research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of cis-(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N)bis­­(thio­cyanato-κN)chromium(III) bromide from synchrotron X-ray diffraction data

CROSSMARK_Color_square_no_text.svg

aBeamline Department, Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 25 January 2021; accepted 28 January 2021; online 2 February 2021)

The crystal structure of the title complex, cis-[Cr(NCS)2(cyclam)]Br (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­decane, C10H24N4), has been determined from synchrotron X-ray data. The asymmetric unit contains one [Cr(NCS)2(cyclam)]+ cation and one bromide anion. The CrIII ion of the complex cation is coordinated by the four N atoms of the cyclam ligand and by two N-coordinating NCS groups in a cis arrangement, displaying a distorted octa­hedral coordination sphere. The Cr—N(cyclam) bond lengths are in the range 2.075 (3) to 2.081 (3) Å while the average Cr—N(NCS) bond length is 1.996 (16) Å. The macrocyclic cyclam moiety adopts the most stable cis-V conformation. The crystal structure is stabilized by inter­molecular hydrogen bonds involving the cyclam N—H groups as donor groups, and the bromide anion and the S atom of one of the NCS ligands as acceptor groups.

1. Chemical context

Compounds containing cyclam (1,4,8,11-tetra­aza­cyclo­tetra­decane, C10H24N4) or its derivatives have a potential inhibitory effect on the replication of the human immunodeficiency virus (HIV) and have the ability to mobilize hematopoietic progenitor stem cells from the bone marrow into the blood (Ronconi & Sadler, 2007[Ronconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633-1648.]; De Clercq, 2010[De Clercq, E. (2010). J. Med. Chem. 53, 1438-1450.]; Ross et al., 2012[Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408-6418.]). In order to develop new anti-HIV drugs using transition-metal complexes with the cyclam ligand, at first it is necessary to obtain accurate information about their conformations and crystal packing forces (De Clercq, 2010[De Clercq, E. (2010). J. Med. Chem. 53, 1438-1450.]). Cyclam has a moderately flexible structure, and can adopt both planar (trans) and folded (cis) conformations in [CrL2(cyclam)]n+ (L = monodentate or bidentate/2) complexes (Poon & Pun, 1980[Poon, C. K. & Pun, K. C. (1980). Inorg. Chem. 19, 568-569.]). There are five conformational trans isomers for the macrocycle, which differ in the chirality of the sec-NH groups (Choi, 2009[Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231-4236.]; Jeon et al., 2020[Jeon, J., Moncol, J., Mazúr, M., Valko, M., Ryoo, K. S. & Choi, J.-H. (2020). J. Mol. Struct. 1202, 127224.]). The trans-I, trans-II and trans-V conformations also can fold to form cis-I, cis-II and cis-V conformers, respectively (Subhan et al., 2011[Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.]; Jeon et al., 2020[Jeon, J., Moncol, J., Mazúr, M., Valko, M., Ryoo, K. S. & Choi, J.-H. (2020). J. Mol. Struct. 1202, 127224.]). Knowledge of the conformation for the macrocyclic ligand including various counter-anions are important factors in developing new highly effective anti-HIV drugs (Ronconi & Sadler, 2007[Ronconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633-1648.]; De Clercq, 2010[De Clercq, E. (2010). J. Med. Chem. 53, 1438-1450.]; Ross et al., 2012[Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408-6418.]). Furthermore, the NCS group is inter­esting either as a co-ligand or a counter-anion in transition-metal complexes. As an ambidentate ligand, the NCS group can coordinate either through the N or S atom, and can adopt various bridging modes (Moon & Choi, 2021[Moon, D. & Choi, J.-H. (2021). J. Coord. Chem. 74. In the press. https://doi. org/10.1080/00958972.2020.1863381.]).

[Scheme 1]

As an extension of our investigations on the coordination chemistry and conformations of CrIII complexes containing the cyclam ligand, one auxiliary bidentate or two monodentate ligands and various anions (Choi et al., 2004a[Choi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004a). Acta Cryst. C60, m238-m240.],b[Choi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39-44.]; Choi & Lee, 2009[Choi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84-89.]; Subhan et al., 2011[Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.]; Moon et al., 2013[Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376-m377.], 2017[Moon, D., Takase, M., Akitsu, T. & Choi, J.-H. (2017). Acta Cryst. E73, 72-75.]; Moon & Choi, 2021[Moon, D. & Choi, J.-H. (2021). J. Coord. Chem. 74. In the press. https://doi. org/10.1080/00958972.2020.1863381.]), we describe here the synthesis of a new salt complex, [Cr(NCS)2(cyclam)]Br, (I)[link] and its structural characterization by synchrotron single-crystal X-ray diffraction.

2. Structural commentary

The mol­ecular structure of (I)[link] with the atomic labelling is shown in Fig. 1[link]. The crystal structure shows another example of a [Cr(NCS)2(cyclam)]+ cation but with a different counter-anion than previously reported (Friesen et al., 1997[Friesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687-691.]; Moon et al., 2013[Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376-m377.], 2017[Moon, D., Takase, M., Akitsu, T. & Choi, J.-H. (2017). Acta Cryst. E73, 72-75.]; Moon & Choi, 2021[Moon, D. & Choi, J.-H. (2021). J. Coord. Chem. 74. In the press. https://doi. org/10.1080/00958972.2020.1863381.]). In general, counter-anionic species play a very important role in coordination chemistry (Martínez-Máñez & Sancenón, 2003[Martínez-Máñez, R. & Sancenón, F. (2003). Chem. Rev. 103, 4419-4476.]; Fabbrizzi & Poggi, 2013[Fabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681-1699.]). The asymmetric unit of (I)[link] comprises one CrIII complex cation, and one Br anion. In the complex cation, the CrIII ion is coordinated by the nitro­gen atoms of the cyclam ligand that adopts the cis-V (antianti) conformation (Subhan et al., 2011[Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.]). Two nitro­gen atoms of the NCS groups further coordinate to the central chromium cation in a cis arrangement. The Cr—N bond lengths from the donor atoms of the cyclam ligands are in the range 2.075 (3) to 2.081 (3) Å, in good agreement with those determined in cis-[Cr(NCS)2(cyclam)]SCN [2.0851 (14)–2.0897 (14) Å] (Moon et al., 2013[Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376-m377.]), cis-[Cr(N3)2(cyclam)]ClO4 [2.069 (3)–2.103 (3) Å] (Meyer et al., 1998[Meyer, K., Bendix, J., Bill, E., Weyhermüller, T. & Wieghardt, K. (1998). Inorg. Chem. 37, 5180-5188.]), cis-[Cr(ONO)2(cyclam)]NO2 [2.0874 (16)–2.0916 (15) Å] (Choi et al., 2004a[Choi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004a). Acta Cryst. C60, m238-m240.]) and cis-[Cr(acac)(cyclam)](ClO4)2·0.5H2O [2.070 (5)–2.089 (5) Å] (acac = acetyl­aceto­n­ate; Subhan et al., 2011[Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.]). However, the Cr—N bond lengths of the cyclam ligand in the cis conformation are slightly longer than those found in trans-[Cr(NCS)2(cyclam)]ClO4 [2.046 (2)–2.060 (2) Å] (Friesen et al., 1997[Friesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687-691.]), trans-[Cr(ONO)2(cyclam)]BF4 [2.064 (4)–2.073 (4) Å] (De Leo et al., 2000[De Leo, M. A., Bu, X., Bentow, J. & Ford, P. C. (2000). Inorg. Chim. Acta, 300-302, 944-950.]), trans-[Cr(NH3)2(cyclam)][ZnCl4]Cl·H2O [2.0501 (15)–2.0615 (15) Å] (Moon & Choi, 2016[Moon, D. & Choi, J.-H. (2016). Acta Cryst. E72, 456-459.]) and trans-[Cr(nic-O)2(cyclam)]ClO4 [2.058 (4)–2.064 (4) Å] (nic-O = O-coordin­ating nicotinate; Choi, 2009[Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231-4236.]). The two Cr—N(NCS) bond lengths in compound (I)[link] average 1.996 (16)Å and are similar to those found in other complexes with this coligand, viz. cis-[Cr(NCS)2(cyclam)]NCS [1.9846 (13)–2.0071 (13) Å] (Moon et al., 2013[Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376-m377.]), cis-[Cr(NCS)2(cyclam)]ClO4 [1.981 (4)–1.998 (4) Å] (Friesen et al., 1997[Friesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687-691.]), cis-[Cr(NCS)2(cyclam)]2[Cr2O7]·H2O [1.980 (2)–1.989 (2) Å] (Moon et al., 2017[Moon, D., Takase, M., Akitsu, T. & Choi, J.-H. (2017). Acta Cryst. E73, 72-75.]), trans-[Cr(NCS)2(cyclam)]2[ZnCl4] [1.995 (6) Å] (Moon et al., 2015[Moon, D., Ryoo, K. S. & Choi, J.-H. (2015). Acta Cryst. E71, 540-543.]), and trans-[Cr(NCS)2(Me2tn)2]SCN·0.5H2O [1.983 (2)–1.990 (2) Å] (Choi & Lee, 2009[Choi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84-89.]). The five-membered and six-membered chelate rings of the cyclam ligand adopt the gauche and stable chair conformation, respectively. The fold angle of 95.39 (11)° in the cyclam ligand is similar to those of 98.55 (2), 97.17 (5), 97.03 (2), 95.09 (9), 94.51 (2) and 92.8 (2)° in cis-[Cr(ox)(cyclam)]ClO4, cis-[Cr(NCS)2(cyclam)]SCN, cis-[Cr(acac)(cyclam)](ClO4)2·0.5H2O, cis-[Cr(ONO)2(cyclam)]NO2, cis-[Cr(N3)2(cyclam)]ClO4 and cis-[Cr(cyclam)Cl2]Cl, respectively (Choi et al., 2004b[Choi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39-44.]; Moon et al., 2013[Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376-m377.]; Subhan et al., 2011[Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.]; Choi et al., 2004a[Choi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004a). Acta Cryst. C60, m238-m240.]; Meyer et al., 1998[Meyer, K., Bendix, J., Bill, E., Weyhermüller, T. & Wieghardt, K. (1998). Inorg. Chem. 37, 5180-5188.]; Forsellini et al., 1986[Forsellini, E., Parasassi, T., Bombieri, G., Tobe, M. L. & Sosa, M. E. (1986). Acta Cryst. C42, 563-565.]). The two N-coordinating thio­cyanate ligands are almost linear with N≡C—S angles of 178.8 (3) and 178.9 (3)°. The Cr1—N5—C11 angle of 161.6 (3)° is slightly smaller than that for Cr1—N6—C12 [169.9 (3)°], which may be attributed to the involvement of the S1 atom in a hydrogen-bonding inter­action.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], drawn with displacement ellipsoids at the 30% probability level. Only H atoms of amine groups are shown for clarity.

3. Supra­molecular features

The Br counter-anion remains outside the coordination sphere of the CrIII ion. In the crystal, N—H⋯Br and N—H⋯S hydrogen-bonding inter­actions occur between the N—H groups of cyclam, the Br anion and the S atom of one of the NCS ligands (Table 1[link], Fig. 2[link]), leading to a three-dimensional network structure. The bromide anion is linked to the [Cr(NCS)2(cyclam)]+ cation via three N—H⋯Br hydrogen bonds. In addition, two [Cr(NCS)2(cyclam)]+ cations are inter­connected to each other via an N4—H4⋯S1ii [symmetry code: (ii) −x + 1, y + [{1\over 2}], −z + [{3\over 2}]] hydrogen bond.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br1 1.00 2.33 3.327 (3) 177
N2—H2⋯Br1i 1.00 2.45 3.352 (3) 150
N3—H3⋯Br1 1.00 2.43 3.389 (3) 161
N4—H4⋯S1ii 1.00 2.47 3.410 (3) 156
Symmetry codes: (i) [x, y-1, z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
The crystal packing in (I)[link], viewed perpendicular to the bc plane. Dashed lines represent N—H⋯Br hydrogen-bonding inter­actions. For clarity, N—H⋯S hydrogen-bonding inter­actions and H atoms bonded to C atoms have been omitted.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 77 hits for a cis-[CrL2(C10H24N4)]+ unit. It is found that cis-[Cr(NCS)2(C10H24N4)]ClO4 (Friesen et al., 1997[Friesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687-691.]), cis-[Cr(NCS)2(C10H24N4)]NCS (Moon et al., 2013[Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376-m377.]), cis-[Cr(C2O4)(C10H24N4)]ClO4 (Choi et al., 2004b[Choi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39-44.]), cis-[Cr(CH3COCHCOCH3)(C10H24N4)](ClO4)2·0.5H2O (Subhan et al., 2011[Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.]), cis-[Cr(NCS)2(C10H24N4)]2[Cr2O7]·H2O (Moon et al., 2017[Moon, D., Takase, M., Akitsu, T. & Choi, J.-H. (2017). Acta Cryst. E73, 72-75.]) and cis-[Cr(NCS)(C10H24N4)(μ-NCS)ZnCl3] (Moon & Choi, 2021[Moon, D. & Choi, J.-H. (2021). J. Coord. Chem. 74. In the press. https://doi. org/10.1080/00958972.2020.1863381.]) adopt the cis-V conformation.

5. Synthesis and crystallization

The commercially available free ligand cyclam (98%), chromium(III) chloride hexa­hydrate (98%) and sodium bromide (99%) were obtained from Sigma-Aldrich and used as provided. All other chemicals were purchased from commercial sources and used without further purification. The starting material, cis-[Cr(NCS)2(cyclam)]SCN, was prepared as previously described (Ferguson & Tobe, 1970[Ferguson, J. & Tobe, M. L. (1970). Inorg. Chim. Acta, 4, 109-112.]). For crystallization of (I)[link], cis-[Cr(NCS)2(cyclam)]SCN (0.006 g) was dissolved in 5 mL of tetra­hydro­furan at 343 K and the solution filtrated. The filtrate was added to 2 mL of water containing 0.13 g of solid NaBr. The resulting solution was evaporated slowly at room temperature until the formation of crystals suitable for X-ray structural analysis. The obtained needle-like orange crystals of (I)[link] were washed with small amounts of 2-propanol and dried in air before collecting the synchrotron data.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.99 Å and N—H = 1.00 Å, and with Uiso(H) values of 1.2Ueq of the parent atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Cr(NCS)2(C10H24N4)]Br
Mr 448.40
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 10.880 (2), 7.7310 (15), 22.161 (4)
β (°) 91.65 (3)
V3) 1863.3 (6)
Z 4
Radiation type Synchrotron, λ = 0.610 Å
μ (mm−1) 1.98
Crystal size (mm) 0.03 × 0.01 × 0.01
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.])
Tmin, Tmax 0.904, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 18069, 5185, 2901
Rint 0.092
(sin θ/λ)max−1) 0.693
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.100, 0.87
No. of reflections 5185
No. of parameters 200
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.85, −0.79
Computer programs: PAL BL2D-SMDC (Shin et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL3000sm (Otwinowski et al., 2003[Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND 4 (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski et al., 2003); data reduction: HKL3000sm (Otwinowski et al., 2003); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND 4 (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

cis-(1,4,8,11-Tetraazacyclotetradecane-κ4N)bis(thiocyanato-\ κN)chromium(III) bromide top
Crystal data top
[Cr(NCS)2(C10H24N4)]BrF(000) = 916
Mr = 448.40Dx = 1.598 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.610 Å
a = 10.880 (2) ÅCell parameters from 49610 reflections
b = 7.7310 (15) Åθ = 0.4–33.7°
c = 22.161 (4) ŵ = 1.98 mm1
β = 91.65 (3)°T = 173 K
V = 1863.3 (6) Å3Needle, orange
Z = 40.03 × 0.01 × 0.01 mm
Data collection top
ADSC Q210 CCD area detector
diffractometer
2901 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.092
ω scanθmax = 25.0°, θmin = 2.3°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm Scalepack; Otwinowski et al., 2003)
h = 1515
Tmin = 0.904, Tmax = 1.000k = 1010
18069 measured reflectionsl = 3030
5185 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0455P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.100(Δ/σ)max = 0.001
S = 0.87Δρmax = 0.85 e Å3
5185 reflectionsΔρmin = 0.79 e Å3
200 parametersExtinction correction: SHELXL2016/6 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0180 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr10.27993 (5)0.35081 (6)0.63702 (2)0.02286 (14)
S10.31333 (9)0.00278 (12)0.81190 (4)0.0375 (2)
S20.64505 (11)0.06790 (15)0.58036 (5)0.0566 (3)
N10.1153 (3)0.4392 (3)0.67081 (12)0.0279 (6)
H10.0975820.5538410.6515850.033*
N20.1644 (3)0.2145 (3)0.57803 (12)0.0282 (6)
H20.1630300.0933990.5938090.034*
N30.2950 (3)0.5456 (3)0.57286 (12)0.0319 (7)
H30.2166880.6134690.5724160.038*
N40.3741 (3)0.5269 (3)0.69205 (12)0.0312 (6)
H40.4608520.4843320.6947350.037*
N50.2805 (3)0.1671 (3)0.70104 (13)0.0351 (7)
N60.4346 (3)0.2501 (4)0.60735 (12)0.0332 (7)
C10.0176 (3)0.3171 (4)0.64907 (15)0.0333 (8)
H1A0.0645800.3691510.6543330.040*
H1AB0.0221530.2083180.6726050.040*
C20.0369 (3)0.2801 (4)0.58327 (16)0.0317 (8)
H2A0.0229240.1925190.5682610.038*
H2AB0.0253770.3869570.5591140.038*
C30.2012 (4)0.2002 (4)0.51429 (15)0.0379 (9)
H3A0.1386890.1315850.4914710.045*
H3AB0.2802930.1370560.5129050.045*
C40.2153 (4)0.3746 (5)0.48384 (15)0.0413 (9)
H4A0.1363010.4375170.4861270.050*
H4AB0.2309610.3548000.4406020.050*
C50.3170 (4)0.4903 (5)0.50993 (15)0.0405 (9)
H5A0.3961270.4271290.5090240.049*
H5AB0.3241990.5941650.4841610.049*
C60.3960 (4)0.6632 (4)0.59462 (17)0.0393 (9)
H6A0.3927360.7732100.5717750.047*
H6AB0.4768360.6083050.5883560.047*
C70.3797 (4)0.6977 (4)0.66092 (17)0.0402 (9)
H7A0.4495800.7665560.6774800.048*
H7AB0.3028570.7633650.6669440.048*
C80.3351 (4)0.5454 (5)0.75602 (15)0.0391 (9)
H8A0.3863610.6352990.7761920.047*
H8AB0.3505320.4348060.7774540.047*
C90.2007 (4)0.5935 (5)0.76167 (16)0.0414 (9)
H9A0.1846890.6127760.8048990.050*
H9AB0.1862650.7046380.7404530.050*
C100.1081 (3)0.4631 (5)0.73720 (15)0.0371 (9)
H10A0.1226230.3505140.7574660.044*
H10B0.0242730.5021780.7468550.044*
C110.2947 (3)0.0968 (4)0.74715 (15)0.0291 (8)
C120.5225 (3)0.1731 (4)0.59660 (14)0.0322 (8)
Br10.05786 (4)0.81437 (4)0.60207 (2)0.04372 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0254 (3)0.0205 (3)0.0227 (3)0.0034 (2)0.0017 (2)0.0016 (2)
S10.0398 (6)0.0410 (5)0.0315 (5)0.0035 (4)0.0011 (4)0.0085 (4)
S20.0529 (7)0.0679 (7)0.0496 (6)0.0331 (6)0.0104 (5)0.0055 (6)
N10.0307 (16)0.0231 (13)0.0300 (15)0.0028 (12)0.0052 (12)0.0012 (12)
N20.0310 (16)0.0214 (13)0.0321 (15)0.0021 (11)0.0007 (12)0.0011 (12)
N30.0316 (17)0.0328 (15)0.0315 (15)0.0027 (12)0.0045 (13)0.0049 (13)
N40.0310 (17)0.0294 (14)0.0329 (15)0.0048 (12)0.0017 (12)0.0063 (13)
N50.0406 (18)0.0292 (15)0.0355 (16)0.0079 (13)0.0023 (13)0.0050 (14)
N60.0339 (18)0.0359 (15)0.0298 (16)0.0057 (14)0.0038 (13)0.0070 (13)
C10.0265 (19)0.0294 (17)0.044 (2)0.0025 (15)0.0071 (15)0.0013 (16)
C20.0279 (19)0.0262 (17)0.041 (2)0.0006 (14)0.0041 (15)0.0010 (15)
C30.043 (2)0.0379 (19)0.0327 (19)0.0042 (17)0.0026 (16)0.0077 (17)
C40.051 (3)0.048 (2)0.0249 (18)0.0020 (19)0.0015 (17)0.0036 (17)
C50.046 (2)0.046 (2)0.0294 (19)0.0014 (19)0.0067 (17)0.0103 (17)
C60.036 (2)0.0305 (18)0.052 (2)0.0091 (16)0.0008 (17)0.0050 (17)
C70.035 (2)0.0299 (18)0.056 (2)0.0026 (16)0.0036 (17)0.0073 (18)
C80.042 (2)0.041 (2)0.034 (2)0.0043 (17)0.0012 (17)0.0133 (17)
C90.044 (2)0.044 (2)0.036 (2)0.0107 (18)0.0011 (17)0.0163 (18)
C100.033 (2)0.045 (2)0.0335 (19)0.0047 (17)0.0093 (15)0.0053 (17)
C110.031 (2)0.0224 (16)0.0340 (19)0.0013 (14)0.0028 (15)0.0008 (15)
C120.041 (2)0.0298 (17)0.0259 (17)0.0044 (16)0.0040 (15)0.0017 (15)
Br10.0452 (2)0.02097 (17)0.0642 (3)0.00171 (15)0.01224 (18)0.00375 (17)
Geometric parameters (Å, º) top
Cr1—N61.984 (3)C1—H1AB0.9900
Cr1—N52.007 (3)C2—H2A0.9900
Cr1—N22.075 (3)C2—H2AB0.9900
Cr1—N12.076 (3)C3—C41.518 (5)
Cr1—N42.078 (3)C3—H3A0.9900
Cr1—N32.081 (3)C3—H3AB0.9900
S1—C111.616 (3)C4—C51.524 (5)
S2—C121.611 (4)C4—H4A0.9900
N1—C101.487 (4)C4—H4AB0.9900
N1—C11.492 (4)C5—H5A0.9900
N1—H11.0000C5—H5AB0.9900
N2—C31.484 (4)C6—C71.509 (5)
N2—C21.485 (4)C6—H6A0.9900
N2—H21.0000C6—H6AB0.9900
N3—C51.485 (4)C7—H7A0.9900
N3—C61.495 (4)C7—H7AB0.9900
N3—H31.0000C8—C91.517 (5)
N4—C71.492 (4)C8—H8A0.9900
N4—C81.498 (4)C8—H8AB0.9900
N4—H41.0000C9—C101.514 (5)
N5—C111.164 (4)C9—H9A0.9900
N6—C121.157 (4)C9—H9AB0.9900
C1—C21.507 (5)C10—H10A0.9900
C1—H1A0.9900C10—H10B0.9900
N6—Cr1—N588.35 (12)H2A—C2—H2AB108.5
N6—Cr1—N295.53 (11)N2—C3—C4113.0 (3)
N5—Cr1—N294.33 (11)N2—C3—H3A109.0
N6—Cr1—N1175.90 (11)C4—C3—H3A109.0
N5—Cr1—N187.88 (11)N2—C3—H3AB109.0
N2—Cr1—N183.16 (11)C4—C3—H3AB109.0
N6—Cr1—N492.48 (12)H3A—C3—H3AB107.8
N5—Cr1—N493.29 (12)C3—C4—C5115.7 (3)
N2—Cr1—N4169.10 (11)C3—C4—H4A108.4
N1—Cr1—N489.34 (11)C5—C4—H4A108.4
N6—Cr1—N388.49 (12)C3—C4—H4AB108.4
N5—Cr1—N3175.08 (12)C5—C4—H4AB108.4
N2—Cr1—N389.72 (11)H4A—C4—H4AB107.4
N1—Cr1—N395.39 (11)N3—C5—C4113.0 (3)
N4—Cr1—N383.08 (11)N3—C5—H5A109.0
C10—N1—C1109.9 (3)C4—C5—H5A109.0
C10—N1—Cr1117.9 (2)N3—C5—H5AB109.0
C1—N1—Cr1106.85 (19)C4—C5—H5AB109.0
C10—N1—H1107.2H5A—C5—H5AB107.8
C1—N1—H1107.2N3—C6—C7108.4 (3)
Cr1—N1—H1107.2N3—C6—H6A110.0
C3—N2—C2112.3 (3)C7—C6—H6A110.0
C3—N2—Cr1117.5 (2)N3—C6—H6AB110.0
C2—N2—Cr1109.14 (19)C7—C6—H6AB110.0
C3—N2—H2105.6H6A—C6—H6AB108.4
C2—N2—H2105.6N4—C7—C6107.5 (3)
Cr1—N2—H2105.6N4—C7—H7A110.2
C5—N3—C6109.9 (3)C6—C7—H7A110.2
C5—N3—Cr1116.8 (2)N4—C7—H7AB110.2
C6—N3—Cr1106.9 (2)C6—C7—H7AB110.2
C5—N3—H3107.6H7A—C7—H7AB108.5
C6—N3—H3107.6N4—C8—C9113.7 (3)
Cr1—N3—H3107.6N4—C8—H8A108.8
C7—N4—C8111.7 (3)C9—C8—H8A108.8
C7—N4—Cr1109.5 (2)N4—C8—H8AB108.8
C8—N4—Cr1118.0 (2)C9—C8—H8AB108.8
C7—N4—H4105.5H8A—C8—H8AB107.7
C8—N4—H4105.5C10—C9—C8116.1 (3)
Cr1—N4—H4105.5C10—C9—H9A108.3
C11—N5—Cr1161.6 (3)C8—C9—H9A108.3
C12—N6—Cr1169.9 (3)C10—C9—H9AB108.3
N1—C1—C2108.3 (3)C8—C9—H9AB108.3
N1—C1—H1A110.0H9A—C9—H9AB107.4
C2—C1—H1A110.0N1—C10—C9112.5 (3)
N1—C1—H1AB110.0N1—C10—H10A109.1
C2—C1—H1AB110.0C9—C10—H10A109.1
H1A—C1—H1AB108.4N1—C10—H10B109.1
N2—C2—C1107.3 (3)C9—C10—H10B109.1
N2—C2—H2A110.3H10A—C10—H10B107.8
C1—C2—H2A110.3N5—C11—S1178.8 (3)
N2—C2—H2AB110.3N6—C12—S2178.9 (3)
C1—C2—H2AB110.3
C10—N1—C1—C2173.5 (3)C5—N3—C6—C7172.6 (3)
Cr1—N1—C1—C244.5 (3)Cr1—N3—C6—C744.9 (3)
C3—N2—C2—C1170.8 (3)C8—N4—C7—C6169.6 (3)
Cr1—N2—C2—C138.6 (3)Cr1—N4—C7—C636.9 (3)
N1—C1—C2—N255.7 (3)N3—C6—C7—N454.7 (4)
C2—N2—C3—C468.6 (4)C7—N4—C8—C971.2 (4)
Cr1—N2—C3—C459.2 (4)Cr1—N4—C8—C957.1 (4)
N2—C3—C4—C564.2 (4)N4—C8—C9—C1062.9 (4)
C6—N3—C5—C4178.1 (3)C1—N1—C10—C9176.9 (3)
Cr1—N3—C5—C459.9 (4)Cr1—N1—C10—C960.4 (3)
C3—C4—C5—N364.9 (4)C8—C9—C10—N164.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br11.002.333.327 (3)177
N2—H2···Br1i1.002.453.352 (3)150
N3—H3···Br11.002.433.389 (3)161
N4—H4···S1ii1.002.473.410 (3)156
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The X-ray crystallography experiment at the PLS-II BL2D-SMC beamline was supported in part by MSIT and POSTECH.

Funding information

This work was supported by a grant from the 2020 Research Fund of Andong National University.

References

First citationChoi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231–4236.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84–89.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004a). Acta Cryst. C60, m238–m240.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChoi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39–44.  Web of Science CSD CrossRef CAS Google Scholar
First citationDe Clercq, E. (2010). J. Med. Chem. 53, 1438–1450.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDe Leo, M. A., Bu, X., Bentow, J. & Ford, P. C. (2000). Inorg. Chim. Acta, 300–302, 944–950.  Web of Science CSD CrossRef CAS Google Scholar
First citationFabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681–1699.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFerguson, J. & Tobe, M. L. (1970). Inorg. Chim. Acta, 4, 109–112.  CrossRef CAS Google Scholar
First citationForsellini, E., Parasassi, T., Bombieri, G., Tobe, M. L. & Sosa, M. E. (1986). Acta Cryst. C42, 563–565.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFriesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687–691.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJeon, J., Moncol, J., Mazúr, M., Valko, M., Ryoo, K. S. & Choi, J.-H. (2020). J. Mol. Struct. 1202, 127224.  Web of Science CSD CrossRef Google Scholar
First citationMartínez-Máñez, R. & Sancenón, F. (2003). Chem. Rev. 103, 4419–4476.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMeyer, K., Bendix, J., Bill, E., Weyhermüller, T. & Wieghardt, K. (1998). Inorg. Chem. 37, 5180–5188.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoon, D. & Choi, J.-H. (2016). Acta Cryst. E72, 456–459.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D. & Choi, J.-H. (2021). J. Coord. Chem. 74. In the press. https://doi. org/10.1080/00958972.2020.1863381.  Google Scholar
First citationMoon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376–m377.  CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D., Ryoo, K. S. & Choi, J.-H. (2015). Acta Cryst. E71, 540–543.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D., Takase, M., Akitsu, T. & Choi, J.-H. (2017). Acta Cryst. E73, 72–75.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPoon, C. K. & Pun, K. C. (1980). Inorg. Chem. 19, 568–569.  CrossRef CAS Web of Science Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRonconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633–1648.  Web of Science CrossRef CAS Google Scholar
First citationRoss, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408–6418.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSubhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193–2197.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds