research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a methanol solvate of a macrocycle bearing two flexible side-arms

CROSSMARK_Color_square_no_text.svg

aTechnische Universität Bergakademie Freiberg, Leipziger Str. 29, D-09596 Freiberg/Sachsen, Germany
*Correspondence e-mail: monika.mazik@chemie.tu-freiberg.de

Edited by O. Blacque, University of Zürich, Switzerland (Received 27 November 2020; accepted 29 January 2021; online 5 February 2021)

Di-tert-butyl N,N′-{[13,15,28,30,31,33-hexa­ethyl-3,10,18,25,32,34-hexa­aza­penta­cyclo­[25.3.1.15,8.112,16.120,23]tetra­triaconta-1(31),3,5,7,9,12(33),13,15,18,20,22,24,27,29-tetra­deca­ene-14,29-di­yl]bis­(methyl­ene)}dicarbamate methanol disolvate, C52H72N8O4·2CH3OH, was found to crystallize in the space group P21/c with one half of the macrocycle (host) and one mol­ecule of solvent (guest) in the asymmetric unit of the cell, i.e. the host mol­ecule is located on a crystallographic symmetry center. Within the 1:2 host–guest complex, the solvent mol­ecules are accommodated in the host cavity and held in their positions by O—H⋯N and N—H⋯O bonds, thus forming ring synthons of graph set R22(7). The connection of the 1:2 host-guest complexes is accomplished by C—H⋯O, C—H⋯N and C—H⋯π inter­actions, which create a three-dimensional supra­molecular network.

1. Chemical context

Representatives of compounds consisting of a macrocyclic building block and two flexible side-arms have been shown to be able to act as powerful carbohydrate-binding agents (artificial carbohydrate receptors). Depending on the nature of their building blocks, various receptors with different binding properties could be developed (Lippe & Mazik, 2013[Lippe, J. & Mazik, M. (2013). J. Org. Chem. 78, 9013-9020.], 2015[Lippe, J. & Mazik, M. (2015). J. Org. Chem. 80, 1427-1439.]; Amrhein et al., 2016[Amrhein, F., Lippe, J. & Mazik, M. (2016). Org. Biomol. Chem. 14, 10648-10659.].). The design of such a receptor architecture was inspired by the results of our crystallographic studies, including the analyses of the binding motifs in complexes formed between acyclic receptors and monosaccharides, reported by us some time ago (Mazik et al., 2005[Mazik, M., Cavga, H. & Jones, P. G. (2005). J. Am. Chem. Soc. 127, 9045-9052.]). At this point it should be noted that, in contrast to numerous known crystal structures of protein–carbohydrate complexes, there are only individual literature reports on the crystal structures of complexes formed between artificial receptors and sugars (for a recent report on such crystalline complexes, see Köhler et al., 2020[Köhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023-7034.]). The syntheses of the above-mentioned receptors, combining a macrocyclic building block and flexible side-arms, involve the preparation of macrocyclic precursors containing four imine functionalities. The crystal structure of one of such macrocyclic precursors is described in this work. This macrocycle bears two identical side-arms, containing the tert-butyl­oxycarbonyl group (BOC group), and is composed of two tri­ethyl­benzene units connected by two bridges, each bearing one pyrrole moiety and two imine functionalities.

2. Structural commentary

The title compound was found to crystallize as a methanol solvate of the space group P21/c with the asymmetric unit of the cell containing one half of the macrocycle and one solvent mol­ecule (the structure of the 1:2 host-guest complex is shown in Fig. 1[link]), i.e. the host mol­ecule is located on a symmetry center. The bond lengths and angles confirm the expected structure and thus the presence of imino groups within the cyclic backbone [N2—C16 = 1.273 (2); N2—C15 = 1.478 (2); N4–C24 = 1.274 (2); N4—C23 = 1.463 (2) Å]. The substituents attached to the benzene ring adopt a fully alternating arrangement above and below the ring plane, i.e. the three ethyl groups all point in the opposite direction with regard to the pyrrole-based bridges connecting the two tri­ethyl­benzene units. The dihedral angle between the least-squares planes of the pyrrole and benzene rings is 76.0 (1)°, which corresponds with the torsion angles of 178.58 (12) and −131.22 (12)° for the atomic sequences C16—N2—C15—C3 and C24—N4—C23—C5, respectively. In the case of the side-arm bearing the BOC group the torsion angle along the atomic sequence C8—N1—C7—C1 amounts to 126.91 (14)°, whereas the torsion angles for the atom sequences C8—O1—C9—C10, C8—O1—C9—C11 and C8—O1—C9—C12 are −67.15 (15), 175.36 (12) and 57.39 (16)°.

[Scheme 1]
[Figure 1]
Figure 1
Perspective view of the 1:2 host–guest complex with methanol including the atom labeling. Anisotropic displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

Within the 1:2 host–guest complex, each of the methanol mol­ecules inter­acts with the host by a O—H⋯Nimine [d(H⋯N) = 1.82 (3) Å] and an Npyrrole-H⋯O hydrogen bond [d(H⋯O) = 2.10 (2) Å] that generate a cyclic synthon with a R22(7) motif according to Etter's definition (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). Thus, the hy­droxy group of each of the methanol mol­ecules participates in cooperative hydrogen bonds. The host–guest complexes are connected primarily by inter­actions involving the carbonyl oxygen atoms. Here, O2 acts as a bifurcated acceptor for the formation of C—H⋯O=C bonds [d(H⋯O) = 2.49, 2.52 Å], in which the imine atom H24 (see Figs. 2[link] and 3[link]) and the pyrrole atom H18 of different mol­ecules are included. The second oxygen atom of the BOC group provides a weak C—H⋯O bond involving the tert-butyl group of the neighboring mol­ecule, which further participates in inter­molecular C—H⋯π inter­actions with the pyrrole unit of an adjacent host mol­ecule, as shown in Fig. 3[link] [d(H⋯Cg) = 3.00 Å]. In addition, the imine atom H16 contributes to formation of a C—H⋯π contact (see Fig. 2[link]) with the pyrrole ring [d(H⋯Cg) = 2.88 Å]. The sum of these inter­actions creates a three-dimensional supra­molecular architecture. Numerical details are given in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 represents the centroid of the C17–C20/N3 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯N2 0.96 (3) 1.82 (3) 2.7521 (16) 163 (2)
N3—H3⋯O1A 0.838 (18) 2.100 (18) 2.8757 (16) 153.6 (16)
C10—H10C⋯O1i 0.98 2.63 3.6094 (19) 173
C18—H18⋯O2ii 0.95 2.49 3.3345 (17) 148
C22—H22A⋯N4iii 0.98 2.73 3.6080 (18) 149
C24—H24⋯O2iv 0.95 2.52 3.4120 (17) 157
C25—H25B⋯O2 0.99 2.48 3.3988 (17) 154
C25—H25B⋯N1 0.99 2.58 3.3049 (19) 130
C12—H12CCg2v 0.98 3.00 3.7759 (18) 137
C16—H16⋯Cg2vi 0.95 2.88 3.7173 (15) 147
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, -y+1, -z]; (iv) [-x, -y+1, -z]; (v) [x-1, y, z]; (vi) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Part of the crystal structure of the 1:2 host–guest complex showing the mode of non-covalent inter­molecular bonding. For the sake of clarity, the H atoms of the host mol­ecule not involved in hydrogen-bonding inter­actions are omitted.
[Figure 3]
Figure 3
Packing diagram of the 1:2 host–guest complex. Hydrogen bonds and C—H⋯π inter­actions are represented by dashed lines and dashed double lines, respectively. For the sake of clarity, the H atoms of the host mol­ecule not involved in hydrogen-bonding inter­actions or C—H⋯π contacts are omitted.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.41, update November 2019; Groom et al. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for macrocyclic compounds containing two 2,4,6-tri­ethyl­benzene units and at least two pyrrole-based bridges connecting the two benzene rings gave four hits. They include multi-pyrrolic tripodal cages (ZOMPEZ; Wang et al., 2019[Wang, F., Sikma, E., Duan, Z., Sarma, T., Lei, C., Zhang, Z., Humphrey, S. M. & Sessler, J. L. (2019). Chem. Commun. 55, 6185-6188.]), a macrobicyclic cage (PEPGIB; Francesconi et al., 2006[Francesconi, O., Ienco, A., Moneti, G., Nativi, C. & Roelens, S. (2006). Angew. Chem. Int. Ed. 45, 6693-6696.]), a hexa­mine macrobicycle with bound sulfate anion (ZOQCAL; Mateus et al., 2015[Mateus, P., Delgado, R., André, V. & Duarte, M. T. (2015). Org. Biomol. Chem. 13, 834-842.]) as well as a macrobicycle with encapsulated phosphate ion (FOMBAN; Oh et al., 2019[Oh, J. H., Kim, J. H., Kim, D. S., Han, H. J., Lynch, V. M., Sessler, J. L. & Kim, S. K. (2019). Org. Lett. 21, 4336-4339.]). All four structures show an alternating orientation of the ring substituents.

5. Synthesis and crystallization

1-{[(1,1-Di­methyl­eth­oxy)carbon­yl]amino­meth­yl}-3,5-bis(amino­meth­yl)-2,4,6-tri­ethyl­benzene (Wiskur et al., 2004[Wiskur, S. L., Lavigne, J. J., Metzger, A., Tobey, S. L., Lynch, V. & Anslyn, E. V. (2004). Chem. Eur. J. 10, 3792-3804.]) (172 mg, 0.50 mmol) was dissolved in dry ethanol (6 ml) and 1H-pyrrol-2,5-dicarboxaldehyde (61 mg, 0.50 mmol) was added. After the addition of a catalytic amount of acetic acid, the reaction mixture was stirred for 5 h at 318 K. The precipitated solid was filtered off, washed with small amount of dry ethanol and dried under vacuum. The product was obtained as a white solid (173 mg, 0.20 mmol, 81%). M.p. 533 K (decomp.); 1H NMR (500 MHz, CDCl3): δ = 1.17 (t, 6H, J = 7.5 Hz), 1.21 (t, 12H, J = 7.5 Hz), 1.38 (s, 18H), 2.57 (q, 8H, J = 7.5 Hz), 3.01–3.09 (m, 4H), 4.26 (d, 4H, J = 4.2 Hz), 4.36 (s, 2H), 4.72 (br, s, 8H), 6.51 (s, 4H), 8.22 (s, 4H), 9.54 (s, 2H) ppm. 13C NMR (125 MHz, CDCl3): δ = 15.01, 16.23, 22,43, 22.45, 28.39, 38.76, 57.97, 79.20, 114.11, 131.51, 132.85, 133.43, 142.74, 144.10, 151.10, 155.52 ppm; HRMS (ESI): C52H72N8O4 calculated for [M + H]+: 873.57493, found: 873.57663. Crystals suitable for single crystal X-ray diffraction were grown by slow evaporation of the solvent from the methanol solution of compound (I)[link] at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The non-hydrogen atoms were refined anisotropically. The NH and OH hydrogens were located in a difference-Fourier map and refined freely. All other hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms: C—H = 0.95 Å for imine and pyrrol H atoms, C—H = 0.99 Å for methyl­ene groups and C—H = 0.98 Å for methyl groups with Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C) for other hydrogen atoms.

Table 2
Experimental details

Crystal data
Chemical formula C52H72N8O4·2CH4O
Mr 937.26
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.8395 (9), 20.0443 (19), 9.6347 (9)
β (°) 102.800 (3)
V3) 2606.3 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.35 × 0.31 × 0.21
 
Data collection
Diffractometer Bruker APEXII CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 35355, 5099, 4185
Rint 0.036
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.02
No. of reflections 5099
No. of parameters 326
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.24
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and shelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 2012), publCIF (Westrip, 2010) and shelXle (Hübschle et al., 2011).

Di-tert-butyl N,N'-{[13,15,28,30,31,33-hexaethyl-3,10,18,25,32,34-hexaazapentacyclo[25.3.1.15,8.112,16.120,23]tetratriaconta-1(31),3,5,7,9,12(33),13,15,18,20,22,24,27,29-tetradecaene-14,29-diyl]bis(methylene)}dicarbamate methanol disolvate top
Crystal data top
C52H72N8O4·2CH4OF(000) = 1016
Mr = 937.26Dx = 1.194 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.8395 (9) ÅCell parameters from 4018 reflections
b = 20.0443 (19) Åθ = 2.6–30.1°
c = 9.6347 (9) ŵ = 0.08 mm1
β = 102.800 (3)°T = 100 K
V = 2606.3 (4) Å3Piece, colorless
Z = 20.35 × 0.31 × 0.21 mm
Data collection top
Bruker APEXII CCD
diffractometer
Rint = 0.036
φ and ω scansθmax = 26.0°, θmin = 3.1°
35355 measured reflectionsh = 1716
5099 independent reflectionsk = 2424
4185 reflections with I > 2σ(I)l = 1111
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.049P)2 + 1.1359P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5099 reflectionsΔρmax = 0.32 e Å3
326 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05242 (7)0.39730 (5)0.44678 (10)0.0227 (2)
O20.09351 (7)0.36986 (5)0.21095 (10)0.0239 (2)
N10.05622 (9)0.34295 (6)0.35075 (14)0.0234 (3)
H10.0950 (13)0.3465 (9)0.437 (2)0.033 (5)*
N20.52052 (8)0.30374 (6)0.43228 (12)0.0185 (3)
N30.65652 (8)0.34838 (6)0.69247 (12)0.0161 (2)
H30.6091 (13)0.3752 (9)0.6721 (18)0.026 (4)*
N40.30737 (8)0.53752 (6)0.13277 (12)0.0176 (2)
C10.19144 (10)0.33253 (7)0.21758 (14)0.0171 (3)
C20.27938 (10)0.29697 (7)0.27053 (14)0.0167 (3)
C30.36923 (10)0.32070 (7)0.24387 (14)0.0163 (3)
C40.37244 (10)0.38170 (7)0.17394 (14)0.0163 (3)
C50.28382 (10)0.41619 (7)0.11840 (14)0.0163 (3)
C60.19328 (10)0.39170 (7)0.13994 (14)0.0164 (3)
C70.09242 (10)0.30690 (7)0.24027 (15)0.0210 (3)
H7A0.0424890.3104620.1494650.025*
H7B0.0993830.2590960.2663750.025*
C80.03567 (10)0.37006 (7)0.32635 (15)0.0196 (3)
C90.14526 (10)0.43525 (7)0.44325 (15)0.0210 (3)
C100.14381 (12)0.49841 (8)0.35766 (17)0.0267 (3)
H10A0.2055870.5231360.3526170.040*
H10B0.1374390.4868460.2612670.040*
H10C0.0874810.5261520.4036790.040*
C110.23587 (11)0.39246 (8)0.38596 (18)0.0286 (4)
H11A0.2937660.4121400.4132750.043*
H11B0.2247540.3473770.4256690.043*
H11C0.2475620.3902310.2819540.043*
C120.13747 (12)0.45120 (8)0.59929 (16)0.0293 (4)
H12A0.1955680.4770160.6097540.044*
H12B0.0772920.4773110.6354840.044*
H12C0.1345090.4095720.6534180.044*
C130.27834 (11)0.23254 (7)0.35348 (15)0.0214 (3)
H13A0.2260100.2353330.4086040.026*
H13B0.3427600.2273560.4219250.026*
C140.25964 (12)0.17120 (7)0.25671 (17)0.0271 (3)
H14A0.2616880.1309300.3149680.041*
H14B0.3108780.1684190.2011650.041*
H14C0.1943880.1749630.1920080.041*
C150.46409 (10)0.28110 (7)0.29158 (15)0.0195 (3)
H15A0.4478140.2332010.2967300.023*
H15B0.5055540.2862560.2206810.023*
C160.60090 (9)0.27313 (7)0.48501 (15)0.0167 (3)
H160.6185980.2361020.4343160.020*
C170.66663 (9)0.29172 (6)0.61784 (14)0.0166 (3)
C180.75267 (10)0.25976 (7)0.68732 (15)0.0199 (3)
H180.7784190.2193070.6589120.024*
C190.79463 (10)0.29810 (7)0.80710 (15)0.0199 (3)
H190.8535740.2880890.8755740.024*
C200.73443 (9)0.35328 (7)0.80740 (14)0.0170 (3)
C210.47064 (10)0.41122 (7)0.15895 (16)0.0216 (3)
H21A0.5231040.3965300.2406400.026*
H21B0.4664210.4604580.1630950.026*
C220.50054 (12)0.39142 (8)0.02052 (18)0.0296 (4)
H22A0.5655860.4104790.0194960.044*
H22B0.4513060.4084360.0610020.044*
H22C0.5038280.3426930.0146190.044*
C230.28733 (10)0.48040 (7)0.03607 (14)0.0188 (3)
H23A0.3398250.4770930.0186710.023*
H23B0.2232030.4870460.0322760.023*
C240.25124 (10)0.58827 (7)0.10195 (14)0.0171 (3)
H240.1994700.5877580.0186670.021*
C250.09723 (10)0.42735 (7)0.07478 (15)0.0199 (3)
H25A0.1105890.4755780.0671380.024*
H25B0.0502860.4221310.1380500.024*
C260.04981 (11)0.39996 (8)0.07290 (16)0.0262 (3)
H26A0.0133690.4227040.1096250.039*
H26B0.0381180.3519730.0661330.039*
H26C0.0943150.4076760.1374870.039*
O1A0.45908 (8)0.40005 (6)0.59724 (13)0.0377 (3)
H1A0.4690 (17)0.3687 (12)0.527 (3)0.067 (7)*
C1A0.39245 (13)0.44958 (9)0.5307 (2)0.0403 (4)
H1AA0.3848370.4834170.6009270.060*
H1AB0.3279480.4292110.4905070.060*
H1AC0.4182230.4705600.4544300.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0201 (5)0.0302 (6)0.0185 (5)0.0035 (4)0.0054 (4)0.0017 (4)
O20.0177 (5)0.0318 (6)0.0213 (5)0.0018 (4)0.0021 (4)0.0011 (4)
N10.0182 (6)0.0332 (7)0.0186 (6)0.0026 (5)0.0037 (5)0.0022 (5)
N20.0162 (6)0.0177 (6)0.0209 (6)0.0009 (5)0.0023 (5)0.0014 (5)
N30.0137 (5)0.0144 (6)0.0198 (6)0.0022 (5)0.0025 (5)0.0023 (5)
N40.0176 (6)0.0165 (6)0.0187 (6)0.0022 (5)0.0041 (5)0.0010 (5)
C10.0167 (6)0.0190 (7)0.0159 (6)0.0021 (5)0.0044 (5)0.0035 (5)
C20.0204 (7)0.0160 (7)0.0134 (6)0.0005 (5)0.0031 (5)0.0022 (5)
C30.0171 (6)0.0168 (7)0.0141 (6)0.0003 (5)0.0017 (5)0.0042 (5)
C40.0153 (6)0.0177 (7)0.0160 (6)0.0019 (5)0.0035 (5)0.0051 (5)
C50.0191 (7)0.0157 (7)0.0137 (6)0.0007 (5)0.0029 (5)0.0031 (5)
C60.0160 (6)0.0180 (7)0.0147 (6)0.0006 (5)0.0022 (5)0.0031 (5)
C70.0194 (7)0.0211 (7)0.0234 (7)0.0015 (6)0.0067 (6)0.0011 (6)
C80.0181 (7)0.0213 (7)0.0205 (7)0.0035 (5)0.0067 (6)0.0028 (6)
C90.0172 (7)0.0228 (7)0.0240 (7)0.0024 (6)0.0069 (6)0.0028 (6)
C100.0291 (8)0.0247 (8)0.0264 (8)0.0013 (6)0.0065 (6)0.0024 (6)
C110.0207 (7)0.0263 (8)0.0413 (9)0.0016 (6)0.0124 (7)0.0009 (7)
C120.0296 (8)0.0366 (9)0.0241 (8)0.0057 (7)0.0107 (6)0.0029 (7)
C130.0223 (7)0.0211 (7)0.0210 (7)0.0006 (6)0.0048 (6)0.0041 (6)
C140.0307 (8)0.0193 (7)0.0310 (8)0.0022 (6)0.0059 (7)0.0015 (6)
C150.0191 (7)0.0186 (7)0.0200 (7)0.0018 (5)0.0028 (6)0.0026 (6)
C160.0160 (7)0.0130 (6)0.0226 (7)0.0007 (5)0.0075 (5)0.0001 (5)
C170.0158 (6)0.0133 (6)0.0214 (7)0.0003 (5)0.0055 (5)0.0024 (5)
C180.0185 (7)0.0148 (7)0.0268 (8)0.0029 (5)0.0055 (6)0.0024 (6)
C190.0152 (6)0.0193 (7)0.0237 (7)0.0011 (5)0.0007 (5)0.0056 (6)
C200.0144 (6)0.0175 (7)0.0188 (7)0.0021 (5)0.0033 (5)0.0047 (5)
C210.0167 (7)0.0200 (7)0.0285 (8)0.0033 (5)0.0055 (6)0.0026 (6)
C220.0273 (8)0.0273 (8)0.0401 (9)0.0041 (6)0.0198 (7)0.0029 (7)
C230.0196 (7)0.0191 (7)0.0172 (7)0.0012 (5)0.0031 (5)0.0004 (5)
C240.0150 (6)0.0190 (7)0.0171 (7)0.0028 (5)0.0032 (5)0.0043 (5)
C250.0173 (7)0.0198 (7)0.0224 (7)0.0019 (6)0.0038 (5)0.0030 (6)
C260.0203 (7)0.0320 (9)0.0241 (8)0.0010 (6)0.0000 (6)0.0044 (6)
O1A0.0296 (6)0.0436 (7)0.0353 (7)0.0168 (5)0.0027 (5)0.0147 (6)
C1A0.0345 (9)0.0347 (10)0.0494 (11)0.0118 (8)0.0046 (8)0.0090 (8)
Geometric parameters (Å, º) top
O1—C81.3481 (17)C12—H12C0.9800
O1—C91.4871 (16)C13—C141.530 (2)
O2—C81.2176 (17)C13—H13A0.9900
N1—C81.3548 (18)C13—H13B0.9900
N1—C71.4636 (19)C14—H14A0.9800
N1—H10.886 (19)C14—H14B0.9800
N2—C161.2733 (17)C14—H14C0.9800
N2—C151.4780 (17)C15—H15A0.9900
N3—C201.3671 (17)C15—H15B0.9900
N3—C171.3679 (18)C16—C171.4451 (19)
N3—H30.838 (18)C16—H160.9500
N4—C241.2744 (17)C17—C181.3868 (19)
N4—C231.4632 (17)C18—C191.401 (2)
C1—C21.4052 (19)C18—H180.9500
C1—C61.4054 (19)C19—C201.3851 (19)
C1—C71.5239 (18)C19—H190.9500
C2—C31.4071 (19)C20—C24i1.4486 (19)
C2—C131.5204 (19)C21—C221.534 (2)
C3—C41.4014 (19)C21—H21A0.9900
C3—C151.5158 (18)C21—H21B0.9900
C4—C51.4065 (19)C22—H22A0.9800
C4—C211.5182 (18)C22—H22B0.9800
C5—C61.4033 (19)C22—H22C0.9800
C5—C231.5183 (19)C23—H23A0.9900
C6—C251.5173 (18)C23—H23B0.9900
C7—H7A0.9900C24—H240.9500
C7—H7B0.9900C25—C261.531 (2)
C9—C101.513 (2)C25—H25A0.9900
C9—C121.517 (2)C25—H25B0.9900
C9—C111.519 (2)C26—H26A0.9800
C10—H10A0.9800C26—H26B0.9800
C10—H10B0.9800C26—H26C0.9800
C10—H10C0.9800O1A—C1A1.409 (2)
C11—H11A0.9800O1A—H1A0.96 (3)
C11—H11B0.9800C1A—H1AA0.9800
C11—H11C0.9800C1A—H1AB0.9800
C12—H12A0.9800C1A—H1AC0.9800
C12—H12B0.9800
C8—O1—C9120.00 (11)C13—C14—H14B109.5
C8—N1—C7122.09 (12)H14A—C14—H14B109.5
C8—N1—H1118.8 (11)C13—C14—H14C109.5
C7—N1—H1119.1 (12)H14A—C14—H14C109.5
C16—N2—C15117.09 (11)H14B—C14—H14C109.5
C20—N3—C17109.34 (11)N2—C15—C3111.32 (11)
C20—N3—H3125.5 (12)N2—C15—H15A109.4
C17—N3—H3125.2 (12)C3—C15—H15A109.4
C24—N4—C23117.16 (11)N2—C15—H15B109.4
C2—C1—C6120.32 (12)C3—C15—H15B109.4
C2—C1—C7120.73 (12)H15A—C15—H15B108.0
C6—C1—C7118.93 (12)N2—C16—C17123.50 (12)
C1—C2—C3119.44 (12)N2—C16—H16118.2
C1—C2—C13120.89 (12)C17—C16—H16118.2
C3—C2—C13119.66 (12)N3—C17—C18107.86 (12)
C4—C3—C2120.41 (12)N3—C17—C16124.20 (12)
C4—C3—C15119.01 (12)C18—C17—C16127.81 (13)
C2—C3—C15120.58 (12)C17—C18—C19107.40 (12)
C3—C4—C5119.60 (12)C17—C18—H18126.3
C3—C4—C21120.68 (12)C19—C18—H18126.3
C5—C4—C21119.72 (12)C20—C19—C18107.46 (12)
C6—C5—C4120.24 (12)C20—C19—H19126.3
C6—C5—C23120.46 (12)C18—C19—H19126.3
C4—C5—C23119.30 (12)N3—C20—C19107.93 (12)
C5—C6—C1119.74 (12)N3—C20—C24i121.63 (12)
C5—C6—C25120.21 (12)C19—C20—C24i130.17 (12)
C1—C6—C25120.01 (12)C4—C21—C22113.67 (12)
N1—C7—C1113.67 (12)C4—C21—H21A108.8
N1—C7—H7A108.8C22—C21—H21A108.8
C1—C7—H7A108.8C4—C21—H21B108.8
N1—C7—H7B108.8C22—C21—H21B108.8
C1—C7—H7B108.8H21A—C21—H21B107.7
H7A—C7—H7B107.7C21—C22—H22A109.5
O2—C8—O1125.71 (13)C21—C22—H22B109.5
O2—C8—N1123.99 (13)H22A—C22—H22B109.5
O1—C8—N1110.30 (12)C21—C22—H22C109.5
O1—C9—C10108.95 (11)H22A—C22—H22C109.5
O1—C9—C12102.34 (11)H22B—C22—H22C109.5
C10—C9—C12110.92 (13)N4—C23—C5110.74 (11)
O1—C9—C11111.04 (11)N4—C23—H23A109.5
C10—C9—C11112.58 (12)C5—C23—H23A109.5
C12—C9—C11110.54 (12)N4—C23—H23B109.5
C9—C10—H10A109.5C5—C23—H23B109.5
C9—C10—H10B109.5H23A—C23—H23B108.1
H10A—C10—H10B109.5N4—C24—C20i120.67 (12)
C9—C10—H10C109.5N4—C24—H24119.7
H10A—C10—H10C109.5C20i—C24—H24119.7
H10B—C10—H10C109.5C6—C25—C26111.82 (11)
C9—C11—H11A109.5C6—C25—H25A109.3
C9—C11—H11B109.5C26—C25—H25A109.3
H11A—C11—H11B109.5C6—C25—H25B109.3
C9—C11—H11C109.5C26—C25—H25B109.3
H11A—C11—H11C109.5H25A—C25—H25B107.9
H11B—C11—H11C109.5C25—C26—H26A109.5
C9—C12—H12A109.5C25—C26—H26B109.5
C9—C12—H12B109.5H26A—C26—H26B109.5
H12A—C12—H12B109.5C25—C26—H26C109.5
C9—C12—H12C109.5H26A—C26—H26C109.5
H12A—C12—H12C109.5H26B—C26—H26C109.5
H12B—C12—H12C109.5C1A—O1A—H1A108.8 (14)
C2—C13—C14112.48 (12)O1A—C1A—H1AA109.5
C2—C13—H13A109.1O1A—C1A—H1AB109.5
C14—C13—H13A109.1H1AA—C1A—H1AB109.5
C2—C13—H13B109.1O1A—C1A—H1AC109.5
C14—C13—H13B109.1H1AA—C1A—H1AC109.5
H13A—C13—H13B107.8H1AB—C1A—H1AC109.5
C13—C14—H14A109.5
C6—C1—C2—C30.68 (19)C7—N1—C8—O1176.84 (12)
C7—C1—C2—C3177.90 (12)C8—O1—C9—C1067.15 (15)
C6—C1—C2—C13179.41 (12)C8—O1—C9—C12175.36 (12)
C7—C1—C2—C130.82 (19)C8—O1—C9—C1157.39 (16)
C1—C2—C3—C44.51 (19)C1—C2—C13—C1488.14 (16)
C13—C2—C3—C4176.74 (12)C3—C2—C13—C1490.59 (15)
C1—C2—C3—C15176.11 (12)C16—N2—C15—C3178.58 (12)
C13—C2—C3—C152.64 (18)C4—C3—C15—N285.09 (15)
C2—C3—C4—C56.00 (19)C2—C3—C15—N294.30 (14)
C15—C3—C4—C5174.61 (12)C15—N2—C16—C17176.64 (12)
C2—C3—C4—C21173.35 (12)C20—N3—C17—C180.28 (15)
C15—C3—C4—C216.04 (18)C20—N3—C17—C16175.81 (12)
C3—C4—C5—C63.67 (19)N2—C16—C17—N38.3 (2)
C21—C4—C5—C6175.69 (12)N2—C16—C17—C18176.45 (14)
C3—C4—C5—C23176.83 (11)N3—C17—C18—C190.42 (15)
C21—C4—C5—C233.82 (18)C16—C17—C18—C19176.32 (13)
C4—C5—C6—C10.12 (19)C17—C18—C19—C200.95 (16)
C23—C5—C6—C1179.38 (12)C17—N3—C20—C190.87 (15)
C4—C5—C6—C25177.44 (12)C17—N3—C20—C24i173.72 (12)
C23—C5—C6—C253.06 (19)C18—C19—C20—N31.12 (15)
C2—C1—C6—C51.61 (19)C18—C19—C20—C24i172.86 (13)
C7—C1—C6—C5179.77 (12)C3—C4—C21—C2292.25 (16)
C2—C1—C6—C25175.95 (12)C5—C4—C21—C2288.41 (16)
C7—C1—C6—C252.66 (19)C24—N4—C23—C5131.22 (12)
C8—N1—C7—C1126.91 (14)C6—C5—C23—N493.52 (14)
C2—C1—C7—N1103.94 (15)C4—C5—C23—N485.98 (15)
C6—C1—C7—N177.45 (16)C23—N4—C24—C20i179.56 (11)
C9—O1—C8—O24.7 (2)C5—C6—C25—C2691.00 (15)
C9—O1—C8—N1174.71 (11)C1—C6—C25—C2686.55 (15)
C7—N1—C8—O23.8 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2 represents the centroid of the C17–C20/N3 ring.
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N20.96 (3)1.82 (3)2.7521 (16)163 (2)
N3—H3···O1A0.838 (18)2.100 (18)2.8757 (16)153.6 (16)
C7—H7A···O20.992.412.8234 (17)104
C10—H10C···O1ii0.982.633.6094 (19)173
C10—H10B···O20.982.503.0916 (19)119
C11—H11C···O20.982.412.8986 (18)110
C18—H18···O2iii0.952.493.3345 (17)148
C22—H22A···N4iv0.982.733.6080 (18)149
C24—H24···O2v0.952.523.4120 (17)157
C25—H25B···O20.992.483.3988 (17)154
C25—H25B···N10.992.583.3049 (19)130
C12—H12C···Cg2vi0.983.003.7759 (18)137
C16—H16···Cg2vii0.952.883.7173 (15)147
Symmetry codes: (ii) x, y+1, z+1; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y+1, z; (v) x, y+1, z; (vi) x1, y, z; (vii) x, y+1/2, z1/2.
 

Funding information

Open-access funding was provided by the Publication Fund of the TU Bergakademie Freiberg.

References

First citationAmrhein, F., Lippe, J. & Mazik, M. (2016). Org. Biomol. Chem. 14, 10648–10659.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrancesconi, O., Ienco, A., Moneti, G., Nativi, C. & Roelens, S. (2006). Angew. Chem. Int. Ed. 45, 6693–6696.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKöhler, L., Seichter, W. & Mazik, M. (2020). Eur. J. Org. Chem. pp. 7023–7034.  Google Scholar
First citationLippe, J. & Mazik, M. (2013). J. Org. Chem. 78, 9013–9020.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLippe, J. & Mazik, M. (2015). J. Org. Chem. 80, 1427–1439.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMateus, P., Delgado, R., André, V. & Duarte, M. T. (2015). Org. Biomol. Chem. 13, 834–842.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMazik, M., Cavga, H. & Jones, P. G. (2005). J. Am. Chem. Soc. 127, 9045–9052.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOh, J. H., Kim, J. H., Kim, D. S., Han, H. J., Lynch, V. M., Sessler, J. L. & Kim, S. K. (2019). Org. Lett. 21, 4336–4339.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, F., Sikma, E., Duan, Z., Sarma, T., Lei, C., Zhang, Z., Humphrey, S. M. & Sessler, J. L. (2019). Chem. Commun. 55, 6185–6188.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiskur, S. L., Lavigne, J. J., Metzger, A., Tobey, S. L., Lynch, V. & Anslyn, E. V. (2004). Chem. Eur. J. 10, 3792–3804.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds