research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two hydrazide derivatives of mefenamic acid, 3-(2,3-di­methyl­anilino)-N′-[(E)-(furan-2-yl)methyl­­idene]benzohydrazide and N′-[(E)-benzyl­­idene]-2-(2,3-di­methyl­anilino)benzo­hydrazide

CROSSMARK_Color_square_no_text.svg

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, College of Education, Kirkuk University, Kirkuk, Iraq, fFaculty of Science, Department of Bio-Chemistry, Beni Suef University, Beni Suef, Egypt, and gDepartment of Chemistry, Faculty of Science, Sana'a University, Sana'a, Yemen
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 2 February 2021; accepted 5 February 2021; online 12 February 2021)

The conformation about the central benzene ring in the mol­ecule of (I), C20H19N3O2, is partially determined by an intra­molecular N—H⋯O hydrogen bond. In the crystal, chains parallel to the c axis are generated by inter­molecular N—H⋯O hydrogen bonds with the chains assembled into a three-dimensional network structure by inter­molecular C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions. The mol­ecule of (II), C22H21N3O, differs from (I) only in the substituent at the hydrazide N atom where a phenyl­methyl­ene moiety for (II) is present instead of a furan­methyl­ene moiety for (I). Hence, mol­ecules of (I) and (II) show similarities in their mol­ecular and crystal structures. The conformation of the central portion of the mol­ecule of (II) is also therefore partially determined by an intra­molecular N—H⋯O hydrogen bond and inter­molecular N—H⋯O hydrogen bonds form chains parallel to the c axis. Likewise, the chains are connected into a three-dimensional network by C—H⋯O hydrogen bonds and C—H⋯π(ring) inter­actions.

1. Chemical context

Hydrazones possess a wide variety of biological activities such as anti­convulsant (Kumar et al., 2010[Kumar, S., Bawa, S., Drabu, S., Kumar, R. & Machawal, L. (2010). Acta Pol. Pharm. 67, 567-573.]), anti-depressant (Mohareb et al., 2010[Mohareb, R. M., El-Sharkawy, K. A., Hussein, M. M. & El-Sehrawi, H. M. (2010). J. Pharm. Sci. Res. 2, 185-196.]), analgesic, anti-inflammatory (Hernandez et al., 2012[Hernández, P., Cabrera, M., Lavaggi, M. L., Celano, L., Tiscornia, I., Rodrigues da Costa, T., Thomson, L., Bollati-Fogolín, M., Miranda, A. L. P., Lima, L. M., Barreiro, E. J., González, M. & Cerecetto, H. (2012). Bioorg. Med. Chem. 20, 2158-2171.]), anti­microbial (Maguene et al., 2011[Maguene, G. M., Jakhlal, J., Ladyman, M., Vallin, A., Ralambomanana, D. A., Bousquet, T., Maugein, J., Lebibi, J. & Pélinski, L. (2011). Eur. J. Med. Chem. 46, 31-38.]), anti­cancer (Al-Said et al., 2011[Al-Said, M. S., Bashandy, M. S., Al-qasoumi, S. I. & Ghorab, M. M. (2011). Eur. J. Med. Chem. 46, 137-141.]) or anti­parasitic (Siddiqui et al., 2012[Siddiqui, S. M., Salahuddin, A. & Azam, A. (2012). Eur. J. Med. Chem. 49, 411-416.]) properties. A better tolerated and potent non-steroidal anti-inflammatory drug (NSAID) with fewer side effect characteristic is mefenamic acid. This drug belongs to the most commonly prescribed medications worldwide for treatment of painful inflammatory conditions such as rheumatic arthritis, traumatic injuries, pain and fever (Abbas, 2017[Abbas, A. (2017). Bull. Chem. Soc. Ethiop. 31, 171-175.]). It is also used to treat mild to moderate pain, including menstrual pain and the associated migraines (Pringsheim et al., 2008[Pringsheim, T., Davenport, W. J. & Dodick, D. (2008). Neurology, 70, 1555-1563.]). With this background in mind, we report here the synthesis and crystal structural determination of two hydrazide derivatives of mefenamic acid, (I)[link] and (II)[link].

[Scheme 1]

2. Structural commentary

In the mol­ecule of (I)[link] (Fig. 1[link]), the dihedral angles between the central C9–C14 benzene ring and the C1–C6 and C17–C20/O2 rings are, respectively, 51.90 (6) and 43.32 (8)°. The conformation about the central portion of the mol­ecule is partially determined by the intra­molecular N1—H1⋯O1 hydrogen bond (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 and Cg2 are the centroids of the C17–C20/O2 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.910 (19) 1.977 (18) 2.7045 (14) 135.8 (15)
N2—H2⋯O1i 0.883 (18) 2.014 (18) 2.8458 (13) 156.4 (15)
C4—H4⋯Cg1ii 0.955 (17) 2.941 (17) 3.7248 (15) 140.1 (17)
C6—H6⋯O1iii 0.976 (18) 2.556 (18) 3.3434 (16) 137.7 (14)
C11—H11⋯Cg2iv 0.996 (16) 2.765 (16) 3.6231 (14) 144.8 (12)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, -y+1, -z+1]; (iv) x, y, z+1.
[Figure 1]
Figure 1
The mol­ecule of (I)[link] with atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level. The intra­molecular N—H⋯O hydrogen bond is shown as a dashed line.

Mol­ecule (II)[link] (Fig. 2[link]) differs from mol­ecule (I)[link] only by the substituent at N3, i.e. a phenyl­methyl­ene moiety for (II)[link] instead of a furan­methyl­ene moiety for (I)[link]. Hence, the structural characteristics for most parts of the two mol­ecules are very similar, as exemplified by the dihedral angles between the central C9–C14 benzene ring and the C1–C6 and C17–C22 benzene rings of 57.38 (6) and 43.48 (6)°, respectively, observed in mol­ecule (II)[link]. Likewise, in the crystal of (II)[link], the conformation of the central portion of the mol­ecule is also partially determined by the intra­molecular N1—H1⋯O1 hydrogen bond (Table 2[link]; Fig. 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 and Cg3 are the centroids of the C1–C6 and C17–C22 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.908 (18) 1.946 (18) 2.6920 (13) 138.2 (15)
N2—H2⋯O1i 0.913 (16) 1.974 (17) 2.8564 (13) 162.0 (14)
C4—H4⋯Cg3ii 1.001 (17) 2.796 (17) 3.6141 (15) 139.4 (13)
C6—H6⋯O1iii 0.980 (18) 2.583 (19) 3.4815 (16) 152.5 (13)
C20—H20⋯Cg1iv 1.000 (18) 2.838 (17) 3.6644 (15) 140.5 (13)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, -y+1, -z+1]; (iv) [x-1, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].
[Figure 2]
Figure 2
The mol­ecule of (II)[link] with atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level. The intra­molecular N—H⋯O hydrogen bond is shown by a dashed line.

3. Supra­molecular features

In the crystal structure of (I)[link], chains of mol­ecules extending parallel to the c-axis direction are generated by N2—H2⋯O2 hydrogen bonds (Table 1[link]; Fig. 3[link]). These chains are linked into a three-dimensional network structure by a combination of C6—H6⋯O1 hydrogen bonds and C4—H4⋯Cg1 and C11—H11⋯Cg2 inter­actions (Table 1[link]; Fig. 4[link]).

[Figure 3]
Figure 3
A portion of one N—H⋯O hydrogen-bonded chain viewed along the b axis of (I)[link] with hydrogen bonds shown as dashed lines.
[Figure 4]
Figure 4
Packing view of (I)[link] along the c axis with inter­molecular C—H⋯O hydrogen bonds shown as dashed lines.

In the crystal structure of (II)[link], inter­molecular N2—H2⋯O1 hydrogen bonds form chains parallel the c-axis direction (Table 2[link]; Fig. 5[link]), which are connected through C6—H6⋯O1 hydrogen bonds and C4—H4⋯Cg3 and C20—H20⋯Cg1 inter­actions to form a three-dimensional network (Table 2[link]; Fig. 6[link]).

[Figure 5]
Figure 5
A portion of the N—H⋯O hydrogen-bonded chain viewed along the b axis of (II)[link] with hydrogen bonds shown as dashed lines..
[Figure 6]
Figure 6
Packing view of (II)[link] along the c axis with inter­molecular C—H⋯O hydrogen bonds shown as dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave six hits for structures with a 2-(2,3-di­methyl­anilino)-N′-methyl­idene­benzohydrazide skeleton: N′-[(4-chloro­phen­yl)methyl­idene]-2-[(2,3-di­methyl­phen­yl)amino]­benzohydrazide (VEDBAK; Jasinski et al., 2017[Jasinski, J. P., Akkurt, M., Mohamed, S. K., Dunkley, E. M. & Albayati, M. R. (2017). IUCrData, 2, x171187.]), N′-[1-(4-chloro­phen­yl)ethyl­idene]-2-[(2,3-di­methyl­phen­yl)amino]­benzohydrazide (LEBSET; Mohamed et al., 2017[Mohamed, S. K., Jasinski, J. P., Akkurt, M., McGurk, E. A., Albayati, M. R. & Mohamed, A. F. (2017). IUCrData, 2, x171188.]), 2-[(2,3-di­methyl­phen­yl)amino]-N′-(2-hy­droxy­benzyl­idene)benzohydrazide (DABREG; Mohamed et al., 2015[Mohamed, S. K., Mague, J. T., Akkurt, M., Mohamed, A. F. & Albayati, M. R. (2015). Acta Cryst. E71, o957-o958.]), 2-[(2,3-di­methyl­phen­yl)amino]-N′-(2-thienyl­methyl­ene)benzohydrazide (LEGHAI; Fun et al., 2012a[Fun, H.-K., Chia, T. S., Bhat, M. A., Al-Omar, M. A. & Abdel-Aziz, H. A. (2012a). Acta Cryst. E68, o2524-o2525.]), 2-[(2,3-di­methyl­phen­yl)amino]­benzohydrazide (LEGHIQ; Fun et al., 2012b[Fun, H.-K., Chia, T. S., Elsaman, T., Attia, M. I. & Abdel-Aziz, H. A. (2012b). Acta Cryst. E68, o2527-o2528.]) and (E)-2-[(2,3-di­methyl­phen­yl)amino]-N′-(2-methyl-5-(prop-1-en-2-yl)cyclo­hex-2-en-1-yl­idene)benzo­hydra­zide (YAXJUE; Bhat et al., 2012[Bhat, M. A., Abdel-Aziz, H. A., Ghabbour, H. A., Hemamalini, M. & Fun, H.-K. (2012). Acta Cryst. E68, o1135.]).

In the structure of VEDBAK, the dihedral angle between the planes of the chloro­phenyl and di­methyl­phenyl rings is 66.50 (9)°. These rings make dihedral angles of 47.79 (8) and 69.24 (9)°, respectively, with the central benzene ring. In the crystal structure of VEDBAK, mol­ecules are linked into a three-dimensional supra­molecular network by N—H⋯O, C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions.

In the crystal structure of LEBSET, mol­ecules are linked into a three-dimensional supra­molecular network by N—H⋯N, N—H⋯O, C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions.

The asymmetric unit of DABREG consists of two mol­ecules (A and B) having differing conformations that mainly concern the dihedral angles between the hy­droxy­phenyl and di­methyl­phenyl rings relative to the central phenyl­ene ring, with values of 30.16 (6) and 58.60 (6)° in mol­ecule A and of 13.42 (7) and 60.31 (7)° in mol­ecule B. With the exception of the di­methyl­phenyl substituent, the conformations of the rest of each mol­ecule are largely determined by intra­molecular O—H⋯N and N—H⋯O hydrogen bonds. In the crystal structure, N—H⋯O hydrogen bonds link the mol­ecules into chains extending parallel to the a axis where the types of mol­ecules alternate in an ⋯ABAB⋯ fashion.

In LEGHAI, the central benzene ring makes dihedral angles of 45.36 (9) and 55.33 (9)° with the thio­phene ring and the dimethyl-substituted benzene ring, respectively. The dihedral angle between the thio­phene ring and dimethyl-substituted benzene ring is 83.60 (9)°. The thio­phene ring and the benzene ring are twisted from the mean plane of the C(=O)—N—N=C bridge [maximum deviation = 0.0860 (13) Å], with dihedral angles of 23.86 (9) and 24.77 (8)°, respectively. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal structure of LEGHAI, mol­ecules are linked by N—H⋯O and C—H⋯O hydrogen bonds to the same acceptor atom, forming sheets lying parallel to the bc plane. The crystal packing also features C—H⋯π inter­actions.

In LEGHIQ, the dihedral angle between the benzene rings is 58.05 (9)°. The non-H atoms of the hydrazide group lie in a common plane (r.m.s. deviation = 0.0006 Å) and are close to co-planar with their attached benzene ring [dihedral angle = 8.02 (9)°]. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif in the mol­ecule, and a short intra­molecular contact (H⋯H = 1.88 Å) is also observed. In the crystal structure of LEGHIQ, mol­ecules are linked by pairs of N—H⋯N hydrogen bonds into inversion dimers. The crystal packing also features C—H⋯π inter­actions.

The asymmetric unit of the compound YAXJUE comprises two mol­ecules. The dihedral angles between the benzene rings in the two mol­ecules are 59.7 (2) and 61.27 (18)°. The cyclo­hexene rings adopt sofa and half-chair conformations. In the crystal structure of YAXJUE, mol­ecules are connected via N—H⋯O and weak C—H⋯O hydrogen bonds, forming chains along the a-axis direction. In each mol­ecule, there is an intra­molecular N—H⋯O hydrogen bond.

5. Synthesis and crystallization

Synthesis of (I)[link]: A mixture of 1 mmol of 2-furaldehyde (96 mg) and 1 mmol of 2-[(2,3-di­methyl­phen­yl)amino]­benzohydrazide (255 mg) in 20 ml of ethanol was refluxed and monitored by TLC until completion. The reaction mixture was cooled to room temperature when the solid product was obtained. The crude product was filtered off, dried and recrystallized from ethanol to afford crystals suitable for X-ray diffraction. M.p. 479–483 K.

Synthesis of (II)[link]: In a solution of 20 ml of ethanol, a mixture of 106 mg (1 mmol) of benzaldehyde (106 mg) and 255 mg (1 mmol) of 2-[(2,3-di­methyl­phen­yl)amino]­benzohydrazide was refluxed for 4 h. The solid product was obtained after the reaction mixture was cooled to room temperature. The crude product was filtered off, dried and recrystallized from ethanol to afford crystals suitable for X-ray diffraction. M.p. 466–469 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For (I)[link] and (II)[link], all H atoms were located in a difference-Fourier map and were refined freely.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C20H19N3O2 C22H21N3O
Mr 333.38 343.42
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 150 150
a, b, c (Å) 13.8467 (3), 15.8409 (3), 8.0225 (2) 14.3493 (8), 15.7501 (9), 8.3737 (5)
β (°) 104.814 (1) 106.285 (2)
V3) 1701.20 (7) 1816.55 (18)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 0.69 0.62
Crystal size (mm) 0.19 × 0.11 × 0.07 0.19 × 0.13 × 0.08
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.88, 0.95 0.86, 0.95
No. of measured, independent and observed [I > 2σ(I)] reflections 13222, 3372, 2939 13875, 3665, 3140
Rint 0.031 0.031
(sin θ/λ)max−1) 0.625 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.095, 1.05 0.037, 0.092, 1.04
No. of reflections 3372 3665
No. of parameters 303 320
H-atom treatment All H-atom parameters refined All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.23, −0.19 0.17, −0.16
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

3-(2,3-Dimethylanilino)-N'-[(E)-(furan-2-yl)methylidene]benzohydrazide (I) top
Crystal data top
C20H19N3O2F(000) = 704
Mr = 333.38Dx = 1.302 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 13.8467 (3) ÅCell parameters from 9755 reflections
b = 15.8409 (3) Åθ = 3.3–74.5°
c = 8.0225 (2) ŵ = 0.69 mm1
β = 104.814 (1)°T = 150 K
V = 1701.20 (7) Å3Column, colourless
Z = 40.19 × 0.11 × 0.07 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3372 independent reflections
Radiation source: INCOATEC IµS micro–focus source2939 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.4167 pixels mm-1θmax = 74.5°, θmin = 3.3°
ω scansh = 1416
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1819
Tmin = 0.88, Tmax = 0.95l = 99
13222 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036All H-atom parameters refined
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.3981P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3372 reflectionsΔρmax = 0.23 e Å3
303 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL 2016/6 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0049 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43892 (6)0.33178 (5)0.45837 (10)0.0275 (2)
O20.10644 (7)0.20592 (6)0.31256 (12)0.0371 (2)
N10.62923 (8)0.38535 (8)0.58252 (15)0.0353 (3)
H10.5810 (13)0.3629 (11)0.495 (2)0.051 (5)*
N20.37222 (7)0.26862 (7)0.65665 (13)0.0262 (2)
H20.3836 (12)0.2485 (11)0.763 (2)0.043 (4)*
N30.29029 (7)0.24278 (6)0.52997 (12)0.0260 (2)
C10.70907 (9)0.42610 (8)0.53437 (15)0.0279 (3)
C20.76645 (9)0.37935 (8)0.44626 (15)0.0276 (3)
C30.84199 (9)0.42133 (9)0.39033 (15)0.0313 (3)
C40.85989 (10)0.50619 (9)0.42738 (17)0.0361 (3)
H40.9119 (12)0.5334 (11)0.389 (2)0.047 (5)*
C50.80281 (11)0.55168 (9)0.51433 (19)0.0378 (3)
H50.8130 (13)0.6122 (12)0.533 (2)0.052 (5)*
C60.72631 (10)0.51191 (9)0.56546 (18)0.0342 (3)
H60.6815 (13)0.5435 (11)0.618 (2)0.052 (5)*
C70.74397 (12)0.28753 (9)0.40596 (19)0.0381 (3)
H7A0.6963 (16)0.2816 (13)0.295 (3)0.073 (6)*
H7B0.8049 (17)0.2542 (14)0.398 (3)0.078 (6)*
H7C0.7169 (13)0.2599 (12)0.493 (2)0.055 (5)*
C80.90166 (13)0.37716 (12)0.2834 (2)0.0470 (4)
H8A0.8587 (14)0.3622 (12)0.170 (3)0.056 (5)*
H8B0.957 (2)0.4145 (17)0.265 (3)0.105 (8)*
H8C0.9298 (16)0.3242 (15)0.331 (3)0.075 (6)*
C90.60374 (9)0.39480 (8)0.73618 (15)0.0275 (3)
C100.66889 (10)0.43330 (8)0.88024 (16)0.0326 (3)
H100.7324 (13)0.4574 (11)0.866 (2)0.045 (4)*
C110.64394 (10)0.44053 (9)1.03499 (16)0.0350 (3)
H110.6916 (11)0.4702 (10)1.131 (2)0.037 (4)*
C120.55432 (10)0.40856 (9)1.05579 (16)0.0343 (3)
H120.5341 (11)0.4161 (10)1.165 (2)0.037 (4)*
C130.48990 (10)0.36959 (8)0.91722 (16)0.0293 (3)
H130.4250 (12)0.3490 (10)0.9272 (19)0.038 (4)*
C140.51281 (9)0.36090 (7)0.75761 (15)0.0251 (3)
C150.44003 (8)0.32000 (7)0.61193 (14)0.0238 (2)
C160.23183 (9)0.19224 (8)0.58218 (15)0.0280 (3)
H160.2460 (11)0.1729 (10)0.701 (2)0.038 (4)*
C170.13770 (9)0.16726 (8)0.46938 (16)0.0297 (3)
C180.06614 (11)0.11334 (10)0.4926 (2)0.0410 (3)
H180.0716 (14)0.0788 (12)0.597 (2)0.059 (5)*
C190.01455 (11)0.11896 (10)0.3418 (2)0.0440 (4)
H190.0782 (15)0.0886 (12)0.319 (2)0.061 (5)*
C200.01305 (10)0.17477 (10)0.2391 (2)0.0425 (4)
H200.0217 (15)0.1968 (13)0.124 (3)0.063 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0276 (4)0.0337 (5)0.0215 (4)0.0028 (3)0.0067 (3)0.0006 (3)
O20.0308 (5)0.0430 (5)0.0328 (5)0.0046 (4)0.0004 (4)0.0003 (4)
N10.0289 (6)0.0477 (7)0.0315 (6)0.0131 (5)0.0118 (4)0.0092 (5)
N20.0236 (5)0.0337 (5)0.0197 (5)0.0034 (4)0.0026 (4)0.0016 (4)
N30.0225 (5)0.0315 (5)0.0229 (5)0.0018 (4)0.0040 (4)0.0016 (4)
C10.0224 (6)0.0326 (6)0.0280 (6)0.0021 (5)0.0051 (4)0.0011 (5)
C20.0266 (6)0.0307 (6)0.0239 (6)0.0007 (5)0.0037 (4)0.0010 (5)
C30.0236 (6)0.0426 (7)0.0269 (6)0.0005 (5)0.0050 (5)0.0022 (5)
C40.0288 (7)0.0433 (8)0.0352 (7)0.0101 (6)0.0065 (5)0.0057 (6)
C50.0387 (8)0.0292 (7)0.0428 (8)0.0044 (5)0.0056 (6)0.0025 (6)
C60.0295 (7)0.0321 (7)0.0402 (7)0.0025 (5)0.0078 (5)0.0009 (5)
C70.0498 (9)0.0314 (7)0.0344 (7)0.0032 (6)0.0130 (6)0.0027 (5)
C80.0392 (9)0.0645 (11)0.0414 (9)0.0004 (7)0.0176 (7)0.0055 (7)
C90.0250 (6)0.0297 (6)0.0271 (6)0.0004 (5)0.0052 (4)0.0000 (5)
C100.0260 (6)0.0356 (7)0.0327 (7)0.0025 (5)0.0011 (5)0.0009 (5)
C110.0358 (7)0.0358 (7)0.0275 (6)0.0008 (5)0.0028 (5)0.0015 (5)
C120.0411 (7)0.0370 (7)0.0235 (6)0.0008 (6)0.0060 (5)0.0024 (5)
C130.0301 (7)0.0313 (6)0.0268 (6)0.0012 (5)0.0079 (5)0.0003 (5)
C140.0232 (6)0.0275 (6)0.0233 (6)0.0009 (4)0.0033 (4)0.0001 (4)
C150.0217 (6)0.0260 (6)0.0236 (6)0.0023 (4)0.0055 (4)0.0000 (4)
C160.0264 (6)0.0335 (6)0.0249 (6)0.0010 (5)0.0081 (5)0.0001 (5)
C170.0272 (6)0.0341 (6)0.0286 (6)0.0013 (5)0.0088 (5)0.0029 (5)
C180.0342 (7)0.0482 (8)0.0433 (8)0.0102 (6)0.0150 (6)0.0046 (6)
C190.0250 (7)0.0502 (9)0.0563 (9)0.0075 (6)0.0097 (6)0.0170 (7)
C200.0285 (7)0.0471 (8)0.0451 (8)0.0014 (6)0.0033 (6)0.0108 (7)
Geometric parameters (Å, º) top
O1—C151.2422 (14)C7—H7C0.978 (19)
O2—C171.3663 (16)C8—H8A0.98 (2)
O2—C201.3687 (16)C8—H8B1.01 (3)
N1—C91.3744 (16)C8—H8C0.96 (2)
N1—C11.4165 (16)C9—C101.4102 (17)
N1—H10.910 (19)C9—C141.4191 (17)
N2—C151.3582 (15)C10—C111.3759 (19)
N2—N31.3777 (13)C10—H100.993 (17)
N2—H20.883 (18)C11—C121.389 (2)
N3—C161.2826 (16)C11—H110.996 (16)
C1—C61.3915 (18)C12—C131.3804 (18)
C1—C21.4023 (17)C12—H120.989 (16)
C2—C31.4063 (17)C13—C141.4024 (17)
C2—C71.5053 (18)C13—H130.978 (16)
C3—C41.385 (2)C14—C151.4829 (15)
C3—C81.507 (2)C16—C171.4392 (17)
C4—C51.383 (2)C16—H160.973 (16)
C4—H40.955 (17)C17—C181.3566 (19)
C5—C61.3818 (19)C18—C191.424 (2)
C5—H50.975 (19)C18—H180.990 (19)
C6—H60.976 (18)C19—C201.330 (2)
C7—H7A0.97 (2)C19—H190.98 (2)
C7—H7B1.01 (2)C20—H200.99 (2)
C17—O2—C20106.08 (11)H8B—C8—H8C108.9 (19)
C9—N1—C1126.32 (11)N1—C9—C10121.67 (11)
C9—N1—H1115.6 (11)N1—C9—C14120.45 (11)
C1—N1—H1115.8 (11)C10—C9—C14117.77 (11)
C15—N2—N3118.53 (10)C11—C10—C9121.32 (12)
C15—N2—H2120.4 (11)C11—C10—H10120.6 (10)
N3—N2—H2120.9 (11)C9—C10—H10118.0 (10)
C16—N3—N2114.45 (10)C10—C11—C12121.07 (12)
C6—C1—C2120.85 (11)C10—C11—H11118.0 (9)
C6—C1—N1120.43 (11)C12—C11—H11120.9 (9)
C2—C1—N1118.62 (11)C13—C12—C11118.64 (12)
C1—C2—C3118.33 (11)C13—C12—H12119.6 (9)
C1—C2—C7120.39 (11)C11—C12—H12121.7 (9)
C3—C2—C7121.21 (12)C12—C13—C14121.92 (12)
C4—C3—C2119.82 (12)C12—C13—H13120.1 (9)
C4—C3—C8118.60 (13)C14—C13—H13118.0 (9)
C2—C3—C8121.53 (13)C13—C14—C9119.23 (11)
C5—C4—C3121.32 (12)C13—C14—C15119.71 (11)
C5—C4—H4120.2 (10)C9—C14—C15121.00 (10)
C3—C4—H4118.5 (10)O1—C15—N2121.19 (10)
C6—C5—C4119.50 (13)O1—C15—C14123.33 (10)
C6—C5—H5119.7 (10)N2—C15—C14115.47 (10)
C4—C5—H5120.7 (10)N3—C16—C17120.80 (11)
C5—C6—C1120.11 (13)N3—C16—H16122.0 (9)
C5—C6—H6121.1 (11)C17—C16—H16117.0 (9)
C1—C6—H6118.7 (11)C18—C17—O2109.77 (12)
C2—C7—H7A110.2 (13)C18—C17—C16131.50 (13)
C2—C7—H7B112.8 (13)O2—C17—C16118.59 (11)
H7A—C7—H7B106.1 (17)C17—C18—C19106.60 (14)
C2—C7—H7C112.1 (11)C17—C18—H18124.4 (11)
H7A—C7—H7C108.4 (16)C19—C18—H18129.0 (11)
H7B—C7—H7C106.9 (17)C20—C19—C18106.30 (13)
C3—C8—H8A110.5 (11)C20—C19—H19126.7 (11)
C3—C8—H8B111.0 (15)C18—C19—H19127.0 (11)
H8A—C8—H8B108.1 (18)C19—C20—O2111.25 (13)
C3—C8—H8C113.8 (13)C19—C20—H20131.6 (12)
H8A—C8—H8C104.2 (17)O2—C20—H20117.1 (12)
C15—N2—N3—C16177.81 (11)C11—C12—C13—C140.5 (2)
C9—N1—C1—C644.52 (19)C12—C13—C14—C91.49 (19)
C9—N1—C1—C2139.08 (13)C12—C13—C14—C15178.79 (12)
C6—C1—C2—C30.10 (18)N1—C9—C14—C13178.37 (11)
N1—C1—C2—C3176.49 (11)C10—C9—C14—C132.26 (17)
C6—C1—C2—C7177.09 (12)N1—C9—C14—C154.36 (18)
N1—C1—C2—C70.70 (18)C10—C9—C14—C15179.53 (11)
C1—C2—C3—C41.90 (18)N3—N2—C15—O112.62 (17)
C7—C2—C3—C4179.07 (12)N3—N2—C15—C14166.53 (10)
C1—C2—C3—C8175.36 (12)C13—C14—C15—O1157.42 (11)
C7—C2—C3—C81.81 (19)C9—C14—C15—O119.84 (18)
C2—C3—C4—C51.98 (19)C13—C14—C15—N221.70 (16)
C8—C3—C4—C5175.36 (13)C9—C14—C15—N2161.04 (11)
C3—C4—C5—C60.0 (2)N2—N3—C16—C17173.06 (11)
C4—C5—C6—C12.0 (2)C20—O2—C17—C180.28 (15)
C2—C1—C6—C52.09 (19)C20—O2—C17—C16175.78 (12)
N1—C1—C6—C5178.41 (12)N3—C16—C17—C18177.42 (14)
C1—N1—C9—C1014.2 (2)N3—C16—C17—O27.54 (18)
C1—N1—C9—C14169.88 (12)O2—C17—C18—C190.22 (16)
N1—C9—C10—C11178.26 (12)C16—C17—C18—C19175.15 (13)
C14—C9—C10—C112.20 (19)C17—C18—C19—C200.08 (17)
C9—C10—C11—C121.3 (2)C18—C19—C20—O20.10 (18)
C10—C11—C12—C130.4 (2)C17—O2—C20—C190.23 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C17–C20/O2 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.910 (19)1.977 (18)2.7045 (14)135.8 (15)
N2—H2···O1i0.883 (18)2.014 (18)2.8458 (13)156.4 (15)
C4—H4···Cg1ii0.955 (17)2.941 (17)3.7248 (15)140.1 (17)
C6—H6···O1iii0.976 (18)2.556 (18)3.3434 (16)137.7 (14)
C11—H11···Cg2iv0.996 (16)2.765 (16)3.6231 (14)144.8 (12)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x, y, z+1.
N'-[(E)-Benzylidene]-2-(2,3-dimethylanilino)-benzohydrazide (II) top
Crystal data top
C22H21N3OF(000) = 728
Mr = 343.42Dx = 1.256 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 14.3493 (8) ÅCell parameters from 9904 reflections
b = 15.7501 (9) Åθ = 4.3–74.6°
c = 8.3737 (5) ŵ = 0.62 mm1
β = 106.285 (2)°T = 150 K
V = 1816.55 (18) Å3Block, pale yellow
Z = 40.19 × 0.13 × 0.08 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
3665 independent reflections
Radiation source: INCOATEC IµS micro–focus source3140 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.4167 pixels mm-1θmax = 74.6°, θmin = 4.3°
ω scansh = 1716
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1918
Tmin = 0.86, Tmax = 0.95l = 109
13875 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037All H-atom parameters refined
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.444P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3665 reflectionsΔρmax = 0.17 e Å3
320 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL 2016/6 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0033 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44514 (6)0.33126 (6)0.43024 (9)0.0300 (2)
N10.62636 (8)0.39413 (8)0.53993 (14)0.0392 (3)
H10.5771 (13)0.3712 (11)0.458 (2)0.051 (5)*
N20.39227 (7)0.26174 (7)0.62519 (12)0.0287 (2)
H20.4042 (11)0.2421 (10)0.732 (2)0.040 (4)*
N30.30815 (7)0.23802 (7)0.50842 (12)0.0278 (2)
C10.70441 (8)0.43293 (8)0.49433 (14)0.0301 (3)
C20.75817 (9)0.38475 (8)0.41121 (14)0.0301 (3)
C30.83421 (9)0.42441 (9)0.36395 (15)0.0330 (3)
C40.85496 (10)0.50931 (9)0.40197 (17)0.0386 (3)
H40.9098 (13)0.5351 (11)0.367 (2)0.052 (5)*
C50.80049 (11)0.55653 (9)0.48198 (18)0.0411 (3)
H50.8132 (13)0.6202 (12)0.504 (2)0.053 (5)*
C60.72458 (10)0.51889 (9)0.52686 (16)0.0365 (3)
H60.6833 (13)0.5527 (12)0.578 (2)0.054 (5)*
C70.73544 (13)0.29257 (9)0.3725 (2)0.0451 (4)
H7A0.7008 (18)0.2847 (16)0.256 (3)0.095 (7)*
H7B0.7995 (19)0.2567 (16)0.388 (3)0.096 (8)*
H7C0.6979 (15)0.2671 (13)0.443 (3)0.072 (6)*
C80.89350 (12)0.37677 (12)0.2713 (2)0.0490 (4)
H8A0.8504 (15)0.3577 (13)0.155 (3)0.068 (6)*
H8B0.9499 (16)0.4120 (13)0.259 (2)0.074 (6)*
H8C0.9197 (17)0.3238 (15)0.328 (3)0.083 (7)*
C90.60826 (8)0.39908 (8)0.69193 (14)0.0300 (3)
C100.67446 (9)0.43734 (9)0.83041 (16)0.0356 (3)
H100.7358 (12)0.4613 (10)0.8156 (19)0.045 (4)*
C110.65461 (10)0.44332 (9)0.98135 (16)0.0391 (3)
H110.7018 (12)0.4732 (10)1.073 (2)0.045 (4)*
C120.56938 (10)0.41042 (9)1.00387 (16)0.0386 (3)
H120.5526 (12)0.4186 (11)1.110 (2)0.053 (5)*
C130.50518 (9)0.36998 (8)0.87248 (15)0.0323 (3)
H130.4448 (11)0.3485 (10)0.8855 (18)0.037 (4)*
C140.52311 (8)0.36209 (8)0.71679 (14)0.0273 (3)
C150.45190 (8)0.31809 (8)0.57935 (14)0.0259 (2)
C160.25463 (8)0.18507 (8)0.55850 (14)0.0283 (3)
H160.2745 (11)0.1595 (10)0.6724 (19)0.039 (4)*
C170.15643 (8)0.16629 (8)0.45380 (14)0.0270 (2)
C180.11897 (9)0.20627 (8)0.30028 (15)0.0325 (3)
H180.1624 (12)0.2442 (11)0.258 (2)0.046 (4)*
C190.02375 (10)0.19387 (9)0.20915 (17)0.0387 (3)
H190.0003 (12)0.2241 (11)0.098 (2)0.051 (5)*
C200.03663 (9)0.14166 (9)0.26957 (17)0.0377 (3)
H200.1059 (13)0.1325 (11)0.205 (2)0.050 (4)*
C210.00080 (9)0.10191 (9)0.42071 (17)0.0373 (3)
H210.0449 (13)0.0660 (11)0.467 (2)0.051 (4)*
C220.09561 (9)0.11354 (9)0.51326 (16)0.0333 (3)
H220.1219 (11)0.0868 (10)0.6234 (19)0.038 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0270 (4)0.0408 (5)0.0213 (4)0.0033 (3)0.0051 (3)0.0017 (3)
N10.0290 (5)0.0598 (8)0.0297 (5)0.0158 (5)0.0096 (4)0.0104 (5)
N20.0229 (5)0.0392 (6)0.0212 (5)0.0030 (4)0.0019 (4)0.0015 (4)
N30.0219 (5)0.0362 (6)0.0235 (5)0.0016 (4)0.0034 (4)0.0018 (4)
C10.0235 (5)0.0390 (7)0.0261 (6)0.0033 (5)0.0041 (4)0.0003 (5)
C20.0309 (6)0.0328 (6)0.0253 (6)0.0003 (5)0.0053 (5)0.0017 (5)
C30.0282 (6)0.0424 (7)0.0281 (6)0.0030 (5)0.0076 (5)0.0056 (5)
C40.0333 (7)0.0454 (8)0.0364 (7)0.0080 (6)0.0085 (5)0.0067 (6)
C50.0463 (8)0.0333 (7)0.0417 (7)0.0066 (6)0.0092 (6)0.0012 (6)
C60.0354 (7)0.0362 (7)0.0368 (7)0.0037 (5)0.0083 (5)0.0027 (5)
C70.0632 (10)0.0346 (7)0.0402 (8)0.0068 (7)0.0189 (7)0.0025 (6)
C80.0463 (8)0.0616 (10)0.0453 (9)0.0114 (8)0.0229 (7)0.0053 (7)
C90.0248 (5)0.0366 (7)0.0263 (6)0.0003 (5)0.0034 (4)0.0009 (5)
C100.0292 (6)0.0416 (7)0.0306 (6)0.0046 (5)0.0005 (5)0.0013 (5)
C110.0416 (7)0.0412 (7)0.0268 (6)0.0047 (6)0.0030 (5)0.0025 (5)
C120.0467 (7)0.0436 (8)0.0234 (6)0.0018 (6)0.0065 (5)0.0032 (5)
C130.0336 (6)0.0367 (7)0.0260 (6)0.0004 (5)0.0074 (5)0.0008 (5)
C140.0246 (5)0.0329 (6)0.0226 (5)0.0012 (5)0.0037 (4)0.0007 (4)
C150.0205 (5)0.0326 (6)0.0237 (5)0.0029 (4)0.0050 (4)0.0003 (4)
C160.0260 (6)0.0352 (6)0.0236 (5)0.0009 (5)0.0066 (4)0.0004 (5)
C170.0251 (6)0.0307 (6)0.0252 (5)0.0008 (5)0.0070 (4)0.0030 (4)
C180.0300 (6)0.0369 (7)0.0292 (6)0.0000 (5)0.0057 (5)0.0012 (5)
C190.0330 (7)0.0451 (8)0.0326 (7)0.0035 (6)0.0001 (5)0.0003 (6)
C200.0244 (6)0.0447 (8)0.0402 (7)0.0007 (5)0.0028 (5)0.0106 (6)
C210.0298 (6)0.0425 (7)0.0411 (7)0.0077 (6)0.0123 (5)0.0075 (6)
C220.0306 (6)0.0381 (7)0.0306 (6)0.0049 (5)0.0076 (5)0.0009 (5)
Geometric parameters (Å, º) top
O1—C151.2424 (14)C9—C101.4115 (17)
N1—C91.3707 (16)C9—C141.4208 (17)
N1—C11.4189 (16)C10—C111.3745 (19)
N1—H10.908 (18)C10—H100.997 (16)
N2—C151.3607 (16)C11—C121.389 (2)
N2—N31.3750 (13)C11—H110.990 (16)
N2—H20.913 (16)C12—C131.3770 (18)
N3—C161.2814 (16)C12—H120.988 (17)
C1—C61.3954 (19)C13—C141.4033 (16)
C1—C21.3987 (17)C13—H130.965 (16)
C2—C31.4068 (17)C14—C151.4796 (15)
C2—C71.5034 (19)C16—C171.4659 (16)
C3—C41.387 (2)C16—H161.000 (15)
C3—C81.5030 (19)C17—C221.3941 (17)
C4—C51.381 (2)C17—C181.3966 (17)
C4—H41.001 (17)C18—C191.3793 (18)
C5—C61.382 (2)C18—H180.997 (17)
C5—H51.026 (18)C19—C201.389 (2)
C6—H60.980 (18)C19—H191.013 (18)
C7—H7A0.97 (3)C20—C211.376 (2)
C7—H7B1.06 (3)C20—H201.000 (18)
C7—H7C0.99 (2)C21—C221.3952 (18)
C8—H8A1.04 (2)C21—H211.004 (18)
C8—H8B1.01 (2)C22—H220.988 (15)
C8—H8C0.98 (2)
C9—N1—C1126.50 (11)C11—C10—C9121.30 (12)
C9—N1—H1114.2 (11)C11—C10—H10120.4 (9)
C1—N1—H1118.4 (11)C9—C10—H10118.3 (9)
C15—N2—N3118.21 (10)C10—C11—C12121.11 (12)
C15—N2—H2122.4 (10)C10—C11—H11118.3 (9)
N3—N2—H2119.3 (10)C12—C11—H11120.6 (9)
C16—N3—N2115.55 (10)C13—C12—C11118.77 (12)
C6—C1—C2120.68 (11)C13—C12—H12120.0 (10)
C6—C1—N1120.10 (12)C11—C12—H12121.2 (10)
C2—C1—N1119.17 (12)C12—C13—C14121.83 (12)
C1—C2—C3118.60 (12)C12—C13—H13119.5 (9)
C1—C2—C7120.96 (12)C14—C13—H13118.6 (9)
C3—C2—C7120.44 (12)C13—C14—C9119.28 (11)
C4—C3—C2119.79 (12)C13—C14—C15119.84 (11)
C4—C3—C8118.91 (13)C9—C14—C15120.85 (10)
C2—C3—C8121.30 (13)O1—C15—N2120.95 (10)
C5—C4—C3121.08 (12)O1—C15—C14123.08 (10)
C5—C4—H4121.5 (10)N2—C15—C14115.96 (10)
C3—C4—H4117.4 (10)N3—C16—C17119.96 (11)
C4—C5—C6119.84 (13)N3—C16—H16122.5 (9)
C4—C5—H5121.3 (9)C17—C16—H16117.3 (9)
C6—C5—H5118.8 (10)C22—C17—C18118.65 (11)
C5—C6—C1119.96 (12)C22—C17—C16119.98 (11)
C5—C6—H6120.4 (10)C18—C17—C16121.12 (11)
C1—C6—H6119.6 (10)C19—C18—C17120.75 (12)
C2—C7—H7A111.1 (15)C19—C18—H18120.5 (9)
C2—C7—H7B111.2 (13)C17—C18—H18118.7 (9)
H7A—C7—H7B103.8 (19)C18—C19—C20120.31 (12)
C2—C7—H7C112.7 (12)C18—C19—H19118.0 (10)
H7A—C7—H7C109.5 (19)C20—C19—H19121.7 (10)
H7B—C7—H7C108.2 (18)C21—C20—C19119.62 (12)
C3—C8—H8A110.6 (11)C21—C20—H20119.3 (10)
C3—C8—H8B111.4 (12)C19—C20—H20121.0 (10)
H8A—C8—H8B110.3 (15)C20—C21—C22120.51 (12)
C3—C8—H8C111.8 (13)C20—C21—H21119.9 (10)
H8A—C8—H8C104.6 (17)C22—C21—H21119.6 (10)
H8B—C8—H8C107.9 (18)C17—C22—C21120.16 (12)
N1—C9—C10121.87 (11)C17—C22—H22118.3 (9)
N1—C9—C14120.49 (10)C21—C22—H22121.5 (9)
C10—C9—C14117.58 (11)
C15—N2—N3—C16179.78 (11)C12—C13—C14—C92.03 (19)
C9—N1—C1—C649.49 (19)C12—C13—C14—C15179.98 (12)
C9—N1—C1—C2132.87 (14)N1—C9—C14—C13178.39 (12)
C6—C1—C2—C31.20 (17)C10—C9—C14—C134.26 (18)
N1—C1—C2—C3178.83 (11)N1—C9—C14—C150.46 (18)
C6—C1—C2—C7178.68 (12)C10—C9—C14—C15177.81 (11)
N1—C1—C2—C71.05 (18)N3—N2—C15—O118.17 (17)
C1—C2—C3—C40.75 (18)N3—N2—C15—C14161.30 (10)
C7—C2—C3—C4179.36 (12)C13—C14—C15—O1156.06 (12)
C1—C2—C3—C8178.75 (12)C9—C14—C15—O121.86 (18)
C7—C2—C3—C81.13 (19)C13—C14—C15—N223.40 (16)
C2—C3—C4—C51.70 (19)C9—C14—C15—N2158.68 (11)
C8—C3—C4—C5177.82 (13)N2—N3—C16—C17169.95 (10)
C3—C4—C5—C60.7 (2)N3—C16—C17—C22175.28 (12)
C4—C5—C6—C11.3 (2)N3—C16—C17—C181.04 (18)
C2—C1—C6—C52.25 (19)C22—C17—C18—C190.02 (19)
N1—C1—C6—C5179.86 (12)C16—C17—C18—C19174.33 (12)
C1—N1—C9—C107.4 (2)C17—C18—C19—C200.4 (2)
C1—N1—C9—C14175.32 (12)C18—C19—C20—C210.3 (2)
N1—C9—C10—C11178.76 (13)C19—C20—C21—C220.1 (2)
C14—C9—C10—C113.9 (2)C18—C17—C22—C210.45 (19)
C9—C10—C11—C121.2 (2)C16—C17—C22—C21173.93 (12)
C10—C11—C12—C131.2 (2)C20—C21—C22—C170.5 (2)
C11—C12—C13—C140.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg3 are the centroids of the C1–C6 and C17–C22 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.908 (18)1.946 (18)2.6920 (13)138.2 (15)
N2—H2···O1i0.913 (16)1.974 (17)2.8564 (13)162.0 (14)
C4—H4···Cg3ii1.001 (17)2.796 (17)3.6141 (15)139.4 (13)
C6—H6···O1iii0.980 (18)2.583 (19)3.4815 (16)152.5 (13)
C20—H20···Cg1iv1.000 (18)2.838 (17)3.6644 (15)140.5 (13)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x1, y1/2, z3/2.
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationAbbas, A. (2017). Bull. Chem. Soc. Ethiop. 31, 171–175.  Google Scholar
First citationAl-Said, M. S., Bashandy, M. S., Al-qasoumi, S. I. & Ghorab, M. M. (2011). Eur. J. Med. Chem. 46, 137–141.  Web of Science CAS PubMed Google Scholar
First citationBhat, M. A., Abdel-Aziz, H. A., Ghabbour, H. A., Hemamalini, M. & Fun, H.-K. (2012). Acta Cryst. E68, o1135.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Chia, T. S., Bhat, M. A., Al-Omar, M. A. & Abdel-Aziz, H. A. (2012a). Acta Cryst. E68, o2524–o2525.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Chia, T. S., Elsaman, T., Attia, M. I. & Abdel-Aziz, H. A. (2012b). Acta Cryst. E68, o2527–o2528.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHernández, P., Cabrera, M., Lavaggi, M. L., Celano, L., Tiscornia, I., Rodrigues da Costa, T., Thomson, L., Bollati-Fogolín, M., Miranda, A. L. P., Lima, L. M., Barreiro, E. J., González, M. & Cerecetto, H. (2012). Bioorg. Med. Chem. 20, 2158–2171.  Web of Science PubMed Google Scholar
First citationJasinski, J. P., Akkurt, M., Mohamed, S. K., Dunkley, E. M. & Albayati, M. R. (2017). IUCrData, 2, x171187.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKumar, S., Bawa, S., Drabu, S., Kumar, R. & Machawal, L. (2010). Acta Pol. Pharm. 67, 567–573.  Web of Science CAS PubMed Google Scholar
First citationMaguene, G. M., Jakhlal, J., Ladyman, M., Vallin, A., Ralambomanana, D. A., Bousquet, T., Maugein, J., Lebibi, J. & Pélinski, L. (2011). Eur. J. Med. Chem. 46, 31–38.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMohamed, S. K., Jasinski, J. P., Akkurt, M., McGurk, E. A., Albayati, M. R. & Mohamed, A. F. (2017). IUCrData, 2, x171188.  Google Scholar
First citationMohamed, S. K., Mague, J. T., Akkurt, M., Mohamed, A. F. & Albayati, M. R. (2015). Acta Cryst. E71, o957–o958.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohareb, R. M., El-Sharkawy, K. A., Hussein, M. M. & El-Sehrawi, H. M. (2010). J. Pharm. Sci. Res. 2, 185–196.  CAS Google Scholar
First citationPringsheim, T., Davenport, W. J. & Dodick, D. (2008). Neurology, 70, 1555–1563.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddiqui, S. M., Salahuddin, A. & Azam, A. (2012). Eur. J. Med. Chem. 49, 411–416.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds