—O7iv159.8 (13)K4Biii—O6—C6—C729.9 (5)
O4B—K4A—K4B—O7iv69.2 (17)K2iii—O6—C6—C7148.30 (14)
O2W—K4A—K4B—O7iv80 (2)K4Aiii—O6—C6—C745.5 (3)
O6iv—K4A—K4B—O7iv27.3 (15)K4Biii—O6—C6—K2iii118.4 (4)
C1B—K4A—K4B—O7iv33 (2)K4Aiii—O6—C6—K2iii102.78 (16)
C2B—K4A—K4B—O7iv48.4 (17)N3—N4—C6—O60.5 (3)
C7Bvi—K4A—K4B—O7iv171.5 (16)Ni1—N4—C6—O6173.90 (17)
K2—K4A—K4B—O7iv23 (2)N3—N4—C6—C7179.34 (15)
K1vii—K4A—K4B—O7iv110.2 (18)Ni1—N4—C6—C77.3 (2)
O3W—K4A—K4B—O4WBiv155 (3)N3—N4—C6—K2iii23.05 (15)
O3B—K4A—K4B—O4WBiv68.6 (18)Ni1—N4—C6—K2iii150.34 (10)
O7Bvi—K4A—K4B—O4WBiv58.3 (17)K3A—O7—C7—O112.2 (4)
O4B—K4A—K4B—O4WBiv32.4 (12)K3B—O7—C7—O14.8 (6)
O2W—K4A—K4B—O4WBiv178.6 (5)K4Biii—O7—C7—O1151.0 (4)
O6iv—K4A—K4B—O4WBiv128.9 (15)K3A—O7—C7—C6167.15 (17)
C1B—K4A—K4B—O4WBiv69.0 (15)K3B—O7—C7—C6174.6 (5)
C2B—K4A—K4B—O4WBiv53.2 (13)K4Biii—O7—C7—C629.6 (4)
C7Bvi—K4A—K4B—O4WBiv69.9 (14)Ni1—O1—C7—O7179.31 (18)
K2—K4A—K4B—O4WBiv124.2 (12)Ni1—O1—C7—C61.3 (2)
K1vii—K4A—K4B—O4WBiv8.7 (14)O6—C6—C7—O73.3 (3)
O3W—K4A—K4B—O7Bvi97.0 (17)N4—C6—C7—O7175.6 (2)
O3B—K4A—K4B—O7Bvi126.8 (13)K2iii—C6—C7—O760.2 (4)
O4B—K4A—K4B—O7Bvi90.7 (6)O6—C6—C7—O1177.25 (18)
O2W—K4A—K4B—O7Bvi120.4 (13)N4—C6—C7—O13.8 (2)
O6iv—K4A—K4B—O7Bvi172.8 (3)K2iii—C6—C7—O1120.4 (2)
C1B—K4A—K4B—O7Bvi127.3 (8)N4B—Ni1B—O1B—C7B6.27 (14)
C2B—K4A—K4B—O7Bvi111.5 (5)O2B—Ni1B—O1B—C7B171.86 (14)
C7Bvi—K4A—K4B—O7Bvi11.7 (3)N1B—Ni1B—O2B—C1B9.98 (14)
K2—K4A—K4B—O7Bvi177.6 (12)O1B—Ni1B—O2B—C1B169.56 (14)
K1vii—K4A—K4B—O7Bvi49.6 (5)N1B—Ni1B—O2B—K299.18 (14)
O3W—K4A—K4B—O5Wiv110 (3)O1B—Ni1B—O2B—K281.28 (13)
O3B—K4A—K4B—O5Wiv113.5 (19)N4B—Ni1B—N1B—C2B172.86 (15)
O7Bvi—K4A—K4B—O5Wiv13 (3)O2B—Ni1B—N1B—C2B9.00 (15)
O4B—K4A—K4B—O5Wiv77 (2)N4B—Ni1B—N1B—N2B0.66 (16)
O2W—K4A—K4B—O5Wiv133.8 (18)O2B—Ni1B—N1B—N2B177.48 (16)
O6iv—K4A—K4B—O5Wiv174 (2)C2B—N1B—N2B—C4B83.8 (2)
C1B—K4A—K4B—O5Wiv114 (2)Ni1B—N1B—N2B—C4B89.67 (18)
C2B—K4A—K4B—O5Wiv98 (2)C2B—N1B—N2B—C3B156.56 (17)
C7Bvi—K4A—K4B—O5Wiv25 (2)Ni1B—N1B—N2B—C3B29.9 (2)
K2—K4A—K4B—O5Wiv169.0 (15)C5B—N3B—N4B—C6B98.5 (2)
K1vii—K4A—K4B—O5Wiv36 (2)C3B—N3B—N4B—C6B141.70 (17)
O3W—K4A—K4B—O3B136.2 (12)K2iv—N3B—N4B—C6B36.42 (18)
O7Bvi—K4A—K4B—O3B126.8 (13)C5B—N3B—N4B—Ni1B89.30 (18)
O4B—K4A—K4B—O3B36.2 (10)C3B—N3B—N4B—Ni1B30.5 (2)
O2W—K4A—K4B—O3B112.8 (14)K2iv—N3B—N4B—Ni1B135.82 (11)
O6iv—K4A—K4B—O3B60.3 (10)N1B—Ni1B—N4B—C6B172.60 (15)
C1B—K4A—K4B—O3B0.4 (5)O1B—Ni1B—N4B—C6B7.82 (15)
C2B—K4A—K4B—O3B15.4 (9)N1B—Ni1B—N4B—N3B0.35 (17)
C7Bvi—K4A—K4B—O3B138.5 (10)O1B—Ni1B—N4B—N3B179.92 (16)
K2—K4A—K4B—O3B55.6 (6)K4A—O3B—C1B—O2B134.87 (18)
K1vii—K4A—K4B—O3B77.3 (8)K2—O3B—C1B—O2B42.1 (2)
O3W—K4A—K4B—C2B151.6 (18)K4B—O3B—C1B—O2B135.1 (3)
O3B—K4A—K4B—C2B15.4 (9)K4A—O3B—C1B—C2B43.4 (2)
O7Bvi—K4A—K4B—C2B111.5 (5)K2—O3B—C1B—C2B136.21 (15)
O4B—K4A—K4B—C2B20.78 (14)K4B—O3B—C1B—C2B43.2 (3)
O2W—K4A—K4B—C2B128.2 (9)K4A—O3B—C1B—K292.80 (8)
O6iv—K4A—K4B—C2B75.7 (3)K4B—O3B—C1B—K293.0 (3)
C1B—K4A—K4B—C2B15.8 (4)K2—O3B—C1B—K4A92.80 (8)
C7Bvi—K4A—K4B—C2B123.12 (18)K4B—O3B—C1B—K4A0.2 (3)
K2—K4A—K4B—C2B71.0 (7)Ni1B—O2B—C1B—O3B172.58 (16)
K1vii—K4A—K4B—C2B61.87 (15)K2—O2B—C1B—O3B35.41 (19)
O3W—K4A—K4B—O6Bvi108.1 (18)Ni1B—O2B—C1B—C2B9.1 (2)
O3B—K4A—K4B—O6Bvi115.7 (7)K2—O2B—C1B—C2B142.93 (16)
O7Bvi—K4A—K4B—O6Bvi11.2 (10)Ni1B—O2B—C1B—K2152.01 (9)
O4B—K4A—K4B—O6Bvi79.5 (5)Ni1B—O2B—C1B—K4A114.02 (18)
O2W—K4A—K4B—O6Bvi131.5 (8)K2—O2B—C1B—K4A37.99 (18)
O6iv—K4A—K4B—O6Bvi176.0 (7)K1vii—O4B—C2B—N1B113.4 (2)
C1B—K4A—K4B—O6Bvi116.1 (4)K4B—O4B—C2B—N1B123.6 (4)
C2B—K4A—K4B—O6Bvi100.3 (5)K4A—O4B—C2B—N1B140.3 (2)
C7Bvi—K4A—K4B—O6Bvi22.8 (6)K1vii—O4B—C2B—C1B67.2 (3)
K2—K4A—K4B—O6Bvi171.2 (3)K4B—O4B—C2B—C1B55.8 (4)
K1vii—K4A—K4B—O6Bvi38.4 (4)K4A—O4B—C2B—C1B39.1 (2)
O3W—K4A—K4B—K1vii146.5 (16)K1vii—O4B—C2B—K4A106.3 (2)
O3B—K4A—K4B—K1vii77.3 (8)K4B—O4B—C2B—K4A16.7 (4)
O7Bvi—K4A—K4B—K1vii49.6 (5)K1vii—O4B—C2B—K4B123.0 (5)
O4B—K4A—K4B—K1vii41.1 (3)K4A—O4B—C2B—K4B16.7 (4)
O2W—K4A—K4B—K1vii170.0 (10)N2B—N1B—C2B—O4B0.2 (3)
O6iv—K4A—K4B—K1vii137.6 (2)Ni1B—N1B—C2B—O4B174.38 (18)
C1B—K4A—K4B—K1vii77.7 (3)N2B—N1B—C2B—C1B179.70 (15)
C2B—K4A—K4B—K1vii61.87 (15)Ni1B—N1B—C2B—C1B6.1 (2)
C7Bvi—K4A—K4B—K1vii61.3 (2)N2B—N1B—C2B—K4A87.5 (3)
K2—K4A—K4B—K1vii132.8 (7)Ni1B—N1B—C2B—K4A98.3 (2)
N4—Ni1—O1—C74.19 (14)N2B—N1B—C2B—K4B73.8 (5)
O2—Ni1—O1—C7174.48 (14)Ni1B—N1B—C2B—K4B112.1 (4)
N4—Ni1—N1—C2175.16 (14)O3B—C1B—C2B—O4B1.1 (3)
O2—Ni1—N1—C26.16 (14)O2B—C1B—C2B—O4B177.33 (18)
N4—Ni1—N1—N21.06 (16)K2—C1B—C2B—O4B73.7 (3)
O2—Ni1—N1—N2177.62 (15)K4A—C1B—C2B—O4B33.06 (18)
C2—N1—N2—C486.08 (19)O3B—C1B—C2B—N1B179.34 (18)
Ni1—N1—N2—C490.13 (17)O2B—C1B—C2B—N1B2.2 (2)
C2—N1—N2—C3154.28 (16)K2—C1B—C2B—N1B105.8 (2)
Ni1—N1—N2—C329.5 (2)K4A—C1B—C2B—N1B146.49 (15)
C2—N1—N2—K3Aiii30.35 (19)O3B—C1B—C2B—K4A34.17 (17)
Ni1—N1—N2—K3Aiii153.43 (12)O2B—C1B—C2B—K4A144.27 (17)
C2—N1—N2—K3Biii35.4 (4)K2—C1B—C2B—K4A40.66 (17)
Ni1—N1—N2—K3Biii148.4 (3)O3B—C1B—C2B—K4B42.3 (3)
C5—N3—N4—C698.02 (19)O2B—C1B—C2B—K4B136.1 (3)
C3—N3—N4—C6142.21 (17)K2—C1B—C2B—K4B32.5 (3)
K2iii—N3—N4—C629.02 (19)K4A—C1B—C2B—K4B8.1 (3)
C5—N3—N4—Ni189.34 (18)N4B—N3B—C3B—N2B69.1 (2)
C3—N3—N4—Ni130.4 (2)C5B—N3B—C3B—N2B51.8 (2)
K2iii—N3—N4—Ni1143.62 (10)K2iv—N3B—C3B—N2B177.62 (12)
N1—Ni1—N4—C6173.36 (15)N1B—N2B—C3B—N3B68.8 (2)
O1—Ni1—N4—C66.73 (14)C4B—N2B—C3B—N3B52.1 (2)
N1—Ni1—N4—N30.65 (16)C5B—O5B—C4B—N2B59.4 (2)
O1—Ni1—N4—N3179.44 (15)N1B—N2B—C4B—O5B64.8 (2)
K1ii—O3—C1—O2105.7 (2)C3B—N2B—C4B—O5B55.4 (2)
K2—O3—C1—O233.8 (2)C4B—O5B—C5B—N3B58.9 (2)
K1—O3—C1—O2130.80 (17)N4B—N3B—C5B—O5B65.6 (2)
K1ii—O3—C1—C275.6 (3)C3B—N3B—C5B—O5B54.5 (2)
K2—O3—C1—C2144.95 (15)K2iv—N3B—C5B—O5B170.11 (11)
K1—O3—C1—C247.91 (18)K2iv—O6B—C6B—N4B41.0 (3)
K1ii—O3—C1—K2139.4 (2)K1iv—O6B—C6B—N4B148.43 (18)
K1—O3—C1—K297.04 (7)K4Bix—O6B—C6B—N4B128.0 (4)
K1ii—O3—C1—K1123.5 (2)K2iv—O6B—C6B—C7B140.07 (15)
K2—O3—C1—K197.04 (7)K1iv—O6B—C6B—C7B32.6 (2)
Ni1—O2—C1—O3173.77 (16)K4Bix—O6B—C6B—C7B50.9 (4)
K2—O2—C1—O332.75 (19)K1iv—O6B—C6B—K2iv107.42 (14)
Ni1—O2—C1—C27.5 (2)K4Bix—O6B—C6B—K2iv169.0 (3)
K2—O2—C1—C2146.01 (14)N3B—N4B—C6B—O6B0.7 (3)
Ni1—O2—C1—K2153.48 (10)Ni1B—N4B—C6B—O6B173.75 (18)
Ni1—O2—C1—K1110.71 (16)N3B—N4B—C6B—C7B179.74 (15)
K2—O2—C1—K142.77 (17)Ni1B—N4B—C6B—C7B7.2 (2)
K3Aiii—O4—C2—N134.1 (3)N3B—N4B—C6B—K2iv30.15 (15)
K3Biii—O4—C2—N138.5 (4)Ni1B—N4B—C6B—K2iv142.88 (10)
K1—O4—C2—N1137.41 (19)K4Aix—O7B—C7B—O1B117.66 (19)
K3Aiii—O4—C2—C1145.53 (17)K3B—O7B—C7B—O1B48.1 (4)
K3Biii—O4—C2—C1141.1 (3)K3A—O7B—C7B—O1B51.5 (3)
K1—O4—C2—C142.23 (18)K1iv—O7B—C7B—O1B151.74 (17)
K3Aiii—O4—C2—K1103.30 (14)K4Bix—O7B—C7B—O1B125.8 (4)
K3Biii—O4—C2—K198.9 (3)K4Aix—O7B—C7B—C6B61.2 (2)
K3Biii—O4—C2—K3Aiii4.4 (3)K3B—O7B—C7B—C6B133.0 (3)
K1—O4—C2—K3Aiii103.30 (14)K3A—O7B—C7B—C6B129.56 (17)
K3Aiii—O4—C2—K3Biii4.4 (3)K1iv—O7B—C7B—C6B29.4 (2)
K1—O4—C2—K3Biii98.9 (3)K4Bix—O7B—C7B—C6B53.1 (4)
N2—N1—C2—O40.1 (3)K3B—O7B—C7B—K4Aix165.7 (3)
Ni1—N1—C2—O4176.74 (17)K3A—O7B—C7B—K4Aix169.2 (2)
N2—N1—C2—C1179.80 (15)K1iv—O7B—C7B—K4Aix90.60 (11)
Ni1—N1—C2—C13.6 (2)K4Bix—O7B—C7B—K4Aix8.2 (3)
N2—N1—C2—K188.3 (2)Ni1B—O1B—C7B—O7B177.15 (17)
Ni1—N1—C2—K195.1 (2)Ni1B—O1B—C7B—C6B3.9 (2)
N2—N1—C2—K3Aiii24.43 (16)Ni1B—O1B—C7B—K4Aix123.19 (13)
Ni1—N1—C2—K3Aiii158.96 (12)O6B—C6B—C7B—O7B2.1 (3)
N2—N1—C2—K3Biii28.6 (3)N4B—C6B—C7B—O7B177.02 (18)
Ni1—N1—C2—K3Biii154.8 (3)K2iv—C6B—C7B—O7B67.7 (3)
O3—C1—C2—O41.9 (3)O6B—C6B—C7B—O1B178.91 (19)
O2—C1—C2—O4176.93 (17)N4B—C6B—C7B—O1B2.0 (2)
K2—C1—C2—O487.6 (3)K2iv—C6B—C7B—O1B113.3 (2)
K1—C1—C2—O436.38 (17)O6B—C6B—C7B—K4Aix41.5 (2)
O3—C1—C2—N1178.40 (17)N4B—C6B—C7B—K4Aix137.66 (14)
O2—C1—C2—N12.8 (2)K2iv—C6B—C7B—K4Aix107.1 (2)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1, y, z+1; (iii) x1/2, y, z+1/2; (iv) x+1/2, y, z+1/2; (v) x+3/2, y, z1/2; (vi) x, y+1/2, z+1/2; (vii) x+1/2, y+1/2, z+1; (viii) x+3/2, y, z+1/2; (ix) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O6x0.921.942.840 (2)166
O1W—H2W1···O5Wiii0.832.613.120 (4)121
O1W—H2W1···O3Bi0.832.233.001 (2)154
O2W—H2W2···O4ii0.931.832.754 (2)171
O4WA—H2W4···O4Biii0.912.442.993 (2)119
O4WA—H2W4···N2Biii0.912.022.895 (3)161
O5W—H5WC···O6Bxi0.851.952.774 (3)162
O4WB—H3W4···O4Biii0.852.092.848 (9)149
O4WB—H4W4···O6Bxi0.882.153.024 (9)174
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1, y, z+1; (iii) x1/2, y, z+1/2; (x) x+1/2, y, z+1/2; (xi) x1/2, y+1/2, z.
Values for continuous shapes measures (CShM) of the polyhedra centred by the potassium cations (only major components for the disordered parts are considered) top
ShapeCShM
K1K4A
Hexagon (D6h)30.96533.688
Pentagonal pyramid (C5v)9.92422.357
Octahedron (Oh)13.8594.985
Trigonal prism (D3h)4.69710.581
Johnson pentagonal pyramid J2 (C5v)13.91926.100
K2K3B
Octagon (D8h)32.59128.712
Heptagonal pyramid (C7v)18.31420.510
Hexagonal bipyramid (D6h)14.89113.393
Cube (Oh)14.91314.525
Square antiprism (D4d)6.80519.105
Triangular dodecahedron (D2d)4.99217.608
Johnson gyrobifastigium J26 (D2d)10.47916.378
Johnson elongated triangular bipyramid J14 (D3h)23.44118.219
Biaugmented trigonal prism J50 (C2v)6.80016.341
Biaugmented trigonal prism (C2v)5.69816.739
Snub diphenoid J84 (D2d)6.89415.895
Triakis tetrahedron (Td)15.01614.550
Elongated trigonal bipyramid (D3h)17.89313.966
 

Funding information

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement No. 778245. MOP, AOH and TSI acknowledge funding received from the Ministry of Education and Science of Ukraine (grant No. 19BF037–04).

References

First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS BV., Madison, Wisconsin, USA.  Google Scholar
First citationClark, G. R., Skelton, B. W. & Waters, T. N. (1976). J. Chem. Soc. Dalton Trans. pp. 1528–1536.  CrossRef Google Scholar
First citationDuda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853–3860.  CSD CrossRef Web of Science Google Scholar
First citationFritsky, I. O., Kozłowski, H., Kanderal, O. M., Haukka, M., Świątek-Kozłowska, J., Gumienna-Kontecka, E. & Meyer, F. (2006). Chem. Commun. pp. 4125–4127.  Web of Science CSD CrossRef Google Scholar
First citationFritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Śwątek-Kozłowska, J., Kalibabchuk, V. A. & Głowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.  CrossRef Google Scholar
First citationFritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Y. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Świątek-Kozłowska, J. (2007). New J. Chem. 31, 1798–1805.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, X.-C., Zhou, C., Shao, D. & Wang, X.-Y. (2014). Inorg. Chem. 53, 12671–12673.  CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLlunell, M., Casanova, D., Cirera, J., Alemany, P. & Alvarez, S. (2013). SHAPE. Universitat de Barcelona, Barcelona, Spain.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMezei, G., Zaleski, C. M. & Pecoraro, V. L. (2007). Chem. Rev. 107, 4933–5003.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMokhir, A. A., Gumienna-Kontecka, E., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationOliver, K. J. & Waters, T. N. (1982). J. Chem. Soc. Chem. Commun. pp. 1111–1112.  CrossRef Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826–4836.  Web of Science CSD CrossRef Google Scholar
First citationPavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851–4858.  Web of Science CSD CrossRef Google Scholar
First citationRaja, D. S., Bhuvanesh, N. S. P. & Natarajan, K. (2012). Dalton Trans. 41, 4365–4377.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShylin, S. I., Pavliuk, M. V., D'Amario, L., Fritsky, I. O. & Berggren, G. (2019a). Faraday Discuss. 215, 162–174.  CrossRef CAS PubMed Google Scholar
First citationShylin, S. I., Pavliuk, M. V., D'Amario, L., Mamedov, F., Sá, J., Berggren, G. & Fritsky, I. O. (2019b). Chem. Commun. 55, 3335–3338.  CrossRef CAS Google Scholar
First citationSliva, T. Yu., Duda, A. M., Głowiak, T., Fritsky, I. O., Amirkhanov, V. M., Mokhir, A. A. & Kozłowski, H. (1997a). J. Chem. Soc. Dalton Trans. pp. 273–276.  CSD CrossRef Web of Science Google Scholar
First citationSliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritskii, I. O. & Kozłowski, H. (1997b). J. Inorg. Biochem. 65, 287–294.  CrossRef CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationStrotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547.  Web of Science CSD CrossRef CAS Google Scholar
First citationŚwiątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.  Google Scholar
First citationTomyn, S., Shylin, S. I., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon, V. & Fritsky, I. O. (2017). Nat. Commun. 8, 14099, 1–9.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds