research communications
E)-(4-{4-[(E)-(3-hydroxybenzylidene)amino]phenoxy}phenylimino)methyl]phenol
and Hirshfeld surface analysis of 3-[(1aChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, College of Education, Salahaddin University-Hawler, Erbil, Kurdistan Region, Iraq, fFaculty of Science, Department of Biochemistry, Beni Suef University, Beni Suef, Egypt, and gDepartment of Chemistry, Faculty of Science, Sana'a University, Sana'a, Yemen
*Correspondence e-mail: shaabankamel@yahoo.com
In the crystal, the molecule of the title compound, C26H20N2O3, has crystallographically imposed twofold rotation symmetry. The crystal packing consists of layers parallel to the ab plane formed by O—H⋯N and C—H⋯O hydrogen bonds. Between the layers, C—H⋯π interactions are observed.
Keywords: crystal structure; hydrogen bond; phenol; aromatic ether; phenoxy; azomethines; Hirshfeld surface analysis.
CCDC reference: 2062957
1. Chemical context
Several et al., 2013), anti-inflammatory (Shukla & Mishra, 2019), antibacterial (Van Zee & Coates, 2015) or antimicrobial (Pagadala et al., 2015). are also used as versatile components in nucleophilic addition with organometallic reagents and in cycloaddition reactions (Mohan et al., 2012). These findings prompted us to investigate the of the title compound.
have been reported for their significant biological activities such as antitumor (Mansouri2. Structural commentary
The molecule of the title compound has crystallographically imposed twofold rotation symmetry (Fig. 1). The dihedral angle between the two unique benzene rings is 40.68 (6)° while the dihedral angle between the two central benzene rings is 77.71 (6)°. Bond lengths are typical for this kind of compounds.
3. Supramolecular features
In the crystal, O2—H2A⋯N1 and C5—H5⋯O2 hydrogen bonds link the molecules into layers parallel to the ab plane (Table 1, Fig. 2). The layers are hold together by C—H⋯π contacts (Table 1, Fig. 3) and by other van der Waals interactions (Table 2).
|
4. Hirshfeld surface analysis
Hirshfeld surface analysis, together with two-dimensional fingerprint plots, is an important tool for visualizing and analyzing intermolecular contacts in molecular crystals. The corresponding surfaces and fingerprint plots were prepared by CrystalExplorer (Turner et al., 2017). Fig. 4 shows the dnorm map for the title molecule, with red spots indicating the positions of H⋯N contacts arising from the O—H⋯N hydrogen bonds.
Fig. 5 shows the two-dimensional fingerprint plots, which give the contributions of intermolecular contacts to the Hirshfeld surface. The most important contribution to the Hirshfeld surface (41.6%) is from H⋯H contacts. C⋯H/H⋯C and O⋯H/H⋯O interactions follow with 28.1% and 13.8% contributions, respectively. Other minor contributors are C⋯C (5.3%), N⋯H/H⋯N (4.8%), O⋯C/C⋯O (3.8%) and N⋯C/C⋯N (2.6%) contacts.
5. Database survey
Five related compounds with a 4-[(E)-benzylideneamino]phenol skeleton are: (E)-2-{[(2-aminophenyl)imino]methyl}-5-(benzyloxy)phenol (NIBRIC; Ghichi et al., 2018), (Z)-3-(benzyloxy)-6-{[(5-chloro-2-hydroxyphenyl)amino]methylidene}cyclohexa-2,4-dien-1-one (NIBROI; Ghichi et al., 2018), 2-{(E)-[(2-methyl-3-nitrophenyl)imino]methyl}-4-nitrophenol (AFOPUI; Tanak et al., 2013), 2-[(E)-(2-chlorophenyl)iminomethyl]-6-methylphenol (SABKOX; Zhu et al., 2010) and 2-{[(2,4-dimethylphenyl)imino]methyl}-6-methylphenol (MUCDIY; Tanak et al., 2009).
In the crystal of NIBRIC, strong N—H⋯O hydrogen bonds form zigzag chains of molecules along the b-axis direction. Weaker C—H⋯π and offset π–π stacking interactions also contribute to the packing. For NIBROI, pairs of strong O—H⋯O hydrogen bonds form centrosymmetric dimers that enclose R22(18) rings. These combine with weaker C—H⋯Cl hydrogen bonds, which also generate centrosymmetric dimers, but with R22(14) motifs. Inversion-related C—H⋯π contacts lead to the formation of sheets of molecules parallel to (120), which are stacked approximately along the b-axis direction. In the crystal of AFOPUI, molecules are linked by C—H⋯O interactions, forming two-dimensional sheets parallel to the bc plane. In the structure of SABKOX, the hydroxy H atom is involved in a strong intramolecular O—H⋯N hydrogen bond, generating a S(6) ring. The molecular structure of MUCDIY is stabilized by an intramolecular O—H⋯N hydrogen bond, which generates a six membered ring.
6. Synthesis and crystallization
Condensation of 1 mmol of 4,4′-oxydibenzaldehyde (226 mg) with 2 mmol of 3-aminophenol (218 mg) in ethanol under reflux for 4 h afforded the crude product of the title compound. The product was crystallized from ethanol by slow evaporation to obtain good quality crystals for X-ray diffraction. Yield 82%.
7. Refinement
Crystal data, data collection and structure . All H atoms were located in a difference-Fourier map and refined freely.
details are summarized in Table 3
|
Supporting information
CCDC reference: 2062957
https://doi.org/10.1107/S205698902100181X/yk2146sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902100181X/yk2146Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902100181X/yk2146Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C26H20N2O3 | F(000) = 856 |
Mr = 408.44 | Dx = 1.346 Mg m−3 |
Monoclinic, C2/c | Cu Kα radiation, λ = 1.54178 Å |
a = 26.8396 (6) Å | Cell parameters from 9934 reflections |
b = 5.1174 (1) Å | θ = 3.9–69.8° |
c = 17.2574 (4) Å | µ = 0.72 mm−1 |
β = 121.764 (1)° | T = 150 K |
V = 2015.27 (8) Å3 | Column, colourless |
Z = 4 | 0.25 × 0.06 × 0.06 mm |
Bruker D8 VENTURE PHOTON 100 CMOS diffractometer | 1880 independent reflections |
Radiation source: INCOATEC IµS micro–focus source | 1767 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.031 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 69.8°, θmin = 3.9° |
ω scans | h = −32→32 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −6→6 |
Tmin = 0.90, Tmax = 0.96 | l = −20→20 |
15449 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | All H-atom parameters refined |
wR(F2) = 0.086 | w = 1/[σ2(Fo2) + (0.043P)2 + 1.3008P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1880 reflections | Δρmax = 0.19 e Å−3 |
182 parameters | Δρmin = −0.16 e Å−3 |
0 restraints | Extinction correction: SHELXL 2016/6 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0031 (2) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.500000 | 1.3874 (2) | 0.250000 | 0.0267 (3) | |
O2 | 0.21618 (3) | 0.09976 (18) | 0.33558 (6) | 0.0336 (2) | |
H2A | 0.1966 (8) | 0.182 (4) | 0.2759 (13) | 0.066 (5)* | |
N1 | 0.36195 (4) | 0.78690 (18) | 0.33726 (6) | 0.0233 (2) | |
C1 | 0.46708 (5) | 1.2402 (2) | 0.27573 (7) | 0.0228 (3) | |
C2 | 0.49250 (5) | 1.0380 (2) | 0.33777 (8) | 0.0288 (3) | |
H2 | 0.5331 (6) | 0.994 (3) | 0.3625 (9) | 0.035 (3)* | |
C3 | 0.45903 (5) | 0.8917 (2) | 0.36148 (8) | 0.0276 (3) | |
H3 | 0.4769 (6) | 0.743 (3) | 0.4038 (9) | 0.033 (3)* | |
C4 | 0.39966 (4) | 0.9482 (2) | 0.32294 (7) | 0.0220 (3) | |
C5 | 0.37512 (5) | 1.1545 (2) | 0.26182 (7) | 0.0244 (3) | |
H5 | 0.3337 (6) | 1.192 (3) | 0.2353 (9) | 0.031 (3)* | |
C6 | 0.40866 (5) | 1.3034 (2) | 0.23883 (7) | 0.0242 (3) | |
H6 | 0.3914 (5) | 1.445 (3) | 0.1965 (9) | 0.030 (3)* | |
C7 | 0.38127 (5) | 0.6916 (2) | 0.41641 (7) | 0.0254 (3) | |
H7 | 0.4211 (6) | 0.744 (3) | 0.4696 (10) | 0.035 (4)* | |
C8 | 0.35036 (5) | 0.4960 (2) | 0.43754 (7) | 0.0238 (3) | |
C9 | 0.29481 (5) | 0.4001 (2) | 0.37197 (7) | 0.0242 (3) | |
H9 | 0.2735 (5) | 0.460 (3) | 0.3094 (9) | 0.026 (3)* | |
C10 | 0.26950 (5) | 0.2038 (2) | 0.39519 (7) | 0.0242 (3) | |
H10 | 0.2803 (6) | −0.038 (3) | 0.4990 (9) | 0.030 (3)* | |
C11 | 0.29889 (5) | 0.1028 (2) | 0.48379 (8) | 0.0262 (3) | |
H11 | 0.3729 (6) | 0.127 (3) | 0.6118 (10) | 0.034 (3)* | |
C12 | 0.35320 (5) | 0.2004 (2) | 0.54851 (8) | 0.0278 (3) | |
H12 | 0.4190 (6) | 0.465 (3) | 0.5730 (9) | 0.030 (3)* | |
C13 | 0.37916 (5) | 0.3963 (2) | 0.52590 (8) | 0.0268 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0298 (6) | 0.0206 (5) | 0.0400 (6) | 0.000 | 0.0254 (5) | 0.000 |
O2 | 0.0266 (4) | 0.0395 (5) | 0.0285 (5) | −0.0111 (4) | 0.0103 (4) | −0.0010 (4) |
N1 | 0.0218 (5) | 0.0235 (5) | 0.0265 (5) | 0.0009 (4) | 0.0141 (4) | 0.0018 (4) |
C1 | 0.0256 (5) | 0.0208 (5) | 0.0278 (6) | −0.0023 (4) | 0.0181 (5) | −0.0032 (4) |
C2 | 0.0204 (5) | 0.0313 (6) | 0.0344 (6) | 0.0025 (5) | 0.0142 (5) | 0.0046 (5) |
C3 | 0.0240 (6) | 0.0273 (6) | 0.0304 (6) | 0.0030 (5) | 0.0136 (5) | 0.0066 (5) |
C4 | 0.0224 (5) | 0.0226 (5) | 0.0235 (5) | −0.0011 (4) | 0.0138 (4) | −0.0019 (4) |
C5 | 0.0221 (5) | 0.0262 (6) | 0.0275 (6) | 0.0037 (4) | 0.0148 (5) | 0.0013 (4) |
C6 | 0.0276 (6) | 0.0215 (5) | 0.0277 (6) | 0.0042 (4) | 0.0175 (5) | 0.0020 (4) |
C7 | 0.0237 (5) | 0.0276 (6) | 0.0247 (6) | −0.0018 (4) | 0.0125 (5) | −0.0010 (4) |
C8 | 0.0235 (5) | 0.0251 (6) | 0.0249 (6) | −0.0002 (4) | 0.0142 (5) | −0.0010 (4) |
C9 | 0.0238 (5) | 0.0275 (6) | 0.0219 (6) | 0.0008 (4) | 0.0124 (5) | 0.0012 (4) |
C10 | 0.0209 (5) | 0.0267 (6) | 0.0257 (6) | −0.0014 (4) | 0.0128 (5) | −0.0035 (4) |
C11 | 0.0274 (6) | 0.0254 (6) | 0.0299 (6) | −0.0001 (4) | 0.0179 (5) | 0.0021 (4) |
C12 | 0.0271 (6) | 0.0317 (6) | 0.0249 (6) | 0.0033 (5) | 0.0140 (5) | 0.0046 (5) |
C13 | 0.0224 (5) | 0.0325 (6) | 0.0237 (6) | −0.0011 (5) | 0.0109 (5) | −0.0003 (5) |
O1—C1i | 1.3992 (12) | C5—H5 | 0.973 (13) |
O1—C1 | 1.3993 (12) | C6—H6 | 0.959 (14) |
O2—C10 | 1.3563 (13) | C7—C8 | 1.4634 (15) |
O2—H2A | 0.972 (19) | C7—H7 | 1.012 (14) |
N1—C7 | 1.2755 (14) | C8—C13 | 1.3935 (15) |
N1—C4 | 1.4250 (13) | C8—C9 | 1.4028 (15) |
C1—C2 | 1.3831 (16) | C9—C10 | 1.3848 (16) |
C1—C6 | 1.3849 (15) | C9—H9 | 0.967 (13) |
C2—C3 | 1.3865 (16) | C10—C11 | 1.3991 (16) |
C2—H2 | 0.965 (14) | C11—C12 | 1.3812 (16) |
C3—C4 | 1.3961 (15) | C11—H10 | 0.988 (14) |
C3—H3 | 0.988 (15) | C12—C13 | 1.3888 (16) |
C4—C5 | 1.3891 (16) | C12—H11 | 1.004 (14) |
C5—C6 | 1.3871 (15) | C13—H12 | 1.007 (13) |
C1i—O1—C1 | 114.87 (11) | N1—C7—C8 | 124.35 (10) |
C10—O2—H2A | 113.5 (11) | N1—C7—H7 | 120.7 (8) |
C7—N1—C4 | 118.81 (9) | C8—C7—H7 | 114.9 (8) |
C2—C1—C6 | 120.56 (10) | C13—C8—C9 | 119.77 (10) |
C2—C1—O1 | 120.77 (9) | C13—C8—C7 | 117.53 (10) |
C6—C1—O1 | 118.66 (9) | C9—C8—C7 | 122.65 (10) |
C1—C2—C3 | 120.01 (10) | C10—C9—C8 | 119.69 (10) |
C1—C2—H2 | 119.8 (9) | C10—C9—H9 | 117.3 (8) |
C3—C2—H2 | 120.1 (9) | C8—C9—H9 | 122.9 (8) |
C2—C3—C4 | 120.12 (10) | O2—C10—C9 | 123.21 (10) |
C2—C3—H3 | 119.8 (8) | O2—C10—C11 | 116.53 (10) |
C4—C3—H3 | 120.0 (8) | C9—C10—C11 | 120.26 (10) |
C5—C4—C3 | 119.03 (10) | C12—C11—C10 | 119.88 (10) |
C5—C4—N1 | 118.41 (9) | C12—C11—H10 | 121.0 (8) |
C3—C4—N1 | 122.28 (10) | C10—C11—H10 | 119.1 (8) |
C6—C5—C4 | 120.99 (10) | C11—C12—C13 | 120.38 (10) |
C6—C5—H5 | 120.6 (8) | C11—C12—H11 | 118.1 (8) |
C4—C5—H5 | 118.4 (8) | C13—C12—H11 | 121.5 (8) |
C1—C6—C5 | 119.23 (10) | C12—C13—C8 | 120.02 (10) |
C1—C6—H6 | 120.2 (8) | C12—C13—H12 | 120.2 (8) |
C5—C6—H6 | 120.5 (8) | C8—C13—H12 | 119.8 (8) |
C1i—O1—C1—C2 | 49.26 (9) | C4—N1—C7—C8 | −171.34 (10) |
C1i—O1—C1—C6 | −131.68 (11) | N1—C7—C8—C13 | 175.25 (11) |
C6—C1—C2—C3 | 1.91 (17) | N1—C7—C8—C9 | −2.15 (18) |
O1—C1—C2—C3 | −179.04 (10) | C13—C8—C9—C10 | −1.16 (16) |
C1—C2—C3—C4 | −0.10 (18) | C7—C8—C9—C10 | 176.18 (10) |
C2—C3—C4—C5 | −0.88 (17) | C8—C9—C10—O2 | −179.55 (10) |
C2—C3—C4—N1 | 173.02 (10) | C8—C9—C10—C11 | 0.54 (16) |
C7—N1—C4—C5 | −145.80 (11) | O2—C10—C11—C12 | −179.50 (10) |
C7—N1—C4—C3 | 40.26 (15) | C9—C10—C11—C12 | 0.42 (17) |
C3—C4—C5—C6 | 0.06 (16) | C10—C11—C12—C13 | −0.76 (17) |
N1—C4—C5—C6 | −174.08 (10) | C11—C12—C13—C8 | 0.15 (17) |
C2—C1—C6—C5 | −2.71 (16) | C9—C8—C13—C12 | 0.82 (17) |
O1—C1—C6—C5 | 178.23 (9) | C7—C8—C13—C12 | −176.66 (10) |
C4—C5—C6—C1 | 1.72 (16) |
Symmetry code: (i) −x+1, y, −z+1/2. |
Cg1 is the centroid of the C1–C6 benzene ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2A···N1ii | 0.972 (19) | 1.828 (19) | 2.7615 (12) | 160.1 (16) |
C5—H5···O2iii | 0.973 (13) | 2.431 (14) | 3.1121 (14) | 126.7 (10) |
C12—H11···Cg1iii | 1.004 (14) | 2.986 (15) | 3.9882 (12) | 178.7 (19) |
Symmetry codes: (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x+1/2, y+3/2, −z+1/2. |
Contact | Distance | Symmetry operation |
H12···O1 | 2.763 (14) | 1 - x, 2 - y, 1 - z |
H6···H11 | 2.53 (2) | x, 2 - y, -1/2 + z |
C3···C6 | 3.5155 (15) | x, -1 + y, z |
C6···H11 | 2.892 (15) | x, 1 - y, -1/2 + z |
C11···C11 | 3.319 (2) | 1/2 - x, 1/2 - y, 1 - z |
H11···H2 | 2.40 (3) | 1 - x, 1 - y, 1 - z |
Funding information
The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.
References
Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA. Google Scholar
Ghichi, N., Benboudiaf, A., Bensouici, C., DJebli, Y. & Merazig, H. (2018). Acta Cryst. E74, 737–742. CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Mansouri, T. H., Somaye, S., Nezami, Z. S., Ghahghaei, A. & Najmedini, S. (2013). J. Biomol. Struct. Dyn. 30, 23–31. Google Scholar
Mohan, C. S., Balamurugan, V., Elayaraja, R. & Prabakaran, A. S. (2012). Int. J. Pharm. Sci. Res. 3, 881–885. Google Scholar
Pagadala, R., Kusampally, U., Rajanna, K. C. & Meshram, J. S. (2015). J. Heterocycl. Chem. 52, 403–410. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shukla, S. & Mishra, A. P. (2019). Arabian Journal of Chemistry, 12, 1715–1721. CrossRef CAS Google Scholar
Tanak, H., Erşahin, F., Ağar, E., Yavuz, M. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2291. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tanak, H., Toğurman, F., Kalecik, S., Dege, N. & Yavuz, M. (2013). Acta Cryst. E69, o1085. CSD CrossRef IUCr Journals Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. University of Western Australia. https://hirshfeldsurface.net. Google Scholar
Van Zee, N. J. & Coates, G. W. (2015). Angew. Chem. Int. Ed. 54, 2665–2668. CAS Google Scholar
Zhu, P., Yu, J., Wang, H., Zhang, C. & Yang, D. (2010). Acta Cryst. E66, o2460. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.