research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-[(E)-2-(4-bromo­phen­yl)diazen-1-yl]-4,5-bis­­(4-meth­­oxy­phen­yl)-1H-imidazole: the first example of a structurally characterized tri­aryl­azo­imid­azole

CROSSMARK_Color_square_no_text.svg

aChemistry Department, College of Natural and Computational Sciences, University of Gondar, 196 Gondar, Ethiopia, bN.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Ul. Kosygina 4, Moscow, Russian Federation, cPeoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation, dNesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Vavilova str., 28, Russian Federation, and eFaculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 100000, Vietnam
*Correspondence e-mail: Ayalew.t@uog.edu.et

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 19 January 2021; accepted 20 February 2021; online 26 February 2021)

The title compound, C23H19BrN4O2, is a product of an azo coupling reaction between 3,4-bis­(4-meth­oxy­phen­yl)imidazole and 4-bromo­phenyl­diazo­nium tetra­fluoro­borate. Its crystal structure was determined using data collected at 120 K. The mol­ecule adopts a trans configuration with respect to the N=N double bond. The imidazole and aryl rings attached to the azo linkage are coplanar within 12.73 (14)°, which indicates significant electron delocalization within the mol­ecule. In the crystal, the mol­ecules form centrosymmetric dimers via pairs of N—H⋯O hydrogen bonds.

1. Chemical context

Azo­imidazoles are a class of dyes that have found widespread applications in industry, as well as in laboratory research (Eymann et al., 2016[Eymann, L. Y. M., Tskhovrebov, A. G., Sienkiewicz, A., Bila, J. L., Živković, I., Rønnow, H. M., Wodrich, M. D., Vannay, L., Corminboeuf, C., Pattison, P., Solari, E., Scopelliti, R. & Severin, K. (2016). J. Am. Chem. Soc. 138, 15126-15129.]; Tskhovrebov et al., 2014[Tskhovrebov, A. G., Solari, E., Scopelliti, R. & Severin, K. (2014). Organometallics, 33, 2405-2408.]; Liu et al., 2019[Liu, Y., Varava, P., Fabrizio, A., Eymann, L. Y. M., Tskhovrebov, A. G., Planes, O. M., Solari, E., Fadaei-Tirani, F., Scopelliti, R., Sienkiewicz, A., Corminboeuf, C. & Severin, K. (2019). Chem. Sci. 10, 5719-5724.]). They are widely used for dyeing natural and synthetic fibers. In addition, they have found applications as photoswitches and hold promise for utilization in photopharmacology (Crespi et al., 2019[Crespi, S., Simeth, N. A. & König, B. (2019). Nat. Rev. Chem. 3, 133-146.]). Azo-functionalized imidazoles have been studied intensively as ligands in coordination chemistry (Sarker, Chand et al., 2007[Sarker, K. K., Chand, B. G., Suwa, K., Cheng, J., Lu, T. H., Otsuki, J. & Sinha, C. (2007). Inorg. Chem. 46, 670-680.]; Sarker, Sardar et al., 2007[Sarker, K. K., Sardar, D., Suwa, K., Otsuki, J. & Sinha, C. (2007). Inorg. Chem. 46, 8291-8301.]; Schütt et al., 2016[Schütt, C., Heitmann, G., Wendler, T., Krahwinkel, B. & Herges, R. (2016). J. Org. Chem. 81, 1206-1215.]; Das et al., 1997[Das, D., Nayak, M. K. & Sinha, C. (1997). Transit. Met. Chem. 22, 172-175.]; Misra et al., 1997[Misra, T. K., Das, D. & Sinha, C. (1997). Polyhedron, 16, 4163-4170.]). They are also attractive as chelating bidentate ligands. Azo­imidazole coordination compounds have been reported for numerous metals, some of them showing inter­esting photochromic properties (Sarker, Sardar et al., 2007[Sarker, K. K., Sardar, D., Suwa, K., Otsuki, J. & Sinha, C. (2007). Inorg. Chem. 46, 8291-8301.]; Sarker, Chand et al., 2007[Sarker, K. K., Chand, B. G., Suwa, K., Cheng, J., Lu, T. H., Otsuki, J. & Sinha, C. (2007). Inorg. Chem. 46, 670-680.]; Crespi et al., 2019[Crespi, S., Simeth, N. A. & König, B. (2019). Nat. Rev. Chem. 3, 133-146.]). Numerous publications have been devoted to the development of organic crystalline materials that contain various imidazole-based architectures (Akhriff et al., 2006[Akhriff, Y., Server-Carrió, J., García-Lozano, J., Folgado, J. V., Sancho, A., Escrivà, E., Vitoria, P. & Soto, L. (2006). Cryst. Growth Des. 6, 1124-1133.]). Following our inter­est in azo dyes (Nenajdenko et al., 2020[Nenajdenko, V. G., Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2020). Molecules, 25 No. 5013.]; Tskhovrebov, Vasileva et al., 2018[Tskhovrebov, A. G., Vasileva, A. A., Goddard, R., Riedel, T., Dyson, P. J., Mikhaylov, V. N., Serebryanskaya, T. V., Sorokoumov, V. N. & Haukka, M. (2018). Inorg. Chem. 57, 930-934.]), imidazole chemistry, imidazolylidenes and corresponding metal–carbene com­plexes (Tskhovrebov, Lingnau et al., 2019[Tskhovrebov, A. G., Lingnau, J. B. & Fürstner, A. (2019). Angew. Chem. Int. Ed. 58, 8834-8838.]; Tskhovrebov, Goddard et al., 2018[Tskhovrebov, A. G., Goddard, R. & Fürstner, A. (2018). Angew. Chem. Int. Ed. 57, 8089-8094.]; Mikhaylov et al., 2018[Mikhaylov, V. N., Sorokoumov, V. N., Liakhov, D. M., Tskhovrebov, A. G. & Balova, I. A. (2018). Catalysts. 8 No. 141.]; Tskhovrebov et al., 2012[Tskhovrebov, A. G., Luzyanin, K. V., Haukka, M. & Kukushkin, V. Y. (2012). J. Chem. Crystallogr. 42, 1170-1175.]), we report here the synthesis and crystal structure of (E)-2-[(4-bromo­phen­yl)diazen­yl]-4,5-bis­(4-meth­oxy­phen­yl)-1H-imidazole. Although azo­imidazoles form a widely studied class of azo compounds, tri­aryl­azo­imidazoles have never been structurally characterized. This work presents the first example of structurally characterized tri­aryl­azo­imidazole.

[Scheme 1]

The PASS program (Filimonov et al., 2014[Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V. & Poroikov, V. V. (2014). Chem. Heterocycl. Compd, 50, 444-457.]) predicted the potential activity of the title compound as a thiol protease inhibitor and an aspulvinone di­methyl­allyl­transferase inhib­itor at 81% and 76% probability levels, respectively.

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. Overall, bond dimensions within the mol­ecule are similar to those reported for structurally relevant azo compounds (Tskhovrebov et al., 2014[Tskhovrebov, A. G., Solari, E., Scopelliti, R. & Severin, K. (2014). Organometallics, 33, 2405-2408.], 2015[Tskhovrebov, A. G., Naested, L. C. E., Solari, E., Scopelliti, R. & Severin, K. (2015). Angew. Chem. Int. Ed. 54, 1289-1292.]; Liu et al., 2019[Liu, Y., Varava, P., Fabrizio, A., Eymann, L. Y. M., Tskhovrebov, A. G., Planes, O. M., Solari, E., Fadaei-Tirani, F., Scopelliti, R., Sienkiewicz, A., Corminboeuf, C. & Severin, K. (2019). Chem. Sci. 10, 5719-5724.]; Eymann et al., 2016[Eymann, L. Y. M., Tskhovrebov, A. G., Sienkiewicz, A., Bila, J. L., Živković, I., Rønnow, H. M., Wodrich, M. D., Vannay, L., Corminboeuf, C., Pattison, P., Solari, E., Scopelliti, R. & Severin, K. (2016). J. Am. Chem. Soc. 138, 15126-15129.]; Nenajdenko et al., 2020[Nenajdenko, V. G., Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2020). Molecules, 25 No. 5013.]). The mol­ecule adopts a trans configuration with respect to the azo double bond. The N=N bond distance of 1.274 (3) Å is slightly longer than that in azo­benzene. The imidazole and aryl rings attached to the azo group are coplanar within 12.73 (14)°, which indicates significant electron delocalization within the mol­ecule. The two other aromatic rings, C4–C9 and C11–C16, form dihedral angles with the plane of the imidazole ring of 60.64 (14) and 22.38 (13)°, respectively.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound. Displacement ellipsoids are shown at the 50% probability level. The hydrogen atoms are presented as small spheres of arbitrary radius.

3. Supra­molecular features

In the crystal, the title mol­ecules form centrosymmetric dimers via pairs of N—H⋯O hydrogen bonds (Fig. 2[link], Table 1[link]). A similar supra­molecular motif has previously been observed by our group (Repina et al., 2020[Repina, O. V., Novikov, A. S., Khoroshilova, O. V., Kritchenkov, A. S., Vasin, A. A. & Tskhovrebov, A. G. (2020). Inorg. Chim. Acta, 502 No. 119378.]; Tskhovrebov, Novikov et al., 2019[Tskhovrebov, A. G., Novikov, A. S., Odintsova, O. V., Mikhaylov, V. N., Sorokoumov, V. N., Serebryanskaya, T. V. & Starova, G. L. (2019). J. Organomet. Chem. 886, 71-75.]). The crystal packing involves some ππ stacking inter­actions (Fig. 3[link]) with a shortest inter­centroid separation of 3.792 (2) Å between two imidazole rings related by the symmetry operation 1 − x, 1 − y, 1 − z.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.80 (3) 2.17 (3) 2.963 (3) 169 (3)
Symmetry code: (i) [-x, -y+1, -z+1].
[Figure 2]
Figure 2
The hydrogen-bonded centrosymmetric dimer. Dashed lines indicate the N—H⋯O hydrogen bonds.
[Figure 3]
Figure 3
Crystal packing projected along the-a axis direction.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.41, update of March 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that this is the first example of a structurally characterized tri­aryl­azomidazole. At the same time, the CSD search revealed several examples of structurally similar azo­imidazoles, which contain a proton at the imidazolic N atom, viz. 2-[(4-bromo­phen­yl)diazen­yl]-1H-imidazole (Pramanik et al., 2010[Pramanik, A., Majumdar, S. & Das, G. (2010). CrystEngComm, 12, 250-259.]), 2-(1-naphthyl­diazen­yl)-1H-imidazole (Pramanik et al., 2010[Pramanik, A., Majumdar, S. & Das, G. (2010). CrystEngComm, 12, 250-259.]), 2-[4-(N,N-di­hydroxy­ethyl­amino)­phenyl­azo]-4,5-di­cyano­imidazole (Carella et al., 2004[Carella, A., Centore, R., Sirigu, A., Tuzi, A., Quatela, A., Schutzmann, S. & Casalboni, M. (2004). Macromol. Chem. Phys. 205, 1948-1954.]), phenyl­azo­imidazole (Fun et al., 1999[Fun, H.-K., Chinnakali, K., Chen, X.-F., Zhu, X.-H. & You, X.-Z. (1999). Acta Cryst. C55 IUC9900025.]), 4-(4,5-di­cyano-1H-imidazolyazo)-N,N-di­ethyl­aniline (Zhang et al., 2007[Zhang, Y., Zhang, G., Gan, Q., Wang, S., Xu, H. & Yang, G. (2007). Dyes Pigments, 74, 531-535.]), 2-(p-tolyl­azo)imidazole (Bhunia et al., 2006[Bhunia, P., Baruri, B., Ray, U., Sinha, C., Das, S., Cheng, J. & Lu, T.-H. (2006). Transition Met. Chem. 31, 310-315.]) and 3,3′-({4-[(4,5-di­cyano-1H-imidazol-2-yl)diazen­yl]phen­yl}im­ino) dipropionic acid (Centore et al., 2013[Centore, R., Piccialli, V. & Tuzi, A. (2013). Acta Cryst. E69, o802-o803.]).

5. Synthesis and crystallization

Tri­aryl­azo­imidazole was prepared according to the literature method (Fun et al., 1999[Fun, H.-K., Chinnakali, K., Chen, X.-F., Zhu, X.-H. & You, X.-Z. (1999). Acta Cryst. C55 IUC9900025.]) via azo coupling of p-bromo­phenyl­diazo­nium tetra­fluoro­borate with di(p-anis­yl)imidazole and isolated in 84% yield as a red solid. Crystals suitable for X-ray analysis were obtained by slow evaporation of a saturated MeOH solution.

6. Refinement

Crystal data, details of data collection, and results of structure refinement are summarized in Table 2[link]. The X-ray diffraction study was performed using the equipment of the Center for Mol­ecular Studies of INEOS RAS. The hydrogen atom of the NH group was localized in the difference-Fourier map and refined with a fixed isotropic displacement parameter [Uiso(H) = 1.2Ueq(N)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95–0.98 Å and refined using a riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for CH3 groups and Uiso(H) = 1.2Ueq(C) for other groups].

Table 2
Experimental details

Crystal data
Chemical formula C23H19BrN4O2
Mr 463.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 120
a, b, c (Å) 10.7812 (9), 12.7877 (11), 15.4575 (13)
β (°) 109.635 (2)
V3) 2007.2 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.08
Crystal size (mm) 0.33 × 0.21 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.597, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 22147, 6069, 3449
Rint 0.084
(sin θ/λ)max−1) 0.714
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.122, 1.00
No. of reflections 6069
No. of parameters 276
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.62
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-[(E)-2-(4-Bromophenyl)diazen-1-yl]-4,5-bis(4-methoxyphenyl)-1H-imidazole top
Crystal data top
C23H19BrN4O2F(000) = 944
Mr = 463.32Dx = 1.533 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.7812 (9) ÅCell parameters from 2288 reflections
b = 12.7877 (11) Åθ = 2.6–25.4°
c = 15.4575 (13) ŵ = 2.08 mm1
β = 109.635 (2)°T = 120 K
V = 2007.2 (3) Å3Plate, orange
Z = 40.33 × 0.21 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
3449 reflections with I > 2σ(I)
φ and ω scansRint = 0.084
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 30.5°, θmin = 2.0°
Tmin = 0.597, Tmax = 0.746h = 1415
22147 measured reflectionsk = 1818
6069 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: mixed
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0498P)2]
where P = (Fo2 + 2Fc2)/3
6069 reflections(Δ/σ)max < 0.001
276 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.61 e Å3
Special details top

Experimental. SADABS-2014/5 (Bruker, 2014/5) was used for absorption correction. wR2(int) was 0.0815 before and 0.0536 after correction. The Ratio of minimum to maximum transmission is 0.8000. The λ/2 correction factor is 0.00150.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.27445 (4)0.40711 (3)0.14822 (2)0.04431 (14)
O10.01642 (18)0.55364 (14)0.68807 (12)0.0212 (4)
O20.84035 (18)0.33604 (14)0.90163 (12)0.0249 (4)
N10.2914 (2)0.39235 (17)0.42224 (15)0.0191 (5)
H10.222 (3)0.410 (2)0.387 (2)0.023*
N20.5047 (2)0.35277 (17)0.47136 (14)0.0194 (5)
N30.4041 (2)0.36812 (17)0.30966 (15)0.0204 (5)
N40.2927 (2)0.38470 (16)0.24827 (15)0.0215 (5)
C10.3985 (3)0.36862 (19)0.39831 (17)0.0176 (5)
C20.4641 (3)0.37005 (19)0.54552 (17)0.0162 (5)
C30.3314 (3)0.39603 (19)0.51634 (17)0.0178 (5)
C40.2423 (3)0.43346 (19)0.56408 (17)0.0163 (5)
C50.2757 (3)0.5239 (2)0.61663 (17)0.0192 (6)
H50.35700.55770.62350.023*
C60.1921 (3)0.56603 (19)0.65933 (17)0.0177 (6)
H60.21610.62810.69490.021*
C70.0742 (3)0.51714 (19)0.64976 (17)0.0175 (5)
C80.0393 (3)0.4255 (2)0.59788 (18)0.0203 (6)
H80.04160.39150.59180.024*
C90.1230 (3)0.38447 (19)0.55551 (17)0.0190 (6)
H90.09900.32230.52020.023*
C100.0165 (3)0.6508 (2)0.7369 (2)0.0321 (7)
H10A0.02960.70480.69580.048*
H10B0.09780.64220.78950.048*
H10C0.05520.67170.75880.048*
C110.5584 (3)0.36163 (19)0.64007 (17)0.0175 (5)
C120.5186 (3)0.34390 (19)0.71556 (18)0.0195 (6)
H120.42730.33820.70650.023*
C130.6090 (3)0.3342 (2)0.80404 (18)0.0201 (6)
H130.58000.32030.85450.024*
C140.7421 (3)0.34526 (19)0.81732 (17)0.0199 (6)
C150.7843 (3)0.3655 (2)0.74336 (18)0.0208 (6)
H150.87530.37540.75310.025*
C160.6935 (3)0.3714 (2)0.65562 (18)0.0200 (6)
H160.72320.38220.60500.024*
C170.7997 (3)0.3123 (2)0.97884 (18)0.0289 (7)
H17A0.74330.25010.96520.043*
H17B0.75060.37160.99110.043*
H17C0.87750.29891.03290.043*
C180.2974 (3)0.38963 (19)0.15723 (18)0.0198 (6)
C190.4131 (3)0.3895 (2)0.13582 (18)0.0234 (6)
H190.49610.38720.18350.028*
C200.4069 (3)0.3928 (2)0.04512 (19)0.0270 (7)
H200.48510.39070.02980.032*
C210.2842 (3)0.3992 (2)0.02354 (18)0.0272 (7)
C220.1682 (3)0.4025 (2)0.0033 (2)0.0294 (7)
H220.08530.40750.05080.035*
C230.1765 (3)0.3983 (2)0.08831 (19)0.0250 (6)
H230.09840.40140.10370.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0599 (3)0.0551 (2)0.01949 (15)0.01172 (18)0.01531 (15)0.00843 (14)
O10.0173 (10)0.0258 (10)0.0236 (10)0.0033 (8)0.0110 (8)0.0072 (8)
O20.0192 (11)0.0302 (11)0.0220 (10)0.0016 (8)0.0025 (8)0.0041 (8)
N10.0171 (12)0.0223 (12)0.0187 (11)0.0021 (10)0.0073 (10)0.0012 (9)
N20.0197 (13)0.0231 (12)0.0192 (11)0.0024 (9)0.0116 (10)0.0030 (9)
N30.0207 (13)0.0200 (11)0.0223 (11)0.0010 (9)0.0098 (10)0.0001 (9)
N40.0229 (13)0.0228 (12)0.0212 (11)0.0008 (9)0.0105 (10)0.0023 (9)
C10.0159 (14)0.0201 (13)0.0200 (13)0.0009 (10)0.0103 (11)0.0004 (10)
C20.0165 (14)0.0168 (12)0.0180 (12)0.0010 (10)0.0096 (11)0.0015 (9)
C30.0200 (14)0.0182 (13)0.0170 (12)0.0008 (11)0.0089 (11)0.0011 (10)
C40.0156 (14)0.0189 (13)0.0157 (12)0.0033 (10)0.0068 (11)0.0025 (9)
C50.0158 (14)0.0244 (14)0.0180 (12)0.0027 (11)0.0062 (11)0.0012 (10)
C60.0177 (14)0.0189 (13)0.0167 (12)0.0004 (10)0.0062 (11)0.0008 (9)
C70.0159 (14)0.0224 (14)0.0162 (12)0.0029 (11)0.0080 (11)0.0024 (10)
C80.0159 (14)0.0224 (14)0.0235 (13)0.0059 (10)0.0080 (11)0.0009 (10)
C90.0214 (15)0.0171 (14)0.0204 (13)0.0001 (10)0.0095 (12)0.0023 (10)
C100.0271 (18)0.0387 (18)0.0361 (18)0.0066 (14)0.0181 (15)0.0197 (14)
C110.0213 (15)0.0138 (12)0.0204 (13)0.0017 (10)0.0108 (11)0.0014 (10)
C120.0167 (14)0.0206 (14)0.0228 (13)0.0000 (11)0.0087 (11)0.0022 (10)
C130.0216 (15)0.0205 (14)0.0200 (13)0.0005 (11)0.0094 (12)0.0015 (10)
C140.0197 (15)0.0154 (13)0.0210 (13)0.0009 (10)0.0021 (11)0.0008 (10)
C150.0176 (15)0.0185 (13)0.0289 (14)0.0020 (11)0.0112 (12)0.0030 (11)
C160.0179 (15)0.0199 (13)0.0251 (14)0.0019 (11)0.0112 (12)0.0025 (10)
C170.0272 (17)0.0354 (17)0.0201 (14)0.0006 (13)0.0027 (13)0.0011 (12)
C180.0239 (16)0.0168 (13)0.0215 (13)0.0027 (11)0.0113 (12)0.0003 (10)
C190.0246 (16)0.0261 (15)0.0205 (13)0.0041 (12)0.0087 (12)0.0030 (11)
C200.0264 (17)0.0315 (16)0.0271 (15)0.0039 (13)0.0141 (13)0.0044 (12)
C210.0401 (19)0.0242 (15)0.0184 (13)0.0012 (13)0.0113 (13)0.0024 (11)
C220.0322 (18)0.0274 (16)0.0235 (14)0.0054 (13)0.0028 (13)0.0007 (12)
C230.0203 (15)0.0297 (16)0.0245 (14)0.0048 (12)0.0069 (12)0.0008 (12)
Geometric parameters (Å, º) top
Br1—C211.897 (3)C10—H10A0.9800
O1—C71.382 (3)C10—H10B0.9800
O1—C101.435 (3)C10—H10C0.9800
O2—C141.381 (3)C11—C121.390 (4)
O2—C171.435 (3)C11—C161.400 (4)
N1—C11.360 (3)C12—C131.393 (4)
N1—C31.372 (3)C12—H120.9500
N1—H10.80 (3)C13—C141.387 (4)
N2—C11.326 (3)C13—H130.9500
N2—C21.375 (3)C14—C151.389 (4)
N3—N41.274 (3)C15—C161.382 (4)
N3—C11.392 (3)C15—H150.9500
N4—C181.427 (3)C16—H160.9500
C2—C31.388 (4)C17—H17A0.9800
C2—C111.477 (4)C17—H17B0.9800
C3—C41.474 (4)C17—H17C0.9800
C4—C51.390 (3)C18—C231.383 (4)
C4—C91.397 (4)C18—C191.393 (4)
C5—C61.392 (4)C19—C201.382 (4)
C5—H50.9500C19—H190.9500
C6—C71.379 (4)C20—C211.392 (4)
C6—H60.9500C20—H200.9500
C7—C81.399 (3)C21—C221.388 (5)
C8—C91.384 (4)C22—C231.389 (4)
C8—H80.9500C22—H220.9500
C9—H90.9500C23—H230.9500
C7—O1—C10115.6 (2)C12—C11—C2122.6 (2)
C14—O2—C17116.8 (2)C16—C11—C2119.6 (2)
C1—N1—C3107.6 (2)C11—C12—C13121.8 (3)
C1—N1—H1125 (2)C11—C12—H12119.1
C3—N1—H1127 (2)C13—C12—H12119.1
C1—N2—C2105.0 (2)C14—C13—C12119.0 (2)
N4—N3—C1113.0 (2)C14—C13—H13120.5
N3—N4—C18113.9 (2)C12—C13—H13120.5
N2—C1—N1111.8 (2)O2—C14—C13123.9 (2)
N2—C1—N3121.8 (2)O2—C14—C15115.7 (2)
N1—C1—N3126.2 (2)C13—C14—C15120.4 (2)
N2—C2—C3110.5 (2)C16—C15—C14119.9 (3)
N2—C2—C11120.5 (2)C16—C15—H15120.1
C3—C2—C11129.1 (2)C14—C15—H15120.1
N1—C3—C2105.0 (2)C15—C16—C11121.1 (2)
N1—C3—C4121.1 (2)C15—C16—H16119.4
C2—C3—C4133.5 (2)C11—C16—H16119.4
C5—C4—C9118.6 (2)O2—C17—H17A109.5
C5—C4—C3118.6 (2)O2—C17—H17B109.5
C9—C4—C3122.8 (2)H17A—C17—H17B109.5
C4—C5—C6121.2 (3)O2—C17—H17C109.5
C4—C5—H5119.4H17A—C17—H17C109.5
C6—C5—H5119.4H17B—C17—H17C109.5
C7—C6—C5119.6 (2)C23—C18—C19120.3 (2)
C7—C6—H6120.2C23—C18—N4115.2 (2)
C5—C6—H6120.2C19—C18—N4124.4 (2)
C6—C7—O1124.0 (2)C20—C19—C18119.9 (3)
C6—C7—C8120.1 (2)C20—C19—H19120.0
O1—C7—C8115.9 (2)C18—C19—H19120.0
C9—C8—C7119.8 (2)C19—C20—C21119.0 (3)
C9—C8—H8120.1C19—C20—H20120.5
C7—C8—H8120.1C21—C20—H20120.5
C8—C9—C4120.8 (2)C22—C21—C20121.8 (3)
C8—C9—H9119.6C22—C21—Br1118.8 (2)
C4—C9—H9119.6C20—C21—Br1119.4 (2)
O1—C10—H10A109.5C21—C22—C23118.3 (3)
O1—C10—H10B109.5C21—C22—H22120.8
H10A—C10—H10B109.5C23—C22—H22120.8
O1—C10—H10C109.5C18—C23—C22120.6 (3)
H10A—C10—H10C109.5C18—C23—H23119.7
H10B—C10—H10C109.5C22—C23—H23119.7
C12—C11—C16117.8 (2)
C1—N3—N4—C18177.1 (2)C3—C4—C9—C8176.7 (2)
C2—N2—C1—N11.7 (3)N2—C2—C11—C12158.2 (2)
C2—N2—C1—N3173.7 (2)C3—C2—C11—C1222.9 (4)
C3—N1—C1—N22.4 (3)N2—C2—C11—C1621.6 (3)
C3—N1—C1—N3172.7 (2)C3—C2—C11—C16157.2 (3)
N4—N3—C1—N2180.0 (2)C16—C11—C12—C131.1 (4)
N4—N3—C1—N15.3 (4)C2—C11—C12—C13178.8 (2)
C1—N2—C2—C30.4 (3)C11—C12—C13—C141.7 (4)
C1—N2—C2—C11178.7 (2)C17—O2—C14—C130.8 (4)
C1—N1—C3—C22.0 (3)C17—O2—C14—C15178.4 (2)
C1—N1—C3—C4171.9 (2)C12—C13—C14—O2179.2 (2)
N2—C2—C3—N11.0 (3)C12—C13—C14—C150.1 (4)
C11—C2—C3—N1180.0 (2)O2—C14—C15—C16177.1 (2)
N2—C2—C3—C4171.7 (3)C13—C14—C15—C162.1 (4)
C11—C2—C3—C47.2 (5)C14—C15—C16—C112.7 (4)
N1—C3—C4—C5115.9 (3)C12—C11—C16—C151.2 (4)
C2—C3—C4—C555.9 (4)C2—C11—C16—C15179.0 (2)
N1—C3—C4—C961.2 (3)N3—N4—C18—C23174.5 (2)
C2—C3—C4—C9127.0 (3)N3—N4—C18—C197.5 (4)
C9—C4—C5—C60.6 (4)C23—C18—C19—C203.2 (4)
C3—C4—C5—C6176.6 (2)N4—C18—C19—C20178.9 (2)
C4—C5—C6—C70.2 (4)C18—C19—C20—C211.8 (4)
C5—C6—C7—O1178.9 (2)C19—C20—C21—C220.1 (4)
C5—C6—C7—C80.4 (4)C19—C20—C21—Br1178.5 (2)
C10—O1—C7—C62.6 (4)C20—C21—C22—C230.6 (4)
C10—O1—C7—C8176.7 (2)Br1—C21—C22—C23179.0 (2)
C6—C7—C8—C90.6 (4)C19—C18—C23—C222.8 (4)
O1—C7—C8—C9178.7 (2)N4—C18—C23—C22179.2 (2)
C7—C8—C9—C40.1 (4)C21—C22—C23—C180.8 (4)
C5—C4—C9—C80.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.80 (3)2.17 (3)2.963 (3)169 (3)
Symmetry code: (i) x, y+1, z+1.
 

Funding information

Funding for this research was provided by: Russian Science Foundation (award No. 20-73-00094).

References

First citationAkhriff, Y., Server-Carrió, J., García-Lozano, J., Folgado, J. V., Sancho, A., Escrivà, E., Vitoria, P. & Soto, L. (2006). Cryst. Growth Des. 6, 1124–1133.  Web of Science CSD CrossRef CAS Google Scholar
First citationBhunia, P., Baruri, B., Ray, U., Sinha, C., Das, S., Cheng, J. & Lu, T.-H. (2006). Transition Met. Chem. 31, 310–315.  CrossRef CAS Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarella, A., Centore, R., Sirigu, A., Tuzi, A., Quatela, A., Schutzmann, S. & Casalboni, M. (2004). Macromol. Chem. Phys. 205, 1948–1954.  Web of Science CSD CrossRef CAS Google Scholar
First citationCentore, R., Piccialli, V. & Tuzi, A. (2013). Acta Cryst. E69, o802–o803.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationCrespi, S., Simeth, N. A. & König, B. (2019). Nat. Rev. Chem. 3, 133–146.  CrossRef CAS Google Scholar
First citationDas, D., Nayak, M. K. & Sinha, C. (1997). Transit. Met. Chem. 22, 172–175.  CrossRef CAS Google Scholar
First citationEymann, L. Y. M., Tskhovrebov, A. G., Sienkiewicz, A., Bila, J. L., Živković, I., Rønnow, H. M., Wodrich, M. D., Vannay, L., Corminboeuf, C., Pattison, P., Solari, E., Scopelliti, R. & Severin, K. (2016). J. Am. Chem. Soc. 138, 15126–15129.  CrossRef CAS PubMed Google Scholar
First citationFilimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V. & Poroikov, V. V. (2014). Chem. Heterocycl. Compd, 50, 444–457.  Web of Science CrossRef CAS Google Scholar
First citationFun, H.-K., Chinnakali, K., Chen, X.-F., Zhu, X.-H. & You, X.-Z. (1999). Acta Cryst. C55 IUC9900025.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLiu, Y., Varava, P., Fabrizio, A., Eymann, L. Y. M., Tskhovrebov, A. G., Planes, O. M., Solari, E., Fadaei-Tirani, F., Scopelliti, R., Sienkiewicz, A., Corminboeuf, C. & Severin, K. (2019). Chem. Sci. 10, 5719–5724.  CrossRef CAS PubMed Google Scholar
First citationMikhaylov, V. N., Sorokoumov, V. N., Liakhov, D. M., Tskhovrebov, A. G. & Balova, I. A. (2018). Catalysts. 8 No. 141.  Google Scholar
First citationMisra, T. K., Das, D. & Sinha, C. (1997). Polyhedron, 16, 4163–4170.  CrossRef CAS Google Scholar
First citationNenajdenko, V. G., Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2020). Molecules, 25 No. 5013.  Google Scholar
First citationPramanik, A., Majumdar, S. & Das, G. (2010). CrystEngComm, 12, 250–259.  Web of Science CSD CrossRef CAS Google Scholar
First citationRepina, O. V., Novikov, A. S., Khoroshilova, O. V., Kritchenkov, A. S., Vasin, A. A. & Tskhovrebov, A. G. (2020). Inorg. Chim. Acta, 502 No. 119378.  Google Scholar
First citationSarker, K. K., Chand, B. G., Suwa, K., Cheng, J., Lu, T. H., Otsuki, J. & Sinha, C. (2007). Inorg. Chem. 46, 670–680.  CrossRef PubMed CAS Google Scholar
First citationSarker, K. K., Sardar, D., Suwa, K., Otsuki, J. & Sinha, C. (2007). Inorg. Chem. 46, 8291–8301.  CrossRef PubMed CAS Google Scholar
First citationSchütt, C., Heitmann, G., Wendler, T., Krahwinkel, B. & Herges, R. (2016). J. Org. Chem. 81, 1206–1215.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTskhovrebov, A. G., Goddard, R. & Fürstner, A. (2018). Angew. Chem. Int. Ed. 57, 8089–8094.  CrossRef CAS Google Scholar
First citationTskhovrebov, A. G., Lingnau, J. B. & Fürstner, A. (2019). Angew. Chem. Int. Ed. 58, 8834–8838.  CrossRef CAS Google Scholar
First citationTskhovrebov, A. G., Luzyanin, K. V., Haukka, M. & Kukushkin, V. Y. (2012). J. Chem. Crystallogr. 42, 1170–1175.  CrossRef CAS Google Scholar
First citationTskhovrebov, A. G., Naested, L. C. E., Solari, E., Scopelliti, R. & Severin, K. (2015). Angew. Chem. Int. Ed. 54, 1289–1292.  CrossRef CAS Google Scholar
First citationTskhovrebov, A. G., Novikov, A. S., Odintsova, O. V., Mikhaylov, V. N., Sorokoumov, V. N., Serebryanskaya, T. V. & Starova, G. L. (2019). J. Organomet. Chem. 886, 71–75.  Web of Science CSD CrossRef CAS Google Scholar
First citationTskhovrebov, A. G., Solari, E., Scopelliti, R. & Severin, K. (2014). Organometallics, 33, 2405–2408.  Web of Science CSD CrossRef CAS Google Scholar
First citationTskhovrebov, A. G., Vasileva, A. A., Goddard, R., Riedel, T., Dyson, P. J., Mikhaylov, V. N., Serebryanskaya, T. V., Sorokoumov, V. N. & Haukka, M. (2018). Inorg. Chem. 57, 930–934.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, Y., Zhang, G., Gan, Q., Wang, S., Xu, H. & Yang, G. (2007). Dyes Pigments, 74, 531–535.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds