research communications
H-isoindol-1-one
and Hirshfeld surface analysis of 4,5-dibromo-6-methyl-2-phenyl-2,3,3a,4,5,6,7,7a-octahydro-3a,6-epoxy-1aDepartment of Organic Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198, Moscow, Russian Federation, bFrumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31, bld. 4, Moscow, 119071, Russian Federation, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
*Correspondence e-mail: sixberth.mlowe@duce.ac.tz
In the title compound, C15H15Br2NO2, two bridged tetrahydrofuran rings adopt envelope conformations with the O atom as the flap. The pyrrolidine ring also adopts an with the spiro C atom as the flap. In the crystal, the molecules are linked into dimers by pairs of C—H⋯O hydrogen bonds, thus generating R22(18) rings. The crystal packing is dominated by H⋯H, Br⋯H, H⋯π and Br⋯π interactions. One of the Br atoms is disordered over two sites with occupation ratio of 0.833 (8):0.167 (8).
Keywords: crystal structure; pyrrolidine ring; tetrahydrofuran ring; epoxyisoindole moiety; Hirshfeld surface analysis.
CCDC reference: 2060298
1. Chemical context
The halogenation of oxabicycloheptenes plays an important role in the chemical transformations of bridged heterocycles because of the ability to carry out a complex transformation of the carbon skeleton in one step, which makes it possible to obtain products that are practically inaccessible in other ways from relatively simple starting compounds. The halogenation reaction of oxabicycloheptenes coupled with carbon- or nitrogen-containing rings, with the help of various halogenating agents, proceeds in two possible general directions, depending on the nature of the halogenating agent and the structure of the substrate. Analysis of the literature data does not allow one to reliably predict the direction of the halogenation of oxabicycloheptenes. It can on the one hand be the halogen-initiated Wagner–Meerwein cationic rearrangement (Jung et al., 1985; Ciganek et al., 1995; Zubkov et al., 2004, 2018; Zaytsev et al., 2020), or on the other hand we can observe electrophilic addition of halogens to multiple bonds (Berson et al., 1954; Barlow et al., 1971; Kobayashi et al., 1976; Solov'eva et al., 1984). Halogenated organic compounds are of interest because of their photoactivity in the solid state, high solubility in halocarbons, high thermal and oxidative stability, etc., to which non-covalent halogen bonding can contribute (Afkhami et al., 2017; Maharramov et al., 2018; Mahmoudi et al., 2017, 2019; Shixaliyev et al., 2014). In view of its higher directionality, the halogen bond can be better suited than the hydrogen bond for the building of functional materials by non-covalent self-assembly via specific molecular interactions (Gurbanov et al., 2017, 2018; Kopylovich et al., 2011; Ma et al., 2017a,b, 2020; Mahmudov et al., 2012, 2013, 2019, 2020). In a previous work (Zubkov et al., 2018), the formation of a halogenated Wagner–Meervein rearrangement product under the action of molecular bromine in dry dichloromethane on isoindole 1 was shown. In this study, the effect of [(Me2NCOMe)2H]+Br3− (Rodygin et al., 1992; Prokop'eva et al., 2008) is reported. The different course of the halogenation reaction was shown to be anti-addition on the double bond with the formation of the title compound, 4,5-dibromo-6-methyl-2-phenylhexahydro-3a,6-epoxy-isoindol-1(4H)-one, 2 (Fig. 1).
2. Structural commentary
In the title compound (Fig. 2), the pyrrolidine ring (N1/C5–C8), tetrahydrofuran rings (O1/C1–C3/C6 and O1/C3–C6) and the six-membered ring (C1–C6) that generate the epoxyisoindole moiety (O1/N1/C1–C8) are puckered (Cremer & Pople, 1975). Both tetrahydrofuran rings adopt envelope conformations with puckering parameters of Q(2) = 0.5749 (14) Å, φ(2) = 0.92 (16)° for (O1/C1–C3/C6) and Q(2) = 0.5460 (14) Å, φ(2) = 183.90 (17)° for (O1/C3–C6). The five-membered pyrrolidine ring has an with a maximum deviation from the mean plane of 0.166 (1) Å at C6 [puckering parameters Q(2) = 0.2630 (16) Å, φ(2) = 253.9 (3)°]. The six-membered ring (C1–C6) has a boat conformation [QT = 0.9320 (16) Å, θ = 88.92 (10)°, φ = 298.57 (10)°]. The Br2 atom is disordered over two sites with occupation ratio of 0.833 (8):0.167 (8).
3. Supramolecular features
The crystal packing of the title compound is consolidated by C—H⋯O hydrogen bonds (Table 1, Fig. 3) and C—H⋯π and C—Br⋯π interactions (Table 1, Fig. 4). In the crystal, pairs of C—H⋯O hydrogen bonds link molecules into dimers with (18) ring motifs (Bernstein et al. 1995). These dimers are connected by pairs of C—H⋯π interactions and C—Br⋯π interactions [Br1⋯Cg5iii = 3.9246 (8) Å, C1—Br1⋯Cg5iii = 112.92 (5)°; symmetry code: (iii) 1 − x, −y, 1 − z], thus forming layers parallel to the ab plane. Short atomic contacts are listed in Table 2.
|
|
4. Hirshfeld surface analysis
In order to present the intermolecular interactions in the et al., 2007) and their associated two-dimensional fingerprint plots (Spackman & McKinnon, 2002) were generated using CrystalExplorer17 (Turner et al., 2017). The Hirshfeld surface plotted over dnorm in the range −0.1151 to 1.1998 a.u. is shown in Fig. 5 while Fig. 6 shows the full two-dimensional fingerprint plot and those delineated into the major contacts: H⋯H (43.0%), Br⋯H/H⋯Br (21.1%), C⋯H/H⋯C (12.4%) and O⋯H/H⋯O (11.9%). The other contacts (Table 3) are negligible with individual contributions of less than 3.5% and a sum of less than 11.5%.
of the title compound in a visual manner, Hirshfeld surfaces (McKinnon
|
5. Database survey
A search of the Cambridge Crystallographic Database (CSD version 5.40, update of September 2019; Groom et al., 2016) yielded six entries closely related to the epoxyisoindole moiety of the title compound, viz.: (3aR,6S,7aR)-7a-bromo-2-methylsulfonyl-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole (CSD refcode ERIVIL; Temel et al., 2011), (3aR,6S,7aR)-7a-chloro-2-[(4-nitrophenyl)sulfonyl]-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole (AGONUH; Temel et al., 2013), (3aR,6S,7aR)-7a-chloro-6-methyl-2-[(4-nitrophenyl)sulfonyl]-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole (TIJMIK; Demircan et al., 2013), (3aR,6S,7aR)-7a-bromo-2-[(4-methylphenyl)sulfonyl]-1,2,3,6,7,7a-hexahydro-3a,6-epoxyisoindole (UPAQEI; Koşar et al., 2011), 5-chloro-7-methyl-3-[(4-methylphenyl)sulfonyl]-10-oxa-3-azatricyclo[5.2.1.01,5]dec-8-ene (YAXCIL; Temel et al., 2012) and tert-butyl 3a-chloroperhydro-2,6a-epoxyoxireno(e)isoindole-5-carboxylate (MIGTIG; Koşar et al., 2007).
In the crystal of ERIVIL, weak intermolecular C—H⋯O hydrogen bonds link the molecules into (8) and (14) rings, thus forming the chains along the b-axis direction. In the crystal of AGONUH, C—H⋯O hydrogen bonds link the molecules into zigzag chains running along the b-axis direction. In TIJMIK, two types of C—H⋯O hydrogen bonds generate (20) and R44(26) rings, with adjacent rings running parallel to the ac plane. Further C—H⋯O hydrogen bonds form a C(6) chain, linking the molecules in the b-axis direction. In UPAQEI, molecules are linked by C—H⋯O hydrogen bonds. In YAXCIL, C—H⋯O hydrogen bonds link the molecules into a three-dimensional network. In MIGTIG, the molecules are linked only by weak van der Waals interactions.
6. Synthesis and crystallization
The solution of isoindolone 1 (4 mmol) and the brominating agent (4 mmol) in 15 mL of dry chloroform was heated under reflux for 20 h (TLC control, EtOAc–hexane, 1:1). The reaction mixture was poured into H2O (50 mL) and extracted with CHCl3 (3 × 20 mL). The combined organic fractions were dried over anhydrous Na2SO4, the solvent was evaporated under reduced pressure, and the solid residue was recrystallized from a hexane–AcOEt (1:1) mixture in the form of colourless needles [yield 0.48 g (30%), m.p. > 413 K (decomposition)].
IR (KBr), ν (cm−1): 1700 (N—C=O), 689 (C—Br). 1H NMR (CDCl3, 600.2 MHz, 301 K): δ = 7.63 (d, 2H, H2, H6, HAr, J = 7.6), 7.39 (t, 2H, H3, H5, HAr, J = 7.6), 7.19 (t, 1H, H4, HAr, J = 7.6), 4.33 (d, 1H, H4, J = 2.2), 4.24 (t, 1H, H5, J = 2.2), 4.07 (d, 1H, J = 11.8), 4.02 (d, 1H, H3, J = 11.8), 3.00 (dd, 1H, H7a, J = 5.0, J = 9.6), 2.85 (dd, 1H, H7B, J = 9.6, J = 13.1), 2.07 (ddd, 1H, H7A, J = 2.2, J = 5.0, J = 13.1), 1.58 (s, 3H, CH3). 13C NMR (CDCl3, 150.9 MHz, 301 K): δ = 172.4, 138.7, 129.0 (2C), 125.1, 120.1 (2C), 89.5, 88.0, 60.4, 57.0, 51.1, 51.1, 36.0, 18.1. MS (APCI): m/z = 404 [M + H]+ (81Br), 402 [M + H]+ (81Br, 79Br), 400 [M + H]<+ (79Br).
7. Refinement
Crystal data, data collection and structure . All the C-bound H atoms were positioned geometrically, with C—H = 0.93 Å (for aromatic H atoms), 0.98 Å (for methine H atoms), 0.97 Å (for methylene H atoms) and 0.96 Å (for methyl H atoms), and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) [1.5Ueq(C) for methyl H atoms]. The Br2 atom attached to the atom C2 is disordered over two sites, with occupancies of 0.833 (8)/0.167 (8). The two components of the disorder (Br2 and Br2A) were refined with restraints so that their bond lengths are comparable. Owing to poor agreement, five reflections, i.e. (126), (04), (5), (321) and (006), were omitted from the final cycles of refinement.
details are summarized in Table 4Supporting information
CCDC reference: 2060298
https://doi.org/10.1107/S205698902100116X/yk2144sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902100116X/yk2144Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902100116X/yk2144Isup3.cml
Data collection: APEX2 (Bruker, 2013); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).C15H15Br2NO2 | Z = 2 |
Mr = 401.10 | F(000) = 396 |
Triclinic, P1 | Dx = 1.798 Mg m−3 |
a = 6.8064 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.5045 (2) Å | Cell parameters from 9338 reflections |
c = 11.9482 (3) Å | θ = 2.6–29.2° |
α = 79.551 (1)° | µ = 5.47 mm−1 |
β = 87.820 (1)° | T = 296 K |
γ = 77.083 (1)° | Fragment, colourless |
V = 740.89 (3) Å3 | 0.14 × 0.13 × 0.13 mm |
Bruker Kappa APEXII area-detector diffractometer | 3575 reflections with I > 2σ(I) |
ω– and φ–scans | Rint = 0.025 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 30.3°, θmin = 3.8° |
Tmin = 0.184, Tmax = 0.273 | h = −8→9 |
19111 measured reflections | k = −13→13 |
4387 independent reflections | l = −16→16 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.025 | w = 1/[σ2(Fo2) + (0.0265P)2 + 0.1676P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.059 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 0.34 e Å−3 |
4387 reflections | Δρmin = −0.35 e Å−3 |
187 parameters | Extinction correction: SHELXL-2018/3 (Sheldrick 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
2 restraints | Extinction coefficient: 0.0099 (8) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.2491 (2) | 0.23465 (16) | 0.29816 (13) | 0.0300 (3) | |
H1 | 0.162569 | 0.333375 | 0.282028 | 0.036* | |
C2 | 0.3412 (2) | 0.18494 (19) | 0.18835 (14) | 0.0358 (3) | |
H2 | 0.312544 | 0.089368 | 0.184511 | 0.043* | |
C3 | 0.5718 (2) | 0.16536 (17) | 0.20591 (13) | 0.0315 (3) | |
C4 | 0.6318 (2) | 0.31286 (17) | 0.19882 (13) | 0.0346 (3) | |
H4A | 0.580003 | 0.380680 | 0.130185 | 0.041* | |
H4B | 0.776935 | 0.300779 | 0.202053 | 0.041* | |
C5 | 0.5290 (2) | 0.36343 (16) | 0.30594 (13) | 0.0302 (3) | |
H5 | 0.423305 | 0.452582 | 0.285765 | 0.036* | |
C6 | 0.4389 (2) | 0.23380 (15) | 0.36065 (12) | 0.0264 (3) | |
C7 | 0.4433 (2) | 0.23050 (17) | 0.48669 (13) | 0.0289 (3) | |
H7A | 0.316869 | 0.284391 | 0.512777 | 0.035* | |
H7B | 0.470492 | 0.130584 | 0.528351 | 0.035* | |
C8 | 0.6637 (2) | 0.37833 (16) | 0.39896 (13) | 0.0303 (3) | |
C9 | 0.6869 (2) | 0.29591 (16) | 0.60907 (13) | 0.0292 (3) | |
C10 | 0.5782 (3) | 0.24987 (18) | 0.70424 (14) | 0.0356 (3) | |
H10 | 0.456428 | 0.224227 | 0.695094 | 0.043* | |
C11 | 0.6499 (3) | 0.2420 (2) | 0.81232 (15) | 0.0449 (4) | |
H11 | 0.575891 | 0.211181 | 0.875398 | 0.054* | |
C12 | 0.8306 (3) | 0.2794 (2) | 0.82762 (17) | 0.0480 (4) | |
H12 | 0.878984 | 0.273335 | 0.900469 | 0.058* | |
C13 | 0.9379 (3) | 0.3257 (2) | 0.73344 (17) | 0.0451 (4) | |
H13 | 1.059246 | 0.351480 | 0.743341 | 0.054* | |
C14 | 0.8691 (2) | 0.33463 (18) | 0.62468 (15) | 0.0374 (4) | |
H14 | 0.943622 | 0.366258 | 0.562061 | 0.045* | |
C15 | 0.7046 (3) | 0.0567 (2) | 0.14292 (16) | 0.0463 (4) | |
H15A | 0.841396 | 0.039666 | 0.168395 | 0.069* | |
H15B | 0.697046 | 0.095089 | 0.062760 | 0.069* | |
H15C | 0.660246 | −0.033910 | 0.157404 | 0.069* | |
N1 | 0.60928 (18) | 0.30218 (13) | 0.49983 (11) | 0.0289 (3) | |
O1 | 0.57998 (14) | 0.11085 (10) | 0.32711 (8) | 0.0280 (2) | |
O2 | 0.79438 (19) | 0.44882 (13) | 0.38590 (11) | 0.0435 (3) | |
Br1 | 0.10285 (2) | 0.09342 (2) | 0.38126 (2) | 0.03963 (7) | |
Br2 | 0.22893 (10) | 0.3267 (3) | 0.05089 (6) | 0.0579 (2) | 0.833 (8) |
Br2A | 0.2336 (6) | 0.2821 (8) | 0.0560 (3) | 0.0579 (2) | 0.167 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0257 (7) | 0.0304 (7) | 0.0335 (8) | −0.0070 (6) | −0.0009 (6) | −0.0037 (6) |
C2 | 0.0354 (8) | 0.0430 (9) | 0.0299 (8) | −0.0118 (7) | −0.0030 (6) | −0.0043 (7) |
C3 | 0.0308 (7) | 0.0367 (8) | 0.0263 (7) | −0.0063 (6) | 0.0015 (6) | −0.0053 (6) |
C4 | 0.0350 (8) | 0.0404 (8) | 0.0284 (8) | −0.0137 (7) | 0.0021 (6) | 0.0000 (6) |
C5 | 0.0295 (7) | 0.0273 (7) | 0.0326 (8) | −0.0081 (6) | 0.0006 (6) | −0.0002 (6) |
C6 | 0.0237 (6) | 0.0262 (7) | 0.0291 (7) | −0.0060 (5) | 0.0020 (5) | −0.0044 (5) |
C7 | 0.0261 (7) | 0.0327 (7) | 0.0302 (7) | −0.0114 (6) | 0.0041 (6) | −0.0067 (6) |
C8 | 0.0300 (7) | 0.0270 (7) | 0.0344 (8) | −0.0086 (6) | 0.0022 (6) | −0.0048 (6) |
C9 | 0.0292 (7) | 0.0265 (7) | 0.0322 (8) | −0.0048 (6) | −0.0010 (6) | −0.0074 (6) |
C10 | 0.0376 (8) | 0.0386 (8) | 0.0333 (8) | −0.0148 (7) | 0.0013 (7) | −0.0060 (7) |
C11 | 0.0539 (11) | 0.0509 (10) | 0.0320 (9) | −0.0194 (8) | −0.0006 (8) | −0.0031 (7) |
C12 | 0.0547 (11) | 0.0540 (11) | 0.0369 (9) | −0.0164 (9) | −0.0127 (8) | −0.0041 (8) |
C13 | 0.0349 (9) | 0.0517 (10) | 0.0505 (11) | −0.0124 (8) | −0.0104 (8) | −0.0083 (8) |
C14 | 0.0295 (8) | 0.0424 (9) | 0.0417 (9) | −0.0092 (7) | 0.0012 (7) | −0.0096 (7) |
C15 | 0.0462 (10) | 0.0526 (10) | 0.0394 (10) | −0.0059 (8) | 0.0088 (8) | −0.0145 (8) |
N1 | 0.0282 (6) | 0.0313 (6) | 0.0298 (6) | −0.0116 (5) | 0.0019 (5) | −0.0068 (5) |
O1 | 0.0269 (5) | 0.0275 (5) | 0.0280 (5) | −0.0034 (4) | 0.0020 (4) | −0.0040 (4) |
O2 | 0.0445 (7) | 0.0450 (7) | 0.0462 (7) | −0.0265 (5) | −0.0004 (5) | −0.0003 (5) |
Br1 | 0.03119 (9) | 0.04352 (10) | 0.04675 (11) | −0.01621 (7) | 0.00310 (7) | −0.00536 (7) |
Br2 | 0.05211 (13) | 0.0780 (7) | 0.03458 (13) | −0.0074 (3) | −0.01400 (9) | 0.0075 (2) |
Br2A | 0.05211 (13) | 0.0780 (7) | 0.03458 (13) | −0.0074 (3) | −0.01400 (9) | 0.0075 (2) |
C1—C6 | 1.514 (2) | C7—H7A | 0.9700 |
C1—C2 | 1.539 (2) | C7—H7B | 0.9700 |
C1—Br1 | 1.9538 (15) | C8—O2 | 1.2175 (18) |
C1—H1 | 0.9800 | C8—N1 | 1.3722 (19) |
C2—C3 | 1.556 (2) | C9—C10 | 1.390 (2) |
C2—Br2A | 1.773 (4) | C9—C14 | 1.398 (2) |
C2—Br2 | 1.982 (2) | C9—N1 | 1.413 (2) |
C2—H2 | 0.9800 | C10—C11 | 1.381 (2) |
C3—O1 | 1.4455 (18) | C10—H10 | 0.9300 |
C3—C15 | 1.504 (2) | C11—C12 | 1.381 (3) |
C3—C4 | 1.533 (2) | C11—H11 | 0.9300 |
C4—C5 | 1.537 (2) | C12—C13 | 1.377 (3) |
C4—H4A | 0.9700 | C12—H12 | 0.9300 |
C4—H4B | 0.9700 | C13—C14 | 1.380 (3) |
C5—C8 | 1.513 (2) | C13—H13 | 0.9300 |
C5—C6 | 1.529 (2) | C14—H14 | 0.9300 |
C5—H5 | 0.9800 | C15—H15A | 0.9600 |
C6—O1 | 1.4445 (16) | C15—H15B | 0.9600 |
C6—C7 | 1.502 (2) | C15—H15C | 0.9600 |
C7—N1 | 1.4699 (19) | ||
C6—C1—C2 | 100.18 (11) | N1—C7—C6 | 102.98 (11) |
C6—C1—Br1 | 111.46 (10) | N1—C7—H7A | 111.2 |
C2—C1—Br1 | 110.81 (10) | C6—C7—H7A | 111.2 |
C6—C1—H1 | 111.3 | N1—C7—H7B | 111.2 |
C2—C1—H1 | 111.3 | C6—C7—H7B | 111.2 |
Br1—C1—H1 | 111.3 | H7A—C7—H7B | 109.1 |
C1—C2—C3 | 103.47 (12) | O2—C8—N1 | 126.42 (15) |
C1—C2—Br2A | 118.5 (2) | O2—C8—C5 | 125.35 (14) |
C3—C2—Br2A | 118.35 (18) | N1—C8—C5 | 108.22 (12) |
C1—C2—Br2 | 111.70 (12) | C10—C9—C14 | 118.90 (15) |
C3—C2—Br2 | 114.67 (11) | C10—C9—N1 | 118.84 (14) |
C1—C2—H2 | 108.9 | C14—C9—N1 | 122.25 (14) |
C3—C2—H2 | 108.9 | C11—C10—C9 | 120.38 (16) |
Br2—C2—H2 | 108.9 | C11—C10—H10 | 119.8 |
O1—C3—C15 | 110.86 (13) | C9—C10—H10 | 119.8 |
O1—C3—C4 | 101.92 (12) | C12—C11—C10 | 120.66 (17) |
C15—C3—C4 | 116.12 (14) | C12—C11—H11 | 119.7 |
O1—C3—C2 | 98.23 (11) | C10—C11—H11 | 119.7 |
C15—C3—C2 | 115.34 (14) | C13—C12—C11 | 119.02 (18) |
C4—C3—C2 | 111.95 (13) | C13—C12—H12 | 120.5 |
C3—C4—C5 | 100.86 (12) | C11—C12—H12 | 120.5 |
C3—C4—H4A | 111.6 | C12—C13—C14 | 121.36 (17) |
C5—C4—H4A | 111.6 | C12—C13—H13 | 119.3 |
C3—C4—H4B | 111.6 | C14—C13—H13 | 119.3 |
C5—C4—H4B | 111.6 | C13—C14—C9 | 119.67 (16) |
H4A—C4—H4B | 109.4 | C13—C14—H14 | 120.2 |
C8—C5—C6 | 102.91 (12) | C9—C14—H14 | 120.2 |
C8—C5—C4 | 117.40 (13) | C3—C15—H15A | 109.5 |
C6—C5—C4 | 102.89 (12) | C3—C15—H15B | 109.5 |
C8—C5—H5 | 111.0 | H15A—C15—H15B | 109.5 |
C6—C5—H5 | 111.0 | C3—C15—H15C | 109.5 |
C4—C5—H5 | 111.0 | H15A—C15—H15C | 109.5 |
O1—C6—C7 | 112.07 (12) | H15B—C15—H15C | 109.5 |
O1—C6—C1 | 102.18 (11) | C8—N1—C9 | 126.80 (13) |
C7—C6—C1 | 122.52 (12) | C8—N1—C7 | 112.86 (12) |
O1—C6—C5 | 102.27 (11) | C9—N1—C7 | 120.22 (12) |
C7—C6—C5 | 105.82 (12) | C6—O1—C3 | 97.27 (10) |
C1—C6—C5 | 110.27 (12) | ||
C6—C1—C2—C3 | −0.64 (15) | O1—C6—C7—N1 | 85.18 (13) |
Br1—C1—C2—C3 | −118.41 (11) | C1—C6—C7—N1 | −152.93 (13) |
C6—C1—C2—Br2A | −133.9 (3) | C5—C6—C7—N1 | −25.51 (14) |
Br1—C1—C2—Br2A | 108.3 (3) | C6—C5—C8—O2 | 164.98 (15) |
C6—C1—C2—Br2 | −124.51 (12) | C4—C5—C8—O2 | 52.9 (2) |
Br1—C1—C2—Br2 | 117.72 (11) | C6—C5—C8—N1 | −16.51 (15) |
C1—C2—C3—O1 | 35.54 (14) | C4—C5—C8—N1 | −128.64 (14) |
Br2A—C2—C3—O1 | 168.9 (3) | C14—C9—C10—C11 | −0.3 (2) |
Br2—C2—C3—O1 | 157.45 (12) | N1—C9—C10—C11 | 179.79 (15) |
C1—C2—C3—C15 | 153.36 (14) | C9—C10—C11—C12 | −0.1 (3) |
Br2A—C2—C3—C15 | −73.3 (3) | C10—C11—C12—C13 | 0.4 (3) |
Br2—C2—C3—C15 | −84.74 (17) | C11—C12—C13—C14 | −0.3 (3) |
C1—C2—C3—C4 | −70.91 (15) | C12—C13—C14—C9 | −0.1 (3) |
Br2A—C2—C3—C4 | 62.4 (3) | C10—C9—C14—C13 | 0.4 (2) |
Br2—C2—C3—C4 | 50.99 (17) | N1—C9—C14—C13 | −179.71 (15) |
O1—C3—C4—C5 | −36.84 (14) | O2—C8—N1—C9 | 3.2 (3) |
C15—C3—C4—C5 | −157.42 (14) | C5—C8—N1—C9 | −175.27 (13) |
C2—C3—C4—C5 | 67.22 (15) | O2—C8—N1—C7 | 179.05 (15) |
C3—C4—C5—C8 | 115.57 (14) | C5—C8—N1—C7 | 0.57 (17) |
C3—C4—C5—C6 | 3.44 (14) | C10—C9—N1—C8 | 161.81 (15) |
C2—C1—C6—O1 | −34.97 (13) | C14—C9—N1—C8 | −18.1 (2) |
Br1—C1—C6—O1 | 82.31 (11) | C10—C9—N1—C7 | −13.8 (2) |
C2—C1—C6—C7 | −161.36 (13) | C14—C9—N1—C7 | 166.34 (14) |
Br1—C1—C6—C7 | −44.08 (16) | C6—C7—N1—C8 | 15.92 (16) |
C2—C1—C6—C5 | 73.18 (14) | C6—C7—N1—C9 | −167.93 (12) |
Br1—C1—C6—C5 | −169.54 (10) | C7—C6—O1—C3 | −167.25 (12) |
C8—C5—C6—O1 | −91.53 (13) | C1—C6—O1—C3 | 59.84 (12) |
C4—C5—C6—O1 | 30.94 (14) | C5—C6—O1—C3 | −54.35 (13) |
C8—C5—C6—C7 | 25.94 (15) | C15—C3—O1—C6 | −178.76 (13) |
C4—C5—C6—C7 | 148.41 (12) | C4—C3—O1—C6 | 57.05 (12) |
C8—C5—C6—C1 | 160.39 (12) | C2—C3—O1—C6 | −57.57 (12) |
C4—C5—C6—C1 | −77.14 (14) |
Cg5 is the centroid of the C9–C14 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···Br2 | 0.97 | 2.79 | 3.2838 (17) | 113 |
C13—H13···O2i | 0.93 | 2.58 | 3.223 (2) | 127 |
C14—H14···O2 | 0.93 | 2.30 | 2.884 (2) | 120 |
C5—H5···Cg5ii | 0.98 | 2.49 | 3.4195 (17) | 158 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+1, −y+1, −z+1. |
Contact | Distance | Symmetry operation |
H7A···H14 | 2.56 | -1 + x, y, z |
Br1···Br1 | 3.4852 (3) | -x, -y, 1 - z |
H15C···H10 | 2.53 | 1 - x, -y, 1 - z |
H15B···H11 | 2.40 | x, y, -1 + z |
Br2A···H12 | 3.13 | -1 + x, y, -1 + z |
H5···C14 | 2.83 | 1 - x, 1 - y, 1 - z |
H13···O2 | 2.58 | 2 - x, 1 - y, 1 - z |
Contact | Percentage contribution |
H···H | 43.0 |
Br···H/H···Br | 21.1 |
C···H/H···C | 12.4 |
O···H/H···O | 11.9 |
Br···C/C···Br | 3.5 |
Br···Br | 2.9 |
Br···O/O···Br | 2.5 |
Br···N/N···Br | 1.1 |
C···C | 0.5 |
C···N/N···C | 0.5 |
C···O/O···C | 0.3 |
N···O/O···N | 0.1 |
N···N | 0.1 |
Funding information
The authors are grateful to the Russian Foundation for Basic Research (RFBR) (award No. 19–53-04002, Bl_ml_a) and the Belarusian Republican Foundation for Fundamental Research (BRFFR) (award No. X19PM-003) for financial support of this research.
References
Afkhami, F. A., Khandar, A. A., Mahmoudi, G., Maniukiewicz, W., Gurbanov, A. V., Zubkov, F. I., Şahin, O., Yesilel, O. Z. & Frontera, A. (2017). CrystEngComm, 19, 1389–1399. Web of Science CSD CrossRef CAS Google Scholar
Barlow, M. G., Haszeldine, R. N. & Hubbard, R. (1971). J. Chem. Soc. C, pp. 90–95. Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Berson, J. A. & Swidler, R. (1954). J. Am. Chem. Soc. 76, 4060–4069. CrossRef CAS Web of Science Google Scholar
Bruker (2013). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Ciganek, E. & Calabrese, J. C. (1995). J. Org. Chem. 60, 4439–4443. CSD CrossRef CAS Web of Science Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Demircan, A., Temel, E., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1628–o1629. CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27. Web of Science CSD CrossRef CAS Google Scholar
Jung, M. E. & Street, L. J. (1985). Tetrahedron Lett. 26, 3639–3642. CrossRef CAS Web of Science Google Scholar
Kobayashi, Y., Kumadaki, I., Ohsawa, A., Hanzawa, Y., Honda, M., Iitaka, Y. & Date, T. (1976). Tetrahedron Lett. 17, 2545–2548. CSD CrossRef Google Scholar
Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248–7250. Web of Science CrossRef CAS Google Scholar
Koşar, B., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o994–o995. Web of Science CSD CrossRef IUCr Journals Google Scholar
Koşar, B., Karaarslan, M., Demir, I. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3323. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23. Web of Science CSD CrossRef CAS Google Scholar
Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482. Web of Science CrossRef Google Scholar
Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141. Web of Science CrossRef CAS Google Scholar
Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017). Inorg. Chim. Acta, 461, 192–205. Web of Science CSD CrossRef CAS Google Scholar
Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187–189. Web of Science CSD CrossRef CAS Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381. Web of Science CrossRef Google Scholar
Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46. Web of Science CrossRef CAS Google Scholar
Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112. Web of Science CSD CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816. Google Scholar
Prokop'eva, T. M., Mikhailov, V. A., Turovskaya, M. K., Karpichev, E. A., Burakov, N. I., Savelova, V. A., Kapitanov, I. V. & Popov, A. F. (2008). Russ. J. Org. Chem. 44, 637–646. CAS Google Scholar
Rodygin, M. Yu., Mikhailov, V. A., Savelova, V. A. & Chernovol, P. A. (1992). J. Org. Chem. USSR (Engl. Transl.), 28, 1543–1544 [(1992). Zh. Org. Khim. 28, 1926–1927]. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815. Web of Science CSD CrossRef CAS Google Scholar
Solov'eva, N. P., Sheinker, Yu. N., Oleinik, A. F. & Adamskaya, E. V. (1984). Chem. Heterocycl. Compd. 20, 489–491. Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Temel, E., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1304–o1305. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Temel, E., Demircan, A., Beyazova, G. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1102–o1103. CSD CrossRef CAS IUCr Journals Google Scholar
Temel, E., Demircan, A., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1551–o1552. CSD CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia. Google Scholar
Zaytsev, V. P., Mertsalov, D. F., Trunova, A. M., Khanova, A. V., Nikitina, E. V., Sinelshchikova, A. A. & Grigoriev, M. S. (2020). Chem. Heterocycl. Compd, 56, 930–935. Web of Science CSD CrossRef CAS Google Scholar
Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952. Web of Science CSD CrossRef CAS Google Scholar
Zubkov, F. I., Nikitina, E. V., Turchin, K. F., Aleksandrov, G. G., Safronova, A. A., Borisov, R. S. & Varlamov, A. V. (2004). J. Org. Chem. 69, 432–438. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.