research communications
of a methanol solvate of a macrocycle bearing two flexible side-arms
aTechnische Universität Bergakademie Freiberg, Leipziger Str. 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: monika.mazik@chemie.tu-freiberg.de
Di-tert-butyl N,N′-{[13,15,28,30,31,33-hexaethyl-3,10,18,25,32,34-hexaazapentacyclo[25.3.1.15,8.112,16.120,23]tetratriaconta-1(31),3,5,7,9,12(33),13,15,18,20,22,24,27,29-tetradecaene-14,29-diyl]bis(methylene)}dicarbamate methanol disolvate, C52H72N8O4·2CH3OH, was found to crystallize in the P21/c with one half of the macrocycle (host) and one molecule of solvent (guest) in the of the cell, i.e. the host molecule is located on a center. Within the 1:2 host–guest complex, the solvent molecules are accommodated in the host cavity and held in their positions by O—H⋯N and N—H⋯O bonds, thus forming ring synthons of graph set R22(7). The connection of the 1:2 host-guest complexes is accomplished by C—H⋯O, C—H⋯N and C—H⋯π interactions, which create a three-dimensional supramolecular network.
CCDC reference: 2059631
1. Chemical context
Representatives of compounds consisting of a macrocyclic building block and two flexible side-arms have been shown to be able to act as powerful carbohydrate-binding agents (artificial carbohydrate receptors). Depending on the nature of their building blocks, various receptors with different binding properties could be developed (Lippe & Mazik, 2013, 2015; Amrhein et al., 2016.). The design of such a receptor architecture was inspired by the results of our crystallographic studies, including the analyses of the binding motifs in complexes formed between acyclic receptors and reported by us some time ago (Mazik et al., 2005). At this point it should be noted that, in contrast to numerous known crystal structures of protein–carbohydrate complexes, there are only individual literature reports on the crystal structures of complexes formed between artificial receptors and sugars (for a recent report on such crystalline complexes, see Köhler et al., 2020). The syntheses of the above-mentioned receptors, combining a macrocyclic building block and flexible side-arms, involve the preparation of macrocyclic precursors containing four imine functionalities. The of one of such macrocyclic precursors is described in this work. This macrocycle bears two identical side-arms, containing the tert-butyloxycarbonyl group (BOC group), and is composed of two triethylbenzene units connected by two bridges, each bearing one pyrrole moiety and two imine functionalities.
2. Structural commentary
The title compound was found to crystallize as a methanol solvate of the P21/c with the of the cell containing one half of the macrocycle and one solvent molecule (the structure of the 1:2 host-guest complex is shown in Fig. 1), i.e. the host molecule is located on a symmetry center. The bond lengths and angles confirm the expected structure and thus the presence of imino groups within the cyclic backbone [N2—C16 = 1.273 (2); N2—C15 = 1.478 (2); N4–C24 = 1.274 (2); N4—C23 = 1.463 (2) Å]. The substituents attached to the benzene ring adopt a fully alternating arrangement above and below the ring plane, i.e. the three ethyl groups all point in the opposite direction with regard to the pyrrole-based bridges connecting the two triethylbenzene units. The dihedral angle between the least-squares planes of the pyrrole and benzene rings is 76.0 (1)°, which corresponds with the torsion angles of 178.58 (12) and −131.22 (12)° for the atomic sequences C16—N2—C15—C3 and C24—N4—C23—C5, respectively. In the case of the side-arm bearing the BOC group the torsion angle along the atomic sequence C8—N1—C7—C1 amounts to 126.91 (14)°, whereas the torsion angles for the atom sequences C8—O1—C9—C10, C8—O1—C9—C11 and C8—O1—C9—C12 are −67.15 (15), 175.36 (12) and 57.39 (16)°.
3. Supramolecular features
Within the 1:2 host–guest complex, each of the methanol molecules interacts with the host by a O—H⋯Nimine [d(H⋯N) = 1.82 (3) Å] and an Npyrrole-H⋯O hydrogen bond [d(H⋯O) = 2.10 (2) Å] that generate a cyclic synthon with a R22(7) motif according to Etter's definition (Etter, 1990; Bernstein et al., 1995). Thus, the hydroxy group of each of the methanol molecules participates in cooperative hydrogen bonds. The host–guest complexes are connected primarily by interactions involving the carbonyl oxygen atoms. Here, O2 acts as a bifurcated acceptor for the formation of C—H⋯O=C bonds [d(H⋯O) = 2.49, 2.52 Å], in which the imine atom H24 (see Figs. 2 and 3) and the pyrrole atom H18 of different molecules are included. The second oxygen atom of the BOC group provides a weak C—H⋯O bond involving the tert-butyl group of the neighboring molecule, which further participates in intermolecular C—H⋯π interactions with the pyrrole unit of an adjacent host molecule, as shown in Fig. 3 [d(H⋯Cg) = 3.00 Å]. In addition, the imine atom H16 contributes to formation of a C—H⋯π contact (see Fig. 2) with the pyrrole ring [d(H⋯Cg) = 2.88 Å]. The sum of these interactions creates a three-dimensional supramolecular architecture. Numerical details are given in Table 1.
4. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.41, update November 2019; Groom et al. 2016) for macrocyclic compounds containing two 2,4,6-triethylbenzene units and at least two pyrrole-based bridges connecting the two benzene rings gave four hits. They include multi-pyrrolic tripodal cages (ZOMPEZ; Wang et al., 2019), a macrobicyclic cage (PEPGIB; Francesconi et al., 2006), a hexamine macrobicycle with bound sulfate anion (ZOQCAL; Mateus et al., 2015) as well as a macrobicycle with encapsulated phosphate ion (FOMBAN; Oh et al., 2019). All four structures show an alternating orientation of the ring substituents.
5. Synthesis and crystallization
1-{[(1,1-Dimethylethoxy)carbonyl]aminomethyl}-3,5-bis(aminomethyl)-2,4,6-triethylbenzene (Wiskur et al., 2004) (172 mg, 0.50 mmol) was dissolved in dry ethanol (6 ml) and 1H-pyrrol-2,5-dicarboxaldehyde (61 mg, 0.50 mmol) was added. After the addition of a catalytic amount of acetic acid, the reaction mixture was stirred for 5 h at 318 K. The precipitated solid was filtered off, washed with small amount of dry ethanol and dried under vacuum. The product was obtained as a white solid (173 mg, 0.20 mmol, 81%). M.p. 533 K (decomp.); 1H NMR (500 MHz, CDCl3): δ = 1.17 (t, 6H, J = 7.5 Hz), 1.21 (t, 12H, J = 7.5 Hz), 1.38 (s, 18H), 2.57 (q, 8H, J = 7.5 Hz), 3.01–3.09 (m, 4H), 4.26 (d, 4H, J = 4.2 Hz), 4.36 (s, 2H), 4.72 (br, s, 8H), 6.51 (s, 4H), 8.22 (s, 4H), 9.54 (s, 2H) ppm. 13C NMR (125 MHz, CDCl3): δ = 15.01, 16.23, 22,43, 22.45, 28.39, 38.76, 57.97, 79.20, 114.11, 131.51, 132.85, 133.43, 142.74, 144.10, 151.10, 155.52 ppm; HRMS (ESI): C52H72N8O4 calculated for [M + H]+: 873.57493, found: 873.57663. Crystals suitable for single crystal X-ray diffraction were grown by slow evaporation of the solvent from the methanol solution of compound (I) at room temperature.
6. Refinement
Crystal data, data collection and structure . The non-hydrogen atoms were refined anisotropically. The NH and OH hydrogens were located in a difference-Fourier map and refined freely. All other hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms: C—H = 0.95 Å for imine and pyrrol H atoms, C—H = 0.99 Å for methylene groups and C—H = 0.98 Å for methyl groups with Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C) for other hydrogen atoms.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2059631
https://doi.org/10.1107/S2056989021001067/zq2258sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989021001067/zq2258Isup2.hkl
Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and shelXle (Hübschle et al., 2011).C52H72N8O4·2CH4O | F(000) = 1016 |
Mr = 937.26 | Dx = 1.194 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 13.8395 (9) Å | Cell parameters from 4018 reflections |
b = 20.0443 (19) Å | θ = 2.6–30.1° |
c = 9.6347 (9) Å | µ = 0.08 mm−1 |
β = 102.800 (3)° | T = 100 K |
V = 2606.3 (4) Å3 | Piece, colorless |
Z = 2 | 0.35 × 0.31 × 0.21 mm |
Bruker APEXII CCD diffractometer | Rint = 0.036 |
φ and ω scans | θmax = 26.0°, θmin = 3.1° |
35355 measured reflections | h = −17→16 |
5099 independent reflections | k = −24→24 |
4185 reflections with I > 2σ(I) | l = −11→11 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.038 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.103 | w = 1/[σ2(Fo2) + (0.049P)2 + 1.1359P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
5099 reflections | Δρmax = 0.32 e Å−3 |
326 parameters | Δρmin = −0.24 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.05242 (7) | 0.39730 (5) | 0.44678 (10) | 0.0227 (2) | |
O2 | −0.09351 (7) | 0.36986 (5) | 0.21095 (10) | 0.0239 (2) | |
N1 | 0.05622 (9) | 0.34295 (6) | 0.35075 (14) | 0.0234 (3) | |
H1 | 0.0950 (13) | 0.3465 (9) | 0.437 (2) | 0.033 (5)* | |
N2 | 0.52052 (8) | 0.30374 (6) | 0.43228 (12) | 0.0185 (3) | |
N3 | 0.65652 (8) | 0.34838 (6) | 0.69247 (12) | 0.0161 (2) | |
H3 | 0.6091 (13) | 0.3752 (9) | 0.6721 (18) | 0.026 (4)* | |
N4 | 0.30737 (8) | 0.53752 (6) | 0.13277 (12) | 0.0176 (2) | |
C1 | 0.19144 (10) | 0.33253 (7) | 0.21758 (14) | 0.0171 (3) | |
C2 | 0.27938 (10) | 0.29697 (7) | 0.27053 (14) | 0.0167 (3) | |
C3 | 0.36923 (10) | 0.32070 (7) | 0.24387 (14) | 0.0163 (3) | |
C4 | 0.37244 (10) | 0.38170 (7) | 0.17394 (14) | 0.0163 (3) | |
C5 | 0.28382 (10) | 0.41619 (7) | 0.11840 (14) | 0.0163 (3) | |
C6 | 0.19328 (10) | 0.39170 (7) | 0.13994 (14) | 0.0164 (3) | |
C7 | 0.09242 (10) | 0.30690 (7) | 0.24027 (15) | 0.0210 (3) | |
H7A | 0.042489 | 0.310462 | 0.149465 | 0.025* | |
H7B | 0.099383 | 0.259096 | 0.266375 | 0.025* | |
C8 | −0.03567 (10) | 0.37006 (7) | 0.32635 (15) | 0.0196 (3) | |
C9 | −0.14526 (10) | 0.43525 (7) | 0.44325 (15) | 0.0210 (3) | |
C10 | −0.14381 (12) | 0.49841 (8) | 0.35766 (17) | 0.0267 (3) | |
H10A | −0.205587 | 0.523136 | 0.352617 | 0.040* | |
H10B | −0.137439 | 0.486846 | 0.261267 | 0.040* | |
H10C | −0.087481 | 0.526152 | 0.403679 | 0.040* | |
C11 | −0.23587 (11) | 0.39246 (8) | 0.38596 (18) | 0.0286 (4) | |
H11A | −0.293766 | 0.412140 | 0.413275 | 0.043* | |
H11B | −0.224754 | 0.347377 | 0.425669 | 0.043* | |
H11C | −0.247562 | 0.390231 | 0.281954 | 0.043* | |
C12 | −0.13747 (12) | 0.45120 (8) | 0.59929 (16) | 0.0293 (4) | |
H12A | −0.195568 | 0.477016 | 0.609754 | 0.044* | |
H12B | −0.077292 | 0.477311 | 0.635484 | 0.044* | |
H12C | −0.134509 | 0.409572 | 0.653418 | 0.044* | |
C13 | 0.27834 (11) | 0.23254 (7) | 0.35348 (15) | 0.0214 (3) | |
H13A | 0.226010 | 0.235333 | 0.408604 | 0.026* | |
H13B | 0.342760 | 0.227356 | 0.421925 | 0.026* | |
C14 | 0.25964 (12) | 0.17120 (7) | 0.25671 (17) | 0.0271 (3) | |
H14A | 0.261688 | 0.130930 | 0.314968 | 0.041* | |
H14B | 0.310878 | 0.168419 | 0.201165 | 0.041* | |
H14C | 0.194388 | 0.174963 | 0.192008 | 0.041* | |
C15 | 0.46409 (10) | 0.28110 (7) | 0.29158 (15) | 0.0195 (3) | |
H15A | 0.447814 | 0.233201 | 0.296730 | 0.023* | |
H15B | 0.505554 | 0.286256 | 0.220681 | 0.023* | |
C16 | 0.60090 (9) | 0.27313 (7) | 0.48501 (15) | 0.0167 (3) | |
H16 | 0.618598 | 0.236102 | 0.434316 | 0.020* | |
C17 | 0.66663 (9) | 0.29172 (6) | 0.61784 (14) | 0.0166 (3) | |
C18 | 0.75267 (10) | 0.25976 (7) | 0.68732 (15) | 0.0199 (3) | |
H18 | 0.778419 | 0.219307 | 0.658912 | 0.024* | |
C19 | 0.79463 (10) | 0.29810 (7) | 0.80710 (15) | 0.0199 (3) | |
H19 | 0.853574 | 0.288089 | 0.875574 | 0.024* | |
C20 | 0.73443 (9) | 0.35328 (7) | 0.80740 (14) | 0.0170 (3) | |
C21 | 0.47064 (10) | 0.41122 (7) | 0.15895 (16) | 0.0216 (3) | |
H21A | 0.523104 | 0.396530 | 0.240640 | 0.026* | |
H21B | 0.466421 | 0.460458 | 0.163095 | 0.026* | |
C22 | 0.50054 (12) | 0.39142 (8) | 0.02052 (18) | 0.0296 (4) | |
H22A | 0.565586 | 0.410479 | 0.019496 | 0.044* | |
H22B | 0.451306 | 0.408436 | −0.061002 | 0.044* | |
H22C | 0.503828 | 0.342693 | 0.014619 | 0.044* | |
C23 | 0.28733 (10) | 0.48040 (7) | 0.03607 (14) | 0.0188 (3) | |
H23A | 0.339825 | 0.477093 | −0.018671 | 0.023* | |
H23B | 0.223203 | 0.487046 | −0.032276 | 0.023* | |
C24 | 0.25124 (10) | 0.58827 (7) | 0.10195 (14) | 0.0171 (3) | |
H24 | 0.199470 | 0.587758 | 0.018667 | 0.021* | |
C25 | 0.09723 (10) | 0.42735 (7) | 0.07478 (15) | 0.0199 (3) | |
H25A | 0.110589 | 0.475578 | 0.067138 | 0.024* | |
H25B | 0.050286 | 0.422131 | 0.138050 | 0.024* | |
C26 | 0.04981 (11) | 0.39996 (8) | −0.07290 (16) | 0.0262 (3) | |
H26A | −0.013369 | 0.422704 | −0.109625 | 0.039* | |
H26B | 0.038118 | 0.351973 | −0.066133 | 0.039* | |
H26C | 0.094315 | 0.407676 | −0.137487 | 0.039* | |
O1A | 0.45908 (8) | 0.40005 (6) | 0.59724 (13) | 0.0377 (3) | |
H1A | 0.4690 (17) | 0.3687 (12) | 0.527 (3) | 0.067 (7)* | |
C1A | 0.39245 (13) | 0.44958 (9) | 0.5307 (2) | 0.0403 (4) | |
H1AA | 0.384837 | 0.483417 | 0.600927 | 0.060* | |
H1AB | 0.327948 | 0.429211 | 0.490507 | 0.060* | |
H1AC | 0.418223 | 0.470560 | 0.454430 | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0201 (5) | 0.0302 (6) | 0.0185 (5) | 0.0035 (4) | 0.0054 (4) | 0.0017 (4) |
O2 | 0.0177 (5) | 0.0318 (6) | 0.0213 (5) | −0.0018 (4) | 0.0021 (4) | −0.0011 (4) |
N1 | 0.0182 (6) | 0.0332 (7) | 0.0186 (6) | 0.0026 (5) | 0.0037 (5) | 0.0022 (5) |
N2 | 0.0162 (6) | 0.0177 (6) | 0.0209 (6) | 0.0009 (5) | 0.0023 (5) | −0.0014 (5) |
N3 | 0.0137 (5) | 0.0144 (6) | 0.0198 (6) | 0.0022 (5) | 0.0025 (5) | 0.0023 (5) |
N4 | 0.0176 (6) | 0.0165 (6) | 0.0187 (6) | −0.0022 (5) | 0.0041 (5) | 0.0010 (5) |
C1 | 0.0167 (6) | 0.0190 (7) | 0.0159 (6) | −0.0021 (5) | 0.0044 (5) | −0.0035 (5) |
C2 | 0.0204 (7) | 0.0160 (7) | 0.0134 (6) | −0.0005 (5) | 0.0031 (5) | −0.0022 (5) |
C3 | 0.0171 (6) | 0.0168 (7) | 0.0141 (6) | 0.0003 (5) | 0.0017 (5) | −0.0042 (5) |
C4 | 0.0153 (6) | 0.0177 (7) | 0.0160 (6) | −0.0019 (5) | 0.0035 (5) | −0.0051 (5) |
C5 | 0.0191 (7) | 0.0157 (7) | 0.0137 (6) | −0.0007 (5) | 0.0029 (5) | −0.0031 (5) |
C6 | 0.0160 (6) | 0.0180 (7) | 0.0147 (6) | 0.0006 (5) | 0.0022 (5) | −0.0031 (5) |
C7 | 0.0194 (7) | 0.0211 (7) | 0.0234 (7) | −0.0015 (6) | 0.0067 (6) | 0.0011 (6) |
C8 | 0.0181 (7) | 0.0213 (7) | 0.0205 (7) | −0.0035 (5) | 0.0067 (6) | 0.0028 (6) |
C9 | 0.0172 (7) | 0.0228 (7) | 0.0240 (7) | 0.0024 (6) | 0.0069 (6) | 0.0028 (6) |
C10 | 0.0291 (8) | 0.0247 (8) | 0.0264 (8) | −0.0013 (6) | 0.0065 (6) | 0.0024 (6) |
C11 | 0.0207 (7) | 0.0263 (8) | 0.0413 (9) | −0.0016 (6) | 0.0124 (7) | −0.0009 (7) |
C12 | 0.0296 (8) | 0.0366 (9) | 0.0241 (8) | 0.0057 (7) | 0.0107 (6) | 0.0029 (7) |
C13 | 0.0223 (7) | 0.0211 (7) | 0.0210 (7) | 0.0006 (6) | 0.0048 (6) | 0.0041 (6) |
C14 | 0.0307 (8) | 0.0193 (7) | 0.0310 (8) | −0.0022 (6) | 0.0059 (7) | 0.0015 (6) |
C15 | 0.0191 (7) | 0.0186 (7) | 0.0200 (7) | 0.0018 (5) | 0.0028 (6) | −0.0026 (6) |
C16 | 0.0160 (7) | 0.0130 (6) | 0.0226 (7) | −0.0007 (5) | 0.0075 (5) | −0.0001 (5) |
C17 | 0.0158 (6) | 0.0133 (6) | 0.0214 (7) | 0.0003 (5) | 0.0055 (5) | 0.0024 (5) |
C18 | 0.0185 (7) | 0.0148 (7) | 0.0268 (8) | 0.0029 (5) | 0.0055 (6) | 0.0024 (6) |
C19 | 0.0152 (6) | 0.0193 (7) | 0.0237 (7) | 0.0011 (5) | 0.0007 (5) | 0.0056 (6) |
C20 | 0.0144 (6) | 0.0175 (7) | 0.0188 (7) | −0.0021 (5) | 0.0033 (5) | 0.0047 (5) |
C21 | 0.0167 (7) | 0.0200 (7) | 0.0285 (8) | −0.0033 (5) | 0.0055 (6) | −0.0026 (6) |
C22 | 0.0273 (8) | 0.0273 (8) | 0.0401 (9) | −0.0041 (6) | 0.0198 (7) | −0.0029 (7) |
C23 | 0.0196 (7) | 0.0191 (7) | 0.0172 (7) | −0.0012 (5) | 0.0031 (5) | −0.0004 (5) |
C24 | 0.0150 (6) | 0.0190 (7) | 0.0171 (7) | −0.0028 (5) | 0.0032 (5) | 0.0043 (5) |
C25 | 0.0173 (7) | 0.0198 (7) | 0.0224 (7) | 0.0019 (6) | 0.0038 (5) | 0.0030 (6) |
C26 | 0.0203 (7) | 0.0320 (9) | 0.0241 (8) | 0.0010 (6) | 0.0000 (6) | 0.0044 (6) |
O1A | 0.0296 (6) | 0.0436 (7) | 0.0353 (7) | 0.0168 (5) | −0.0027 (5) | −0.0147 (6) |
C1A | 0.0345 (9) | 0.0347 (10) | 0.0494 (11) | 0.0118 (8) | 0.0046 (8) | −0.0090 (8) |
O1—C8 | 1.3481 (17) | C12—H12C | 0.9800 |
O1—C9 | 1.4871 (16) | C13—C14 | 1.530 (2) |
O2—C8 | 1.2176 (17) | C13—H13A | 0.9900 |
N1—C8 | 1.3548 (18) | C13—H13B | 0.9900 |
N1—C7 | 1.4636 (19) | C14—H14A | 0.9800 |
N1—H1 | 0.886 (19) | C14—H14B | 0.9800 |
N2—C16 | 1.2733 (17) | C14—H14C | 0.9800 |
N2—C15 | 1.4780 (17) | C15—H15A | 0.9900 |
N3—C20 | 1.3671 (17) | C15—H15B | 0.9900 |
N3—C17 | 1.3679 (18) | C16—C17 | 1.4451 (19) |
N3—H3 | 0.838 (18) | C16—H16 | 0.9500 |
N4—C24 | 1.2744 (17) | C17—C18 | 1.3868 (19) |
N4—C23 | 1.4632 (17) | C18—C19 | 1.401 (2) |
C1—C2 | 1.4052 (19) | C18—H18 | 0.9500 |
C1—C6 | 1.4054 (19) | C19—C20 | 1.3851 (19) |
C1—C7 | 1.5239 (18) | C19—H19 | 0.9500 |
C2—C3 | 1.4071 (19) | C20—C24i | 1.4486 (19) |
C2—C13 | 1.5204 (19) | C21—C22 | 1.534 (2) |
C3—C4 | 1.4014 (19) | C21—H21A | 0.9900 |
C3—C15 | 1.5158 (18) | C21—H21B | 0.9900 |
C4—C5 | 1.4065 (19) | C22—H22A | 0.9800 |
C4—C21 | 1.5182 (18) | C22—H22B | 0.9800 |
C5—C6 | 1.4033 (19) | C22—H22C | 0.9800 |
C5—C23 | 1.5183 (19) | C23—H23A | 0.9900 |
C6—C25 | 1.5173 (18) | C23—H23B | 0.9900 |
C7—H7A | 0.9900 | C24—H24 | 0.9500 |
C7—H7B | 0.9900 | C25—C26 | 1.531 (2) |
C9—C10 | 1.513 (2) | C25—H25A | 0.9900 |
C9—C12 | 1.517 (2) | C25—H25B | 0.9900 |
C9—C11 | 1.519 (2) | C26—H26A | 0.9800 |
C10—H10A | 0.9800 | C26—H26B | 0.9800 |
C10—H10B | 0.9800 | C26—H26C | 0.9800 |
C10—H10C | 0.9800 | O1A—C1A | 1.409 (2) |
C11—H11A | 0.9800 | O1A—H1A | 0.96 (3) |
C11—H11B | 0.9800 | C1A—H1AA | 0.9800 |
C11—H11C | 0.9800 | C1A—H1AB | 0.9800 |
C12—H12A | 0.9800 | C1A—H1AC | 0.9800 |
C12—H12B | 0.9800 | ||
C8—O1—C9 | 120.00 (11) | C13—C14—H14B | 109.5 |
C8—N1—C7 | 122.09 (12) | H14A—C14—H14B | 109.5 |
C8—N1—H1 | 118.8 (11) | C13—C14—H14C | 109.5 |
C7—N1—H1 | 119.1 (12) | H14A—C14—H14C | 109.5 |
C16—N2—C15 | 117.09 (11) | H14B—C14—H14C | 109.5 |
C20—N3—C17 | 109.34 (11) | N2—C15—C3 | 111.32 (11) |
C20—N3—H3 | 125.5 (12) | N2—C15—H15A | 109.4 |
C17—N3—H3 | 125.2 (12) | C3—C15—H15A | 109.4 |
C24—N4—C23 | 117.16 (11) | N2—C15—H15B | 109.4 |
C2—C1—C6 | 120.32 (12) | C3—C15—H15B | 109.4 |
C2—C1—C7 | 120.73 (12) | H15A—C15—H15B | 108.0 |
C6—C1—C7 | 118.93 (12) | N2—C16—C17 | 123.50 (12) |
C1—C2—C3 | 119.44 (12) | N2—C16—H16 | 118.2 |
C1—C2—C13 | 120.89 (12) | C17—C16—H16 | 118.2 |
C3—C2—C13 | 119.66 (12) | N3—C17—C18 | 107.86 (12) |
C4—C3—C2 | 120.41 (12) | N3—C17—C16 | 124.20 (12) |
C4—C3—C15 | 119.01 (12) | C18—C17—C16 | 127.81 (13) |
C2—C3—C15 | 120.58 (12) | C17—C18—C19 | 107.40 (12) |
C3—C4—C5 | 119.60 (12) | C17—C18—H18 | 126.3 |
C3—C4—C21 | 120.68 (12) | C19—C18—H18 | 126.3 |
C5—C4—C21 | 119.72 (12) | C20—C19—C18 | 107.46 (12) |
C6—C5—C4 | 120.24 (12) | C20—C19—H19 | 126.3 |
C6—C5—C23 | 120.46 (12) | C18—C19—H19 | 126.3 |
C4—C5—C23 | 119.30 (12) | N3—C20—C19 | 107.93 (12) |
C5—C6—C1 | 119.74 (12) | N3—C20—C24i | 121.63 (12) |
C5—C6—C25 | 120.21 (12) | C19—C20—C24i | 130.17 (12) |
C1—C6—C25 | 120.01 (12) | C4—C21—C22 | 113.67 (12) |
N1—C7—C1 | 113.67 (12) | C4—C21—H21A | 108.8 |
N1—C7—H7A | 108.8 | C22—C21—H21A | 108.8 |
C1—C7—H7A | 108.8 | C4—C21—H21B | 108.8 |
N1—C7—H7B | 108.8 | C22—C21—H21B | 108.8 |
C1—C7—H7B | 108.8 | H21A—C21—H21B | 107.7 |
H7A—C7—H7B | 107.7 | C21—C22—H22A | 109.5 |
O2—C8—O1 | 125.71 (13) | C21—C22—H22B | 109.5 |
O2—C8—N1 | 123.99 (13) | H22A—C22—H22B | 109.5 |
O1—C8—N1 | 110.30 (12) | C21—C22—H22C | 109.5 |
O1—C9—C10 | 108.95 (11) | H22A—C22—H22C | 109.5 |
O1—C9—C12 | 102.34 (11) | H22B—C22—H22C | 109.5 |
C10—C9—C12 | 110.92 (13) | N4—C23—C5 | 110.74 (11) |
O1—C9—C11 | 111.04 (11) | N4—C23—H23A | 109.5 |
C10—C9—C11 | 112.58 (12) | C5—C23—H23A | 109.5 |
C12—C9—C11 | 110.54 (12) | N4—C23—H23B | 109.5 |
C9—C10—H10A | 109.5 | C5—C23—H23B | 109.5 |
C9—C10—H10B | 109.5 | H23A—C23—H23B | 108.1 |
H10A—C10—H10B | 109.5 | N4—C24—C20i | 120.67 (12) |
C9—C10—H10C | 109.5 | N4—C24—H24 | 119.7 |
H10A—C10—H10C | 109.5 | C20i—C24—H24 | 119.7 |
H10B—C10—H10C | 109.5 | C6—C25—C26 | 111.82 (11) |
C9—C11—H11A | 109.5 | C6—C25—H25A | 109.3 |
C9—C11—H11B | 109.5 | C26—C25—H25A | 109.3 |
H11A—C11—H11B | 109.5 | C6—C25—H25B | 109.3 |
C9—C11—H11C | 109.5 | C26—C25—H25B | 109.3 |
H11A—C11—H11C | 109.5 | H25A—C25—H25B | 107.9 |
H11B—C11—H11C | 109.5 | C25—C26—H26A | 109.5 |
C9—C12—H12A | 109.5 | C25—C26—H26B | 109.5 |
C9—C12—H12B | 109.5 | H26A—C26—H26B | 109.5 |
H12A—C12—H12B | 109.5 | C25—C26—H26C | 109.5 |
C9—C12—H12C | 109.5 | H26A—C26—H26C | 109.5 |
H12A—C12—H12C | 109.5 | H26B—C26—H26C | 109.5 |
H12B—C12—H12C | 109.5 | C1A—O1A—H1A | 108.8 (14) |
C2—C13—C14 | 112.48 (12) | O1A—C1A—H1AA | 109.5 |
C2—C13—H13A | 109.1 | O1A—C1A—H1AB | 109.5 |
C14—C13—H13A | 109.1 | H1AA—C1A—H1AB | 109.5 |
C2—C13—H13B | 109.1 | O1A—C1A—H1AC | 109.5 |
C14—C13—H13B | 109.1 | H1AA—C1A—H1AC | 109.5 |
H13A—C13—H13B | 107.8 | H1AB—C1A—H1AC | 109.5 |
C13—C14—H14A | 109.5 | ||
C6—C1—C2—C3 | −0.68 (19) | C7—N1—C8—O1 | 176.84 (12) |
C7—C1—C2—C3 | 177.90 (12) | C8—O1—C9—C10 | −67.15 (15) |
C6—C1—C2—C13 | −179.41 (12) | C8—O1—C9—C12 | 175.36 (12) |
C7—C1—C2—C13 | −0.82 (19) | C8—O1—C9—C11 | 57.39 (16) |
C1—C2—C3—C4 | 4.51 (19) | C1—C2—C13—C14 | 88.14 (16) |
C13—C2—C3—C4 | −176.74 (12) | C3—C2—C13—C14 | −90.59 (15) |
C1—C2—C3—C15 | −176.11 (12) | C16—N2—C15—C3 | 178.58 (12) |
C13—C2—C3—C15 | 2.64 (18) | C4—C3—C15—N2 | 85.09 (15) |
C2—C3—C4—C5 | −6.00 (19) | C2—C3—C15—N2 | −94.30 (14) |
C15—C3—C4—C5 | 174.61 (12) | C15—N2—C16—C17 | 176.64 (12) |
C2—C3—C4—C21 | 173.35 (12) | C20—N3—C17—C18 | 0.28 (15) |
C15—C3—C4—C21 | −6.04 (18) | C20—N3—C17—C16 | −175.81 (12) |
C3—C4—C5—C6 | 3.67 (19) | N2—C16—C17—N3 | −8.3 (2) |
C21—C4—C5—C6 | −175.69 (12) | N2—C16—C17—C18 | 176.45 (14) |
C3—C4—C5—C23 | −176.83 (11) | N3—C17—C18—C19 | 0.42 (15) |
C21—C4—C5—C23 | 3.82 (18) | C16—C17—C18—C19 | 176.32 (13) |
C4—C5—C6—C1 | 0.12 (19) | C17—C18—C19—C20 | −0.95 (16) |
C23—C5—C6—C1 | −179.38 (12) | C17—N3—C20—C19 | −0.87 (15) |
C4—C5—C6—C25 | −177.44 (12) | C17—N3—C20—C24i | 173.72 (12) |
C23—C5—C6—C25 | 3.06 (19) | C18—C19—C20—N3 | 1.12 (15) |
C2—C1—C6—C5 | −1.61 (19) | C18—C19—C20—C24i | −172.86 (13) |
C7—C1—C6—C5 | 179.77 (12) | C3—C4—C21—C22 | 92.25 (16) |
C2—C1—C6—C25 | 175.95 (12) | C5—C4—C21—C22 | −88.41 (16) |
C7—C1—C6—C25 | −2.66 (19) | C24—N4—C23—C5 | −131.22 (12) |
C8—N1—C7—C1 | 126.91 (14) | C6—C5—C23—N4 | 93.52 (14) |
C2—C1—C7—N1 | 103.94 (15) | C4—C5—C23—N4 | −85.98 (15) |
C6—C1—C7—N1 | −77.45 (16) | C23—N4—C24—C20i | 179.56 (11) |
C9—O1—C8—O2 | −4.7 (2) | C5—C6—C25—C26 | 91.00 (15) |
C9—O1—C8—N1 | 174.71 (11) | C1—C6—C25—C26 | −86.55 (15) |
C7—N1—C8—O2 | −3.8 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Cg2 represents the centroid of the C17–C20/N3 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1A—H1A···N2 | 0.96 (3) | 1.82 (3) | 2.7521 (16) | 163 (2) |
N3—H3···O1A | 0.838 (18) | 2.100 (18) | 2.8757 (16) | 153.6 (16) |
C7—H7A···O2 | 0.99 | 2.41 | 2.8234 (17) | 104 |
C10—H10C···O1ii | 0.98 | 2.63 | 3.6094 (19) | 173 |
C10—H10B···O2 | 0.98 | 2.50 | 3.0916 (19) | 119 |
C11—H11C···O2 | 0.98 | 2.41 | 2.8986 (18) | 110 |
C18—H18···O2iii | 0.95 | 2.49 | 3.3345 (17) | 148 |
C22—H22A···N4iv | 0.98 | 2.73 | 3.6080 (18) | 149 |
C24—H24···O2v | 0.95 | 2.52 | 3.4120 (17) | 157 |
C25—H25B···O2 | 0.99 | 2.48 | 3.3988 (17) | 154 |
C25—H25B···N1 | 0.99 | 2.58 | 3.3049 (19) | 130 |
C12—H12C···Cg2vi | 0.98 | 3.00 | 3.7759 (18) | 137 |
C16—H16···Cg2vii | 0.95 | 2.88 | 3.7173 (15) | 147 |
Symmetry codes: (ii) −x, −y+1, −z+1; (iii) x+1, −y+1/2, z+1/2; (iv) −x+1, −y+1, −z; (v) −x, −y+1, −z; (vi) x−1, y, z; (vii) x, −y+1/2, z−1/2. |
Funding information
Open-access funding was provided by the Publication Fund of the TU Bergakademie Freiberg.
References
Amrhein, F., Lippe, J. & Mazik, M. (2016). Org. Biomol. Chem. 14, 10648–10659. Web of Science CrossRef CAS PubMed Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Francesconi, O., Ienco, A., Moneti, G., Nativi, C. & Roelens, S. (2006). Angew. Chem. Int. Ed. 45, 6693–6696. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Köhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023–7034. Google Scholar
Lippe, J. & Mazik, M. (2013). J. Org. Chem. 78, 9013–9020. Web of Science CrossRef CAS PubMed Google Scholar
Lippe, J. & Mazik, M. (2015). J. Org. Chem. 80, 1427–1439. Web of Science CrossRef CAS PubMed Google Scholar
Mateus, P., Delgado, R., André, V. & Duarte, M. T. (2015). Org. Biomol. Chem. 13, 834–842. Web of Science CSD CrossRef CAS PubMed Google Scholar
Mazik, M., Cavga, H. & Jones, P. G. (2005). J. Am. Chem. Soc. 127, 9045–9052. Web of Science CSD CrossRef PubMed CAS Google Scholar
Oh, J. H., Kim, J. H., Kim, D. S., Han, H. J., Lynch, V. M., Sessler, J. L. & Kim, S. K. (2019). Org. Lett. 21, 4336–4339. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wang, F., Sikma, E., Duan, Z., Sarma, T., Lei, C., Zhang, Z., Humphrey, S. M. & Sessler, J. L. (2019). Chem. Commun. 55, 6185–6188. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wiskur, S. L., Lavigne, J. J., Metzger, A., Tobey, S. L., Lynch, V. & Anslyn, E. V. (2004). Chem. Eur. J. 10, 3792–3804. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.