research communications
2-Amino-4-(4-chloro-1-ethyl-2,2-dioxo-1H-benzo[c][1,2]thiazin-3-yl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile: single-crystal X-ray diffraction study and Hirshfeld surface analysis
aSSI Institute for Single Crystals NAS of Ukraine, 60 Nauky ave., Kharkiv 61001, Ukraine, and bNational University of Pharmacy, 4 Valentynivska st., Kharkiv 61168, Ukraine
*Correspondence e-mail: masha.o.shishkina@gmail.com
In the title compound, C22H22ClN3O4S, which has potential non-steroidal anti-inflammatory activity, the benzothiazine and cyclohexenone rings both adopt a distorted sofa conformation while the 4H-pyrane ring adopts a very flattened sofa conformation. The two bicyclic fragments are skewed to each other, with the dihedral angle between their least-squares planes being 72.8 (1)°. In the crystal, the molecules form a hydrogen-bonded chain parallel to the a axis due to N—H⋯O and N—H⋯Cl hydrogen bonds. Neighbouring chains are linked by C—H⋯N, C—H⋯O and π–π stacking interactions. Hirshfeld surface analysis was used to investigate the importance of the different types of intermolecular interactions whose contributions are: H⋯H = 44.7%, O⋯H/H⋯O = 21.8%, N⋯H/H⋯N = 11.9%, C⋯H/H⋯C = 9.5%, Cl⋯H/H⋯Cl = 7.2%. Parts of the molecule, viz. the phenyl ring and the ethyl side chain, are equally disordered over two sets of sites.
Keywords: 1H-benzo[c][1,2]thiazine; 2,2-dioxide; 4H-pyran; multicomponent reaction; molecular structure; crystal structure; Hirshfeld surface analysis.
CCDC reference: 2064493
1. Chemical context
The 1H-benzo[c][1,2]thiazine 2,2-dioxide moiety and its derivatives have been the focus of chemists and pharmacologists for decades (Catsoulacos & Camoutsis, 1979; Ukrainets et al., 2014; Iwatani et al., 2013). These compounds have also gained additional value from a structural point of view because they can be regarded as bioisosteres of the 2,3-dihydro-4H-benzo[e][1,2]thiazin-4-one 1,1-dioxide core, which is a motif of well-known non-steroidal anti-inflammatory drugs (NSAIDs) of the `oxicame' group (Lega et al., 2016b).
While synthesizing new molecules, researchers often combine the 1H-benzo[c][1,2]thiazine 2,2-dioxide core with other pharmacophores of a heterocyclic nature (Tomita et al., 2013; Popov et al., 2010; Cecchetti et al., 1982). Recently, we have reported a series of compounds comprising a condensed system of 1H-benzo[c][1,2]thiazine 2,2-dioxide and 2-amino-4H-pyran fragments (Lega et al., 2017; Shemchuk et al., 2014). The pronounced analgesic and anti-inflammatory properties of the products have also been confirmed (Lega et al., 2016a).
A three-component reaction of 4-chloro-1-ethyl-1H-benzo[c][1,2]thiazin-3-carbaldehyde 2,2-dioxide, malononitrile and 5,5-dimethylcyclohexane-1,3-dione resulted in a new heterocyclic compound comprising σ-linked benzo[c][1,2]thiazine 2,2-dioxide and 2-amino-4H-pyran moieties (Fig. 1). Under consideration of all the above-mentioned points, the product of the reaction as well as similar structures are potential bioactive substances, particularly with regard to NSAID activity. In this context, the molecular and crystal structures were determined and a Hirshfeld surface analysis undertaken for the title compound, 4.
2. Structural commentary
The dihydrothiazine ring of compound 4 adopts a distorted sofa conformation (Fig. 2) with puckering parameters (Zefirov et al., 1990) of S = 0.63 (1), Θ = 52.5 (1)°, Ψ = 20.3 (1)°. The S1 and C8 atoms deviate from the least-squares plane of the remaining atoms of the ring by 0.863 (6) and 0.244 (2) Å respectively. The phenyl ring of the benzothiazine fragment is disordered over two positions (A and B) with equal occupancy. The partially saturated carbocycle has the same conformation as the hydrothiazine ring, with puckering parameters of S = 0.67 (1), Θ = 41.9 (1)°, Ψ = 11.8 (1)°. The deviations of the C13 and C14 atoms from the least-squares plane of the remaining atoms in the ring are 0.717 (2) and 0.132 (2) Å, respectively. The 4H-pyran ring adopts a very flattened sofa conformation with puckering parameters of S = 0.11 (1), Θ = 59.3 (1)°, Ψ = 3.2 (1)°, where the C9 atom deviates by 0.118 (2) Å from the plane of the remaining atoms in this ring. The C8—C9 bond is elongated to 1.525 (3) Å [the mean value (Orpen et al., 1994) for a Csp2—Csp3 bond is 1.510 Å] to compensate for the steric repulsion between the bicyclic fragments. The bicycles are skewed in relation to each other [the dihedral angle between their mean planes is 72.8 (1)°]. The presence of the vicinal substituents on the 4H-pyran moiety results in an elongation of the C16—C17 bond to 1.347 (3) Å [the mean value for the Csp2—Csp2 bond is 1.331 Å; Orpen et al., 1994] due to steric repulsion between them; the H2B⋯C18 distance is 2.57 (3) Å compared to the van der Waals radii sum (Zefirov, 1997) of 2.87 Å. The C21—C22 bond is located in a syn-clinal position to the C1—N1 endocyclic bond and the C22 atom is disordered over two positions (A and B) with equal occupancy due to rotation around the N1—C21 bond [the C22A—C21—N1—C1 torsion angle is 56.8 (9)° while the C22B—C21—N1—C1 torsion angle is 77.0 (11)°].
3. Supramolecular features
In the crystal, molecules of 4 form hydrogen-bonded chains parallel to the a axis (Fig. 3) due to N2—H2A⋯O4i and N2—H2B⋯Cl1i intermolecular interactions [symmetry code: (i) 1 + x, y, z; Table 1]. Stacking interactions between dihydrothiazine fragments of neighbouring chains occur [the distance between dihydrothiazine rings is 3.77 (1) Å, the plane shift is 3.198 (1) Å]. As a result, layers parallel to (011) may be considered as secondary structural motifs.
Further stacking interactions between 4H-pyran rings of molecules belonging to neighbouring layers are found [the distance between ring planes is 3.38 (1) Å and the plane shift is 1.247 (1) Å]. Molecules are arranged in a head-to-tail manner in both types of stacking dimers. Additional C—H⋯N and C—H⋯O hydrogen-bonding interactions of a weak nature (Table 1) consolidate the packing of the molecules in the crystal structure.
4. Hirshfeld surface analysis
Hirshfeld surface analysis (Turner et al., 2017) was used to identify and visualize different types of intra- and intermolecular interactions in the The molecular Hirshfeld surface of the title compound was constructed using a standard (high) surface resolution with three-dimensional dnorm surfaces. The areas coloured red on the dnorm surfaces correspond to contacts that are shorter than the van der Waals radii sum of the closest atoms (Fig. 4). Red spots on the Hirshfeld surface indicate atoms participating in hydrogen bonding or short contacts. The brightest red spots are observed at one of hydrogen atoms of the amino group and at the carbonyl oxygen atom of the cyclohexenone fragment, indicating the strong intermolecular N—H⋯O hydrogen bond. The smaller red areas are found at the other hydrogen atom of the amino group and the chlorine atom that indicates the N—H⋯Cl hydrogen bond. In addition, small spots are present at some of hydrogen atoms, as well as at the pyrane oxygen atom.
All of the hydrogen bonds and short contacts of the title compound are evident on the two-dimensional fingerprint plot presented in Fig. 5a. The pair of sharp spikes indicates the presence of strong hydrogen bonds in the The main contribution with respect to these spikes (21.8%) is provided by O⋯H/H⋯O interactions (Fig. 5c), while the highest contribution is from H⋯H contacts (44.7%). The contributions of N⋯H/H⋯N (11.9%), C⋯H/H⋯C (9.5%) and Cl⋯H/H⋯Cl (7.2%) (Fig. 5d, 5e, 5f) interactions are similar, but the presence of sharp spikes on the fingerprint plot containing only N⋯H/H⋯N or Cl⋯H/H⋯Cl interactions suggests that the latter contacts are much stronger.
5. Database survey
A search of the Cambridge Structural Database (CSD Version 5.41, update of November 2019; Groom et al., 2016) for the benzothiazine fragment revealed 44 hits. However, a chloro-substituted derivative was not found among these structures. It should be noted that the conformation of the benzothiazine ring and redistribution of the electron density in the title compound is very similar to those found in the structures containing a methyl group or a hydrogen atom instead of the chlorine substituent [refcodes: KEGNAO (Nguyen & Retailleau, 2017), KESJEA (Ghandi et al., 2014a), OWUQII (Azotla-Cruz et al., 2016), POJHUU, POJJAC, POJJEG, POJJIK, POJJOQ, POJJUW, POJKAD, POJKEH (Ukrainets et al., 2018), ROJNOV (Ghandi et al., 2014b), VAZQEV, VAZQIZ (Azotla-Cruz et al., 2017), ZIJQER (Shishkina et al., 2018)].
The bicyclic fragment containing 4H-pyrane, cycloxenenone as well as amino and cyano substituents is found in 102 hits extracted from the CSD. In all of these structures, the conformation of this fragment is similar.
6. Synthesis and crystallization
A mixture of 4-chloro-1-ethyl-1H-benzo[c][1,2]thiazin-3-carbaldehyde 2,2-dioxide (1) (0.271 g, 0.01 mol), malononitrile (2) (0.066 g, 0.01 mol) and 5,5-dimethylcyclohexane-1,3-dione (3) (0.140 g, 0.01 mol) was dissolved in 20 ml of i-PrOH and then triethylamine (0.1 mol%) was added (Fig. 1). The mixture was refluxed for 4 h, then cooled to room temperature and left for an1 h. The resulting precipitate of compound 4 was filtered off, washed with i-PrOH, dried in air and recrystallized from i-PrOH. Yield 0.101 g (22%); colourless crystals; m.p. > 523 K.
7. Refinement
Crystal data, data collection and structure . The bond lengths in the two disordered fragments were modelled with fixed values (Csp3—Csp3 = 1.54 Å for the ethyl side chain C21—C22; Csp2—Csp2 = 1.38 Å for the phenyl ring C1–C6), and with an equal occupancy for the two sets of sites. All hydrogen atoms were located in difference-Fourier maps. They were included in calculated positions and treated as riding with C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl groups and with Car—H = 0.93 Å, Csp3—H = 0.97 Å, Uiso(H) = 1.2Ueq(C) for all other hydrogen atoms. The hydrogen atoms of the amino group were refined freely.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2064493
https://doi.org/10.1107/S2056989021002085/wm5596sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021002085/wm5596Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021002085/wm5596Isup3.cml
Data collection: CrysAlis PRO (Rigaku OD, 2018); cell
CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).C22H22ClN3O4S | Z = 2 |
Mr = 459.93 | F(000) = 480 |
Triclinic, P1 | Dx = 1.384 Mg m−3 |
a = 8.6739 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.5490 (5) Å | Cell parameters from 2322 reflections |
c = 12.4021 (8) Å | θ = 3.6–29.8° |
α = 91.351 (4)° | µ = 0.30 mm−1 |
β = 101.065 (5)° | T = 293 K |
γ = 97.235 (4)° | Block, colourless |
V = 1103.51 (11) Å3 | 0.20 × 0.20 × 0.15 mm |
Rigaku Oxford Diffraction Xcalibur, Sapphire3 diffractometer | 6933 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3942 reflections with I > 2σ(I) |
Detector resolution: 16.1827 pixels mm-1 | Rint = 0.057 |
ω scans | θmax = 32.4°, θmin = 3.2° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2018) | h = −12→11 |
Tmin = 0.495, Tmax = 1.000 | k = −15→15 |
11902 measured reflections | l = −18→18 |
Refinement on F2 | 12 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.073 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.232 | w = 1/[σ2(Fo2) + (0.1119P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
6933 reflections | Δρmax = 0.33 e Å−3 |
337 parameters | Δρmin = −0.72 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | 0.03972 (9) | 0.51417 (8) | 0.26644 (8) | 0.0788 (3) | |
S1 | 0.20928 (7) | 0.15439 (6) | 0.25028 (5) | 0.04761 (19) | |
O1 | 0.0808 (2) | 0.07168 (18) | 0.27577 (16) | 0.0648 (5) | |
O2 | 0.3663 (2) | 0.12600 (17) | 0.29009 (15) | 0.0575 (5) | |
O3 | 0.58348 (18) | 0.26894 (16) | 0.50631 (14) | 0.0477 (4) | |
O4 | 0.0502 (2) | 0.31102 (17) | 0.50362 (17) | 0.0592 (5) | |
N1 | 0.1851 (3) | 0.1610 (2) | 0.11726 (17) | 0.0620 (6) | |
N2 | 0.7433 (3) | 0.3725 (2) | 0.4084 (2) | 0.0616 (6) | |
H2A | 0.821 (4) | 0.340 (3) | 0.456 (2) | 0.064 (8)* | |
H2B | 0.772 (4) | 0.429 (3) | 0.359 (3) | 0.065 (9)* | |
N3 | 0.5170 (3) | 0.5555 (2) | 0.2211 (2) | 0.0720 (7) | |
C1 | 0.0509 (4) | 0.2134 (3) | 0.0640 (2) | 0.0685 (8) | |
C2A | −0.0047 (19) | 0.1696 (12) | −0.0450 (6) | 0.075 (3) | 0.5 |
H2AA | 0.046249 | 0.110365 | −0.076725 | 0.090* | 0.5 |
C3A | −0.1356 (18) | 0.2143 (15) | −0.1057 (12) | 0.081 (4) | 0.5 |
H3A | −0.177591 | 0.188100 | −0.178732 | 0.097* | 0.5 |
C4A | −0.198 (2) | 0.302 (2) | −0.0480 (12) | 0.085 (3) | 0.5 |
H4A | −0.291494 | 0.328402 | −0.084953 | 0.102* | 0.5 |
C5A | −0.1415 (12) | 0.3545 (14) | 0.0572 (9) | 0.079 (4) | 0.5 |
H5A | −0.190299 | 0.416714 | 0.086940 | 0.095* | 0.5 |
C2B | −0.0394 (19) | 0.1748 (17) | −0.0399 (7) | 0.115 (7) | 0.5 |
H2BA | −0.013639 | 0.107213 | −0.079432 | 0.139* | 0.5 |
C3B | −0.167 (2) | 0.236 (2) | −0.0844 (13) | 0.120 (8) | 0.5 |
H3B | −0.219377 | 0.206308 | −0.154646 | 0.144* | 0.5 |
C4B | −0.227 (2) | 0.335 (2) | −0.0391 (14) | 0.122 (7) | 0.5 |
H4B | −0.311513 | 0.374797 | −0.073359 | 0.146* | 0.5 |
C5B | −0.1391 (13) | 0.3653 (16) | 0.0656 (11) | 0.121 (7) | 0.5 |
H5B | −0.171095 | 0.428779 | 0.106286 | 0.146* | 0.5 |
C6 | −0.0073 (3) | 0.3099 (3) | 0.1166 (3) | 0.0697 (9) | |
C7 | 0.0800 (3) | 0.3652 (3) | 0.2261 (2) | 0.0551 (6) | |
C8 | 0.1906 (2) | 0.3107 (2) | 0.29209 (19) | 0.0442 (5) | |
C9 | 0.3034 (3) | 0.3711 (2) | 0.39527 (19) | 0.0423 (5) | |
H9 | 0.265613 | 0.450631 | 0.414792 | 0.051* | |
C10 | 0.3097 (2) | 0.28831 (19) | 0.49249 (18) | 0.0397 (4) | |
C11 | 0.1699 (2) | 0.2645 (2) | 0.54253 (19) | 0.0428 (5) | |
C12 | 0.1814 (3) | 0.1897 (2) | 0.6451 (2) | 0.0487 (5) | |
H12A | 0.076892 | 0.146673 | 0.648431 | 0.058* | |
H12B | 0.215222 | 0.248890 | 0.708728 | 0.058* | |
C13 | 0.2968 (3) | 0.0896 (2) | 0.65146 (19) | 0.0472 (5) | |
C14 | 0.4558 (3) | 0.1565 (2) | 0.6339 (2) | 0.0475 (5) | |
H14A | 0.508114 | 0.206829 | 0.700312 | 0.057* | |
H14B | 0.522224 | 0.092238 | 0.621679 | 0.057* | |
C15 | 0.4416 (2) | 0.2413 (2) | 0.53984 (18) | 0.0407 (4) | |
C16 | 0.5947 (3) | 0.3529 (2) | 0.4253 (2) | 0.0436 (5) | |
C17 | 0.4688 (3) | 0.4055 (2) | 0.37333 (19) | 0.0433 (5) | |
C18 | 0.4938 (3) | 0.4890 (2) | 0.2889 (2) | 0.0490 (5) | |
C19 | 0.2299 (4) | −0.0175 (2) | 0.5635 (2) | 0.0593 (7) | |
H19A | 0.212443 | 0.018081 | 0.492353 | 0.089* | |
H19B | 0.131409 | −0.059562 | 0.577396 | 0.089* | |
H19C | 0.303981 | −0.078220 | 0.565607 | 0.089* | |
C20 | 0.3193 (4) | 0.0330 (3) | 0.7645 (2) | 0.0671 (7) | |
H20A | 0.368584 | 0.098819 | 0.819591 | 0.101* | |
H20B | 0.385352 | −0.033648 | 0.766154 | 0.101* | |
H20C | 0.217960 | −0.001696 | 0.779089 | 0.101* | |
C21 | 0.3116 (5) | 0.1391 (4) | 0.0592 (3) | 0.1013 (13) | |
H21A | 0.272294 | 0.077199 | −0.002026 | 0.122* | 0.5 |
H21B | 0.398128 | 0.107737 | 0.108434 | 0.122* | 0.5 |
H21C | 0.263219 | 0.099482 | −0.012681 | 0.122* | 0.5 |
H21D | 0.372926 | 0.078161 | 0.099154 | 0.122* | 0.5 |
C22A | 0.367 (2) | 0.2700 (12) | 0.0182 (19) | 0.168 (9) | 0.5 |
H22A | 0.276172 | 0.306634 | −0.018768 | 0.252* | 0.5 |
H22B | 0.436355 | 0.259743 | −0.031876 | 0.252* | 0.5 |
H22C | 0.421703 | 0.325606 | 0.079685 | 0.252* | 0.5 |
C22B | 0.426 (2) | 0.2569 (18) | 0.043 (2) | 0.197 (11) | 0.5 |
H22D | 0.389262 | 0.332725 | 0.067156 | 0.295* | 0.5 |
H22E | 0.431822 | 0.261267 | −0.033255 | 0.295* | 0.5 |
H22F | 0.529782 | 0.250560 | 0.085562 | 0.295* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0616 (5) | 0.0790 (5) | 0.1052 (7) | 0.0370 (4) | 0.0187 (4) | 0.0310 (4) |
S1 | 0.0426 (3) | 0.0562 (4) | 0.0414 (3) | 0.0044 (2) | 0.0036 (2) | −0.0003 (2) |
O1 | 0.0626 (12) | 0.0652 (11) | 0.0621 (11) | −0.0073 (9) | 0.0108 (9) | 0.0075 (9) |
O2 | 0.0534 (11) | 0.0619 (10) | 0.0564 (10) | 0.0198 (8) | 0.0023 (8) | −0.0081 (8) |
O3 | 0.0299 (8) | 0.0596 (9) | 0.0571 (10) | 0.0133 (6) | 0.0115 (7) | 0.0114 (8) |
O4 | 0.0368 (9) | 0.0688 (11) | 0.0778 (13) | 0.0201 (8) | 0.0158 (8) | 0.0165 (9) |
N1 | 0.0603 (14) | 0.0807 (15) | 0.0413 (11) | 0.0041 (11) | 0.0047 (10) | −0.0001 (10) |
N2 | 0.0351 (11) | 0.0729 (14) | 0.0812 (17) | 0.0109 (10) | 0.0177 (11) | 0.0219 (13) |
N3 | 0.0721 (17) | 0.0741 (15) | 0.0679 (16) | 0.0045 (13) | 0.0106 (13) | 0.0187 (13) |
C1 | 0.0552 (16) | 0.094 (2) | 0.0467 (14) | −0.0058 (15) | −0.0051 (12) | 0.0159 (14) |
C2A | 0.071 (7) | 0.085 (6) | 0.065 (7) | 0.012 (5) | −0.001 (4) | 0.015 (5) |
C3A | 0.074 (8) | 0.105 (7) | 0.052 (6) | 0.000 (5) | −0.009 (5) | 0.015 (4) |
C4A | 0.047 (8) | 0.134 (10) | 0.076 (7) | 0.043 (6) | −0.006 (5) | 0.036 (7) |
C5A | 0.059 (7) | 0.112 (8) | 0.079 (8) | 0.036 (6) | 0.026 (6) | 0.035 (6) |
C2B | 0.081 (9) | 0.194 (14) | 0.040 (5) | −0.052 (8) | −0.023 (4) | 0.015 (6) |
C3B | 0.058 (8) | 0.23 (2) | 0.054 (8) | −0.009 (9) | −0.018 (7) | 0.038 (11) |
C4B | 0.041 (7) | 0.179 (19) | 0.126 (12) | 0.010 (8) | −0.037 (8) | 0.087 (10) |
C5B | 0.048 (7) | 0.189 (15) | 0.097 (9) | −0.014 (7) | −0.050 (6) | 0.066 (9) |
C6 | 0.0370 (13) | 0.102 (2) | 0.0637 (17) | 0.0021 (14) | −0.0051 (12) | 0.0342 (17) |
C7 | 0.0351 (12) | 0.0692 (15) | 0.0622 (15) | 0.0106 (11) | 0.0081 (11) | 0.0204 (13) |
C8 | 0.0310 (10) | 0.0559 (12) | 0.0456 (12) | 0.0085 (9) | 0.0051 (8) | 0.0101 (10) |
C9 | 0.0327 (10) | 0.0438 (10) | 0.0507 (12) | 0.0099 (8) | 0.0058 (9) | 0.0021 (9) |
C10 | 0.0324 (10) | 0.0442 (10) | 0.0425 (11) | 0.0077 (8) | 0.0062 (8) | −0.0016 (8) |
C11 | 0.0323 (10) | 0.0439 (10) | 0.0524 (12) | 0.0088 (8) | 0.0076 (9) | −0.0047 (9) |
C12 | 0.0405 (12) | 0.0576 (12) | 0.0516 (13) | 0.0104 (10) | 0.0157 (10) | −0.0011 (11) |
C13 | 0.0430 (12) | 0.0556 (12) | 0.0462 (12) | 0.0131 (10) | 0.0117 (10) | 0.0061 (10) |
C14 | 0.0392 (12) | 0.0566 (12) | 0.0482 (12) | 0.0140 (10) | 0.0066 (9) | 0.0068 (10) |
C15 | 0.0308 (10) | 0.0479 (10) | 0.0446 (11) | 0.0079 (8) | 0.0087 (8) | −0.0006 (9) |
C16 | 0.0357 (11) | 0.0460 (11) | 0.0502 (12) | 0.0052 (8) | 0.0113 (9) | 0.0013 (9) |
C17 | 0.0369 (11) | 0.0451 (10) | 0.0477 (12) | 0.0084 (8) | 0.0061 (9) | 0.0024 (9) |
C18 | 0.0401 (12) | 0.0519 (12) | 0.0527 (13) | 0.0040 (9) | 0.0045 (10) | 0.0040 (11) |
C19 | 0.0695 (18) | 0.0482 (12) | 0.0622 (16) | 0.0073 (12) | 0.0181 (13) | 0.0027 (11) |
C20 | 0.0603 (17) | 0.0899 (19) | 0.0576 (16) | 0.0202 (15) | 0.0191 (13) | 0.0192 (15) |
C21 | 0.081 (3) | 0.166 (4) | 0.0550 (18) | 0.002 (2) | 0.0214 (17) | −0.022 (2) |
C22A | 0.117 (15) | 0.214 (15) | 0.159 (14) | −0.104 (10) | 0.087 (13) | −0.092 (11) |
C22B | 0.102 (13) | 0.29 (2) | 0.177 (18) | −0.112 (12) | 0.082 (12) | −0.066 (14) |
Cl1—C7 | 1.735 (3) | C9—C10 | 1.502 (3) |
S1—O1 | 1.4168 (19) | C9—C17 | 1.512 (3) |
S1—O2 | 1.4287 (18) | C9—H9 | 0.9800 |
S1—N1 | 1.627 (2) | C10—C15 | 1.341 (3) |
S1—C8 | 1.753 (2) | C10—C11 | 1.462 (3) |
O3—C16 | 1.364 (3) | C11—C12 | 1.506 (3) |
O3—C15 | 1.373 (3) | C12—C13 | 1.538 (3) |
O4—C11 | 1.225 (3) | C12—H12A | 0.9700 |
N1—C1 | 1.408 (4) | C12—H12B | 0.9700 |
N1—C21 | 1.461 (5) | C13—C20 | 1.525 (4) |
N2—C16 | 1.337 (3) | C13—C14 | 1.525 (3) |
N2—H2A | 0.92 (3) | C13—C19 | 1.528 (3) |
N2—H2B | 0.91 (3) | C14—C15 | 1.483 (3) |
N3—C18 | 1.139 (3) | C14—H14A | 0.9700 |
C1—C2A | 1.391 (5) | C14—H14B | 0.9700 |
C1—C6 | 1.394 (5) | C16—C17 | 1.347 (3) |
C1—C2B | 1.395 (4) | C17—C18 | 1.415 (3) |
C2A—C3A | 1.380 (5) | C19—H19A | 0.9600 |
C2A—H2AA | 0.9300 | C19—H19B | 0.9600 |
C3A—C4A | 1.378 (5) | C19—H19C | 0.9600 |
C3A—H3A | 0.9300 | C20—H20A | 0.9600 |
C4A—C5A | 1.381 (5) | C20—H20B | 0.9600 |
C4A—H4A | 0.9300 | C20—H20C | 0.9600 |
C5A—C6 | 1.394 (4) | C21—C22B | 1.533 (5) |
C5A—H5A | 0.9300 | C21—C22A | 1.534 (5) |
C2B—C3B | 1.380 (5) | C21—H21A | 0.9700 |
C2B—H2BA | 0.9300 | C21—H21B | 0.9700 |
C3B—C4B | 1.377 (5) | C21—H21C | 0.9700 |
C3B—H3B | 0.9300 | C21—H21D | 0.9700 |
C4B—C5B | 1.380 (5) | C22A—H22A | 0.9600 |
C4B—H4B | 0.9300 | C22A—H22B | 0.9600 |
C5B—C6 | 1.399 (5) | C22A—H22C | 0.9600 |
C5B—H5B | 0.9300 | C22B—H22D | 0.9600 |
C6—C7 | 1.488 (4) | C22B—H22E | 0.9600 |
C7—C8 | 1.334 (3) | C22B—H22F | 0.9600 |
C8—C9 | 1.525 (3) | ||
O1—S1—O2 | 118.26 (12) | C11—C12—C13 | 113.76 (19) |
O1—S1—N1 | 108.63 (12) | C11—C12—H12A | 108.8 |
O2—S1—N1 | 107.59 (13) | C13—C12—H12A | 108.8 |
O1—S1—C8 | 107.85 (12) | C11—C12—H12B | 108.8 |
O2—S1—C8 | 110.65 (10) | C13—C12—H12B | 108.8 |
N1—S1—C8 | 102.75 (12) | H12A—C12—H12B | 107.7 |
C16—O3—C15 | 119.25 (17) | C20—C13—C14 | 109.1 (2) |
C1—N1—C21 | 120.9 (3) | C20—C13—C19 | 109.2 (2) |
C1—N1—S1 | 116.6 (2) | C14—C13—C19 | 111.0 (2) |
C21—N1—S1 | 121.3 (2) | C20—C13—C12 | 110.0 (2) |
C16—N2—H2A | 118 (2) | C14—C13—C12 | 108.06 (19) |
C16—N2—H2B | 121.8 (19) | C19—C13—C12 | 109.5 (2) |
H2A—N2—H2B | 119 (3) | C15—C14—C13 | 113.40 (18) |
C2A—C1—C6 | 124.9 (6) | C15—C14—H14A | 108.9 |
C6—C1—C2B | 113.5 (7) | C13—C14—H14A | 108.9 |
C2A—C1—N1 | 114.5 (6) | C15—C14—H14B | 108.9 |
C6—C1—N1 | 120.4 (2) | C13—C14—H14B | 108.9 |
C2B—C1—N1 | 126.1 (7) | H14A—C14—H14B | 107.7 |
C3A—C2A—C1 | 119.7 (12) | C10—C15—O3 | 122.8 (2) |
C3A—C2A—H2AA | 120.1 | C10—C15—C14 | 125.8 (2) |
C1—C2A—H2AA | 120.1 | O3—C15—C14 | 111.38 (18) |
C4A—C3A—C2A | 113.6 (13) | N2—C16—C17 | 127.6 (2) |
C4A—C3A—H3A | 123.2 | N2—C16—O3 | 110.3 (2) |
C2A—C3A—H3A | 123.2 | C17—C16—O3 | 122.1 (2) |
C3A—C4A—C5A | 128.8 (11) | C16—C17—C18 | 117.1 (2) |
C3A—C4A—H4A | 115.6 | C16—C17—C9 | 123.0 (2) |
C5A—C4A—H4A | 115.6 | C18—C17—C9 | 119.70 (19) |
C4A—C5A—C6 | 116.7 (8) | N3—C18—C17 | 178.6 (3) |
C4A—C5A—H5A | 121.7 | C13—C19—H19A | 109.5 |
C6—C5A—H5A | 121.7 | C13—C19—H19B | 109.5 |
C3B—C2B—C1 | 120.6 (12) | H19A—C19—H19B | 109.5 |
C3B—C2B—H2BA | 119.7 | C13—C19—H19C | 109.5 |
C1—C2B—H2BA | 119.7 | H19A—C19—H19C | 109.5 |
C4B—C3B—C2B | 129.0 (14) | H19B—C19—H19C | 109.5 |
C4B—C3B—H3B | 115.5 | C13—C20—H20A | 109.5 |
C2B—C3B—H3B | 115.5 | C13—C20—H20B | 109.5 |
C3B—C4B—C5B | 108.4 (13) | H20A—C20—H20B | 109.5 |
C3B—C4B—H4B | 125.8 | C13—C20—H20C | 109.5 |
C5B—C4B—H4B | 125.8 | H20A—C20—H20C | 109.5 |
C4B—C5B—C6 | 126.5 (11) | H20B—C20—H20C | 109.5 |
C4B—C5B—H5B | 116.7 | N1—C21—C22B | 116.6 (12) |
C6—C5B—H5B | 116.7 | N1—C21—C22A | 105.2 (9) |
C1—C6—C5A | 115.9 (6) | N1—C21—H21A | 110.7 |
C1—C6—C5B | 121.9 (7) | C22A—C21—H21A | 110.7 |
C1—C6—C7 | 119.9 (2) | N1—C21—H21B | 110.7 |
C5A—C6—C7 | 124.1 (6) | C22A—C21—H21B | 110.7 |
C5B—C6—C7 | 118.0 (6) | H21A—C21—H21B | 108.8 |
C8—C7—C6 | 124.5 (3) | N1—C21—H21C | 108.1 |
C8—C7—Cl1 | 118.5 (2) | C22B—C21—H21C | 108.1 |
C6—C7—Cl1 | 116.9 (2) | N1—C21—H21D | 108.1 |
C7—C8—C9 | 127.2 (2) | C22B—C21—H21D | 108.1 |
C7—C8—S1 | 114.9 (2) | H21C—C21—H21D | 107.3 |
C9—C8—S1 | 117.90 (15) | C21—C22A—H22A | 109.5 |
C10—C9—C17 | 109.45 (17) | C21—C22A—H22B | 109.5 |
C10—C9—C8 | 113.45 (17) | H22A—C22A—H22B | 109.5 |
C17—C9—C8 | 110.8 (2) | C21—C22A—H22C | 109.5 |
C10—C9—H9 | 107.6 | H22A—C22A—H22C | 109.5 |
C17—C9—H9 | 107.6 | H22B—C22A—H22C | 109.5 |
C8—C9—H9 | 107.6 | C21—C22B—H22D | 109.5 |
C15—C10—C11 | 118.2 (2) | C21—C22B—H22E | 109.5 |
C15—C10—C9 | 122.7 (2) | H22D—C22B—H22E | 109.5 |
C11—C10—C9 | 118.99 (18) | C21—C22B—H22F | 109.5 |
O4—C11—C10 | 119.4 (2) | H22D—C22B—H22F | 109.5 |
O4—C11—C12 | 121.9 (2) | H22E—C22B—H22F | 109.5 |
C10—C11—C12 | 118.57 (19) | ||
O1—S1—N1—C1 | 63.5 (2) | O1—S1—C8—C9 | 105.95 (19) |
O2—S1—N1—C1 | −167.3 (2) | O2—S1—C8—C9 | −24.8 (2) |
C8—S1—N1—C1 | −50.5 (2) | N1—S1—C8—C9 | −139.41 (19) |
O1—S1—N1—C21 | −128.9 (3) | C7—C8—C9—C10 | 131.5 (3) |
O2—S1—N1—C21 | 0.3 (3) | S1—C8—C9—C10 | −50.9 (3) |
C8—S1—N1—C21 | 117.1 (3) | C7—C8—C9—C17 | −104.9 (3) |
C21—N1—C1—C2A | 38.9 (9) | S1—C8—C9—C17 | 72.7 (2) |
S1—N1—C1—C2A | −153.4 (8) | C17—C9—C10—C15 | −8.0 (3) |
C21—N1—C1—C6 | −135.3 (3) | C8—C9—C10—C15 | 116.3 (2) |
S1—N1—C1—C6 | 32.4 (4) | C17—C9—C10—C11 | 167.86 (18) |
C21—N1—C1—C2B | 47.2 (11) | C8—C9—C10—C11 | −67.8 (3) |
S1—N1—C1—C2B | −145.1 (11) | C15—C10—C11—O4 | 176.9 (2) |
C6—C1—C2A—C3A | −6.0 (19) | C9—C10—C11—O4 | 0.8 (3) |
N1—C1—C2A—C3A | −179.9 (13) | C15—C10—C11—C12 | 0.6 (3) |
C1—C2A—C3A—C4A | 0 (3) | C9—C10—C11—C12 | −175.43 (18) |
C2A—C3A—C4A—C5A | 5 (4) | O4—C11—C12—C13 | 152.7 (2) |
C3A—C4A—C5A—C6 | −4 (4) | C10—C11—C12—C13 | −31.1 (3) |
C6—C1—C2B—C3B | 4 (2) | C11—C12—C13—C20 | 171.6 (2) |
N1—C1—C2B—C3B | −178.5 (15) | C11—C12—C13—C14 | 52.6 (3) |
C1—C2B—C3B—C4B | −2 (4) | C11—C12—C13—C19 | −68.4 (3) |
C2B—C3B—C4B—C5B | −2 (4) | C20—C13—C14—C15 | −165.8 (2) |
C3B—C4B—C5B—C6 | 3 (4) | C19—C13—C14—C15 | 73.8 (3) |
C2A—C1—C6—C5A | 7.0 (12) | C12—C13—C14—C15 | −46.2 (3) |
N1—C1—C6—C5A | −179.4 (7) | C11—C10—C15—O3 | −173.24 (19) |
C2B—C1—C6—C5B | −3.1 (14) | C9—C10—C15—O3 | 2.7 (3) |
N1—C1—C6—C5B | 179.2 (9) | C11—C10—C15—C14 | 5.8 (3) |
C2A—C1—C6—C7 | −168.8 (9) | C9—C10—C15—C14 | −178.3 (2) |
C2B—C1—C6—C7 | −177.4 (10) | C16—O3—C15—C10 | 3.6 (3) |
N1—C1—C6—C7 | 4.8 (4) | C16—O3—C15—C14 | −175.57 (18) |
C4A—C5A—C6—C1 | −2.2 (19) | C13—C14—C15—C10 | 19.0 (3) |
C4A—C5A—C6—C7 | 173.3 (14) | C13—C14—C15—O3 | −161.91 (19) |
C4B—C5B—C6—C1 | 0 (3) | C15—O3—C16—N2 | 176.7 (2) |
C4B—C5B—C6—C7 | 174.1 (19) | C15—O3—C16—C17 | −3.2 (3) |
C1—C6—C7—C8 | −16.8 (4) | N2—C16—C17—C18 | 1.6 (4) |
C5A—C6—C7—C8 | 167.8 (8) | O3—C16—C17—C18 | −178.6 (2) |
C5B—C6—C7—C8 | 168.6 (9) | N2—C16—C17—C9 | 176.8 (2) |
C1—C6—C7—Cl1 | 160.2 (2) | O3—C16—C17—C9 | −3.4 (3) |
C5A—C6—C7—Cl1 | −15.2 (8) | C10—C9—C17—C16 | 8.4 (3) |
C5B—C6—C7—Cl1 | −14.4 (9) | C8—C9—C17—C16 | −117.4 (2) |
C6—C7—C8—C9 | 168.9 (2) | C10—C9—C17—C18 | −176.56 (19) |
Cl1—C7—C8—C9 | −8.1 (4) | C8—C9—C17—C18 | 57.6 (3) |
C6—C7—C8—S1 | −8.7 (4) | C1—N1—C21—C22B | 77.0 (11) |
Cl1—C7—C8—S1 | 174.30 (13) | S1—N1—C21—C22B | −90.1 (11) |
O1—S1—C8—C7 | −76.2 (2) | C1—N1—C21—C22A | 56.8 (9) |
O2—S1—C8—C7 | 153.1 (2) | S1—N1—C21—C22A | −110.3 (8) |
N1—S1—C8—C7 | 38.5 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O4i | 0.92 (3) | 2.03 (3) | 2.857 (3) | 150 (3) |
N2—H2B···Cl1i | 0.91 (3) | 2.84 (3) | 3.583 (3) | 140 (2) |
C4B—H4B···N3ii | 0.93 | 2.49 | 3.381 (18) | 160 |
C19—H19C···O3iii | 0.96 | 2.56 | 3.452 (3) | 155 |
C20—H20C···O1iv | 0.96 | 2.56 | 3.443 (4) | 153 |
Symmetry codes: (i) x+1, y, z; (ii) −x, −y+1, −z; (iii) −x+1, −y, −z+1; (iv) −x, −y, −z+1. |
References
Azotla-Cruz, L., Lijanova, I. V., Ukrainets, I. V., Likhanova, N. V., Olivares-Xometl, O. & Bereznyakova, N. L. (2017). Sci. Pharm. 85, 2–15. Google Scholar
Azotla-Cruz, L., Shishkina, S., Ukrainets, I., Lijanova, I. & Likhanova, N. (2016). Acta Cryst. E72, 1574–1576. Web of Science CSD CrossRef IUCr Journals Google Scholar
Catsoulacos, P. & Camoutsis, C. (1979). J. Heterocycl. Chem. 16, 1503–1524. CrossRef CAS Google Scholar
Cecchetti, V., Fravolini, A. & Schiaffella, F. (1982). J. Heterocycl. Chem. 19, 1045–1050. CrossRef CAS Google Scholar
Ghandi, M., Feizi, S., Ziaie, F., Fazaeli, Y. & Notash, B. (2014b). Ann. Nucl. Med. 28, 880–890. CrossRef CAS PubMed Google Scholar
Ghandi, M., Feizi, S., Ziaie, F. & Notash, B. (2014a). Tetrahedron, 70, 2563–2569. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Iwatani, M., Iwata, H., Okabe, A., Skene, R. J., Tomita, N., Hayashi, Y., Aramaki, Y., Hosfield, D. J., Hori, A., Baba, A. & Miki, H. (2013). Eur. J. Med. Chem. 61, 49–60. CrossRef CAS PubMed Google Scholar
Lega, D. A., Chernykh, V. P., Zaprutko, L., Gzella, A. K. & Shemchuk, L. A. (2017). Chem. Heterocycl. Compd, 53, 219–229. CrossRef CAS Google Scholar
Lega, D. A., Filimonova, N. I., Zupanets, I. A., Shebeko, S. K., Chernykh, V. P. & Shemchuk, L. A. (2016a). J. Org. Pharm. Chem. 14, 3–11. CrossRef CAS Google Scholar
Lega, D. A., Gorobets, N. Y., Chernykh, V. P., Shishkina, S. V. & Shemchuk, L. A. (2016b). RSC Adv. 6, 16087–16099. CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nguyen, T. B. & Retailleau, P. (2017). Org. Lett. 19, 3879–3882. CrossRef CAS PubMed Google Scholar
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1994). In Structure Correlation, vol. 2, edited by H.-B. Burgi & J. D. Dunitz, pp. 767–784. Weinheim: VCH. Google Scholar
Popov, K., Volovenko, T., Turov, A. & Volovenko, Y. (2010). J. Heterocycl. Chem. 47, 85–90. CAS Google Scholar
Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shemchuk, L. A., Lega, D. A., Redkin, R. G., Chernykh, V. P., Shishkin, O. V. & Shishkina, S. V. (2014). Tetrahedron, 70, 8348–8353. CrossRef CAS Google Scholar
Shishkina, S., Ukrainets, I., Hamza, G. & Grinevich, L. (2018). Acta Cryst. E74, 1299–1301. CrossRef IUCr Journals Google Scholar
Tomita, N., Hayashi, Y., Suzuki, S., Oomori, Y., Aramaki, Y., Matsushita, Y., Iwatani, M., Iwata, H., Okabe, A., Awazu, Y., Isono, O., Skene, R. J., Hosfield, D. J., Miki, H., Kawamoto, T., Hori, A. & Baba, A. (2013). Bioorg. Med. Chem. Lett. 23, 1779–1785. CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net Google Scholar
Ukrainets, I., Hamza, G., Burian, A., Voloshchuk, N., Malchenko, O., Shishkina, S., Grinevich, L., Grynenko, V. & Sim, G. (2018). Sci. Pharm. 86, 50–76. CrossRef Google Scholar
Ukrainets, I. V., Petrushova, L. A., Dzyubenko, S. P. & Sim, G. (2014). Chem. Heterocycl. Compd, 50, 103–110. Web of Science CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147–158. CrossRef CAS Web of Science Google Scholar
Zefirov, Yu. V. (1997). Kristallografiya, 42, 936–958. CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.