research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 3-[(1E)-(4-{4-[(E)-(3-hy­dr­oxy­benzyl­­idene)amino]­phen­­oxy}phenyl­imino)­meth­yl]phenol

CROSSMARK_Color_square_no_text.svg

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, eChemistry Department, College of Education, Salahaddin University-Hawler, Erbil, Kurdistan Region, Iraq, fFaculty of Science, Department of Biochemistry, Beni Suef University, Beni Suef, Egypt, and gDepartment of Chemistry, Faculty of Science, Sana'a University, Sana'a, Yemen
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by A. V. Yatsenko, Moscow State University, Russia (Received 2 February 2021; accepted 14 February 2021; online 19 February 2021)

In the crystal, the mol­ecule of the title compound, C26H20N2O3, has crystallographically imposed twofold rotation symmetry. The crystal packing consists of layers parallel to the ab plane formed by O—H⋯N and C—H⋯O hydrogen bonds. Between the layers, C—H⋯π inter­actions are observed.

1. Chemical context

Several Schiff bases have been reported for their significant biological activities such as anti­tumor (Mansouri et al., 2013[Mansouri, T. H., Somaye, S., Nezami, Z. S., Ghahghaei, A. & Najmedini, S. (2013). J. Biomol. Struct. Dyn. 30, 23-31.]), anti-inflammatory (Shukla & Mishra, 2019[Shukla, S. & Mishra, A. P. (2019). Arabian Journal of Chemistry, 12, 1715-1721.]), anti­bacterial (Van Zee & Coates, 2015[Van Zee, N. J. & Coates, G. W. (2015). Angew. Chem. Int. Ed. 54, 2665-2668.]) or anti­microbial (Pagadala et al., 2015[Pagadala, R., Kusampally, U., Rajanna, K. C. & Meshram, J. S. (2015). J. Heterocycl. Chem. 52, 403-410.]). Schiff bases are also used as versatile components in nucleophilic addition with organometallic reagents and in cyclo­addition reactions (Mohan et al., 2012[Mohan, C. S., Balamurugan, V., Elayaraja, R. & Prabakaran, A. S. (2012). Int. J. Pharm. Sci. Res. 3, 881-885.]). These findings prompted us to investigate the crystal structure of the title compound.

[Scheme 1]

2. Structural commentary

The mol­ecule of the title compound has crystallographically imposed twofold rotation symmetry (Fig. 1[link]). The dihedral angle between the two unique benzene rings is 40.68 (6)° while the dihedral angle between the two central benzene rings is 77.71 (6)°. Bond lengths are typical for this kind of compounds.

[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 50% probability ellipsoids [symmetry code: (i) −x + 1, y, −z + [{1\over 2}]].

3. Supra­molecular features

In the crystal, O2—H2A⋯N1 and C5—H5⋯O2 hydrogen bonds link the mol­ecules into layers parallel to the ab plane (Table 1[link], Fig. 2[link]). The layers are hold together by C—H⋯π contacts (Table 1[link], Fig. 3[link]) and by other van der Waals inter­actions (Table 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N1i 0.972 (19) 1.828 (19) 2.7615 (12) 160.1 (16)
C5—H5⋯O2ii 0.973 (13) 2.431 (14) 3.1121 (14) 126.7 (10)
C12—H11⋯Cg1ii 1.004 (14) 2.986 (15) 3.9882 (12) 178.7 (19)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{3\over 2}}, -z+{\script{1\over 2}}].

Table 2
Short inter­molecular contacts (Å) in the title structure

Contact Distance Symmetry operation
H12⋯O1 2.763 (14) 1 − x, 2 − y, 1 − z
H6⋯H11 2.53 (2) x, 2 − y, −[{1\over 2}] + z
C3⋯C6 3.5155 (15) x, −1 + y, z
C6⋯H11 2.892 (15) x, 1 − y, −[{1\over 2}] + z
C11⋯C11 3.319 (2) [{1\over 2}] − x, [{1\over 2}] − y, 1 − z
H11⋯H2 2.40 (3) 1 − x, 1 − y, 1 − z
[Figure 2]
Figure 2
The layer structure viewed along the c-axis direction. The inter­molecular O—H⋯N and C—H⋯O hydrogen bonds are shown as red and black dashed lines, respectively.
[Figure 3]
Figure 3
Side view of two layers seen along the b-axis direction. Hydrogen bonds and C—H⋯π inter­actions are depicted by dashed lines.

4. Hirshfeld surface analysis

Hirshfeld surface analysis, together with two-dimensional fingerprint plots, is an important tool for visualizing and analyzing inter­molecular contacts in mol­ecular crystals. The corresponding surfaces and fingerprint plots were prepared by CrystalExplorer (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. University of Western Australia. https://hirshfeldsurface.net.]). Fig. 4[link] shows the dnorm map for the title mol­ecule, with red spots indicating the positions of H⋯N contacts arising from the O—H⋯N hydrogen bonds.

[Figure 4]
Figure 4
A view of the three-dimensional Hirshfeld surface for the title compound, plotted over dnorm in the range −1.1242 to 1.4437 a.u.

Fig. 5[link] shows the two-dimensional fingerprint plots, which give the contributions of inter­molecular contacts to the Hirshfeld surface. The most important contribution to the Hirshfeld surface (41.6%) is from H⋯H contacts. C⋯H/H⋯C and O⋯H/H⋯O inter­actions follow with 28.1% and 13.8% contributions, respectively. Other minor contributors are C⋯C (5.3%), N⋯H/H⋯N (4.8%), O⋯C/C⋯O (3.8%) and N⋯C/C⋯N (2.6%) contacts.

[Figure 5]
Figure 5
A view of the two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C and (d) O⋯H/H⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

Five related compounds with a 4-[(E)-benzyl­idene­amino]­phenol skeleton are: (E)-2-{[(2-amino­phen­yl)imino]­meth­yl}-5-(benz­yloxy)phenol (NIBRIC; Ghichi et al., 2018[Ghichi, N., Benboudiaf, A., Bensouici, C., DJebli, Y. & Merazig, H. (2018). Acta Cryst. E74, 737-742.]), (Z)-3-(benz­yloxy)-6-{[(5-chloro-2-hy­droxy­phen­yl)amino]­methyl­idene}cyclo­hexa-2,4-dien-1-one (NIBROI; Ghichi et al., 2018[Ghichi, N., Benboudiaf, A., Bensouici, C., DJebli, Y. & Merazig, H. (2018). Acta Cryst. E74, 737-742.]), 2-{(E)-[(2-methyl-3-nitro­phen­yl)imino]­meth­yl}-4-nitro­phenol (AFOPUI; Tanak et al., 2013[Tanak, H., Toğurman, F., Kalecik, S., Dege, N. & Yavuz, M. (2013). Acta Cryst. E69, o1085.]), 2-[(E)-(2-chloro­phen­yl)imino­meth­yl]-6-methyl­phenol (SABKOX; Zhu et al., 2010[Zhu, P., Yu, J., Wang, H., Zhang, C. & Yang, D. (2010). Acta Cryst. E66, o2460.]) and 2-{[(2,4-di­methyl­phen­yl)imino]­meth­yl}-6-methyl­phenol (MUCDIY; Tanak et al., 2009[Tanak, H., Erşahin, F., Ağar, E., Yavuz, M. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2291.]).

In the crystal of NIBRIC, strong N—H⋯O hydrogen bonds form zigzag chains of mol­ecules along the b-axis direction. Weaker C—H⋯π and offset ππ stacking inter­actions also contribute to the packing. For NIBROI, pairs of strong O—H⋯O hydrogen bonds form centrosymmetric dimers that enclose R22(18) rings. These combine with weaker C—H⋯Cl hydrogen bonds, which also generate centrosymmetric dimers, but with R22(14) motifs. Inversion-related C—H⋯π contacts lead to the formation of sheets of mol­ecules parallel to (120), which are stacked approximately along the b-axis direction. In the crystal of AFOPUI, mol­ecules are linked by C—H⋯O inter­actions, forming two-dimensional sheets parallel to the bc plane. In the structure of SABKOX, the hy­droxy H atom is involved in a strong intra­molecular O—H⋯N hydrogen bond, generating a S(6) ring. The mol­ecular structure of MUCDIY is stabilized by an intra­molecular O—H⋯N hydrogen bond, which generates a six membered ring.

6. Synthesis and crystallization

Condensation of 1 mmol of 4,4′-oxydibenzaldehyde (226 mg) with 2 mmol of 3-amino­phenol (218 mg) in ethanol under reflux for 4 h afforded the crude product of the title compound. The product was crystallized from ethanol by slow evaporation to obtain good quality crystals for X-ray diffraction. Yield 82%.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were located in a difference-Fourier map and refined freely.

Table 3
Experimental details

Crystal data
Chemical formula C26H20N2O3
Mr 408.44
Crystal system, space group Monoclinic, C2/c
Temperature (K) 150
a, b, c (Å) 26.8396 (6), 5.1174 (1), 17.2574 (4)
β (°) 121.764 (1)
V3) 2015.27 (8)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.72
Crystal size (mm) 0.25 × 0.06 × 0.06
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.90, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 15449, 1880, 1767
Rint 0.031
(sin θ/λ)max−1) 0.609
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.086, 1.05
No. of reflections 1880
No. of parameters 182
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.19, −0.16
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3-[(1E)-(4-{4-[(E)-(3-Hydroxybenzylidene)amino]phenoxy}phenylimino)methyl]phenol top
Crystal data top
C26H20N2O3F(000) = 856
Mr = 408.44Dx = 1.346 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54178 Å
a = 26.8396 (6) ÅCell parameters from 9934 reflections
b = 5.1174 (1) Åθ = 3.9–69.8°
c = 17.2574 (4) ŵ = 0.72 mm1
β = 121.764 (1)°T = 150 K
V = 2015.27 (8) Å3Column, colourless
Z = 40.25 × 0.06 × 0.06 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
1880 independent reflections
Radiation source: INCOATEC IµS micro–focus source1767 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.4167 pixels mm-1θmax = 69.8°, θmin = 3.9°
ω scansh = 3232
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 66
Tmin = 0.90, Tmax = 0.96l = 2020
15449 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033All H-atom parameters refined
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.043P)2 + 1.3008P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1880 reflectionsΔρmax = 0.19 e Å3
182 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL 2016/6 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0031 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5000001.3874 (2)0.2500000.0267 (3)
O20.21618 (3)0.09976 (18)0.33558 (6)0.0336 (2)
H2A0.1966 (8)0.182 (4)0.2759 (13)0.066 (5)*
N10.36195 (4)0.78690 (18)0.33726 (6)0.0233 (2)
C10.46708 (5)1.2402 (2)0.27573 (7)0.0228 (3)
C20.49250 (5)1.0380 (2)0.33777 (8)0.0288 (3)
H20.5331 (6)0.994 (3)0.3625 (9)0.035 (3)*
C30.45903 (5)0.8917 (2)0.36148 (8)0.0276 (3)
H30.4769 (6)0.743 (3)0.4038 (9)0.033 (3)*
C40.39966 (4)0.9482 (2)0.32294 (7)0.0220 (3)
C50.37512 (5)1.1545 (2)0.26182 (7)0.0244 (3)
H50.3337 (6)1.192 (3)0.2353 (9)0.031 (3)*
C60.40866 (5)1.3034 (2)0.23883 (7)0.0242 (3)
H60.3914 (5)1.445 (3)0.1965 (9)0.030 (3)*
C70.38127 (5)0.6916 (2)0.41641 (7)0.0254 (3)
H70.4211 (6)0.744 (3)0.4696 (10)0.035 (4)*
C80.35036 (5)0.4960 (2)0.43754 (7)0.0238 (3)
C90.29481 (5)0.4001 (2)0.37197 (7)0.0242 (3)
H90.2735 (5)0.460 (3)0.3094 (9)0.026 (3)*
C100.26950 (5)0.2038 (2)0.39519 (7)0.0242 (3)
H100.2803 (6)0.038 (3)0.4990 (9)0.030 (3)*
C110.29889 (5)0.1028 (2)0.48379 (8)0.0262 (3)
H110.3729 (6)0.127 (3)0.6118 (10)0.034 (3)*
C120.35320 (5)0.2004 (2)0.54851 (8)0.0278 (3)
H120.4190 (6)0.465 (3)0.5730 (9)0.030 (3)*
C130.37916 (5)0.3963 (2)0.52590 (8)0.0268 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0298 (6)0.0206 (5)0.0400 (6)0.0000.0254 (5)0.000
O20.0266 (4)0.0395 (5)0.0285 (5)0.0111 (4)0.0103 (4)0.0010 (4)
N10.0218 (5)0.0235 (5)0.0265 (5)0.0009 (4)0.0141 (4)0.0018 (4)
C10.0256 (5)0.0208 (5)0.0278 (6)0.0023 (4)0.0181 (5)0.0032 (4)
C20.0204 (5)0.0313 (6)0.0344 (6)0.0025 (5)0.0142 (5)0.0046 (5)
C30.0240 (6)0.0273 (6)0.0304 (6)0.0030 (5)0.0136 (5)0.0066 (5)
C40.0224 (5)0.0226 (5)0.0235 (5)0.0011 (4)0.0138 (4)0.0019 (4)
C50.0221 (5)0.0262 (6)0.0275 (6)0.0037 (4)0.0148 (5)0.0013 (4)
C60.0276 (6)0.0215 (5)0.0277 (6)0.0042 (4)0.0175 (5)0.0020 (4)
C70.0237 (5)0.0276 (6)0.0247 (6)0.0018 (4)0.0125 (5)0.0010 (4)
C80.0235 (5)0.0251 (6)0.0249 (6)0.0002 (4)0.0142 (5)0.0010 (4)
C90.0238 (5)0.0275 (6)0.0219 (6)0.0008 (4)0.0124 (5)0.0012 (4)
C100.0209 (5)0.0267 (6)0.0257 (6)0.0014 (4)0.0128 (5)0.0035 (4)
C110.0274 (6)0.0254 (6)0.0299 (6)0.0001 (4)0.0179 (5)0.0021 (4)
C120.0271 (6)0.0317 (6)0.0249 (6)0.0033 (5)0.0140 (5)0.0046 (5)
C130.0224 (5)0.0325 (6)0.0237 (6)0.0011 (5)0.0109 (5)0.0003 (5)
Geometric parameters (Å, º) top
O1—C1i1.3992 (12)C5—H50.973 (13)
O1—C11.3993 (12)C6—H60.959 (14)
O2—C101.3563 (13)C7—C81.4634 (15)
O2—H2A0.972 (19)C7—H71.012 (14)
N1—C71.2755 (14)C8—C131.3935 (15)
N1—C41.4250 (13)C8—C91.4028 (15)
C1—C21.3831 (16)C9—C101.3848 (16)
C1—C61.3849 (15)C9—H90.967 (13)
C2—C31.3865 (16)C10—C111.3991 (16)
C2—H20.965 (14)C11—C121.3812 (16)
C3—C41.3961 (15)C11—H100.988 (14)
C3—H30.988 (15)C12—C131.3888 (16)
C4—C51.3891 (16)C12—H111.004 (14)
C5—C61.3871 (15)C13—H121.007 (13)
C1i—O1—C1114.87 (11)N1—C7—C8124.35 (10)
C10—O2—H2A113.5 (11)N1—C7—H7120.7 (8)
C7—N1—C4118.81 (9)C8—C7—H7114.9 (8)
C2—C1—C6120.56 (10)C13—C8—C9119.77 (10)
C2—C1—O1120.77 (9)C13—C8—C7117.53 (10)
C6—C1—O1118.66 (9)C9—C8—C7122.65 (10)
C1—C2—C3120.01 (10)C10—C9—C8119.69 (10)
C1—C2—H2119.8 (9)C10—C9—H9117.3 (8)
C3—C2—H2120.1 (9)C8—C9—H9122.9 (8)
C2—C3—C4120.12 (10)O2—C10—C9123.21 (10)
C2—C3—H3119.8 (8)O2—C10—C11116.53 (10)
C4—C3—H3120.0 (8)C9—C10—C11120.26 (10)
C5—C4—C3119.03 (10)C12—C11—C10119.88 (10)
C5—C4—N1118.41 (9)C12—C11—H10121.0 (8)
C3—C4—N1122.28 (10)C10—C11—H10119.1 (8)
C6—C5—C4120.99 (10)C11—C12—C13120.38 (10)
C6—C5—H5120.6 (8)C11—C12—H11118.1 (8)
C4—C5—H5118.4 (8)C13—C12—H11121.5 (8)
C1—C6—C5119.23 (10)C12—C13—C8120.02 (10)
C1—C6—H6120.2 (8)C12—C13—H12120.2 (8)
C5—C6—H6120.5 (8)C8—C13—H12119.8 (8)
C1i—O1—C1—C249.26 (9)C4—N1—C7—C8171.34 (10)
C1i—O1—C1—C6131.68 (11)N1—C7—C8—C13175.25 (11)
C6—C1—C2—C31.91 (17)N1—C7—C8—C92.15 (18)
O1—C1—C2—C3179.04 (10)C13—C8—C9—C101.16 (16)
C1—C2—C3—C40.10 (18)C7—C8—C9—C10176.18 (10)
C2—C3—C4—C50.88 (17)C8—C9—C10—O2179.55 (10)
C2—C3—C4—N1173.02 (10)C8—C9—C10—C110.54 (16)
C7—N1—C4—C5145.80 (11)O2—C10—C11—C12179.50 (10)
C7—N1—C4—C340.26 (15)C9—C10—C11—C120.42 (17)
C3—C4—C5—C60.06 (16)C10—C11—C12—C130.76 (17)
N1—C4—C5—C6174.08 (10)C11—C12—C13—C80.15 (17)
C2—C1—C6—C52.71 (16)C9—C8—C13—C120.82 (17)
O1—C1—C6—C5178.23 (9)C7—C8—C13—C12176.66 (10)
C4—C5—C6—C11.72 (16)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
O2—H2A···N1ii0.972 (19)1.828 (19)2.7615 (12)160.1 (16)
C5—H5···O2iii0.973 (13)2.431 (14)3.1121 (14)126.7 (10)
C12—H11···Cg1iii1.004 (14)2.986 (15)3.9882 (12)178.7 (19)
Symmetry codes: (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+3/2, z+1/2.
Short intermolecular contacts (Å) in the title structure top
ContactDistanceSymmetry operation
H12···O12.763 (14)1 - x, 2 - y, 1 - z
H6···H112.53 (2)x, 2 - y, -1/2 + z
C3···C63.5155 (15)x, -1 + y, z
C6···H112.892 (15)x, 1 - y, -1/2 + z
C11···C113.319 (2)1/2 - x, 1/2 - y, 1 - z
H11···H22.40 (3)1 - x, 1 - y, 1 - z
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhichi, N., Benboudiaf, A., Bensouici, C., DJebli, Y. & Merazig, H. (2018). Acta Cryst. E74, 737–742.  CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMansouri, T. H., Somaye, S., Nezami, Z. S., Ghahghaei, A. & Najmedini, S. (2013). J. Biomol. Struct. Dyn. 30, 23–31.  Google Scholar
First citationMohan, C. S., Balamurugan, V., Elayaraja, R. & Prabakaran, A. S. (2012). Int. J. Pharm. Sci. Res. 3, 881–885.  Google Scholar
First citationPagadala, R., Kusampally, U., Rajanna, K. C. & Meshram, J. S. (2015). J. Heterocycl. Chem. 52, 403–410.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShukla, S. & Mishra, A. P. (2019). Arabian Journal of Chemistry, 12, 1715–1721.  CrossRef CAS Google Scholar
First citationTanak, H., Erşahin, F., Ağar, E., Yavuz, M. & Büyükgüngör, O. (2009). Acta Cryst. E65, o2291.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTanak, H., Toğurman, F., Kalecik, S., Dege, N. & Yavuz, M. (2013). Acta Cryst. E69, o1085.  CSD CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationVan Zee, N. J. & Coates, G. W. (2015). Angew. Chem. Int. Ed. 54, 2665–2668.  CAS Google Scholar
First citationZhu, P., Yu, J., Wang, H., Zhang, C. & Yang, D. (2010). Acta Cryst. E66, o2460.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds