research communications
cis-(1,4,8,11-tetraazacyclotetradecane-κ4N)bis(thiocyanato-κN)chromium(III) bromide from synchrotron X-ray diffraction data
ofaBeamline Department, Pohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr
The cis-[Cr(NCS)2(cyclam)]Br (cyclam = 1,4,8,11-tetraazacyclotetradecane, C10H24N4), has been determined from synchrotron X-ray data. The contains one [Cr(NCS)2(cyclam)]+ cation and one bromide anion. The CrIII ion of the complex cation is coordinated by the four N atoms of the cyclam ligand and by two N-coordinating NCS groups in a cis arrangement, displaying a distorted octahedral coordination sphere. The Cr—N(cyclam) bond lengths are in the range 2.075 (3) to 2.081 (3) Å while the average Cr—N(NCS) bond length is 1.996 (16) Å. The macrocyclic cyclam moiety adopts the most stable cis-V conformation. The is stabilized by intermolecular hydrogen bonds involving the cyclam N—H groups as donor groups, and the bromide anion and the S atom of one of the NCS ligands as acceptor groups.
of the title complex,Keywords: crystal structure; chromium(III); cyclam; thiocyanate ligand; cis-V conformation; bromide anion; hydrogen bonding; synchrotron radiation.
CCDC reference: 2059465
1. Chemical context
Compounds containing cyclam (1,4,8,11-tetraazacyclotetradecane, C10H24N4) or its derivatives have a potential inhibitory effect on the replication of the human immunodeficiency virus (HIV) and have the ability to mobilize hematopoietic progenitor stem cells from the bone marrow into the blood (Ronconi & Sadler, 2007; De Clercq, 2010; Ross et al., 2012). In order to develop new anti-HIV drugs using transition-metal complexes with the cyclam ligand, at first it is necessary to obtain accurate information about their conformations and crystal packing forces (De Clercq, 2010). Cyclam has a moderately flexible structure, and can adopt both planar (trans) and folded (cis) conformations in [CrL2(cyclam)]n+ (L = monodentate or bidentate/2) complexes (Poon & Pun, 1980). There are five conformational trans isomers for the macrocycle, which differ in the of the sec-NH groups (Choi, 2009; Jeon et al., 2020). The trans-I, trans-II and trans-V conformations also can fold to form cis-I, cis-II and cis-V conformers, respectively (Subhan et al., 2011; Jeon et al., 2020). Knowledge of the conformation for the macrocyclic ligand including various counter-anions are important factors in developing new highly effective anti-HIV drugs (Ronconi & Sadler, 2007; De Clercq, 2010; Ross et al., 2012). Furthermore, the NCS group is interesting either as a co-ligand or a counter-anion in transition-metal complexes. As an ambidentate ligand, the NCS group can coordinate either through the N or S atom, and can adopt various bridging modes (Moon & Choi, 2021).
As an extension of our investigations on the coordination chemistry and conformations of CrIII complexes containing the cyclam ligand, one auxiliary bidentate or two monodentate ligands and various anions (Choi et al., 2004a,b; Choi & Lee, 2009; Subhan et al., 2011; Moon et al., 2013, 2017; Moon & Choi, 2021), we describe here the synthesis of a new salt complex, [Cr(NCS)2(cyclam)]Br, (I) and its structural characterization by synchrotron single-crystal X-ray diffraction.
2. Structural commentary
The molecular structure of (I) with the atomic labelling is shown in Fig. 1. The shows another example of a [Cr(NCS)2(cyclam)]+ cation but with a different counter-anion than previously reported (Friesen et al., 1997; Moon et al., 2013, 2017; Moon & Choi, 2021). In general, counter-anionic species play a very important role in coordination chemistry (Martínez-Máñez & Sancenón, 2003; Fabbrizzi & Poggi, 2013). The of (I) comprises one CrIII complex cation, and one Br− anion. In the complex cation, the CrIII ion is coordinated by the nitrogen atoms of the cyclam ligand that adopts the cis-V (anti–anti) conformation (Subhan et al., 2011). Two nitrogen atoms of the NCS groups further coordinate to the central chromium cation in a cis arrangement. The Cr—N bond lengths from the donor atoms of the cyclam ligands are in the range 2.075 (3) to 2.081 (3) Å, in good agreement with those determined in cis-[Cr(NCS)2(cyclam)]SCN [2.0851 (14)–2.0897 (14) Å] (Moon et al., 2013), cis-[Cr(N3)2(cyclam)]ClO4 [2.069 (3)–2.103 (3) Å] (Meyer et al., 1998), cis-[Cr(ONO)2(cyclam)]NO2 [2.0874 (16)–2.0916 (15) Å] (Choi et al., 2004a) and cis-[Cr(acac)(cyclam)](ClO4)2·0.5H2O [2.070 (5)–2.089 (5) Å] (acac = acetylacetonate; Subhan et al., 2011). However, the Cr—N bond lengths of the cyclam ligand in the cis conformation are slightly longer than those found in trans-[Cr(NCS)2(cyclam)]ClO4 [2.046 (2)–2.060 (2) Å] (Friesen et al., 1997), trans-[Cr(ONO)2(cyclam)]BF4 [2.064 (4)–2.073 (4) Å] (De Leo et al., 2000), trans-[Cr(NH3)2(cyclam)][ZnCl4]Cl·H2O [2.0501 (15)–2.0615 (15) Å] (Moon & Choi, 2016) and trans-[Cr(nic-O)2(cyclam)]ClO4 [2.058 (4)–2.064 (4) Å] (nic-O = O-coordinating nicotinate; Choi, 2009). The two Cr—N(NCS) bond lengths in compound (I) average 1.996 (16)Å and are similar to those found in other complexes with this coligand, viz. cis-[Cr(NCS)2(cyclam)]NCS [1.9846 (13)–2.0071 (13) Å] (Moon et al., 2013), cis-[Cr(NCS)2(cyclam)]ClO4 [1.981 (4)–1.998 (4) Å] (Friesen et al., 1997), cis-[Cr(NCS)2(cyclam)]2[Cr2O7]·H2O [1.980 (2)–1.989 (2) Å] (Moon et al., 2017), trans-[Cr(NCS)2(cyclam)]2[ZnCl4] [1.995 (6) Å] (Moon et al., 2015), and trans-[Cr(NCS)2(Me2tn)2]SCN·0.5H2O [1.983 (2)–1.990 (2) Å] (Choi & Lee, 2009). The five-membered and six-membered chelate rings of the cyclam ligand adopt the gauche and stable chair conformation, respectively. The fold angle of 95.39 (11)° in the cyclam ligand is similar to those of 98.55 (2), 97.17 (5), 97.03 (2), 95.09 (9), 94.51 (2) and 92.8 (2)° in cis-[Cr(ox)(cyclam)]ClO4, cis-[Cr(NCS)2(cyclam)]SCN, cis-[Cr(acac)(cyclam)](ClO4)2·0.5H2O, cis-[Cr(ONO)2(cyclam)]NO2, cis-[Cr(N3)2(cyclam)]ClO4 and cis-[Cr(cyclam)Cl2]Cl, respectively (Choi et al., 2004b; Moon et al., 2013; Subhan et al., 2011; Choi et al., 2004a; Meyer et al., 1998; Forsellini et al., 1986). The two N-coordinating thiocyanate ligands are almost linear with N≡C—S angles of 178.8 (3) and 178.9 (3)°. The Cr1—N5—C11 angle of 161.6 (3)° is slightly smaller than that for Cr1—N6—C12 [169.9 (3)°], which may be attributed to the involvement of the S1 atom in a hydrogen-bonding interaction.
3. Supramolecular features
The Br− counter-anion remains outside the coordination sphere of the CrIII ion. In the crystal, N—H⋯Br and N—H⋯S hydrogen-bonding interactions occur between the N—H groups of cyclam, the Br− anion and the S atom of one of the NCS ligands (Table 1, Fig. 2), leading to a three-dimensional network structure. The bromide anion is linked to the [Cr(NCS)2(cyclam)]+ cation via three N—H⋯Br hydrogen bonds. In addition, two [Cr(NCS)2(cyclam)]+ cations are interconnected to each other via an N4—H4⋯S1ii [symmetry code: (ii) −x + 1, y + , −z + ] hydrogen bond.
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.42, November 2020; Groom et al., 2016) gave 77 hits for a cis-[CrL2(C10H24N4)]+ unit. It is found that cis-[Cr(NCS)2(C10H24N4)]ClO4 (Friesen et al., 1997), cis-[Cr(NCS)2(C10H24N4)]NCS (Moon et al., 2013), cis-[Cr(C2O4)(C10H24N4)]ClO4 (Choi et al., 2004b), cis-[Cr(CH3COCHCOCH3)(C10H24N4)](ClO4)2·0.5H2O (Subhan et al., 2011), cis-[Cr(NCS)2(C10H24N4)]2[Cr2O7]·H2O (Moon et al., 2017) and cis-[Cr(NCS)(C10H24N4)(μ-NCS)ZnCl3] (Moon & Choi, 2021) adopt the cis-V conformation.
5. Synthesis and crystallization
The commercially available free ligand cyclam (98%), chromium(III) chloride hexahydrate (98%) and sodium bromide (99%) were obtained from Sigma-Aldrich and used as provided. All other chemicals were purchased from commercial sources and used without further purification. The starting material, cis-[Cr(NCS)2(cyclam)]SCN, was prepared as previously described (Ferguson & Tobe, 1970). For crystallization of (I), cis-[Cr(NCS)2(cyclam)]SCN (0.006 g) was dissolved in 5 mL of tetrahydrofuran at 343 K and the solution filtrated. The filtrate was added to 2 mL of water containing 0.13 g of solid NaBr. The resulting solution was evaporated slowly at room temperature until the formation of crystals suitable for X-ray structural analysis. The obtained needle-like orange crystals of (I) were washed with small amounts of 2-propanol and dried in air before collecting the synchrotron data.
6. Refinement
Crystal data, data collection and structure . All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.99 Å and N—H = 1.00 Å, and with Uiso(H) values of 1.2Ueq of the parent atoms.
details are summarized in Table 2Supporting information
CCDC reference: 2059465
https://doi.org/10.1107/S2056989021001055/wm5598sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021001055/wm5598Isup2.hkl
Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell
HKL3000sm (Otwinowski et al., 2003); data reduction: HKL3000sm (Otwinowski et al., 2003); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND 4 (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).[Cr(NCS)2(C10H24N4)]Br | F(000) = 916 |
Mr = 448.40 | Dx = 1.598 Mg m−3 |
Monoclinic, P21/c | Synchrotron radiation, λ = 0.610 Å |
a = 10.880 (2) Å | Cell parameters from 49610 reflections |
b = 7.7310 (15) Å | θ = 0.4–33.7° |
c = 22.161 (4) Å | µ = 1.98 mm−1 |
β = 91.65 (3)° | T = 173 K |
V = 1863.3 (6) Å3 | Needle, orange |
Z = 4 | 0.03 × 0.01 × 0.01 mm |
ADSC Q210 CCD area detector diffractometer | 2901 reflections with I > 2σ(I) |
Radiation source: PLSII 2D bending magnet | Rint = 0.092 |
ω scan | θmax = 25.0°, θmin = 2.3° |
Absorption correction: empirical (using intensity measurements) (HKL3000sm Scalepack; Otwinowski et al., 2003) | h = −15→15 |
Tmin = 0.904, Tmax = 1.000 | k = −10→10 |
18069 measured reflections | l = −30→30 |
5185 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.043 | w = 1/[σ2(Fo2) + (0.0455P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.100 | (Δ/σ)max = 0.001 |
S = 0.87 | Δρmax = 0.85 e Å−3 |
5185 reflections | Δρmin = −0.79 e Å−3 |
200 parameters | Extinction correction: SHELXL2016/6 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0180 (9) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cr1 | 0.27993 (5) | 0.35081 (6) | 0.63702 (2) | 0.02286 (14) | |
S1 | 0.31333 (9) | 0.00278 (12) | 0.81190 (4) | 0.0375 (2) | |
S2 | 0.64505 (11) | 0.06790 (15) | 0.58036 (5) | 0.0566 (3) | |
N1 | 0.1153 (3) | 0.4392 (3) | 0.67081 (12) | 0.0279 (6) | |
H1 | 0.097582 | 0.553841 | 0.651585 | 0.033* | |
N2 | 0.1644 (3) | 0.2145 (3) | 0.57803 (12) | 0.0282 (6) | |
H2 | 0.163030 | 0.093399 | 0.593809 | 0.034* | |
N3 | 0.2950 (3) | 0.5456 (3) | 0.57286 (12) | 0.0319 (7) | |
H3 | 0.216688 | 0.613469 | 0.572416 | 0.038* | |
N4 | 0.3741 (3) | 0.5269 (3) | 0.69205 (12) | 0.0312 (6) | |
H4 | 0.460852 | 0.484332 | 0.694735 | 0.037* | |
N5 | 0.2805 (3) | 0.1671 (3) | 0.70104 (13) | 0.0351 (7) | |
N6 | 0.4346 (3) | 0.2501 (4) | 0.60735 (12) | 0.0332 (7) | |
C1 | 0.0176 (3) | 0.3171 (4) | 0.64907 (15) | 0.0333 (8) | |
H1A | −0.064580 | 0.369151 | 0.654333 | 0.040* | |
H1AB | 0.022153 | 0.208318 | 0.672605 | 0.040* | |
C2 | 0.0369 (3) | 0.2801 (4) | 0.58327 (16) | 0.0317 (8) | |
H2A | −0.022924 | 0.192519 | 0.568261 | 0.038* | |
H2AB | 0.025377 | 0.386957 | 0.559114 | 0.038* | |
C3 | 0.2012 (4) | 0.2002 (4) | 0.51429 (15) | 0.0379 (9) | |
H3A | 0.138689 | 0.131585 | 0.491471 | 0.045* | |
H3AB | 0.280293 | 0.137056 | 0.512905 | 0.045* | |
C4 | 0.2153 (4) | 0.3746 (5) | 0.48384 (15) | 0.0413 (9) | |
H4A | 0.136301 | 0.437517 | 0.486127 | 0.050* | |
H4AB | 0.230961 | 0.354800 | 0.440602 | 0.050* | |
C5 | 0.3170 (4) | 0.4903 (5) | 0.50993 (15) | 0.0405 (9) | |
H5A | 0.396127 | 0.427129 | 0.509024 | 0.049* | |
H5AB | 0.324199 | 0.594165 | 0.484161 | 0.049* | |
C6 | 0.3960 (4) | 0.6632 (4) | 0.59462 (17) | 0.0393 (9) | |
H6A | 0.392736 | 0.773210 | 0.571775 | 0.047* | |
H6AB | 0.476836 | 0.608305 | 0.588356 | 0.047* | |
C7 | 0.3797 (4) | 0.6977 (4) | 0.66092 (17) | 0.0402 (9) | |
H7A | 0.449580 | 0.766556 | 0.677480 | 0.048* | |
H7AB | 0.302857 | 0.763365 | 0.666944 | 0.048* | |
C8 | 0.3351 (4) | 0.5454 (5) | 0.75602 (15) | 0.0391 (9) | |
H8A | 0.386361 | 0.635299 | 0.776192 | 0.047* | |
H8AB | 0.350532 | 0.434806 | 0.777454 | 0.047* | |
C9 | 0.2007 (4) | 0.5935 (5) | 0.76167 (16) | 0.0414 (9) | |
H9A | 0.184689 | 0.612776 | 0.804899 | 0.050* | |
H9AB | 0.186265 | 0.704638 | 0.740453 | 0.050* | |
C10 | 0.1081 (3) | 0.4631 (5) | 0.73720 (15) | 0.0371 (9) | |
H10A | 0.122623 | 0.350514 | 0.757466 | 0.044* | |
H10B | 0.024273 | 0.502178 | 0.746855 | 0.044* | |
C11 | 0.2947 (3) | 0.0968 (4) | 0.74715 (15) | 0.0291 (8) | |
C12 | 0.5225 (3) | 0.1731 (4) | 0.59660 (14) | 0.0322 (8) | |
Br1 | 0.05786 (4) | 0.81437 (4) | 0.60207 (2) | 0.04372 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cr1 | 0.0254 (3) | 0.0205 (3) | 0.0227 (3) | 0.0034 (2) | 0.0017 (2) | −0.0016 (2) |
S1 | 0.0398 (6) | 0.0410 (5) | 0.0315 (5) | −0.0035 (4) | −0.0011 (4) | 0.0085 (4) |
S2 | 0.0529 (7) | 0.0679 (7) | 0.0496 (6) | 0.0331 (6) | 0.0104 (5) | −0.0055 (6) |
N1 | 0.0307 (16) | 0.0231 (13) | 0.0300 (15) | 0.0028 (12) | 0.0052 (12) | 0.0012 (12) |
N2 | 0.0310 (16) | 0.0214 (13) | 0.0321 (15) | 0.0021 (11) | −0.0007 (12) | 0.0011 (12) |
N3 | 0.0316 (17) | 0.0328 (15) | 0.0315 (15) | −0.0027 (12) | 0.0045 (13) | 0.0049 (13) |
N4 | 0.0310 (17) | 0.0294 (14) | 0.0329 (15) | 0.0048 (12) | −0.0017 (12) | −0.0063 (13) |
N5 | 0.0406 (18) | 0.0292 (15) | 0.0355 (16) | 0.0079 (13) | 0.0023 (13) | 0.0050 (14) |
N6 | 0.0339 (18) | 0.0359 (15) | 0.0298 (16) | 0.0057 (14) | 0.0038 (13) | −0.0070 (13) |
C1 | 0.0265 (19) | 0.0294 (17) | 0.044 (2) | −0.0025 (15) | 0.0071 (15) | 0.0013 (16) |
C2 | 0.0279 (19) | 0.0262 (17) | 0.041 (2) | −0.0006 (14) | −0.0041 (15) | 0.0010 (15) |
C3 | 0.043 (2) | 0.0379 (19) | 0.0327 (19) | 0.0042 (17) | −0.0026 (16) | −0.0077 (17) |
C4 | 0.051 (3) | 0.048 (2) | 0.0249 (18) | 0.0020 (19) | 0.0015 (17) | 0.0036 (17) |
C5 | 0.046 (2) | 0.046 (2) | 0.0294 (19) | −0.0014 (19) | 0.0067 (17) | 0.0103 (17) |
C6 | 0.036 (2) | 0.0305 (18) | 0.052 (2) | −0.0091 (16) | 0.0008 (17) | 0.0050 (17) |
C7 | 0.035 (2) | 0.0299 (18) | 0.056 (2) | −0.0026 (16) | −0.0036 (17) | −0.0073 (18) |
C8 | 0.042 (2) | 0.041 (2) | 0.034 (2) | 0.0043 (17) | −0.0012 (17) | −0.0133 (17) |
C9 | 0.044 (2) | 0.044 (2) | 0.036 (2) | 0.0107 (18) | 0.0011 (17) | −0.0163 (18) |
C10 | 0.033 (2) | 0.045 (2) | 0.0335 (19) | 0.0047 (17) | 0.0093 (15) | −0.0053 (17) |
C11 | 0.031 (2) | 0.0224 (16) | 0.0340 (19) | 0.0013 (14) | 0.0028 (15) | 0.0008 (15) |
C12 | 0.041 (2) | 0.0298 (17) | 0.0259 (17) | 0.0044 (16) | 0.0040 (15) | −0.0017 (15) |
Br1 | 0.0452 (2) | 0.02097 (17) | 0.0642 (3) | 0.00171 (15) | −0.01224 (18) | 0.00375 (17) |
Cr1—N6 | 1.984 (3) | C1—H1AB | 0.9900 |
Cr1—N5 | 2.007 (3) | C2—H2A | 0.9900 |
Cr1—N2 | 2.075 (3) | C2—H2AB | 0.9900 |
Cr1—N1 | 2.076 (3) | C3—C4 | 1.518 (5) |
Cr1—N4 | 2.078 (3) | C3—H3A | 0.9900 |
Cr1—N3 | 2.081 (3) | C3—H3AB | 0.9900 |
S1—C11 | 1.616 (3) | C4—C5 | 1.524 (5) |
S2—C12 | 1.611 (4) | C4—H4A | 0.9900 |
N1—C10 | 1.487 (4) | C4—H4AB | 0.9900 |
N1—C1 | 1.492 (4) | C5—H5A | 0.9900 |
N1—H1 | 1.0000 | C5—H5AB | 0.9900 |
N2—C3 | 1.484 (4) | C6—C7 | 1.509 (5) |
N2—C2 | 1.485 (4) | C6—H6A | 0.9900 |
N2—H2 | 1.0000 | C6—H6AB | 0.9900 |
N3—C5 | 1.485 (4) | C7—H7A | 0.9900 |
N3—C6 | 1.495 (4) | C7—H7AB | 0.9900 |
N3—H3 | 1.0000 | C8—C9 | 1.517 (5) |
N4—C7 | 1.492 (4) | C8—H8A | 0.9900 |
N4—C8 | 1.498 (4) | C8—H8AB | 0.9900 |
N4—H4 | 1.0000 | C9—C10 | 1.514 (5) |
N5—C11 | 1.164 (4) | C9—H9A | 0.9900 |
N6—C12 | 1.157 (4) | C9—H9AB | 0.9900 |
C1—C2 | 1.507 (5) | C10—H10A | 0.9900 |
C1—H1A | 0.9900 | C10—H10B | 0.9900 |
N6—Cr1—N5 | 88.35 (12) | H2A—C2—H2AB | 108.5 |
N6—Cr1—N2 | 95.53 (11) | N2—C3—C4 | 113.0 (3) |
N5—Cr1—N2 | 94.33 (11) | N2—C3—H3A | 109.0 |
N6—Cr1—N1 | 175.90 (11) | C4—C3—H3A | 109.0 |
N5—Cr1—N1 | 87.88 (11) | N2—C3—H3AB | 109.0 |
N2—Cr1—N1 | 83.16 (11) | C4—C3—H3AB | 109.0 |
N6—Cr1—N4 | 92.48 (12) | H3A—C3—H3AB | 107.8 |
N5—Cr1—N4 | 93.29 (12) | C3—C4—C5 | 115.7 (3) |
N2—Cr1—N4 | 169.10 (11) | C3—C4—H4A | 108.4 |
N1—Cr1—N4 | 89.34 (11) | C5—C4—H4A | 108.4 |
N6—Cr1—N3 | 88.49 (12) | C3—C4—H4AB | 108.4 |
N5—Cr1—N3 | 175.08 (12) | C5—C4—H4AB | 108.4 |
N2—Cr1—N3 | 89.72 (11) | H4A—C4—H4AB | 107.4 |
N1—Cr1—N3 | 95.39 (11) | N3—C5—C4 | 113.0 (3) |
N4—Cr1—N3 | 83.08 (11) | N3—C5—H5A | 109.0 |
C10—N1—C1 | 109.9 (3) | C4—C5—H5A | 109.0 |
C10—N1—Cr1 | 117.9 (2) | N3—C5—H5AB | 109.0 |
C1—N1—Cr1 | 106.85 (19) | C4—C5—H5AB | 109.0 |
C10—N1—H1 | 107.2 | H5A—C5—H5AB | 107.8 |
C1—N1—H1 | 107.2 | N3—C6—C7 | 108.4 (3) |
Cr1—N1—H1 | 107.2 | N3—C6—H6A | 110.0 |
C3—N2—C2 | 112.3 (3) | C7—C6—H6A | 110.0 |
C3—N2—Cr1 | 117.5 (2) | N3—C6—H6AB | 110.0 |
C2—N2—Cr1 | 109.14 (19) | C7—C6—H6AB | 110.0 |
C3—N2—H2 | 105.6 | H6A—C6—H6AB | 108.4 |
C2—N2—H2 | 105.6 | N4—C7—C6 | 107.5 (3) |
Cr1—N2—H2 | 105.6 | N4—C7—H7A | 110.2 |
C5—N3—C6 | 109.9 (3) | C6—C7—H7A | 110.2 |
C5—N3—Cr1 | 116.8 (2) | N4—C7—H7AB | 110.2 |
C6—N3—Cr1 | 106.9 (2) | C6—C7—H7AB | 110.2 |
C5—N3—H3 | 107.6 | H7A—C7—H7AB | 108.5 |
C6—N3—H3 | 107.6 | N4—C8—C9 | 113.7 (3) |
Cr1—N3—H3 | 107.6 | N4—C8—H8A | 108.8 |
C7—N4—C8 | 111.7 (3) | C9—C8—H8A | 108.8 |
C7—N4—Cr1 | 109.5 (2) | N4—C8—H8AB | 108.8 |
C8—N4—Cr1 | 118.0 (2) | C9—C8—H8AB | 108.8 |
C7—N4—H4 | 105.5 | H8A—C8—H8AB | 107.7 |
C8—N4—H4 | 105.5 | C10—C9—C8 | 116.1 (3) |
Cr1—N4—H4 | 105.5 | C10—C9—H9A | 108.3 |
C11—N5—Cr1 | 161.6 (3) | C8—C9—H9A | 108.3 |
C12—N6—Cr1 | 169.9 (3) | C10—C9—H9AB | 108.3 |
N1—C1—C2 | 108.3 (3) | C8—C9—H9AB | 108.3 |
N1—C1—H1A | 110.0 | H9A—C9—H9AB | 107.4 |
C2—C1—H1A | 110.0 | N1—C10—C9 | 112.5 (3) |
N1—C1—H1AB | 110.0 | N1—C10—H10A | 109.1 |
C2—C1—H1AB | 110.0 | C9—C10—H10A | 109.1 |
H1A—C1—H1AB | 108.4 | N1—C10—H10B | 109.1 |
N2—C2—C1 | 107.3 (3) | C9—C10—H10B | 109.1 |
N2—C2—H2A | 110.3 | H10A—C10—H10B | 107.8 |
C1—C2—H2A | 110.3 | N5—C11—S1 | 178.8 (3) |
N2—C2—H2AB | 110.3 | N6—C12—S2 | 178.9 (3) |
C1—C2—H2AB | 110.3 | ||
C10—N1—C1—C2 | −173.5 (3) | C5—N3—C6—C7 | −172.6 (3) |
Cr1—N1—C1—C2 | −44.5 (3) | Cr1—N3—C6—C7 | −44.9 (3) |
C3—N2—C2—C1 | −170.8 (3) | C8—N4—C7—C6 | −169.6 (3) |
Cr1—N2—C2—C1 | −38.6 (3) | Cr1—N4—C7—C6 | −36.9 (3) |
N1—C1—C2—N2 | 55.7 (3) | N3—C6—C7—N4 | 54.7 (4) |
C2—N2—C3—C4 | 68.6 (4) | C7—N4—C8—C9 | 71.2 (4) |
Cr1—N2—C3—C4 | −59.2 (4) | Cr1—N4—C8—C9 | −57.1 (4) |
N2—C3—C4—C5 | 64.2 (4) | N4—C8—C9—C10 | 62.9 (4) |
C6—N3—C5—C4 | −178.1 (3) | C1—N1—C10—C9 | −176.9 (3) |
Cr1—N3—C5—C4 | 59.9 (4) | Cr1—N1—C10—C9 | 60.4 (3) |
C3—C4—C5—N3 | −64.9 (4) | C8—C9—C10—N1 | −64.3 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Br1 | 1.00 | 2.33 | 3.327 (3) | 177 |
N2—H2···Br1i | 1.00 | 2.45 | 3.352 (3) | 150 |
N3—H3···Br1 | 1.00 | 2.43 | 3.389 (3) | 161 |
N4—H4···S1ii | 1.00 | 2.47 | 3.410 (3) | 156 |
Symmetry codes: (i) x, y−1, z; (ii) −x+1, y+1/2, −z+3/2. |
Acknowledgements
The X-ray crystallography experiment at the PLS-II BL2D-SMC beamline was supported in part by MSIT and POSTECH.
Funding information
This work was supported by a grant from the 2020 Research Fund of Andong National University.
References
Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231–4236. Web of Science CSD CrossRef CAS Google Scholar
Choi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84–89. Web of Science CSD CrossRef CAS Google Scholar
Choi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004a). Acta Cryst. C60, m238–m240. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Choi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39–44. Web of Science CSD CrossRef CAS Google Scholar
De Clercq, E. (2010). J. Med. Chem. 53, 1438–1450. Web of Science CrossRef PubMed CAS Google Scholar
De Leo, M. A., Bu, X., Bentow, J. & Ford, P. C. (2000). Inorg. Chim. Acta, 300–302, 944–950. Web of Science CSD CrossRef CAS Google Scholar
Fabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681–1699. Web of Science CrossRef CAS PubMed Google Scholar
Ferguson, J. & Tobe, M. L. (1970). Inorg. Chim. Acta, 4, 109–112. CrossRef CAS Google Scholar
Forsellini, E., Parasassi, T., Bombieri, G., Tobe, M. L. & Sosa, M. E. (1986). Acta Cryst. C42, 563–565. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Friesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687–691. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jeon, J., Moncol, J., Mazúr, M., Valko, M., Ryoo, K. S. & Choi, J.-H. (2020). J. Mol. Struct. 1202, 127224. Web of Science CSD CrossRef Google Scholar
Martínez-Máñez, R. & Sancenón, F. (2003). Chem. Rev. 103, 4419–4476. Web of Science CrossRef PubMed CAS Google Scholar
Meyer, K., Bendix, J., Bill, E., Weyhermüller, T. & Wieghardt, K. (1998). Inorg. Chem. 37, 5180–5188. Web of Science CSD CrossRef CAS Google Scholar
Moon, D. & Choi, J.-H. (2016). Acta Cryst. E72, 456–459. Web of Science CSD CrossRef IUCr Journals Google Scholar
Moon, D. & Choi, J.-H. (2021). J. Coord. Chem. 74. In the press. https://doi. org/10.1080/00958972.2020.1863381. Google Scholar
Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376–m377. CSD CrossRef IUCr Journals Google Scholar
Moon, D., Ryoo, K. S. & Choi, J.-H. (2015). Acta Cryst. E71, 540–543. Web of Science CSD CrossRef IUCr Journals Google Scholar
Moon, D., Takase, M., Akitsu, T. & Choi, J.-H. (2017). Acta Cryst. E73, 72–75. Web of Science CSD CrossRef IUCr Journals Google Scholar
Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234. Web of Science CrossRef CAS IUCr Journals Google Scholar
Poon, C. K. & Pun, K. C. (1980). Inorg. Chem. 19, 568–569. CrossRef CAS Web of Science Google Scholar
Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Ronconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633–1648. Web of Science CrossRef CAS Google Scholar
Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408–6418. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373. Web of Science CrossRef IUCr Journals Google Scholar
Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193–2197. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.