research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 4,5-di­bromo-6-methyl-2-phenyl-2,3,3a,4,5,6,7,7a-octa­hydro-3a,6-ep­­oxy-1H-isoindol-1-one

aDepartment of Organic Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198, Moscow, Russian Federation, bFrumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky pr. 31, bld. 4, Moscow, 119071, Russian Federation, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and dUniversity of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
*Correspondence e-mail: sixberth.mlowe@duce.ac.tz

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 29 January 2021; accepted 1 February 2021; online 9 February 2021)

In the title compound, C15H15Br2NO2, two bridged tetra­hydro­furan rings adopt envelope conformations with the O atom as the flap. The pyrrolidine ring also adopts an envelope conformation with the spiro C atom as the flap. In the crystal, the mol­ecules are linked into dimers by pairs of C—H⋯O hydrogen bonds, thus generating R22(18) rings. The crystal packing is dominated by H⋯H, Br⋯H, H⋯π and Br⋯π inter­actions. One of the Br atoms is disordered over two sites with occupation ratio of 0.833 (8):0.167 (8).

1. Chemical context

The halogenation of oxabi­cyclo­heptenes plays an important role in the chemical transformations of bridged heterocycles because of the ability to carry out a complex transformation of the carbon skeleton in one step, which makes it possible to obtain products that are practically inaccessible in other ways from relatively simple starting compounds. The halogenation reaction of oxabi­cyclo­heptenes coupled with carbon- or nitro­gen-containing rings, with the help of various halogenating agents, proceeds in two possible general directions, depending on the nature of the halogenating agent and the structure of the substrate. Analysis of the literature data does not allow one to reliably predict the direction of the halogenation of oxabi­cyclo­heptenes. It can on the one hand be the halogen-initiated Wagner–Meerwein cationic rearrangement (Jung et al., 1985[Jung, M. E. & Street, L. J. (1985). Tetrahedron Lett. 26, 3639-3642.]; Ciganek et al., 1995[Ciganek, E. & Calabrese, J. C. (1995). J. Org. Chem. 60, 4439-4443.]; Zubkov et al., 2004[Zubkov, F. I., Nikitina, E. V., Turchin, K. F., Aleksandrov, G. G., Safronova, A. A., Borisov, R. S. & Varlamov, A. V. (2004). J. Org. Chem. 69, 432-438.], 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]; Zaytsev et al., 2020[Zaytsev, V. P., Mertsalov, D. F., Trunova, A. M., Khanova, A. V., Nikitina, E. V., Sinelshchikova, A. A. & Grigoriev, M. S. (2020). Chem. Heterocycl. Compd, 56, 930-935.]), or on the other hand we can observe electrophilic addition of halogens to multiple bonds (Berson et al., 1954[Berson, J. A. & Swidler, R. (1954). J. Am. Chem. Soc. 76, 4060-4069.]; Barlow et al., 1971[Barlow, M. G., Haszeldine, R. N. & Hubbard, R. (1971). J. Chem. Soc. C, pp. 90-95.]; Kobayashi et al., 1976[Kobayashi, Y., Kumadaki, I., Ohsawa, A., Hanzawa, Y., Honda, M., Iitaka, Y. & Date, T. (1976). Tetrahedron Lett. 17, 2545-2548.]; Solov'eva et al., 1984[Solov'eva, N. P., Sheinker, Yu. N., Oleinik, A. F. & Adamskaya, E. V. (1984). Chem. Heterocycl. Compd. 20, 489-491.]). Halogenated organic compounds are of inter­est because of their photoactivity in the solid state, high solubility in halocarbons, high thermal and oxidative stability, etc., to which non-covalent halogen bonding can contribute (Afkhami et al., 2017[Afkhami, F. A., Khandar, A. A., Mahmoudi, G., Maniukiewicz, W., Gurbanov, A. V., Zubkov, F. I., Şahin, O., Yesilel, O. Z. & Frontera, A. (2017). CrystEngComm, 19, 1389-1399.]; Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Mahmoudi et al., 2017[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017). Inorg. Chim. Acta, 461, 192-205.], 2019[Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108-117.]; Shixaliyev et al., 2014[Shixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807-4815.]). In view of its higher directionality, the halogen bond can be better suited than the hydrogen bond for the building of functional materials by non-covalent self-assembly via specific mol­ecular inter­actions (Gurbanov et al., 2017[Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22-27.], 2018[Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130-136.]; Kopylovich et al., 2011[Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248-7250.]; Ma et al., 2017a[Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526-533.],b[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17-23.], 2020[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.]; Mahmudov et al., 2012[Mahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187-189.], 2013[Mahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108-112.], 2019[Mahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32-46.], 2020[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.]). In a previous work (Zubkov et al., 2018[Zubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949-952.]), the formation of a halogenated Wagner–Meervein rearrangement product under the action of mol­ecular bromine in dry di­chloro­methane on iso­indole 1 was shown. In this study, the effect of [(Me2NCOMe)2H]+Br3 (Rodygin et al., 1992[Rodygin, M. Yu., Mikhailov, V. A., Savelova, V. A. & Chernovol, P. A. (1992). J. Org. Chem. USSR (Engl. Transl.), 28, 1543-1544 [(1992). Zh. Org. Khim. 28, 1926-1927].]; Prokop'eva et al., 2008[Prokop'eva, T. M., Mikhailov, V. A., Turovskaya, M. K., Karpichev, E. A., Burakov, N. I., Savelova, V. A., Kapitanov, I. V. & Popov, A. F. (2008). Russ. J. Org. Chem. 44, 637-646.]) is reported. The different course of the halogenation reaction was shown to be anti-addition on the double bond with the formation of the title compound, 4,5-di­bromo-6-methyl-2-phenyl­hexa­hydro-3a,6-ep­oxy-isoindol-1(4H)-one, 2 (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
Synthesis scheme of 4,5-di­bromo-6-methyl-2-phenyl­hexa­hydro-3a,6-ep­oxy­isoindol-1(4H)-one (2).

2. Structural commentary

In the title compound (Fig. 2[link]), the pyrrolidine ring (N1/C5–C8), tetra­hydro­furan rings (O1/C1–C3/C6 and O1/C3–C6) and the six-membered ring (C1–C6) that generate the ep­oxy­iso­indole moiety (O1/N1/C1–C8) are puckered (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). Both tetra­hydro­furan rings adopt envelope conformations with puckering parameters of Q(2) = 0.5749 (14) Å, φ(2) = 0.92 (16)° for (O1/C1–C3/C6) and Q(2) = 0.5460 (14) Å, φ(2) = 183.90 (17)° for (O1/C3–C6). The five-membered pyrrolidine ring has an envelope conformation with a maximum deviation from the mean plane of 0.166 (1) Å at C6 [puckering parameters Q(2) = 0.2630 (16) Å, φ(2) = 253.9 (3)°]. The six-membered ring (C1–C6) has a boat conformation [QT = 0.9320 (16) Å, θ = 88.92 (10)°, φ = 298.57 (10)°]. The Br2 atom is disordered over two sites with occupation ratio of 0.833 (8):0.167 (8).

[Figure 2]
Figure 2
The mol­ecular structure of the title compound with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level. The atoms Br2 and Br2A represent the major and minor components of the disorder, respectively.

3. Supra­molecular features

The crystal packing of the title compound is consolidated by C—H⋯O hydrogen bonds (Table 1[link], Fig. 3[link]) and C—H⋯π and C—Br⋯π inter­actions (Table 1[link], Fig. 4[link]). In the crystal, pairs of C—H⋯O hydrogen bonds link mol­ecules into dimers with [R_{2}^{2}](18) ring motifs (Bernstein et al. 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). These dimers are connected by pairs of C—H⋯π inter­actions and C—Br⋯π inter­actions [Br1⋯Cg5iii = 3.9246 (8) Å, C1—Br1⋯Cg5iii = 112.92 (5)°; symmetry code: (iii) 1 − x, −y, 1 − z], thus forming layers parallel to the ab plane. Short atomic contacts are listed in Table 2[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg5 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2i 0.93 2.58 3.223 (2) 127
C5—H5⋯Cg5ii 0.98 2.49 3.4195 (17) 158
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [-x+1, -y+1, -z+1].

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
H7A⋯H14 2.56 −1 + x, y, z
Br1⋯Br1 3.4852 (3) x, −y, 1 − z
H15C⋯H10 2.53 1 − x, −y, 1 − z
H15B⋯H11 2.40 x, y, −1 + z
Br2A⋯H12 3.13 −1 + x, y, −1 + z
H5⋯C14 2.83 1 − x, 1 − y, 1 − z
H13⋯O2 2.58 2 − x, 1 − y, 1 − z
[Figure 3]
Figure 3
A view of the inter­molecular C—H⋯O inter­actions in the crystal structure of the title compound. Only the major component of the disorder is shown.
[Figure 4]
Figure 4
A view of the inter­molecular C—H⋯π and C—Br⋯π inter­actions in the crystal structure of the title compound. Only the major component of the disorder is shown.

4. Hirshfeld surface analysis

In order to present the inter­molecular inter­actions in the crystal structure of the title compound in a visual manner, Hirshfeld surfaces (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814-3816.]) and their associated two-dimensional fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) were generated using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). The Hirshfeld surface plotted over dnorm in the range −0.1151 to 1.1998 a.u. is shown in Fig. 5[link] while Fig. 6[link] shows the full two-dimensional fingerprint plot and those delineated into the major contacts: H⋯H (43.0%), Br⋯H/H⋯Br (21.1%), C⋯H/H⋯C (12.4%) and O⋯H/H⋯O (11.9%). The other contacts (Table 3[link]) are negligible with individual contributions of less than 3.5% and a sum of less than 11.5%.

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound

Contact Percentage contribution
H⋯H 43.0
Br⋯H/H⋯Br 21.1
C⋯H/H⋯C 12.4
O⋯H/H⋯O 11.9
Br⋯C/C⋯Br 3.5
Br⋯Br 2.9
Br⋯O/O⋯Br 2.5
Br⋯N/N⋯Br 1.1
C⋯C 0.5
C⋯N/N⋯C 0.5
C⋯O/O⋯C 0.3
N⋯O/O⋯N 0.1
N⋯N 0.1
[Figure 5]
Figure 5
A view of the three-dimensional Hirshfeld surface for the title compound, plotted over dnorm in the range −0.1151 to 1.1998 a.u.
[Figure 6]
Figure 6
A view of the two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) Br⋯H/H⋯Br, (d) C⋯H/H⋯C and (e) O⋯H/H⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

A search of the Cambridge Crystallographic Database (CSD version 5.40, update of September 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) yielded six entries closely related to the ep­oxy­iso­indole moiety of the title compound, viz.: (3aR,6S,7aR)-7a-bromo-2-methyl­sulfonyl-1,2,3,6,7,7a-hexa­hydro-3a,6-ep­oxy­iso­indole (CSD refcode ERIVIL; Temel et al., 2011[Temel, E., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1304-o1305.]), (3aR,6S,7aR)-7a-chloro-2-[(4-nitro­phen­yl)sulfon­yl]-1,2,3,6,7,7a-hexa­hydro-3a,6-ep­oxy­iso­indole (AGONUH; Temel et al., 2013[Temel, E., Demircan, A., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1551-o1552.]), (3aR,6S,7aR)-7a-chloro-6-methyl-2-[(4-nitro­phen­yl)sulfon­yl]-1,2,3,6,7,7a-hexa­hydro-3a,6-ep­oxy­iso­indole (TIJMIK; Demir­can et al., 2013[Demircan, A., Temel, E., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1628-o1629.]), (3aR,6S,7aR)-7a-bromo-2-[(4-methylphen­yl)sulfon­yl]-1,2,3,6,7,7a-hexa­hydro-3a,6-ep­oxy­iso­indole (UPAQEI; Koşar et al., 2011[Koşar, B., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o994-o995.]), 5-chloro-7-methyl-3-[(4-methyl­phen­yl)sulfon­yl]-10-oxa-3-aza­tri­cyclo­[5.2.1.01,5]dec-8-ene (YAXCIL; Temel et al., 2012[Temel, E., Demircan, A., Beyazova, G. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1102-o1103.]) and tert-butyl 3a-chloro­perhydro-2,6a-ep­oxy­oxireno(e)iso­indole-5-carboxyl­ate (MIG­TIG; Koşar et al., 2007[Koşar, B., Karaarslan, M., Demir, I. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3323.]).

In the crystal of ERIVIL, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into [R_{2}^{2}](8) and [R_{2}^{2}](14) rings, thus forming the chains along the b-axis direction. In the crystal of AGONUH, C—H⋯O hydrogen bonds link the mol­ecules into zigzag chains running along the b-axis direction. In TIJMIK, two types of C—H⋯O hydrogen bonds generate [R_{2}^{2}](20) and R44(26) rings, with adjacent rings running parallel to the ac plane. Further C—H⋯O hydrogen bonds form a C(6) chain, linking the mol­ecules in the b-axis direction. In UPAQEI, mol­ecules are linked by C—H⋯O hydrogen bonds. In YAXCIL, C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. In MIGTIG, the mol­ecules are linked only by weak van der Waals inter­actions.

6. Synthesis and crystallization

The solution of isoindolone 1 (4 mmol) and the brominating agent (4 mmol) in 15 mL of dry chloro­form was heated under reflux for 20 h (TLC control, EtOAc–hexane, 1:1). The reaction mixture was poured into H2O (50 mL) and extracted with CHCl3 (3 × 20 mL). The combined organic fractions were dried over anhydrous Na2SO4, the solvent was evaporated under reduced pressure, and the solid residue was recrystallized from a hexa­ne–AcOEt (1:1) mixture in the form of colourless needles [yield 0.48 g (30%), m.p. > 413 K (decomposition)].

IR (KBr), ν (cm−1): 1700 (N—C=O), 689 (C—Br). 1H NMR (CDCl3, 600.2 MHz, 301 K): δ = 7.63 (d, 2H, H2, H6, HAr, J = 7.6), 7.39 (t, 2H, H3, H5, HAr, J = 7.6), 7.19 (t, 1H, H4, HAr, J = 7.6), 4.33 (d, 1H, H4, J = 2.2), 4.24 (t, 1H, H5, J = 2.2), 4.07 (d, 1H, J = 11.8), 4.02 (d, 1H, H3, J = 11.8), 3.00 (dd, 1H, H7a, J = 5.0, J = 9.6), 2.85 (dd, 1H, H7B, J = 9.6, J = 13.1), 2.07 (ddd, 1H, H7A, J = 2.2, J = 5.0, J = 13.1), 1.58 (s, 3H, CH3). 13C NMR (CDCl3, 150.9 MHz, 301 K): δ = 172.4, 138.7, 129.0 (2C), 125.1, 120.1 (2C), 89.5, 88.0, 60.4, 57.0, 51.1, 51.1, 36.0, 18.1. MS (APCI): m/z = 404 [M + H]+ (81Br), 402 [M + H]+ (81Br, 79Br), 400 [M + H]<+ (79Br).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All the C-bound H atoms were positioned geometrically, with C—H = 0.93 Å (for aromatic H atoms), 0.98 Å (for methine H atoms), 0.97 Å (for methyl­ene H atoms) and 0.96 Å (for methyl H atoms), and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) [1.5Ueq(C) for methyl H atoms]. The Br2 atom attached to the atom C2 is disordered over two sites, with occupancies of 0.833 (8)/0.167 (8). The two components of the disorder (Br2 and Br2A) were refined with restraints so that their bond lengths are comparable. Owing to poor agreement, five reflections, i.e. (126), ([\overline{2}]04), ([\overline{1}][\overline{1}]5), (321) and (006), were omitted from the final cycles of refinement.

Table 4
Experimental details

Crystal data
Chemical formula C15H15Br2NO2
Mr 401.10
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 6.8064 (2), 9.5045 (2), 11.9482 (3)
α, β, γ (°) 79.551 (1), 87.820 (1), 77.083 (1)
V3) 740.89 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 5.47
Crystal size (mm) 0.14 × 0.13 × 0.13
 
Data collection
Diffractometer Bruker Kappa APEXII area-detector diffractometer
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.184, 0.273
No. of measured, independent and observed [I > 2σ(I)] reflections 19111, 4387, 3575
Rint 0.025
(sin θ/λ)max−1) 0.711
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.059, 1.05
No. of reflections 4387
No. of parameters 187
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.36
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

8,9-Dibromo-7-methyl-3-phenyl-10-oxa-3-azatricyclo[5.2.1.01,5]decan-4-one top
Crystal data top
C15H15Br2NO2Z = 2
Mr = 401.10F(000) = 396
Triclinic, P1Dx = 1.798 Mg m3
a = 6.8064 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5045 (2) ÅCell parameters from 9338 reflections
c = 11.9482 (3) Åθ = 2.6–29.2°
α = 79.551 (1)°µ = 5.47 mm1
β = 87.820 (1)°T = 296 K
γ = 77.083 (1)°Fragment, colourless
V = 740.89 (3) Å30.14 × 0.13 × 0.13 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3575 reflections with I > 2σ(I)
ω– and φ–scansRint = 0.025
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 30.3°, θmin = 3.8°
Tmin = 0.184, Tmax = 0.273h = 89
19111 measured reflectionsk = 1313
4387 independent reflectionsl = 1616
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0265P)2 + 0.1676P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.059(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.34 e Å3
4387 reflectionsΔρmin = 0.35 e Å3
187 parametersExtinction correction: SHELXL-2018/3 (Sheldrick 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0099 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2491 (2)0.23465 (16)0.29816 (13)0.0300 (3)
H10.1625690.3333750.2820280.036*
C20.3412 (2)0.18494 (19)0.18835 (14)0.0358 (3)
H20.3125440.0893680.1845110.043*
C30.5718 (2)0.16536 (17)0.20591 (13)0.0315 (3)
C40.6318 (2)0.31286 (17)0.19882 (13)0.0346 (3)
H4A0.5800030.3806800.1301850.041*
H4B0.7769350.3007790.2020530.041*
C50.5290 (2)0.36343 (16)0.30594 (13)0.0302 (3)
H50.4233050.4525820.2857650.036*
C60.4389 (2)0.23380 (15)0.36065 (12)0.0264 (3)
C70.4433 (2)0.23050 (17)0.48669 (13)0.0289 (3)
H7A0.3168690.2843910.5127770.035*
H7B0.4704920.1305840.5283510.035*
C80.6637 (2)0.37833 (16)0.39896 (13)0.0303 (3)
C90.6869 (2)0.29591 (16)0.60907 (13)0.0292 (3)
C100.5782 (3)0.24987 (18)0.70424 (14)0.0356 (3)
H100.4564280.2242270.6950940.043*
C110.6499 (3)0.2420 (2)0.81232 (15)0.0449 (4)
H110.5758910.2111810.8753980.054*
C120.8306 (3)0.2794 (2)0.82762 (17)0.0480 (4)
H120.8789840.2733350.9004690.058*
C130.9379 (3)0.3257 (2)0.73344 (17)0.0451 (4)
H131.0592460.3514800.7433410.054*
C140.8691 (2)0.33463 (18)0.62468 (15)0.0374 (4)
H140.9436220.3662580.5620610.045*
C150.7046 (3)0.0567 (2)0.14292 (16)0.0463 (4)
H15A0.8413960.0396660.1683950.069*
H15B0.6970460.0950890.0627600.069*
H15C0.6602460.0339100.1574040.069*
N10.60928 (18)0.30218 (13)0.49983 (11)0.0289 (3)
O10.57998 (14)0.11085 (10)0.32711 (8)0.0280 (2)
O20.79438 (19)0.44882 (13)0.38590 (11)0.0435 (3)
Br10.10285 (2)0.09342 (2)0.38126 (2)0.03963 (7)
Br20.22893 (10)0.3267 (3)0.05089 (6)0.0579 (2)0.833 (8)
Br2A0.2336 (6)0.2821 (8)0.0560 (3)0.0579 (2)0.167 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0257 (7)0.0304 (7)0.0335 (8)0.0070 (6)0.0009 (6)0.0037 (6)
C20.0354 (8)0.0430 (9)0.0299 (8)0.0118 (7)0.0030 (6)0.0043 (7)
C30.0308 (7)0.0367 (8)0.0263 (7)0.0063 (6)0.0015 (6)0.0053 (6)
C40.0350 (8)0.0404 (8)0.0284 (8)0.0137 (7)0.0021 (6)0.0000 (6)
C50.0295 (7)0.0273 (7)0.0326 (8)0.0081 (6)0.0006 (6)0.0002 (6)
C60.0237 (6)0.0262 (7)0.0291 (7)0.0060 (5)0.0020 (5)0.0044 (5)
C70.0261 (7)0.0327 (7)0.0302 (7)0.0114 (6)0.0041 (6)0.0067 (6)
C80.0300 (7)0.0270 (7)0.0344 (8)0.0086 (6)0.0022 (6)0.0048 (6)
C90.0292 (7)0.0265 (7)0.0322 (8)0.0048 (6)0.0010 (6)0.0074 (6)
C100.0376 (8)0.0386 (8)0.0333 (8)0.0148 (7)0.0013 (7)0.0060 (7)
C110.0539 (11)0.0509 (10)0.0320 (9)0.0194 (8)0.0006 (8)0.0031 (7)
C120.0547 (11)0.0540 (11)0.0369 (9)0.0164 (9)0.0127 (8)0.0041 (8)
C130.0349 (9)0.0517 (10)0.0505 (11)0.0124 (8)0.0104 (8)0.0083 (8)
C140.0295 (8)0.0424 (9)0.0417 (9)0.0092 (7)0.0012 (7)0.0096 (7)
C150.0462 (10)0.0526 (10)0.0394 (10)0.0059 (8)0.0088 (8)0.0145 (8)
N10.0282 (6)0.0313 (6)0.0298 (6)0.0116 (5)0.0019 (5)0.0068 (5)
O10.0269 (5)0.0275 (5)0.0280 (5)0.0034 (4)0.0020 (4)0.0040 (4)
O20.0445 (7)0.0450 (7)0.0462 (7)0.0265 (5)0.0004 (5)0.0003 (5)
Br10.03119 (9)0.04352 (10)0.04675 (11)0.01621 (7)0.00310 (7)0.00536 (7)
Br20.05211 (13)0.0780 (7)0.03458 (13)0.0074 (3)0.01400 (9)0.0075 (2)
Br2A0.05211 (13)0.0780 (7)0.03458 (13)0.0074 (3)0.01400 (9)0.0075 (2)
Geometric parameters (Å, º) top
C1—C61.514 (2)C7—H7A0.9700
C1—C21.539 (2)C7—H7B0.9700
C1—Br11.9538 (15)C8—O21.2175 (18)
C1—H10.9800C8—N11.3722 (19)
C2—C31.556 (2)C9—C101.390 (2)
C2—Br2A1.773 (4)C9—C141.398 (2)
C2—Br21.982 (2)C9—N11.413 (2)
C2—H20.9800C10—C111.381 (2)
C3—O11.4455 (18)C10—H100.9300
C3—C151.504 (2)C11—C121.381 (3)
C3—C41.533 (2)C11—H110.9300
C4—C51.537 (2)C12—C131.377 (3)
C4—H4A0.9700C12—H120.9300
C4—H4B0.9700C13—C141.380 (3)
C5—C81.513 (2)C13—H130.9300
C5—C61.529 (2)C14—H140.9300
C5—H50.9800C15—H15A0.9600
C6—O11.4445 (16)C15—H15B0.9600
C6—C71.502 (2)C15—H15C0.9600
C7—N11.4699 (19)
C6—C1—C2100.18 (11)N1—C7—C6102.98 (11)
C6—C1—Br1111.46 (10)N1—C7—H7A111.2
C2—C1—Br1110.81 (10)C6—C7—H7A111.2
C6—C1—H1111.3N1—C7—H7B111.2
C2—C1—H1111.3C6—C7—H7B111.2
Br1—C1—H1111.3H7A—C7—H7B109.1
C1—C2—C3103.47 (12)O2—C8—N1126.42 (15)
C1—C2—Br2A118.5 (2)O2—C8—C5125.35 (14)
C3—C2—Br2A118.35 (18)N1—C8—C5108.22 (12)
C1—C2—Br2111.70 (12)C10—C9—C14118.90 (15)
C3—C2—Br2114.67 (11)C10—C9—N1118.84 (14)
C1—C2—H2108.9C14—C9—N1122.25 (14)
C3—C2—H2108.9C11—C10—C9120.38 (16)
Br2—C2—H2108.9C11—C10—H10119.8
O1—C3—C15110.86 (13)C9—C10—H10119.8
O1—C3—C4101.92 (12)C12—C11—C10120.66 (17)
C15—C3—C4116.12 (14)C12—C11—H11119.7
O1—C3—C298.23 (11)C10—C11—H11119.7
C15—C3—C2115.34 (14)C13—C12—C11119.02 (18)
C4—C3—C2111.95 (13)C13—C12—H12120.5
C3—C4—C5100.86 (12)C11—C12—H12120.5
C3—C4—H4A111.6C12—C13—C14121.36 (17)
C5—C4—H4A111.6C12—C13—H13119.3
C3—C4—H4B111.6C14—C13—H13119.3
C5—C4—H4B111.6C13—C14—C9119.67 (16)
H4A—C4—H4B109.4C13—C14—H14120.2
C8—C5—C6102.91 (12)C9—C14—H14120.2
C8—C5—C4117.40 (13)C3—C15—H15A109.5
C6—C5—C4102.89 (12)C3—C15—H15B109.5
C8—C5—H5111.0H15A—C15—H15B109.5
C6—C5—H5111.0C3—C15—H15C109.5
C4—C5—H5111.0H15A—C15—H15C109.5
O1—C6—C7112.07 (12)H15B—C15—H15C109.5
O1—C6—C1102.18 (11)C8—N1—C9126.80 (13)
C7—C6—C1122.52 (12)C8—N1—C7112.86 (12)
O1—C6—C5102.27 (11)C9—N1—C7120.22 (12)
C7—C6—C5105.82 (12)C6—O1—C397.27 (10)
C1—C6—C5110.27 (12)
C6—C1—C2—C30.64 (15)O1—C6—C7—N185.18 (13)
Br1—C1—C2—C3118.41 (11)C1—C6—C7—N1152.93 (13)
C6—C1—C2—Br2A133.9 (3)C5—C6—C7—N125.51 (14)
Br1—C1—C2—Br2A108.3 (3)C6—C5—C8—O2164.98 (15)
C6—C1—C2—Br2124.51 (12)C4—C5—C8—O252.9 (2)
Br1—C1—C2—Br2117.72 (11)C6—C5—C8—N116.51 (15)
C1—C2—C3—O135.54 (14)C4—C5—C8—N1128.64 (14)
Br2A—C2—C3—O1168.9 (3)C14—C9—C10—C110.3 (2)
Br2—C2—C3—O1157.45 (12)N1—C9—C10—C11179.79 (15)
C1—C2—C3—C15153.36 (14)C9—C10—C11—C120.1 (3)
Br2A—C2—C3—C1573.3 (3)C10—C11—C12—C130.4 (3)
Br2—C2—C3—C1584.74 (17)C11—C12—C13—C140.3 (3)
C1—C2—C3—C470.91 (15)C12—C13—C14—C90.1 (3)
Br2A—C2—C3—C462.4 (3)C10—C9—C14—C130.4 (2)
Br2—C2—C3—C450.99 (17)N1—C9—C14—C13179.71 (15)
O1—C3—C4—C536.84 (14)O2—C8—N1—C93.2 (3)
C15—C3—C4—C5157.42 (14)C5—C8—N1—C9175.27 (13)
C2—C3—C4—C567.22 (15)O2—C8—N1—C7179.05 (15)
C3—C4—C5—C8115.57 (14)C5—C8—N1—C70.57 (17)
C3—C4—C5—C63.44 (14)C10—C9—N1—C8161.81 (15)
C2—C1—C6—O134.97 (13)C14—C9—N1—C818.1 (2)
Br1—C1—C6—O182.31 (11)C10—C9—N1—C713.8 (2)
C2—C1—C6—C7161.36 (13)C14—C9—N1—C7166.34 (14)
Br1—C1—C6—C744.08 (16)C6—C7—N1—C815.92 (16)
C2—C1—C6—C573.18 (14)C6—C7—N1—C9167.93 (12)
Br1—C1—C6—C5169.54 (10)C7—C6—O1—C3167.25 (12)
C8—C5—C6—O191.53 (13)C1—C6—O1—C359.84 (12)
C4—C5—C6—O130.94 (14)C5—C6—O1—C354.35 (13)
C8—C5—C6—C725.94 (15)C15—C3—O1—C6178.76 (13)
C4—C5—C6—C7148.41 (12)C4—C3—O1—C657.05 (12)
C8—C5—C6—C1160.39 (12)C2—C3—O1—C657.57 (12)
C4—C5—C6—C177.14 (14)
Hydrogen-bond geometry (Å, º) top
Cg5 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
C4—H4A···Br20.972.793.2838 (17)113
C13—H13···O2i0.932.583.223 (2)127
C14—H14···O20.932.302.884 (2)120
C5—H5···Cg5ii0.982.493.4195 (17)158
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
H7A···H142.56-1 + x, y, z
Br1···Br13.4852 (3)-x, -y, 1 - z
H15C···H102.531 - x, -y, 1 - z
H15B···H112.40x, y, -1 + z
Br2A···H123.13-1 + x, y, -1 + z
H5···C142.831 - x, 1 - y, 1 - z
H13···O22.582 - x, 1 - y, 1 - z
Percentage contributions of interatomic contacts to the Hirshfeld surface for the title compound top
ContactPercentage contribution
H···H43.0
Br···H/H···Br21.1
C···H/H···C12.4
O···H/H···O11.9
Br···C/C···Br3.5
Br···Br2.9
Br···O/O···Br2.5
Br···N/N···Br1.1
C···C0.5
C···N/N···C0.5
C···O/O···C0.3
N···O/O···N0.1
N···N0.1
 

Funding information

The authors are grateful to the Russian Foundation for Basic Research (RFBR) (award No. 19–53-04002, Bl_ml_a) and the Belarusian Republican Foundation for Fundamental Research (BRFFR) (award No. X19PM-003) for financial support of this research.

References

First citationAfkhami, F. A., Khandar, A. A., Mahmoudi, G., Maniukiewicz, W., Gurbanov, A. V., Zubkov, F. I., Şahin, O., Yesilel, O. Z. & Frontera, A. (2017). CrystEngComm, 19, 1389–1399.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarlow, M. G., Haszeldine, R. N. & Hubbard, R. (1971). J. Chem. Soc. C, pp. 90–95.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBerson, J. A. & Swidler, R. (1954). J. Am. Chem. Soc. 76, 4060–4069.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2013). APEX2 and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCiganek, E. & Calabrese, J. C. (1995). J. Org. Chem. 60, 4439–4443.  CSD CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDemircan, A., Temel, E., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1628–o1629.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27.  Web of Science CSD CrossRef CAS Google Scholar
First citationJung, M. E. & Street, L. J. (1985). Tetrahedron Lett. 26, 3639–3642.  CrossRef CAS Web of Science Google Scholar
First citationKobayashi, Y., Kumadaki, I., Ohsawa, A., Hanzawa, Y., Honda, M., Iitaka, Y. & Date, T. (1976). Tetrahedron Lett. 17, 2545–2548.  CSD CrossRef Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011). Chem. Commun. 47, 7248–7250.  Web of Science CrossRef CAS Google Scholar
First citationKoşar, B., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o994–o995.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoşar, B., Karaarslan, M., Demir, I. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMa, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 423, 213482.  Web of Science CrossRef Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Guedes da Silva, M. F. C., Glucini, M., Renzi, M., Gabriel, K. C. P., Kopylovich, M. N., Sutradhar, M., Marchetti, F., Pettinari, C., Zamponi, S. & Pombeiro, A. J. L. (2012). Inorg. Chem. Commun. 22, 187–189.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Guseinov, F. I. & Guedes da Silva, M. F. C. (2019). Coord. Chem. Rev. 387, 32–46.  Web of Science CrossRef CAS Google Scholar
First citationMahmudov, K. T., Kopylovich, M. N., Haukka, M., Mahmudova, G. S., Esmaeila, E. F., Chyragov, F. M. & Pombeiro, A. J. L. (2013). J. Mol. Struct. 1048, 108–112.  Web of Science CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.  Google Scholar
First citationProkop'eva, T. M., Mikhailov, V. A., Turovskaya, M. K., Karpichev, E. A., Burakov, N. I., Savelova, V. A., Kapitanov, I. V. & Popov, A. F. (2008). Russ. J. Org. Chem. 44, 637–646.  CAS Google Scholar
First citationRodygin, M. Yu., Mikhailov, V. A., Savelova, V. A. & Chernovol, P. A. (1992). J. Org. Chem. USSR (Engl. Transl.), 28, 1543–1544 [(1992). Zh. Org. Khim. 28, 1926–1927].  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShixaliyev, N. Q., Gurbanov, A. V., Maharramov, A. M., Mahmudov, K. T., Kopylovich, M. N., Martins, L. M. D. R. S., Muzalevskiy, V. M., Nenajdenko, V. G. & Pombeiro, A. J. L. (2014). New J. Chem. 38, 4807–4815.  Web of Science CSD CrossRef CAS Google Scholar
First citationSolov'eva, N. P., Sheinker, Yu. N., Oleinik, A. F. & Adamskaya, E. V. (1984). Chem. Heterocycl. Compd. 20, 489–491.  Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTemel, E., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1304–o1305.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTemel, E., Demircan, A., Beyazova, G. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1102–o1103.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationTemel, E., Demircan, A., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1551–o1552.  CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationZaytsev, V. P., Mertsalov, D. F., Trunova, A. M., Khanova, A. V., Nikitina, E. V., Sinelshchikova, A. A. & Grigoriev, M. S. (2020). Chem. Heterocycl. Compd, 56, 930–935.  Web of Science CSD CrossRef CAS Google Scholar
First citationZubkov, F. I., Mertsalov, D. F., Zaytsev, V. P., Varlamov, A. V., Gurbanov, A. V., Dorovatovskii, P. V., Timofeeva, T. V., Khrustalev, V. N. & Mahmudov, K. T. (2018). J. Mol. Liq. 249, 949–952.  Web of Science CSD CrossRef CAS Google Scholar
First citationZubkov, F. I., Nikitina, E. V., Turchin, K. F., Aleksandrov, G. G., Safronova, A. A., Borisov, R. S. & Varlamov, A. V. (2004). J. Org. Chem. 69, 432–438.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds