research communications
E)-2-(4-bromophenyl)diazen-1-yl]-4,5-bis(4-methoxyphenyl)-1H-imidazole: the first example of a structurally characterized triarylazoimidazole
of 2-[(aChemistry Department, College of Natural and Computational Sciences, University of Gondar, 196 Gondar, Ethiopia, bN.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Ul. Kosygina 4, Moscow, Russian Federation, cPeoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation, dNesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Vavilova str., 28, Russian Federation, and eFaculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi, 100000, Vietnam
*Correspondence e-mail: Ayalew.t@uog.edu.et
The title compound, C23H19BrN4O2, is a product of an azo coupling reaction between 3,4-bis(4-methoxyphenyl)imidazole and 4-bromophenyldiazonium tetrafluoroborate. Its was determined using data collected at 120 K. The molecule adopts a trans configuration with respect to the N=N double bond. The imidazole and aryl rings attached to the azo linkage are coplanar within 12.73 (14)°, which indicates significant electron delocalization within the molecule. In the crystal, the molecules form centrosymmetric dimers via pairs of N—H⋯O hydrogen bonds.
Keywords: crystal structure; azoimidazoles; nitrogen heterocycles; dyes; PASS program.
CCDC reference: 2064019
1. Chemical context
Azoimidazoles are a class of dyes that have found widespread applications in industry, as well as in laboratory research (Eymann et al., 2016; Tskhovrebov et al., 2014; Liu et al., 2019). They are widely used for dyeing natural and synthetic fibers. In addition, they have found applications as photoswitches and hold promise for utilization in photopharmacology (Crespi et al., 2019). Azo-functionalized imidazoles have been studied intensively as ligands in coordination chemistry (Sarker, Chand et al., 2007; Sarker, Sardar et al., 2007; Schütt et al., 2016; Das et al., 1997; Misra et al., 1997). They are also attractive as chelating bidentate ligands. Azoimidazole coordination compounds have been reported for numerous metals, some of them showing interesting photochromic properties (Sarker, Sardar et al., 2007; Sarker, Chand et al., 2007; Crespi et al., 2019). Numerous publications have been devoted to the development of organic crystalline materials that contain various imidazole-based architectures (Akhriff et al., 2006). Following our interest in azo dyes (Nenajdenko et al., 2020; Tskhovrebov, Vasileva et al., 2018), imidazole chemistry, imidazolylidenes and corresponding metal–carbene complexes (Tskhovrebov, Lingnau et al., 2019; Tskhovrebov, Goddard et al., 2018; Mikhaylov et al., 2018; Tskhovrebov et al., 2012), we report here the synthesis and of (E)-2-[(4-bromophenyl)diazenyl]-4,5-bis(4-methoxyphenyl)-1H-imidazole. Although azoimidazoles form a widely studied class of triarylazoimidazoles have never been structurally characterized. This work presents the first example of structurally characterized triarylazoimidazole.
The PASS program (Filimonov et al., 2014) predicted the potential activity of the title compound as a thiol protease inhibitor and an aspulvinone dimethylallyltransferase inhibitor at 81% and 76% probability levels, respectively.
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. Overall, bond dimensions within the molecule are similar to those reported for structurally relevant (Tskhovrebov et al., 2014, 2015; Liu et al., 2019; Eymann et al., 2016; Nenajdenko et al., 2020). The molecule adopts a trans configuration with respect to the azo double bond. The N=N bond distance of 1.274 (3) Å is slightly longer than that in azobenzene. The imidazole and aryl rings attached to the azo group are coplanar within 12.73 (14)°, which indicates significant electron delocalization within the molecule. The two other aromatic rings, C4–C9 and C11–C16, form dihedral angles with the plane of the imidazole ring of 60.64 (14) and 22.38 (13)°, respectively.
3. Supramolecular features
In the crystal, the title molecules form centrosymmetric dimers via pairs of N—H⋯O hydrogen bonds (Fig. 2, Table 1). A similar supramolecular motif has previously been observed by our group (Repina et al., 2020; Tskhovrebov, Novikov et al., 2019). The crystal packing involves some π–π stacking interactions (Fig. 3) with a shortest intercentroid separation of 3.792 (2) Å between two imidazole rings related by the 1 − x, 1 − y, 1 − z.
4. Database survey
A search of the Cambridge Structural Database (CSD version 5.41, update of March 2020; Groom et al., 2016) revealed that this is the first example of a structurally characterized triarylazomidazole. At the same time, the CSD search revealed several examples of structurally similar azoimidazoles, which contain a proton at the imidazolic N atom, viz. 2-[(4-bromophenyl)diazenyl]-1H-imidazole (Pramanik et al., 2010), 2-(1-naphthyldiazenyl)-1H-imidazole (Pramanik et al., 2010), 2-[4-(N,N-dihydroxyethylamino)phenylazo]-4,5-dicyanoimidazole (Carella et al., 2004), phenylazoimidazole (Fun et al., 1999), 4-(4,5-dicyano-1H-imidazolyazo)-N,N-diethylaniline (Zhang et al., 2007), 2-(p-tolylazo)imidazole (Bhunia et al., 2006) and 3,3′-({4-[(4,5-dicyano-1H-imidazol-2-yl)diazenyl]phenyl}imino) dipropionic acid (Centore et al., 2013).
5. Synthesis and crystallization
Triarylazoimidazole was prepared according to the literature method (Fun et al., 1999) via azo coupling of p-bromophenyldiazonium tetrafluoroborate with di(p-anisyl)imidazole and isolated in 84% yield as a red solid. Crystals suitable for X-ray analysis were obtained by slow evaporation of a saturated MeOH solution.
6. Refinement
Crystal data, details of data collection, and results of structure . The X-ray diffraction study was performed using the equipment of the Center for Molecular Studies of INEOS RAS. The hydrogen atom of the NH group was localized in the difference-Fourier map and refined with a fixed isotropic displacement parameter [Uiso(H) = 1.2Ueq(N)]. The other hydrogen atoms were placed in calculated positions with C—H = 0.95–0.98 Å and refined using a riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for CH3 groups and Uiso(H) = 1.2Ueq(C) for other groups].
are summarized in Table 2Supporting information
CCDC reference: 2064019
https://doi.org/10.1107/S2056989021002024/yk2143sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021002024/yk2143Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021002024/yk2143Isup3.cml
Data collection: APEX3 (Bruker, 2018); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C23H19BrN4O2 | F(000) = 944 |
Mr = 463.32 | Dx = 1.533 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.7812 (9) Å | Cell parameters from 2288 reflections |
b = 12.7877 (11) Å | θ = 2.6–25.4° |
c = 15.4575 (13) Å | µ = 2.08 mm−1 |
β = 109.635 (2)° | T = 120 K |
V = 2007.2 (3) Å3 | Plate, orange |
Z = 4 | 0.33 × 0.21 × 0.08 mm |
Bruker APEXII CCD diffractometer | 3449 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.084 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 30.5°, θmin = 2.0° |
Tmin = 0.597, Tmax = 0.746 | h = −14→15 |
22147 measured reflections | k = −18→18 |
6069 independent reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: mixed |
wR(F2) = 0.122 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0498P)2] where P = (Fo2 + 2Fc2)/3 |
6069 reflections | (Δ/σ)max < 0.001 |
276 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.61 e Å−3 |
Experimental. SADABS-2014/5 (Bruker, 2014/5) was used for absorption correction. wR2(int) was 0.0815 before and 0.0536 after correction. The Ratio of minimum to maximum transmission is 0.8000. The λ/2 correction factor is 0.00150. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.27445 (4) | 0.40711 (3) | −0.14822 (2) | 0.04431 (14) | |
O1 | −0.01642 (18) | 0.55364 (14) | 0.68807 (12) | 0.0212 (4) | |
O2 | 0.84035 (18) | 0.33604 (14) | 0.90163 (12) | 0.0249 (4) | |
N1 | 0.2914 (2) | 0.39235 (17) | 0.42224 (15) | 0.0191 (5) | |
H1 | 0.222 (3) | 0.410 (2) | 0.387 (2) | 0.023* | |
N2 | 0.5047 (2) | 0.35277 (17) | 0.47136 (14) | 0.0194 (5) | |
N3 | 0.4041 (2) | 0.36812 (17) | 0.30966 (15) | 0.0204 (5) | |
N4 | 0.2927 (2) | 0.38470 (16) | 0.24827 (15) | 0.0215 (5) | |
C1 | 0.3985 (3) | 0.36862 (19) | 0.39831 (17) | 0.0176 (5) | |
C2 | 0.4641 (3) | 0.37005 (19) | 0.54552 (17) | 0.0162 (5) | |
C3 | 0.3314 (3) | 0.39603 (19) | 0.51634 (17) | 0.0178 (5) | |
C4 | 0.2423 (3) | 0.43346 (19) | 0.56408 (17) | 0.0163 (5) | |
C5 | 0.2757 (3) | 0.5239 (2) | 0.61663 (17) | 0.0192 (6) | |
H5 | 0.3570 | 0.5577 | 0.6235 | 0.023* | |
C6 | 0.1921 (3) | 0.56603 (19) | 0.65933 (17) | 0.0177 (6) | |
H6 | 0.2161 | 0.6281 | 0.6949 | 0.021* | |
C7 | 0.0742 (3) | 0.51714 (19) | 0.64976 (17) | 0.0175 (5) | |
C8 | 0.0393 (3) | 0.4255 (2) | 0.59788 (18) | 0.0203 (6) | |
H8 | −0.0416 | 0.3915 | 0.5918 | 0.024* | |
C9 | 0.1230 (3) | 0.38447 (19) | 0.55551 (17) | 0.0190 (6) | |
H9 | 0.0990 | 0.3223 | 0.5202 | 0.023* | |
C10 | 0.0165 (3) | 0.6508 (2) | 0.7369 (2) | 0.0321 (7) | |
H10A | 0.0296 | 0.7048 | 0.6958 | 0.048* | |
H10B | 0.0978 | 0.6422 | 0.7895 | 0.048* | |
H10C | −0.0552 | 0.6717 | 0.7588 | 0.048* | |
C11 | 0.5584 (3) | 0.36163 (19) | 0.64007 (17) | 0.0175 (5) | |
C12 | 0.5186 (3) | 0.34390 (19) | 0.71556 (18) | 0.0195 (6) | |
H12 | 0.4273 | 0.3382 | 0.7065 | 0.023* | |
C13 | 0.6090 (3) | 0.3342 (2) | 0.80404 (18) | 0.0201 (6) | |
H13 | 0.5800 | 0.3203 | 0.8545 | 0.024* | |
C14 | 0.7421 (3) | 0.34526 (19) | 0.81732 (17) | 0.0199 (6) | |
C15 | 0.7843 (3) | 0.3655 (2) | 0.74336 (18) | 0.0208 (6) | |
H15 | 0.8753 | 0.3754 | 0.7531 | 0.025* | |
C16 | 0.6935 (3) | 0.3714 (2) | 0.65562 (18) | 0.0200 (6) | |
H16 | 0.7232 | 0.3822 | 0.6050 | 0.024* | |
C17 | 0.7997 (3) | 0.3123 (2) | 0.97884 (18) | 0.0289 (7) | |
H17A | 0.7433 | 0.2501 | 0.9652 | 0.043* | |
H17B | 0.7506 | 0.3716 | 0.9911 | 0.043* | |
H17C | 0.8775 | 0.2989 | 1.0329 | 0.043* | |
C18 | 0.2974 (3) | 0.38963 (19) | 0.15723 (18) | 0.0198 (6) | |
C19 | 0.4131 (3) | 0.3895 (2) | 0.13582 (18) | 0.0234 (6) | |
H19 | 0.4961 | 0.3872 | 0.1835 | 0.028* | |
C20 | 0.4069 (3) | 0.3928 (2) | 0.04512 (19) | 0.0270 (7) | |
H20 | 0.4851 | 0.3907 | 0.0298 | 0.032* | |
C21 | 0.2842 (3) | 0.3992 (2) | −0.02354 (18) | 0.0272 (7) | |
C22 | 0.1682 (3) | 0.4025 (2) | −0.0033 (2) | 0.0294 (7) | |
H22 | 0.0853 | 0.4075 | −0.0508 | 0.035* | |
C23 | 0.1765 (3) | 0.3983 (2) | 0.08831 (19) | 0.0250 (6) | |
H23 | 0.0984 | 0.4014 | 0.1037 | 0.030* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0599 (3) | 0.0551 (2) | 0.01949 (15) | 0.01172 (18) | 0.01531 (15) | 0.00843 (14) |
O1 | 0.0173 (10) | 0.0258 (10) | 0.0236 (10) | −0.0033 (8) | 0.0110 (8) | −0.0072 (8) |
O2 | 0.0192 (11) | 0.0302 (11) | 0.0220 (10) | −0.0016 (8) | 0.0025 (8) | 0.0041 (8) |
N1 | 0.0171 (12) | 0.0223 (12) | 0.0187 (11) | 0.0021 (10) | 0.0073 (10) | 0.0012 (9) |
N2 | 0.0197 (13) | 0.0231 (12) | 0.0192 (11) | 0.0024 (9) | 0.0116 (10) | 0.0030 (9) |
N3 | 0.0207 (13) | 0.0200 (11) | 0.0223 (11) | 0.0010 (9) | 0.0098 (10) | 0.0001 (9) |
N4 | 0.0229 (13) | 0.0228 (12) | 0.0212 (11) | −0.0008 (9) | 0.0105 (10) | −0.0023 (9) |
C1 | 0.0159 (14) | 0.0201 (13) | 0.0200 (13) | 0.0009 (10) | 0.0103 (11) | −0.0004 (10) |
C2 | 0.0165 (14) | 0.0168 (12) | 0.0180 (12) | −0.0010 (10) | 0.0096 (11) | 0.0015 (9) |
C3 | 0.0200 (14) | 0.0182 (13) | 0.0170 (12) | 0.0008 (11) | 0.0089 (11) | 0.0011 (10) |
C4 | 0.0156 (14) | 0.0189 (13) | 0.0157 (12) | 0.0033 (10) | 0.0068 (11) | 0.0025 (9) |
C5 | 0.0158 (14) | 0.0244 (14) | 0.0180 (12) | −0.0027 (11) | 0.0062 (11) | 0.0012 (10) |
C6 | 0.0177 (14) | 0.0189 (13) | 0.0167 (12) | −0.0004 (10) | 0.0062 (11) | −0.0008 (9) |
C7 | 0.0159 (14) | 0.0224 (14) | 0.0162 (12) | 0.0029 (11) | 0.0080 (11) | 0.0024 (10) |
C8 | 0.0159 (14) | 0.0224 (14) | 0.0235 (13) | −0.0059 (10) | 0.0080 (11) | −0.0009 (10) |
C9 | 0.0214 (15) | 0.0171 (14) | 0.0204 (13) | 0.0001 (10) | 0.0095 (12) | −0.0023 (10) |
C10 | 0.0271 (18) | 0.0387 (18) | 0.0361 (18) | −0.0066 (14) | 0.0181 (15) | −0.0197 (14) |
C11 | 0.0213 (15) | 0.0138 (12) | 0.0204 (13) | 0.0017 (10) | 0.0108 (11) | 0.0014 (10) |
C12 | 0.0167 (14) | 0.0206 (14) | 0.0228 (13) | 0.0000 (11) | 0.0087 (11) | 0.0022 (10) |
C13 | 0.0216 (15) | 0.0205 (14) | 0.0200 (13) | 0.0005 (11) | 0.0094 (12) | 0.0015 (10) |
C14 | 0.0197 (15) | 0.0154 (13) | 0.0210 (13) | −0.0009 (10) | 0.0021 (11) | 0.0008 (10) |
C15 | 0.0176 (15) | 0.0185 (13) | 0.0289 (14) | 0.0020 (11) | 0.0112 (12) | 0.0030 (11) |
C16 | 0.0179 (15) | 0.0199 (13) | 0.0251 (14) | 0.0019 (11) | 0.0112 (12) | 0.0025 (10) |
C17 | 0.0272 (17) | 0.0354 (17) | 0.0201 (14) | −0.0006 (13) | 0.0027 (13) | 0.0011 (12) |
C18 | 0.0239 (16) | 0.0168 (13) | 0.0215 (13) | −0.0027 (11) | 0.0113 (12) | 0.0003 (10) |
C19 | 0.0246 (16) | 0.0261 (15) | 0.0205 (13) | 0.0041 (12) | 0.0087 (12) | 0.0030 (11) |
C20 | 0.0264 (17) | 0.0315 (16) | 0.0271 (15) | 0.0039 (13) | 0.0141 (13) | 0.0044 (12) |
C21 | 0.0401 (19) | 0.0242 (15) | 0.0184 (13) | 0.0012 (13) | 0.0113 (13) | 0.0024 (11) |
C22 | 0.0322 (18) | 0.0274 (16) | 0.0235 (14) | −0.0054 (13) | 0.0028 (13) | −0.0007 (12) |
C23 | 0.0203 (15) | 0.0297 (16) | 0.0245 (14) | −0.0048 (12) | 0.0069 (12) | −0.0008 (12) |
Br1—C21 | 1.897 (3) | C10—H10A | 0.9800 |
O1—C7 | 1.382 (3) | C10—H10B | 0.9800 |
O1—C10 | 1.435 (3) | C10—H10C | 0.9800 |
O2—C14 | 1.381 (3) | C11—C12 | 1.390 (4) |
O2—C17 | 1.435 (3) | C11—C16 | 1.400 (4) |
N1—C1 | 1.360 (3) | C12—C13 | 1.393 (4) |
N1—C3 | 1.372 (3) | C12—H12 | 0.9500 |
N1—H1 | 0.80 (3) | C13—C14 | 1.387 (4) |
N2—C1 | 1.326 (3) | C13—H13 | 0.9500 |
N2—C2 | 1.375 (3) | C14—C15 | 1.389 (4) |
N3—N4 | 1.274 (3) | C15—C16 | 1.382 (4) |
N3—C1 | 1.392 (3) | C15—H15 | 0.9500 |
N4—C18 | 1.427 (3) | C16—H16 | 0.9500 |
C2—C3 | 1.388 (4) | C17—H17A | 0.9800 |
C2—C11 | 1.477 (4) | C17—H17B | 0.9800 |
C3—C4 | 1.474 (4) | C17—H17C | 0.9800 |
C4—C5 | 1.390 (3) | C18—C23 | 1.383 (4) |
C4—C9 | 1.397 (4) | C18—C19 | 1.393 (4) |
C5—C6 | 1.392 (4) | C19—C20 | 1.382 (4) |
C5—H5 | 0.9500 | C19—H19 | 0.9500 |
C6—C7 | 1.379 (4) | C20—C21 | 1.392 (4) |
C6—H6 | 0.9500 | C20—H20 | 0.9500 |
C7—C8 | 1.399 (3) | C21—C22 | 1.388 (5) |
C8—C9 | 1.384 (4) | C22—C23 | 1.389 (4) |
C8—H8 | 0.9500 | C22—H22 | 0.9500 |
C9—H9 | 0.9500 | C23—H23 | 0.9500 |
C7—O1—C10 | 115.6 (2) | C12—C11—C2 | 122.6 (2) |
C14—O2—C17 | 116.8 (2) | C16—C11—C2 | 119.6 (2) |
C1—N1—C3 | 107.6 (2) | C11—C12—C13 | 121.8 (3) |
C1—N1—H1 | 125 (2) | C11—C12—H12 | 119.1 |
C3—N1—H1 | 127 (2) | C13—C12—H12 | 119.1 |
C1—N2—C2 | 105.0 (2) | C14—C13—C12 | 119.0 (2) |
N4—N3—C1 | 113.0 (2) | C14—C13—H13 | 120.5 |
N3—N4—C18 | 113.9 (2) | C12—C13—H13 | 120.5 |
N2—C1—N1 | 111.8 (2) | O2—C14—C13 | 123.9 (2) |
N2—C1—N3 | 121.8 (2) | O2—C14—C15 | 115.7 (2) |
N1—C1—N3 | 126.2 (2) | C13—C14—C15 | 120.4 (2) |
N2—C2—C3 | 110.5 (2) | C16—C15—C14 | 119.9 (3) |
N2—C2—C11 | 120.5 (2) | C16—C15—H15 | 120.1 |
C3—C2—C11 | 129.1 (2) | C14—C15—H15 | 120.1 |
N1—C3—C2 | 105.0 (2) | C15—C16—C11 | 121.1 (2) |
N1—C3—C4 | 121.1 (2) | C15—C16—H16 | 119.4 |
C2—C3—C4 | 133.5 (2) | C11—C16—H16 | 119.4 |
C5—C4—C9 | 118.6 (2) | O2—C17—H17A | 109.5 |
C5—C4—C3 | 118.6 (2) | O2—C17—H17B | 109.5 |
C9—C4—C3 | 122.8 (2) | H17A—C17—H17B | 109.5 |
C4—C5—C6 | 121.2 (3) | O2—C17—H17C | 109.5 |
C4—C5—H5 | 119.4 | H17A—C17—H17C | 109.5 |
C6—C5—H5 | 119.4 | H17B—C17—H17C | 109.5 |
C7—C6—C5 | 119.6 (2) | C23—C18—C19 | 120.3 (2) |
C7—C6—H6 | 120.2 | C23—C18—N4 | 115.2 (2) |
C5—C6—H6 | 120.2 | C19—C18—N4 | 124.4 (2) |
C6—C7—O1 | 124.0 (2) | C20—C19—C18 | 119.9 (3) |
C6—C7—C8 | 120.1 (2) | C20—C19—H19 | 120.0 |
O1—C7—C8 | 115.9 (2) | C18—C19—H19 | 120.0 |
C9—C8—C7 | 119.8 (2) | C19—C20—C21 | 119.0 (3) |
C9—C8—H8 | 120.1 | C19—C20—H20 | 120.5 |
C7—C8—H8 | 120.1 | C21—C20—H20 | 120.5 |
C8—C9—C4 | 120.8 (2) | C22—C21—C20 | 121.8 (3) |
C8—C9—H9 | 119.6 | C22—C21—Br1 | 118.8 (2) |
C4—C9—H9 | 119.6 | C20—C21—Br1 | 119.4 (2) |
O1—C10—H10A | 109.5 | C21—C22—C23 | 118.3 (3) |
O1—C10—H10B | 109.5 | C21—C22—H22 | 120.8 |
H10A—C10—H10B | 109.5 | C23—C22—H22 | 120.8 |
O1—C10—H10C | 109.5 | C18—C23—C22 | 120.6 (3) |
H10A—C10—H10C | 109.5 | C18—C23—H23 | 119.7 |
H10B—C10—H10C | 109.5 | C22—C23—H23 | 119.7 |
C12—C11—C16 | 117.8 (2) | ||
C1—N3—N4—C18 | 177.1 (2) | C3—C4—C9—C8 | −176.7 (2) |
C2—N2—C1—N1 | −1.7 (3) | N2—C2—C11—C12 | −158.2 (2) |
C2—N2—C1—N3 | 173.7 (2) | C3—C2—C11—C12 | 22.9 (4) |
C3—N1—C1—N2 | 2.4 (3) | N2—C2—C11—C16 | 21.6 (3) |
C3—N1—C1—N3 | −172.7 (2) | C3—C2—C11—C16 | −157.2 (3) |
N4—N3—C1—N2 | 180.0 (2) | C16—C11—C12—C13 | −1.1 (4) |
N4—N3—C1—N1 | −5.3 (4) | C2—C11—C12—C13 | 178.8 (2) |
C1—N2—C2—C3 | 0.4 (3) | C11—C12—C13—C14 | 1.7 (4) |
C1—N2—C2—C11 | −178.7 (2) | C17—O2—C14—C13 | 0.8 (4) |
C1—N1—C3—C2 | −2.0 (3) | C17—O2—C14—C15 | −178.4 (2) |
C1—N1—C3—C4 | 171.9 (2) | C12—C13—C14—O2 | −179.2 (2) |
N2—C2—C3—N1 | 1.0 (3) | C12—C13—C14—C15 | −0.1 (4) |
C11—C2—C3—N1 | 180.0 (2) | O2—C14—C15—C16 | 177.1 (2) |
N2—C2—C3—C4 | −171.7 (3) | C13—C14—C15—C16 | −2.1 (4) |
C11—C2—C3—C4 | 7.2 (5) | C14—C15—C16—C11 | 2.7 (4) |
N1—C3—C4—C5 | −115.9 (3) | C12—C11—C16—C15 | −1.2 (4) |
C2—C3—C4—C5 | 55.9 (4) | C2—C11—C16—C15 | 179.0 (2) |
N1—C3—C4—C9 | 61.2 (3) | N3—N4—C18—C23 | 174.5 (2) |
C2—C3—C4—C9 | −127.0 (3) | N3—N4—C18—C19 | −7.5 (4) |
C9—C4—C5—C6 | −0.6 (4) | C23—C18—C19—C20 | −3.2 (4) |
C3—C4—C5—C6 | 176.6 (2) | N4—C18—C19—C20 | 178.9 (2) |
C4—C5—C6—C7 | 0.2 (4) | C18—C19—C20—C21 | 1.8 (4) |
C5—C6—C7—O1 | −178.9 (2) | C19—C20—C21—C22 | 0.1 (4) |
C5—C6—C7—C8 | 0.4 (4) | C19—C20—C21—Br1 | 178.5 (2) |
C10—O1—C7—C6 | 2.6 (4) | C20—C21—C22—C23 | −0.6 (4) |
C10—O1—C7—C8 | −176.7 (2) | Br1—C21—C22—C23 | −179.0 (2) |
C6—C7—C8—C9 | −0.6 (4) | C19—C18—C23—C22 | 2.8 (4) |
O1—C7—C8—C9 | 178.7 (2) | N4—C18—C23—C22 | −179.2 (2) |
C7—C8—C9—C4 | 0.1 (4) | C21—C22—C23—C18 | −0.8 (4) |
C5—C4—C9—C8 | 0.4 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.80 (3) | 2.17 (3) | 2.963 (3) | 169 (3) |
Symmetry code: (i) −x, −y+1, −z+1. |
Funding information
Funding for this research was provided by: Russian Science Foundation (award No. 20-73-00094).
References
Akhriff, Y., Server-Carrió, J., García-Lozano, J., Folgado, J. V., Sancho, A., Escrivà, E., Vitoria, P. & Soto, L. (2006). Cryst. Growth Des. 6, 1124–1133. Web of Science CSD CrossRef CAS Google Scholar
Bhunia, P., Baruri, B., Ray, U., Sinha, C., Das, S., Cheng, J. & Lu, T.-H. (2006). Transition Met. Chem. 31, 310–315. CrossRef CAS Google Scholar
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carella, A., Centore, R., Sirigu, A., Tuzi, A., Quatela, A., Schutzmann, S. & Casalboni, M. (2004). Macromol. Chem. Phys. 205, 1948–1954. Web of Science CSD CrossRef CAS Google Scholar
Centore, R., Piccialli, V. & Tuzi, A. (2013). Acta Cryst. E69, o802–o803. CSD CrossRef CAS IUCr Journals Google Scholar
Crespi, S., Simeth, N. A. & König, B. (2019). Nat. Rev. Chem. 3, 133–146. CrossRef CAS Google Scholar
Das, D., Nayak, M. K. & Sinha, C. (1997). Transit. Met. Chem. 22, 172–175. CrossRef CAS Google Scholar
Eymann, L. Y. M., Tskhovrebov, A. G., Sienkiewicz, A., Bila, J. L., Živković, I., Rønnow, H. M., Wodrich, M. D., Vannay, L., Corminboeuf, C., Pattison, P., Solari, E., Scopelliti, R. & Severin, K. (2016). J. Am. Chem. Soc. 138, 15126–15129. CrossRef CAS PubMed Google Scholar
Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V. & Poroikov, V. V. (2014). Chem. Heterocycl. Compd, 50, 444–457. Web of Science CrossRef CAS Google Scholar
Fun, H.-K., Chinnakali, K., Chen, X.-F., Zhu, X.-H. & You, X.-Z. (1999). Acta Cryst. C55 IUC9900025. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Liu, Y., Varava, P., Fabrizio, A., Eymann, L. Y. M., Tskhovrebov, A. G., Planes, O. M., Solari, E., Fadaei-Tirani, F., Scopelliti, R., Sienkiewicz, A., Corminboeuf, C. & Severin, K. (2019). Chem. Sci. 10, 5719–5724. CrossRef CAS PubMed Google Scholar
Mikhaylov, V. N., Sorokoumov, V. N., Liakhov, D. M., Tskhovrebov, A. G. & Balova, I. A. (2018). Catalysts. 8 No. 141. Google Scholar
Misra, T. K., Das, D. & Sinha, C. (1997). Polyhedron, 16, 4163–4170. CrossRef CAS Google Scholar
Nenajdenko, V. G., Shikhaliyev, N. G., Maharramov, A. M., Bagirova, K. N., Suleymanova, G. T., Novikov, A. S., Khrustalev, V. N. & Tskhovrebov, A. G. (2020). Molecules, 25 No. 5013. Google Scholar
Pramanik, A., Majumdar, S. & Das, G. (2010). CrystEngComm, 12, 250–259. Web of Science CSD CrossRef CAS Google Scholar
Repina, O. V., Novikov, A. S., Khoroshilova, O. V., Kritchenkov, A. S., Vasin, A. A. & Tskhovrebov, A. G. (2020). Inorg. Chim. Acta, 502 No. 119378. Google Scholar
Sarker, K. K., Chand, B. G., Suwa, K., Cheng, J., Lu, T. H., Otsuki, J. & Sinha, C. (2007). Inorg. Chem. 46, 670–680. CrossRef PubMed CAS Google Scholar
Sarker, K. K., Sardar, D., Suwa, K., Otsuki, J. & Sinha, C. (2007). Inorg. Chem. 46, 8291–8301. CrossRef PubMed CAS Google Scholar
Schütt, C., Heitmann, G., Wendler, T., Krahwinkel, B. & Herges, R. (2016). J. Org. Chem. 81, 1206–1215. PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Tskhovrebov, A. G., Goddard, R. & Fürstner, A. (2018). Angew. Chem. Int. Ed. 57, 8089–8094. CrossRef CAS Google Scholar
Tskhovrebov, A. G., Lingnau, J. B. & Fürstner, A. (2019). Angew. Chem. Int. Ed. 58, 8834–8838. CrossRef CAS Google Scholar
Tskhovrebov, A. G., Luzyanin, K. V., Haukka, M. & Kukushkin, V. Y. (2012). J. Chem. Crystallogr. 42, 1170–1175. CrossRef CAS Google Scholar
Tskhovrebov, A. G., Naested, L. C. E., Solari, E., Scopelliti, R. & Severin, K. (2015). Angew. Chem. Int. Ed. 54, 1289–1292. CrossRef CAS Google Scholar
Tskhovrebov, A. G., Novikov, A. S., Odintsova, O. V., Mikhaylov, V. N., Sorokoumov, V. N., Serebryanskaya, T. V. & Starova, G. L. (2019). J. Organomet. Chem. 886, 71–75. Web of Science CSD CrossRef CAS Google Scholar
Tskhovrebov, A. G., Solari, E., Scopelliti, R. & Severin, K. (2014). Organometallics, 33, 2405–2408. Web of Science CSD CrossRef CAS Google Scholar
Tskhovrebov, A. G., Vasileva, A. A., Goddard, R., Riedel, T., Dyson, P. J., Mikhaylov, V. N., Serebryanskaya, T. V., Sorokoumov, V. N. & Haukka, M. (2018). Inorg. Chem. 57, 930–934. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zhang, Y., Zhang, G., Gan, Q., Wang, S., Xu, H. & Yang, G. (2007). Dyes Pigments, 74, 531–535. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.