research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-(4-chloro-1-ethyl-2,2-dioxo-1H-benzo[c][1,2]thia­zin-3-yl)-7,7-di­methyl-5-oxo-5,6,7,8-tetra­hydro-4H-chromene-3-carbo­nitrile: single-crystal X-ray diffraction study and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aSSI Institute for Single Crystals NAS of Ukraine, 60 Nauky ave., Kharkiv 61001, Ukraine, and bNational University of Pharmacy, 4 Valentynivska st., Kharkiv 61168, Ukraine
*Correspondence e-mail: masha.o.shishkina@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 21 January 2021; accepted 22 February 2021; online 26 February 2021)

In the title compound, C22H22ClN3O4S, which has potential non-steroidal anti-inflammatory activity, the benzo­thia­zine and cyclo­hexenone rings both adopt a distorted sofa conformation while the 4H-pyrane ring adopts a very flattened sofa conformation. The two bicyclic fragments are skewed to each other, with the dihedral angle between their least-squares planes being 72.8 (1)°. In the crystal, the mol­ecules form a hydrogen-bonded chain parallel to the a axis due to N—H⋯O and N—H⋯Cl hydrogen bonds. Neighbouring chains are linked by C—H⋯N, C—H⋯O and ππ stacking inter­actions. Hirshfeld surface analysis was used to investigate the importance of the different types of inter­molecular inter­actions whose contributions are: H⋯H = 44.7%, O⋯H/H⋯O = 21.8%, N⋯H/H⋯N = 11.9%, C⋯H/H⋯C = 9.5%, Cl⋯H/H⋯Cl = 7.2%. Parts of the mol­ecule, viz. the phenyl ring and the ethyl side chain, are equally disordered over two sets of sites.

1. Chemical context

The 1H-benzo[c][1,2]thia­zine 2,2-dioxide moiety and its derivatives have been the focus of chemists and pharmacologists for decades (Catsoulacos & Camoutsis, 1979[Catsoulacos, P. & Camoutsis, C. (1979). J. Heterocycl. Chem. 16, 1503-1524.]; Ukrainets et al., 2014[Ukrainets, I. V., Petrushova, L. A., Dzyubenko, S. P. & Sim, G. (2014). Chem. Heterocycl. Compd, 50, 103-110.]; Iwatani et al., 2013[Iwatani, M., Iwata, H., Okabe, A., Skene, R. J., Tomita, N., Hayashi, Y., Aramaki, Y., Hosfield, D. J., Hori, A., Baba, A. & Miki, H. (2013). Eur. J. Med. Chem. 61, 49-60.]). These compounds have also gained additional value from a structural point of view because they can be regarded as bioisosteres of the 2,3-di­hydro-4H-benzo[e][1,2]thia­zin-4-one 1,1-dioxide core, which is a motif of well-known non-steroidal anti-inflammatory drugs (NSAIDs) of the `oxicame' group (Lega et al., 2016b[Lega, D. A., Gorobets, N. Y., Chernykh, V. P., Shishkina, S. V. & Shemchuk, L. A. (2016b). RSC Adv. 6, 16087-16099.]).

While synthesizing new mol­ecules, researchers often combine the 1H-benzo[c][1,2]thia­zine 2,2-dioxide core with other pharmacophores of a heterocyclic nature (Tomita et al., 2013[Tomita, N., Hayashi, Y., Suzuki, S., Oomori, Y., Aramaki, Y., Matsushita, Y., Iwatani, M., Iwata, H., Okabe, A., Awazu, Y., Isono, O., Skene, R. J., Hosfield, D. J., Miki, H., Kawamoto, T., Hori, A. & Baba, A. (2013). Bioorg. Med. Chem. Lett. 23, 1779-1785.]; Popov et al., 2010[Popov, K., Volovenko, T., Turov, A. & Volovenko, Y. (2010). J. Heterocycl. Chem. 47, 85-90.]; Cecchetti et al., 1982[Cecchetti, V., Fravolini, A. & Schiaffella, F. (1982). J. Heterocycl. Chem. 19, 1045-1050.]). Recently, we have reported a series of compounds comprising a condensed system of 1H-benzo[c][1,2]thia­zine 2,2-dioxide and 2-amino-4H-pyran fragments (Lega et al., 2017[Lega, D. A., Chernykh, V. P., Zaprutko, L., Gzella, A. K. & Shemchuk, L. A. (2017). Chem. Heterocycl. Compd, 53, 219-229.]; Shemchuk et al., 2014[Shemchuk, L. A., Lega, D. A., Redkin, R. G., Chernykh, V. P., Shishkin, O. V. & Shishkina, S. V. (2014). Tetrahedron, 70, 8348-8353.]). The pronounced analgesic and anti-inflammatory properties of the products have also been confirmed (Lega et al., 2016a[Lega, D. A., Filimonova, N. I., Zupanets, I. A., Shebeko, S. K., Chernykh, V. P. & Shemchuk, L. A. (2016a). J. Org. Pharm. Chem. 14, 3-11.]).

A three-component reaction of 4-chloro-1-ethyl-1H-benzo[c][1,2]thia­zin-3-carbaldehyde 2,2-dioxide, malono­nitrile and 5,5-di­methyl­cyclo­hexane-1,3-dione resulted in a new heterocyclic compound comprising σ-linked benzo[c][1,2]thia­zine 2,2-dioxide and 2-amino-4H-pyran moieties (Fig. 1[link]). Under consideration of all the above-mentioned points, the product of the reaction as well as similar structures are potential bioactive substances, particularly with regard to NSAID activity. In this context, the mol­ecular and crystal structures were determined and a Hirshfeld surface analysis undertaken for the title compound, 4.

[Scheme 1]
[Figure 1]
Figure 1
Synthesis scheme of the title compound 4.

2. Structural commentary

The di­hydro­thia­zine ring of compound 4 adopts a distorted sofa conformation (Fig. 2[link]) with puckering parameters (Zefirov et al., 1990[Zefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147-158.]) of S = 0.63 (1), Θ = 52.5 (1)°, Ψ = 20.3 (1)°. The S1 and C8 atoms deviate from the least-squares plane of the remaining atoms of the ring by 0.863 (6) and 0.244 (2) Å respectively. The phenyl ring of the benzo­thia­zine fragment is disordered over two positions (A and B) with equal occupancy. The partially saturated carbocycle has the same conformation as the hydro­thia­zine ring, with puckering parameters of S = 0.67 (1), Θ = 41.9 (1)°, Ψ = 11.8 (1)°. The deviations of the C13 and C14 atoms from the least-squares plane of the remaining atoms in the ring are 0.717 (2) and 0.132 (2) Å, respectively. The 4H-pyran ring adopts a very flattened sofa conformation with puckering parameters of S = 0.11 (1), Θ = 59.3 (1)°, Ψ = 3.2 (1)°, where the C9 atom deviates by 0.118 (2) Å from the plane of the remaining atoms in this ring. The C8—C9 bond is elongated to 1.525 (3) Å [the mean value (Orpen et al., 1994[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1994). In Structure Correlation, vol. 2, edited by H.-B. Burgi & J. D. Dunitz, pp. 767-784. Weinheim: VCH.]) for a Csp2—Csp3 bond is 1.510 Å] to compensate for the steric repulsion between the bicyclic fragments. The bicycles are skewed in relation to each other [the dihedral angle between their mean planes is 72.8 (1)°]. The presence of the vicinal substituents on the 4H-pyran moiety results in an elongation of the C16—C17 bond to 1.347 (3) Å [the mean value for the Csp2—Csp2 bond is 1.331 Å; Orpen et al., 1994[Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1994). In Structure Correlation, vol. 2, edited by H.-B. Burgi & J. D. Dunitz, pp. 767-784. Weinheim: VCH.]] due to steric repulsion between them; the H2B⋯C18 distance is 2.57 (3) Å compared to the van der Waals radii sum (Zefirov, 1997[Zefirov, Yu. V. (1997). Kristallografiya, 42, 936-958.]) of 2.87 Å. The C21—C22 bond is located in a syn-clinal position to the C1—N1 endocyclic bond and the C22 atom is disordered over two positions (A and B) with equal occupancy due to rotation around the N1—C21 bond [the C22A—C21—N1—C1 torsion angle is 56.8 (9)° while the C22B—C21—N1—C1 torsion angle is 77.0 (11)°].

[Figure 2]
Figure 2
The mol­ecular structure of compound 4. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, mol­ecules of 4 form hydrogen-bonded chains parallel to the a axis (Fig. 3[link]) due to N2—H2A⋯O4i and N2—H2B⋯Cl1i inter­molecular inter­actions [symmetry code: (i) 1 + x, y, z; Table 1[link]]. Stacking inter­actions between di­hydro­thia­zine fragments of neighbouring chains occur [the distance between di­hydro­thia­zine rings is 3.77 (1) Å, the plane shift is 3.198 (1) Å]. As a result, layers parallel to (011) may be considered as secondary structural motifs.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O4i 0.92 (3) 2.03 (3) 2.857 (3) 150 (3)
N2—H2B⋯Cl1i 0.91 (3) 2.84 (3) 3.583 (3) 140 (2)
C4B—H4B⋯N3ii 0.93 2.49 3.381 (18) 160
C19—H19C⋯O3iii 0.96 2.56 3.452 (3) 155
C20—H20C⋯O1iv 0.96 2.56 3.443 (4) 153
Symmetry codes: (i) x+1, y, z; (ii) [-x, -y+1, -z]; (iii) [-x+1, -y, -z+1]; (iv) [-x, -y, -z+1].
[Figure 3]
Figure 3
The chain of mol­ecules 4 linked through N—H⋯O and N—H⋯Cl hydrogen bonds.

Further stacking inter­actions between 4H-pyran rings of mol­ecules belonging to neighbouring layers are found [the distance between ring planes is 3.38 (1) Å and the plane shift is 1.247 (1) Å]. Mol­ecules are arranged in a head-to-tail manner in both types of stacking dimers. Additional C—H⋯N and C—H⋯O hydrogen-bonding inter­actions of a weak nature (Table 1[link]) consolidate the packing of the mol­ecules in the crystal structure.

4. Hirshfeld surface analysis

Hirshfeld surface analysis (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net]) was used to identify and visualize different types of intra- and inter­molecular inter­actions in the crystal structure. The mol­ecular Hirshfeld surface of the title compound was constructed using a standard (high) surface resolution with three-dimensional dnorm surfaces. The areas coloured red on the dnorm surfaces correspond to contacts that are shorter than the van der Waals radii sum of the closest atoms (Fig. 4[link]). Red spots on the Hirshfeld surface indicate atoms participating in hydrogen bonding or short contacts. The brightest red spots are observed at one of hydrogen atoms of the amino group and at the carbonyl oxygen atom of the cyclo­hexenone fragment, indicating the strong inter­molecular N—H⋯O hydrogen bond. The smaller red areas are found at the other hydrogen atom of the amino group and the chlorine atom that indicates the N—H⋯Cl hydrogen bond. In addition, small spots are present at some of hydrogen atoms, as well as at the pyrane oxygen atom.

[Figure 4]
Figure 4
Two views of the Hirshfeld surface of mol­ecule 4 mapped over dnorm in the range −0.495 to 1.558 a.u.

All of the hydrogen bonds and short contacts of the title compound are evident on the two-dimensional fingerprint plot presented in Fig. 5[link]a. The pair of sharp spikes indicates the presence of strong hydrogen bonds in the crystal structure. The main contribution with respect to these spikes (21.8%) is provided by O⋯H/H⋯O inter­actions (Fig. 5[link]c), while the highest contribution is from H⋯H contacts (44.7%). The contributions of N⋯H/H⋯N (11.9%), C⋯H/H⋯C (9.5%) and Cl⋯H/H⋯Cl (7.2%) (Fig. 5[link]d, 5e, 5f) inter­actions are similar, but the presence of sharp spikes on the fingerprint plot containing only N⋯H/H⋯N or Cl⋯H/H⋯Cl inter­actions suggests that the latter contacts are much stronger.

[Figure 5]
Figure 5
Two-dimensional fingerprint plot for compound 4 showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/ H⋯O, (d) N⋯H/H⋯O, (e) C⋯H/H⋯C and (f) Cl⋯H/H⋯Cl contacts.

5. Database survey

A search of the Cambridge Structural Database (CSD Version 5.41, update of November 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the benzo­thia­zine fragment revealed 44 hits. However, a chloro-substituted derivative was not found among these structures. It should be noted that the conformation of the benzo­thia­zine ring and redistribution of the electron density in the title compound is very similar to those found in the structures containing a methyl group or a hydrogen atom instead of the chlorine substituent [refcodes: KEGNAO (Nguyen & Retailleau, 2017[Nguyen, T. B. & Retailleau, P. (2017). Org. Lett. 19, 3879-3882.]), KESJEA (Ghandi et al., 2014a[Ghandi, M., Feizi, S., Ziaie, F. & Notash, B. (2014a). Tetrahedron, 70, 2563-2569.]), OWUQII (Azotla-Cruz et al., 2016[Azotla-Cruz, L., Shishkina, S., Ukrainets, I., Lijanova, I. & Likhanova, N. (2016). Acta Cryst. E72, 1574-1576.]), POJHUU, POJJAC, POJJEG, POJJIK, POJJOQ, POJJUW, POJKAD, POJKEH (Ukrainets et al., 2018[Ukrainets, I., Hamza, G., Burian, A., Voloshchuk, N., Malchenko, O., Shishkina, S., Grinevich, L., Grynenko, V. & Sim, G. (2018). Sci. Pharm. 86, 50-76.]), ROJNOV (Ghandi et al., 2014b[Ghandi, M., Feizi, S., Ziaie, F., Fazaeli, Y. & Notash, B. (2014b). Ann. Nucl. Med. 28, 880-890.]), VAZQEV, VAZQIZ (Azotla-Cruz et al., 2017[Azotla-Cruz, L., Lijanova, I. V., Ukrainets, I. V., Likhanova, N. V., Olivares-Xometl, O. & Bereznyakova, N. L. (2017). Sci. Pharm. 85, 2-15.]), ZIJQER (Shishkina et al., 2018[Shishkina, S., Ukrainets, I., Hamza, G. & Grinevich, L. (2018). Acta Cryst. E74, 1299-1301.])].

The bicyclic fragment containing 4H-pyrane, cycloxenenone as well as amino and cyano substituents is found in 102 hits extracted from the CSD. In all of these structures, the conformation of this fragment is similar.

6. Synthesis and crystallization

A mixture of 4-chloro-1-ethyl-1H-benzo[c][1,2]thia­zin-3-carbaldehyde 2,2-dioxide (1) (0.271 g, 0.01 mol), malono­nitrile (2) (0.066 g, 0.01 mol) and 5,5-di­methyl­cyclo­hexane-1,3-dione (3) (0.140 g, 0.01 mol) was dissolved in 20 ml of i-PrOH and then tri­ethyl­amine (0.1 mol%) was added (Fig. 1[link]). The mixture was refluxed for 4 h, then cooled to room temperature and left for an1 h. The resulting precipitate of compound 4 was filtered off, washed with i-PrOH, dried in air and recrystallized from i-PrOH. Yield 0.101 g (22%); colourless crystals; m.p. > 523 K.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The bond lengths in the two disordered fragments were modelled with fixed values (Csp3—Csp3 = 1.54 Å for the ethyl side chain C21—C22; Csp2—Csp2 = 1.38 Å for the phenyl ring C1–C6), and with an equal occupancy for the two sets of sites. All hydrogen atoms were located in difference-Fourier maps. They were included in calculated positions and treated as riding with C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl groups and with Car—H = 0.93 Å, Csp3—H = 0.97 Å, Uiso(H) = 1.2Ueq(C) for all other hydrogen atoms. The hydrogen atoms of the amino group were refined freely.

Table 2
Experimental details

Crystal data
Chemical formula C22H22ClN3O4S
Mr 459.93
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 8.6739 (5), 10.5490 (5), 12.4021 (8)
α, β, γ (°) 91.351 (4), 101.065 (5), 97.235 (4)
V3) 1103.51 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.30
Crystal size (mm) 0.20 × 0.20 × 0.15
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.495, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11902, 6933, 3942
Rint 0.057
(sin θ/λ)max−1) 0.754
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.232, 1.00
No. of reflections 6933
No. of parameters 337
No. of restraints 12
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.33, −0.72
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

2-Amino-4-(4-chloro-1-ethyl-2,2-dioxo-1H-benzo[c][1,2]thiazin-3-yl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-carbonitrile top
Crystal data top
C22H22ClN3O4SZ = 2
Mr = 459.93F(000) = 480
Triclinic, P1Dx = 1.384 Mg m3
a = 8.6739 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5490 (5) ÅCell parameters from 2322 reflections
c = 12.4021 (8) Åθ = 3.6–29.8°
α = 91.351 (4)°µ = 0.30 mm1
β = 101.065 (5)°T = 293 K
γ = 97.235 (4)°Block, colourless
V = 1103.51 (11) Å30.20 × 0.20 × 0.15 mm
Data collection top
Rigaku Oxford Diffraction Xcalibur, Sapphire3
diffractometer
6933 independent reflections
Radiation source: Enhance (Mo) X-ray Source3942 reflections with I > 2σ(I)
Detector resolution: 16.1827 pixels mm-1Rint = 0.057
ω scansθmax = 32.4°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
h = 1211
Tmin = 0.495, Tmax = 1.000k = 1515
11902 measured reflectionsl = 1818
Refinement top
Refinement on F212 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.073H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.232 w = 1/[σ2(Fo2) + (0.1119P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
6933 reflectionsΔρmax = 0.33 e Å3
337 parametersΔρmin = 0.72 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.03972 (9)0.51417 (8)0.26644 (8)0.0788 (3)
S10.20928 (7)0.15439 (6)0.25028 (5)0.04761 (19)
O10.0808 (2)0.07168 (18)0.27577 (16)0.0648 (5)
O20.3663 (2)0.12600 (17)0.29009 (15)0.0575 (5)
O30.58348 (18)0.26894 (16)0.50631 (14)0.0477 (4)
O40.0502 (2)0.31102 (17)0.50362 (17)0.0592 (5)
N10.1851 (3)0.1610 (2)0.11726 (17)0.0620 (6)
N20.7433 (3)0.3725 (2)0.4084 (2)0.0616 (6)
H2A0.821 (4)0.340 (3)0.456 (2)0.064 (8)*
H2B0.772 (4)0.429 (3)0.359 (3)0.065 (9)*
N30.5170 (3)0.5555 (2)0.2211 (2)0.0720 (7)
C10.0509 (4)0.2134 (3)0.0640 (2)0.0685 (8)
C2A0.0047 (19)0.1696 (12)0.0450 (6)0.075 (3)0.5
H2AA0.0462490.1103650.0767250.090*0.5
C3A0.1356 (18)0.2143 (15)0.1057 (12)0.081 (4)0.5
H3A0.1775910.1881000.1787320.097*0.5
C4A0.198 (2)0.302 (2)0.0480 (12)0.085 (3)0.5
H4A0.2914940.3284020.0849530.102*0.5
C5A0.1415 (12)0.3545 (14)0.0572 (9)0.079 (4)0.5
H5A0.1902990.4167140.0869400.095*0.5
C2B0.0394 (19)0.1748 (17)0.0399 (7)0.115 (7)0.5
H2BA0.0136390.1072130.0794320.139*0.5
C3B0.167 (2)0.236 (2)0.0844 (13)0.120 (8)0.5
H3B0.2193770.2063080.1546460.144*0.5
C4B0.227 (2)0.335 (2)0.0391 (14)0.122 (7)0.5
H4B0.3115130.3747970.0733590.146*0.5
C5B0.1391 (13)0.3653 (16)0.0656 (11)0.121 (7)0.5
H5B0.1710950.4287790.1062860.146*0.5
C60.0073 (3)0.3099 (3)0.1166 (3)0.0697 (9)
C70.0800 (3)0.3652 (3)0.2261 (2)0.0551 (6)
C80.1906 (2)0.3107 (2)0.29209 (19)0.0442 (5)
C90.3034 (3)0.3711 (2)0.39527 (19)0.0423 (5)
H90.2656130.4506310.4147920.051*
C100.3097 (2)0.28831 (19)0.49249 (18)0.0397 (4)
C110.1699 (2)0.2645 (2)0.54253 (19)0.0428 (5)
C120.1814 (3)0.1897 (2)0.6451 (2)0.0487 (5)
H12A0.0768920.1466730.6484310.058*
H12B0.2152220.2488900.7087280.058*
C130.2968 (3)0.0896 (2)0.65146 (19)0.0472 (5)
C140.4558 (3)0.1565 (2)0.6339 (2)0.0475 (5)
H14A0.5081140.2068290.7003120.057*
H14B0.5222240.0922380.6216790.057*
C150.4416 (2)0.2413 (2)0.53984 (18)0.0407 (4)
C160.5947 (3)0.3529 (2)0.4253 (2)0.0436 (5)
C170.4688 (3)0.4055 (2)0.37333 (19)0.0433 (5)
C180.4938 (3)0.4890 (2)0.2889 (2)0.0490 (5)
C190.2299 (4)0.0175 (2)0.5635 (2)0.0593 (7)
H19A0.2124430.0180810.4923530.089*
H19B0.1314090.0595620.5773960.089*
H19C0.3039810.0782200.5656070.089*
C200.3193 (4)0.0330 (3)0.7645 (2)0.0671 (7)
H20A0.3685840.0988190.8195910.101*
H20B0.3853520.0336480.7661540.101*
H20C0.2179600.0016960.7790890.101*
C210.3116 (5)0.1391 (4)0.0592 (3)0.1013 (13)
H21A0.2722940.0771990.0020260.122*0.5
H21B0.3981280.1077370.1084340.122*0.5
H21C0.2632190.0994820.0126810.122*0.5
H21D0.3729260.0781610.0991540.122*0.5
C22A0.367 (2)0.2700 (12)0.0182 (19)0.168 (9)0.5
H22A0.2761720.3066340.0187680.252*0.5
H22B0.4363550.2597430.0318760.252*0.5
H22C0.4217030.3256060.0796850.252*0.5
C22B0.426 (2)0.2569 (18)0.043 (2)0.197 (11)0.5
H22D0.3892620.3327250.0671560.295*0.5
H22E0.4318220.2612670.0332550.295*0.5
H22F0.5297820.2505600.0855620.295*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0616 (5)0.0790 (5)0.1052 (7)0.0370 (4)0.0187 (4)0.0310 (4)
S10.0426 (3)0.0562 (4)0.0414 (3)0.0044 (2)0.0036 (2)0.0003 (2)
O10.0626 (12)0.0652 (11)0.0621 (11)0.0073 (9)0.0108 (9)0.0075 (9)
O20.0534 (11)0.0619 (10)0.0564 (10)0.0198 (8)0.0023 (8)0.0081 (8)
O30.0299 (8)0.0596 (9)0.0571 (10)0.0133 (6)0.0115 (7)0.0114 (8)
O40.0368 (9)0.0688 (11)0.0778 (13)0.0201 (8)0.0158 (8)0.0165 (9)
N10.0603 (14)0.0807 (15)0.0413 (11)0.0041 (11)0.0047 (10)0.0001 (10)
N20.0351 (11)0.0729 (14)0.0812 (17)0.0109 (10)0.0177 (11)0.0219 (13)
N30.0721 (17)0.0741 (15)0.0679 (16)0.0045 (13)0.0106 (13)0.0187 (13)
C10.0552 (16)0.094 (2)0.0467 (14)0.0058 (15)0.0051 (12)0.0159 (14)
C2A0.071 (7)0.085 (6)0.065 (7)0.012 (5)0.001 (4)0.015 (5)
C3A0.074 (8)0.105 (7)0.052 (6)0.000 (5)0.009 (5)0.015 (4)
C4A0.047 (8)0.134 (10)0.076 (7)0.043 (6)0.006 (5)0.036 (7)
C5A0.059 (7)0.112 (8)0.079 (8)0.036 (6)0.026 (6)0.035 (6)
C2B0.081 (9)0.194 (14)0.040 (5)0.052 (8)0.023 (4)0.015 (6)
C3B0.058 (8)0.23 (2)0.054 (8)0.009 (9)0.018 (7)0.038 (11)
C4B0.041 (7)0.179 (19)0.126 (12)0.010 (8)0.037 (8)0.087 (10)
C5B0.048 (7)0.189 (15)0.097 (9)0.014 (7)0.050 (6)0.066 (9)
C60.0370 (13)0.102 (2)0.0637 (17)0.0021 (14)0.0051 (12)0.0342 (17)
C70.0351 (12)0.0692 (15)0.0622 (15)0.0106 (11)0.0081 (11)0.0204 (13)
C80.0310 (10)0.0559 (12)0.0456 (12)0.0085 (9)0.0051 (8)0.0101 (10)
C90.0327 (10)0.0438 (10)0.0507 (12)0.0099 (8)0.0058 (9)0.0021 (9)
C100.0324 (10)0.0442 (10)0.0425 (11)0.0077 (8)0.0062 (8)0.0016 (8)
C110.0323 (10)0.0439 (10)0.0524 (12)0.0088 (8)0.0076 (9)0.0047 (9)
C120.0405 (12)0.0576 (12)0.0516 (13)0.0104 (10)0.0157 (10)0.0011 (11)
C130.0430 (12)0.0556 (12)0.0462 (12)0.0131 (10)0.0117 (10)0.0061 (10)
C140.0392 (12)0.0566 (12)0.0482 (12)0.0140 (10)0.0066 (9)0.0068 (10)
C150.0308 (10)0.0479 (10)0.0446 (11)0.0079 (8)0.0087 (8)0.0006 (9)
C160.0357 (11)0.0460 (11)0.0502 (12)0.0052 (8)0.0113 (9)0.0013 (9)
C170.0369 (11)0.0451 (10)0.0477 (12)0.0084 (8)0.0061 (9)0.0024 (9)
C180.0401 (12)0.0519 (12)0.0527 (13)0.0040 (9)0.0045 (10)0.0040 (11)
C190.0695 (18)0.0482 (12)0.0622 (16)0.0073 (12)0.0181 (13)0.0027 (11)
C200.0603 (17)0.0899 (19)0.0576 (16)0.0202 (15)0.0191 (13)0.0192 (15)
C210.081 (3)0.166 (4)0.0550 (18)0.002 (2)0.0214 (17)0.022 (2)
C22A0.117 (15)0.214 (15)0.159 (14)0.104 (10)0.087 (13)0.092 (11)
C22B0.102 (13)0.29 (2)0.177 (18)0.112 (12)0.082 (12)0.066 (14)
Geometric parameters (Å, º) top
Cl1—C71.735 (3)C9—C101.502 (3)
S1—O11.4168 (19)C9—C171.512 (3)
S1—O21.4287 (18)C9—H90.9800
S1—N11.627 (2)C10—C151.341 (3)
S1—C81.753 (2)C10—C111.462 (3)
O3—C161.364 (3)C11—C121.506 (3)
O3—C151.373 (3)C12—C131.538 (3)
O4—C111.225 (3)C12—H12A0.9700
N1—C11.408 (4)C12—H12B0.9700
N1—C211.461 (5)C13—C201.525 (4)
N2—C161.337 (3)C13—C141.525 (3)
N2—H2A0.92 (3)C13—C191.528 (3)
N2—H2B0.91 (3)C14—C151.483 (3)
N3—C181.139 (3)C14—H14A0.9700
C1—C2A1.391 (5)C14—H14B0.9700
C1—C61.394 (5)C16—C171.347 (3)
C1—C2B1.395 (4)C17—C181.415 (3)
C2A—C3A1.380 (5)C19—H19A0.9600
C2A—H2AA0.9300C19—H19B0.9600
C3A—C4A1.378 (5)C19—H19C0.9600
C3A—H3A0.9300C20—H20A0.9600
C4A—C5A1.381 (5)C20—H20B0.9600
C4A—H4A0.9300C20—H20C0.9600
C5A—C61.394 (4)C21—C22B1.533 (5)
C5A—H5A0.9300C21—C22A1.534 (5)
C2B—C3B1.380 (5)C21—H21A0.9700
C2B—H2BA0.9300C21—H21B0.9700
C3B—C4B1.377 (5)C21—H21C0.9700
C3B—H3B0.9300C21—H21D0.9700
C4B—C5B1.380 (5)C22A—H22A0.9600
C4B—H4B0.9300C22A—H22B0.9600
C5B—C61.399 (5)C22A—H22C0.9600
C5B—H5B0.9300C22B—H22D0.9600
C6—C71.488 (4)C22B—H22E0.9600
C7—C81.334 (3)C22B—H22F0.9600
C8—C91.525 (3)
O1—S1—O2118.26 (12)C11—C12—C13113.76 (19)
O1—S1—N1108.63 (12)C11—C12—H12A108.8
O2—S1—N1107.59 (13)C13—C12—H12A108.8
O1—S1—C8107.85 (12)C11—C12—H12B108.8
O2—S1—C8110.65 (10)C13—C12—H12B108.8
N1—S1—C8102.75 (12)H12A—C12—H12B107.7
C16—O3—C15119.25 (17)C20—C13—C14109.1 (2)
C1—N1—C21120.9 (3)C20—C13—C19109.2 (2)
C1—N1—S1116.6 (2)C14—C13—C19111.0 (2)
C21—N1—S1121.3 (2)C20—C13—C12110.0 (2)
C16—N2—H2A118 (2)C14—C13—C12108.06 (19)
C16—N2—H2B121.8 (19)C19—C13—C12109.5 (2)
H2A—N2—H2B119 (3)C15—C14—C13113.40 (18)
C2A—C1—C6124.9 (6)C15—C14—H14A108.9
C6—C1—C2B113.5 (7)C13—C14—H14A108.9
C2A—C1—N1114.5 (6)C15—C14—H14B108.9
C6—C1—N1120.4 (2)C13—C14—H14B108.9
C2B—C1—N1126.1 (7)H14A—C14—H14B107.7
C3A—C2A—C1119.7 (12)C10—C15—O3122.8 (2)
C3A—C2A—H2AA120.1C10—C15—C14125.8 (2)
C1—C2A—H2AA120.1O3—C15—C14111.38 (18)
C4A—C3A—C2A113.6 (13)N2—C16—C17127.6 (2)
C4A—C3A—H3A123.2N2—C16—O3110.3 (2)
C2A—C3A—H3A123.2C17—C16—O3122.1 (2)
C3A—C4A—C5A128.8 (11)C16—C17—C18117.1 (2)
C3A—C4A—H4A115.6C16—C17—C9123.0 (2)
C5A—C4A—H4A115.6C18—C17—C9119.70 (19)
C4A—C5A—C6116.7 (8)N3—C18—C17178.6 (3)
C4A—C5A—H5A121.7C13—C19—H19A109.5
C6—C5A—H5A121.7C13—C19—H19B109.5
C3B—C2B—C1120.6 (12)H19A—C19—H19B109.5
C3B—C2B—H2BA119.7C13—C19—H19C109.5
C1—C2B—H2BA119.7H19A—C19—H19C109.5
C4B—C3B—C2B129.0 (14)H19B—C19—H19C109.5
C4B—C3B—H3B115.5C13—C20—H20A109.5
C2B—C3B—H3B115.5C13—C20—H20B109.5
C3B—C4B—C5B108.4 (13)H20A—C20—H20B109.5
C3B—C4B—H4B125.8C13—C20—H20C109.5
C5B—C4B—H4B125.8H20A—C20—H20C109.5
C4B—C5B—C6126.5 (11)H20B—C20—H20C109.5
C4B—C5B—H5B116.7N1—C21—C22B116.6 (12)
C6—C5B—H5B116.7N1—C21—C22A105.2 (9)
C1—C6—C5A115.9 (6)N1—C21—H21A110.7
C1—C6—C5B121.9 (7)C22A—C21—H21A110.7
C1—C6—C7119.9 (2)N1—C21—H21B110.7
C5A—C6—C7124.1 (6)C22A—C21—H21B110.7
C5B—C6—C7118.0 (6)H21A—C21—H21B108.8
C8—C7—C6124.5 (3)N1—C21—H21C108.1
C8—C7—Cl1118.5 (2)C22B—C21—H21C108.1
C6—C7—Cl1116.9 (2)N1—C21—H21D108.1
C7—C8—C9127.2 (2)C22B—C21—H21D108.1
C7—C8—S1114.9 (2)H21C—C21—H21D107.3
C9—C8—S1117.90 (15)C21—C22A—H22A109.5
C10—C9—C17109.45 (17)C21—C22A—H22B109.5
C10—C9—C8113.45 (17)H22A—C22A—H22B109.5
C17—C9—C8110.8 (2)C21—C22A—H22C109.5
C10—C9—H9107.6H22A—C22A—H22C109.5
C17—C9—H9107.6H22B—C22A—H22C109.5
C8—C9—H9107.6C21—C22B—H22D109.5
C15—C10—C11118.2 (2)C21—C22B—H22E109.5
C15—C10—C9122.7 (2)H22D—C22B—H22E109.5
C11—C10—C9118.99 (18)C21—C22B—H22F109.5
O4—C11—C10119.4 (2)H22D—C22B—H22F109.5
O4—C11—C12121.9 (2)H22E—C22B—H22F109.5
C10—C11—C12118.57 (19)
O1—S1—N1—C163.5 (2)O1—S1—C8—C9105.95 (19)
O2—S1—N1—C1167.3 (2)O2—S1—C8—C924.8 (2)
C8—S1—N1—C150.5 (2)N1—S1—C8—C9139.41 (19)
O1—S1—N1—C21128.9 (3)C7—C8—C9—C10131.5 (3)
O2—S1—N1—C210.3 (3)S1—C8—C9—C1050.9 (3)
C8—S1—N1—C21117.1 (3)C7—C8—C9—C17104.9 (3)
C21—N1—C1—C2A38.9 (9)S1—C8—C9—C1772.7 (2)
S1—N1—C1—C2A153.4 (8)C17—C9—C10—C158.0 (3)
C21—N1—C1—C6135.3 (3)C8—C9—C10—C15116.3 (2)
S1—N1—C1—C632.4 (4)C17—C9—C10—C11167.86 (18)
C21—N1—C1—C2B47.2 (11)C8—C9—C10—C1167.8 (3)
S1—N1—C1—C2B145.1 (11)C15—C10—C11—O4176.9 (2)
C6—C1—C2A—C3A6.0 (19)C9—C10—C11—O40.8 (3)
N1—C1—C2A—C3A179.9 (13)C15—C10—C11—C120.6 (3)
C1—C2A—C3A—C4A0 (3)C9—C10—C11—C12175.43 (18)
C2A—C3A—C4A—C5A5 (4)O4—C11—C12—C13152.7 (2)
C3A—C4A—C5A—C64 (4)C10—C11—C12—C1331.1 (3)
C6—C1—C2B—C3B4 (2)C11—C12—C13—C20171.6 (2)
N1—C1—C2B—C3B178.5 (15)C11—C12—C13—C1452.6 (3)
C1—C2B—C3B—C4B2 (4)C11—C12—C13—C1968.4 (3)
C2B—C3B—C4B—C5B2 (4)C20—C13—C14—C15165.8 (2)
C3B—C4B—C5B—C63 (4)C19—C13—C14—C1573.8 (3)
C2A—C1—C6—C5A7.0 (12)C12—C13—C14—C1546.2 (3)
N1—C1—C6—C5A179.4 (7)C11—C10—C15—O3173.24 (19)
C2B—C1—C6—C5B3.1 (14)C9—C10—C15—O32.7 (3)
N1—C1—C6—C5B179.2 (9)C11—C10—C15—C145.8 (3)
C2A—C1—C6—C7168.8 (9)C9—C10—C15—C14178.3 (2)
C2B—C1—C6—C7177.4 (10)C16—O3—C15—C103.6 (3)
N1—C1—C6—C74.8 (4)C16—O3—C15—C14175.57 (18)
C4A—C5A—C6—C12.2 (19)C13—C14—C15—C1019.0 (3)
C4A—C5A—C6—C7173.3 (14)C13—C14—C15—O3161.91 (19)
C4B—C5B—C6—C10 (3)C15—O3—C16—N2176.7 (2)
C4B—C5B—C6—C7174.1 (19)C15—O3—C16—C173.2 (3)
C1—C6—C7—C816.8 (4)N2—C16—C17—C181.6 (4)
C5A—C6—C7—C8167.8 (8)O3—C16—C17—C18178.6 (2)
C5B—C6—C7—C8168.6 (9)N2—C16—C17—C9176.8 (2)
C1—C6—C7—Cl1160.2 (2)O3—C16—C17—C93.4 (3)
C5A—C6—C7—Cl115.2 (8)C10—C9—C17—C168.4 (3)
C5B—C6—C7—Cl114.4 (9)C8—C9—C17—C16117.4 (2)
C6—C7—C8—C9168.9 (2)C10—C9—C17—C18176.56 (19)
Cl1—C7—C8—C98.1 (4)C8—C9—C17—C1857.6 (3)
C6—C7—C8—S18.7 (4)C1—N1—C21—C22B77.0 (11)
Cl1—C7—C8—S1174.30 (13)S1—N1—C21—C22B90.1 (11)
O1—S1—C8—C776.2 (2)C1—N1—C21—C22A56.8 (9)
O2—S1—C8—C7153.1 (2)S1—N1—C21—C22A110.3 (8)
N1—S1—C8—C738.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O4i0.92 (3)2.03 (3)2.857 (3)150 (3)
N2—H2B···Cl1i0.91 (3)2.84 (3)3.583 (3)140 (2)
C4B—H4B···N3ii0.932.493.381 (18)160
C19—H19C···O3iii0.962.563.452 (3)155
C20—H20C···O1iv0.962.563.443 (4)153
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y, z+1; (iv) x, y, z+1.
 

References

First citationAzotla-Cruz, L., Lijanova, I. V., Ukrainets, I. V., Likhanova, N. V., Olivares-Xometl, O. & Bereznyakova, N. L. (2017). Sci. Pharm. 85, 2–15.  Google Scholar
First citationAzotla-Cruz, L., Shishkina, S., Ukrainets, I., Lijanova, I. & Likhanova, N. (2016). Acta Cryst. E72, 1574–1576.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCatsoulacos, P. & Camoutsis, C. (1979). J. Heterocycl. Chem. 16, 1503–1524.  CrossRef CAS Google Scholar
First citationCecchetti, V., Fravolini, A. & Schiaffella, F. (1982). J. Heterocycl. Chem. 19, 1045–1050.  CrossRef CAS Google Scholar
First citationGhandi, M., Feizi, S., Ziaie, F., Fazaeli, Y. & Notash, B. (2014b). Ann. Nucl. Med. 28, 880–890.  CrossRef CAS PubMed Google Scholar
First citationGhandi, M., Feizi, S., Ziaie, F. & Notash, B. (2014a). Tetrahedron, 70, 2563–2569.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIwatani, M., Iwata, H., Okabe, A., Skene, R. J., Tomita, N., Hayashi, Y., Aramaki, Y., Hosfield, D. J., Hori, A., Baba, A. & Miki, H. (2013). Eur. J. Med. Chem. 61, 49–60.  CrossRef CAS PubMed Google Scholar
First citationLega, D. A., Chernykh, V. P., Zaprutko, L., Gzella, A. K. & Shemchuk, L. A. (2017). Chem. Heterocycl. Compd, 53, 219–229.  CrossRef CAS Google Scholar
First citationLega, D. A., Filimonova, N. I., Zupanets, I. A., Shebeko, S. K., Chernykh, V. P. & Shemchuk, L. A. (2016a). J. Org. Pharm. Chem. 14, 3–11.  CrossRef CAS Google Scholar
First citationLega, D. A., Gorobets, N. Y., Chernykh, V. P., Shishkina, S. V. & Shemchuk, L. A. (2016b). RSC Adv. 6, 16087–16099.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNguyen, T. B. & Retailleau, P. (2017). Org. Lett. 19, 3879–3882.  CrossRef CAS PubMed Google Scholar
First citationOrpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1994). In Structure Correlation, vol. 2, edited by H.-B. Burgi & J. D. Dunitz, pp. 767–784. Weinheim: VCH.  Google Scholar
First citationPopov, K., Volovenko, T., Turov, A. & Volovenko, Y. (2010). J. Heterocycl. Chem. 47, 85–90.  CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShemchuk, L. A., Lega, D. A., Redkin, R. G., Chernykh, V. P., Shishkin, O. V. & Shishkina, S. V. (2014). Tetrahedron, 70, 8348–8353.  CrossRef CAS Google Scholar
First citationShishkina, S., Ukrainets, I., Hamza, G. & Grinevich, L. (2018). Acta Cryst. E74, 1299–1301.  CrossRef IUCr Journals Google Scholar
First citationTomita, N., Hayashi, Y., Suzuki, S., Oomori, Y., Aramaki, Y., Matsushita, Y., Iwatani, M., Iwata, H., Okabe, A., Awazu, Y., Isono, O., Skene, R. J., Hosfield, D. J., Miki, H., Kawamoto, T., Hori, A. & Baba, A. (2013). Bioorg. Med. Chem. Lett. 23, 1779–1785.  CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net  Google Scholar
First citationUkrainets, I., Hamza, G., Burian, A., Voloshchuk, N., Malchenko, O., Shishkina, S., Grinevich, L., Grynenko, V. & Sim, G. (2018). Sci. Pharm. 86, 50–76.  CrossRef Google Scholar
First citationUkrainets, I. V., Petrushova, L. A., Dzyubenko, S. P. & Sim, G. (2014). Chem. Heterocycl. Compd, 50, 103–110.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZefirov, N. S., Palyulin, V. A. & Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147–158.  CrossRef CAS Web of Science Google Scholar
First citationZefirov, Yu. V. (1997). Kristallografiya, 42, 936–958.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds