research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (RS)-3-hy­dr­oxy-2-{[(3aRS,6RS,7aRS)-2-(4-methyl­phenyl­sulfon­yl)-2,3,3a,6,7,7a-hexa­hydro-3a,6-ep­­oxy-1H-isoindol-6-yl]meth­yl}isoindolin-1-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Organic Chemistry, Peoples' Friendship University of Russia, (RUDN University), 6 Miklukho-Maklaya St., 117198, Moscow, Russian Federation, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cLaboratory of Organoelement Compounds, Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13 Surganov St., 220072, Minsk, Belarus, and dDepartment of Chemistry, M.M.A.M.C (Tribhuvan University), Biratnagar, Nepal
*Correspondence e-mail: bkajaya@yahoo.com

Edited by A. S. Batsanov, University of Durham, England (Received 24 November 2020; accepted 10 February 2021; online 16 February 2021)

The title compound, C24H24N2O5S, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. In the central ring systems of both mol­ecules, the tetra­hydro­furan rings adopt envelope conformations, the pyrrolidine rings adopt a twisted-envelope conformation and the six-membered ring is in a boat conformation. In mol­ecules A and B, the nine-membered groups attached to the central ring system are essentially planar (r.m.s. deviations of 0.002 and 0.003 Å, respectively). They form dihedral angles of 64.97 (9) and 56.06 (10)°, respectively, with the phenyl rings. In the crystal, strong inter­molecular O—H⋯O hydrogen bonds and weak inter­molecular C—H⋯O contacts link the mol­ecules, forming a three-dimensional network. In addition weak ππ stacking inter­actions [centroid-to centroid distance = 3.7124 (13) Å] between the pyrrolidine rings of the nine-membered groups of A mol­ecules are observed. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to qu­antify the inter­molecular inter­actions present in the crystal, indicating that the environments of the two mol­ecules are very similar. The most important contributions for the crystal packing are from H⋯H (55.8% for mol­ecule A and 53.5% for mol­ecule B), O⋯H/H⋯O (24.5% for mol­ecule A and 26.3% for mol­ecule B) and C⋯H/H⋯C (12.6% for mol­ecule A and 15.7% for mol­ecule B) inter­actions.

1. Chemical context

Currently, considerable attention is being paid to the development of atom- and step-economic tools in order to obtain new, practically useful materials. Tandem and domino reactions play an important role in this arsenal, since the isolation of inter­mediates is not required in these processes, as all reaction steps occur spontaneously (Tietze & Beifuss, 1993[Tietze, L. F. & Beifuss, U. (1993). Angew. Chem. Int. Ed. Engl. 32, 131-163.]).

As an example of using such synthetic tools, we proposed the synthesis of compound 3, which contains three privileged scaffolds, based on the tandem Hinsberg/IMDAF (intra­molecular Diels–Alder furan; Zubkov et al., 2005[Zubkov, F. I., Nikitina, E. V. & Varlamov, A. V. (2005). Russ. Chem. Rev. 74, 639-669.], 2014[Zubkov, F. I., Nikitina, E. V., Galeev, T. R., Zaytsev, V. P., Khrustalev, V. N., Novikov, R. A., Orlova, D. N. & Varlamov, A. V. (2014). Tetrahedron, 70, 1659-1690.]) reaction strategy (Demircan et al., 2016[Demircan, A., Kandemir, M. K., Colak, M. & Karaarslan, M. (2016). Synthesis, 48, 2873-2880.]; Nadirova et al., 2020[Nadirova, M. A., Khanova, A. V., Zubkov, F. I., Mertsalov, D. F., Kolesnik, I. A., Petkevich, S. K., Potkin, V. I., Shetnev, A. A., Presnukhina, S. I., Sinelshchikova, A. A., Grigoriev, M. S. & Zaytsev, V. P. (2020). Tetrahedron. In the press.]). Substituted sulfonamides are important because of their broad spectrum of biological activities (Anderson et al., 2012[Anderson, R. J., Groundwater, P. W., Todd, A. & Worsley, A. J. (2012). Antibacterial Agents, ch. 3.1 Sulfonamide Antibacterial Agents, pp. 103-126. Chichester: John Wiley & Sons, Ltd.]) while 3-hy­droxy­isoindol-1-ones are well-known nitro­gen-containing heterocyclic compounds with a wide range of physiological activity: agonists of muscarinic M2 receptor modulators, anti­microbial activity etc. (Stiefl et al., 2003[Stiefl, N. & Baumann, K. (2003). J. Med. Chem. 46, 1390-1407.]; Breytenbach et al., 2000[Breytenbach, J. C., van Dyk, S., van den Heever, I., Allin, S. M., Hodkinson, C. C., Northfield, C. J. & Page, M. I. (2000). Bioorg. Med. Chem. Lett. 10, 1629-1631.]).

The reaction proceeds smoothly in boiling water. Separation and subsequent crystallization of the resulting solids from ethyl acetate provides the title adduct 3 in moderate yield. The process starts with the Hinsberg N-sulfonyl­ation of amine 1, leading to the formation of the inter­mediate N-sulfonamide (2), which undergoes spontaneous intra­molecular Diels–Alder reaction. It should be noted that the exo-[4 + 2] cyclo­addition proceeds stereoselectively with the exclusive formation of diastereoisomer 3 (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
Synthesis of the title compound 3.

On the other hand, non-covalent inter­actions between mol­ecules play an important role in the synthesis, crystal engineering, mol­ecular recognition, and as key activating/controlling elements in the field of catalysis (Afkhami et al., 2017[Afkhami, F. A., Khandar, A. A., Mahmoudi, G., Maniukiewicz, W., Gurbanov, A. V., Zubkov, F. I., Şahin, O., Yesilel, O. Z. & Frontera, A. (2017). CrystEngComm, 19, 1389-1399.]; Asadov et al., 2016[Asadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfact. Deterg. 19, 145-153.]; Gurbanov et al., 2017[Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22-27.], 2018[Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130-136.]; Karmakar et al., 2017[Karmakar, A., Rúbio, G. M. D. M., Paul, A., Guedes da Silva, M. F. C., Mahmudov, K. T., Guseinov, F. I., Carabineiro, S. A. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 8649-8657.]; Kopylovich et al., 2011a[Kopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011a). Inorg. Chim. Acta, 374, 175-180.],b[Kopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011b). Chem. Commun. 47, 7248-7250.]; Ma et al., 2017a[Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526-533.],b[Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17-23.]; Maharramov et al., 2018[Maharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135-141.]; Mahmoudi et al., 2017[Mahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017). Inorg. Chim. Acta, 461, 192-205.], 2019[Mahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108-117.]; Mahmudov et al., 2010[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923-2938.], 2020[Mahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.]; Mizar et al., 2012[Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305-2313.]; Sutradhar et al., 2015[Sutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, M. F. C., Mahmudov, K. T., Liu, C.-M. & Pombeiro, A. J. L. (2015). Eur. J. Inorg. Chem. pp. 3959-3969.]). Herein, we highlight the role of weak inter­actions in the structural features of mol­ecule 3.

2. Structural commentary

As shown Fig. 2[link], the title compound 3 crystallizes with two independent mol­ecules (A with the atom S and B with the atom S′) in the asymmetric unit in which the ep­oxy­iso­indole and phenyl rings are linked through an N—S—C bridge. In the central ring systems of mol­ecules A and B, the two tetra­hydro­furan rings (A: O3/C10–C13, O3/C10/C13/C15/C16 and B: O3′/C10′–C13′, O3′/C10′/C13′/C15′/C16′) adopt envelope conformations [puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) Q = 0.508 (2), 0.600 (2) and 0.523 (2), 0.602 (2) Å, respectively], the pyrrolidine rings (A: N2/C13–C14/C16–C17 and B: N2′/C13′–C14′/C16′–C17′) adopt a twisted-envelope conformation [QT = 0.392 (2) Å, φ(2) = 132.8 (4)° and QT = 0.408 (2) Å, φ(2) = 310.0 (3)°, respectively] and the six-membered rings are in a boat conformation (C10–C13/C15/C16; QT = 0.965 (2) Å, θ = 89.90 (12)°, φ = 180.80 (15)° in mol­ecule A; C10′–C13′/C15′/C16′, QT = 0.950 (2) Å, θ = 89.90 (12)°, φ = 0.57 (15)° in mol­ecule B].

[Figure 2]
Figure 2
View of the two independent mol­ecules, A and B, in the asymmetric unit of the title compound 3, with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level.

In mol­ecules A and B, the nine-membered groups (A: N1/C1–C8 and B: N1′/C1′–C8′) attached to the central ring system are essentially planar (r.m.s deviations of 0.002 and 0.003 Å, respectively). They form dihedral angles of 64.97 (9) and 56.06 (10)°, respectively, with the phenyl rings (A: C18–C23 and B: C18′–C23′). Fig. 3[link] shows the overlay of mol­ecules A and B in the asymmetric unit (r.m.s. deviation 0.252 Å).

[Figure 3]
Figure 3
Overlay image of the two mol­ecules (A and B) in the asymmetric unit of the title compound 3.

3. Supra­molecular features

In the crystal, strong inter­molecular O—H⋯O hydrogen bonds and weak inter­molecular C—H⋯O contacts link the mol­ecules, forming a three-dimensional network (Table 1[link], Fig. 4[link]). In addition weak ππ stacking inter­actions are observed [Cg3⋯Cg3(1 − x, −y, 2 − z) = 3.7124 (13) Å where Cg3 is the centroid of the pyrrolidine ring (N1/C1/C2/C7/C8) of the nine-membered group in mol­ecule A, with slippage of 1.675 Å].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O5i 0.95 2.47 3.333 (3) 151
C14—H14A⋯O5′ii 0.99 2.62 3.506 (3) 149
C23—H23⋯O5′ii 0.95 2.41 3.195 (3) 139
C14′—H14D⋯O4 0.99 2.58 3.482 (3) 151
C15′—H15C⋯O2iii 0.99 2.62 3.585 (3) 165
C16′—H16′⋯O4′iv 1.00 2.53 3.422 (3) 149
C19′—H19′⋯O4 0.95 2.34 3.078 (3) 134
O2—H2⋯O1v 0.92 1.85 2.756 (2) 172
O2′—H2′⋯O1′vi 0.90 1.95 2.840 (3) 171
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x, y-1, z]; (iii) x, y+1, z; (iv) [-x+2, -y+2, -z+1]; (v) [-x+1, -y, -z+2]; (vi) [-x+2, -y+1, -z+2].
[Figure 4]
Figure 4
A view of the inter­molecular C—H⋯O and O—H⋯O inter­actions in the crystal structure of the title compound 3.

4. Hirshfeld surface analysis

The Hirshfeld surfaces for both independent mol­ecules (A and B) in the asymmetric of the title compound 3 were generated using Crystal Explorer 17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). The dnorm mappings were performed in the range of −0.6446 to 1.7383 arbitrary units for the mol­ecule A and −0.5749 to 1.6904 arbitrary units for mol­ecule B. Bold red circles on the dnorm surfaces (Fig. 5[link]a) indicate regions of O—H⋯O inter­actions. The C—H⋯O inter­actions also cause red spots on the Hirshfeld surfaces. The shape-index maps (Fig. 5[link]b) contain red and blue triangles related to ππ inter­actions.

[Figure 5]
Figure 5
(a) View of the three-dimensional Hirshfeld surfaces for mol­ecules A and B of the title compound 3; (b) Hirshfeld surfaces plotted over shape-index.

Fingerprint plots (Fig. 6[link]) reveal that while H⋯H (55.8% for mol­ecule A and 53.5% for mol­ecule B) inter­actions make the greatest contributions to the surface contacts (Table 2[link]), as would be expected for a mol­ecule with such a predominance of H atoms, O⋯H/H⋯O (24.5% for mol­ecule A and 26.3% for mol­ecule B) and C⋯H/H⋯C (12.6% for mol­ecule A and 15.7% for mol­ecule B) contacts are also substantial. Table 3[link] gives the contributions of the other, less significant contacts. As shown in Table 3[link], the environments of the two mol­ecules A and B are very similar. Even the packing looks pseudo-monoclinic, with a pseudo-glide plane relating the two mol­ecules A and B.

Table 2
Summary of short inter­atomic contacts (Å) in the title compound 3

Contact Distance Symmetry operation
O1⋯H3′ 2.27 −1 + x, y, z
H2⋯O1 1.85 1 − x, −y, 2 − z
O4⋯H19′ 2.34 x, y, z
H8⋯H17C 2.41 x, −1 + y, z
H12⋯O5 2.47 1 − x, 1 − y, 1 − z
C20⋯O5 2.411 2 − x, 1 − y, 1 − z
H11⋯H24B 2.43 −1 + x, y, z
H15B⋯H5 2.42 x, 1 + y, z
H22⋯H14C 2.23 2 − x, 1 − y, 1 − z
H2′⋯O1′ 1.95 2 − x, 1 − y, 2 − z
H24F⋯O4′ 2.40 1 − x, 2 − y, 1 − z
H16′⋯O4′ 2.53 2 − x, 2 − y, 1 − z
H16′⋯H24F 2.41 1 + x, y, z

Table 3
Percentage contributions of inter­atomic contacts to the Hirshfeld surfaces for mol­ecules A and B of the title compound 3

  Mol­ecule A Mol­ecule B
Contact Percentage contribution Percentage contribution
H⋯H 55.8 53.5
O⋯H/H⋯O 24.5 26.3
C⋯H/H⋯C 12.6 15.7
C⋯C 3.3 2.6
C⋯O/O⋯C 2.6 0.4
N⋯H/H⋯N 0.8 1.2
C⋯N/N⋯C 0.5 0.1
N⋯O/O⋯N 0.1
S⋯H/H⋯S 0.1
S⋯H/H⋯S 0.1
[Figure 6]
Figure 6
The two-dimensional fingerprint plots for mol­ecules A and B of the title compound 3 showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O and (d) C⋯H/H⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

There are several examples of structures closely related to the 2-(dioxo-λ6-sulfan­yl)octa­hydro-3a,6-ep­oxy­iso­indole skeleton of 3. Selected examples found in the Cambridge Structural Database (CSD, version 5.40, update of August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) include (3aR,6S,7aR)-7a-bromo-2-methyl­sulfonyl-1,2,3,6,7,7a-hexa­hydro-3a,6-ep­oxy­iso­indole (CSD refcode ERIVIL; Temel et al., 2011[Temel, E., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1304-o1305.]), (3aR,6S,7aR)-7a-chloro-2-[(4-nitro­phen­yl)sulfon­yl]-1,2,3,6,7,7a-hexa­hydro-3a,6-ep­oxy­iso­indole (AGONUH; Temel et al., 2013[Temel, E., Demircan, A., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1551-o1552.]), (3aR,6S,7aR)-7a-chloro-6-methyl-2-[(4-nitro­phen­yl)sulfon­yl]-1,2,3,6,7,7a-hexa­hydro-3a,6-ep­oxy­iso­indole (TIJMIK; Demircan et al., 2013[Demircan, A., Temel, E., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1628-o1629.]), (3aR,6S,7aR)-7a-bromo-2-[(4-methyl­phen­yl)sulfon­yl]-1,2,3,6,7,7a-hexa­hydro-3a,6-ep­oxy­iso­indole (UPAQEI; Koşar et al., 2011[Koşar, B., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o994-o995.]), 5-chloro-7-methyl-3-[(4-methyl­phen­yl)sulfon­yl]-10-oxa-3-aza­tri­cyclo­[5.2.1.01,5]dec-8-ene (YAXCIL; Temel et al., 2012[Temel, E., Demircan, A., Beyazova, G. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1102-o1103.]), tert-butyl 3a-chloro­perhydro-2,6a-ep­oxy­oxireno(e)isoindole-5-carboxyl­ate (MIGTIG; Koşar et al., 2007[Koşar, B., Karaarslan, M., Demir, I. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3323.]) and 2-(2-amino­eth­yl)-3a,4,7,7a-tetra­hydro-1H-4,7-ep­oxy­iso­indole-1,3(2H)-dione (BILLAL; Mitchell et al., 2013[Mitchell, L. A., Stanley, J. M., Espinosa De Hoyos, L. & Holliday, B. J. (2013). Acta Cryst. C69, 638-641.]).

In the crystal of ERIVIL, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into R22(8) and R22(14) rings along the b-axis direction. In the crystal of AGONUH, C—H⋯O hydrogen bonds link the mol­ecules into zigzag chains running along the b-axis direction. In the crystal of TIJMIK, two types of C—H⋯O hydrogen bonds generate R22(20) and R44(26) rings, with adjacent rings running parallel to the ac plane. Further C—H⋯O hydrogen bonds form a C(6) chain, linking the mol­ecules in the b-axis direction. In the crystal of UPAQEI, mol­ecules are linked by C—H⋯O hydrogen bonds. In the crystal of YAXCIL, C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. In the crystal of MIGTIG, the mol­ecules are linked only by weak van der Waals inter­actions. The compound BILLAL contains two mol­ecules in the asymmetric unit, which are hydrogen-bonded dimers. The bonds closest to linearity are between the carbonyl groups and the amine H atoms. Inter­molecular hydrogen bonding involving the O atoms also occurs.

6. Synthesis and crystallization

4-Toluene­sulfonyl chloride (0.61 g, 3.2 mmol) was added to 2-({5-[(allyl­amino)­meth­yl]-2-fur­yl}meth­yl)-3-hy­droxy­isoindolin-1-one (0.79 g, 2.7 mmol) in water (10 mL) in the presence of Na2CO3 (0.34 g, 3.2 mmol). The resulting reaction mixture was refluxed for 4 h and then extracted with DCM (3 × 10 mL). The organic layers were dried with anhydrous MgSO4. The desiccator was filtered off, the solution concentrated and the residue was recrystallized from EtOAc. The obtained precip­itate was filtered off, washed with hexane (3 × 5 mL) and dried in air to give 0.4 g (33%) of (RS)-3-hy­droxy-2-{[(3aRS,6RS,7aRS)-2-(4-methyl­phenyl­sulfon­yl)-2,3,3a,6,7,7a-hexa­hydro-3a,6-ep­oxy-1H-isoindol-6-yl]meth­yl}isoindolin-1-one (3) as colourless prisms, m.p. = 468.1–469.1 K. Rf = 0.6 (EtOH–DMF, 1:2). IR (KBr), ν (cm−1): 1167 (νs SO2), 1340 (νas SO2), 1679 (NCO), 3281 (OH). 1H NMR (DMSO-d6, 400 MHz, 301 K): δ = 7.74–7.43 (m, 8H, HAr), 6.41 (d, 1H, OH, J = 9.3), 6.37 and 6.22 (2d, 2H, H4, H5, J = 5.7), 5.68 (d, 1H, CH-O, J = 9.3), 4.20 (d, 1H, NCH2A, J = 15.3), 3.78 (d, 1H, H3A, J = 12.1), 3.73 (t, 1H, H-1A, J = 9.5), 3.52 (d, 1H, NCH2B, J = 15.3), 3.42 (d, 1H, H3B, J = 12.1), 2.79 (t, 1H, H-1B, J = 9.5), 2.43 (s, 3H, CH3), 2.00–1.93 (m, 1H, H7A), 1.55–1.44 (m, 2H, H7). 13C NMR (DMSO-d6, 100.4 MHz, 301 K): δ = 166.2, 145.0, 143.4, 137.6, 135.5, 133.9, 132.0, 131.1, 129.8, 129.2, 127.2, 123.5, 122.4, 94.7, 92.3, 81.2, 52.8, 48.8, 44.5, 39.7, 33.8, 21.0. MS (APCI): m/z = 453 [M + H]+.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The hydrogen atoms of the hy­droxy groups were located in a difference-Fourier map and refined freely. The other hydrogen atoms were constrained to ride on their parent atoms with C—H = 0.95, 0.98, 0.99 and 1.00 Å for aromatic, methyl, methyl­ene and methine H atoms, respectively. Isotropic displacement parameters of these atoms were constrained to 1.5Ueq(C) for the methyl and to 1.2Ueq(C) for all other H atoms.

Table 4
Experimental details

Crystal data
Chemical formula C24H24N2O5S
Mr 452.51
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 120
a, b, c (Å) 11.8210 (8), 11.8395 (8), 16.7336 (11)
α, β, γ (°) 77.949 (1), 79.555 (1), 77.511 (1)
V3) 2213.3 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.15 × 0.09 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.688, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 29692, 13532, 8799
Rint 0.043
(sin θ/λ)max−1) 0.717
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.147, 1.02
No. of reflections 13532
No. of parameters 581
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.41, −0.44
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

(RS)-3-Hydroxy-2-{[(3aRS,6RS,7aRS)-2-(4-methylphenylsulfonyl)-2,3,3a,6,7,7a-hexahydro-3a,6-epoxy-1H-isoindol-6-yl]methyl}isoindolin-1-one top
Crystal data top
C24H24N2O5SZ = 4
Mr = 452.51F(000) = 952
Triclinic, P1Dx = 1.358 Mg m3
a = 11.8210 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.8395 (8) ÅCell parameters from 5394 reflections
c = 16.7336 (11) Åθ = 2.3–27.2°
α = 77.949 (1)°µ = 0.19 mm1
β = 79.555 (1)°T = 120 K
γ = 77.511 (1)°Prism, colourless
V = 2213.3 (3) Å30.15 × 0.09 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
13532 independent reflections
Radiation source: sealed tube8799 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 30.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 1616
Tmin = 0.688, Tmax = 0.746k = 1616
29692 measured reflectionsl = 2323
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0474P)2 + 1.6525P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
13532 reflectionsΔρmax = 0.41 e Å3
581 parametersΔρmin = 0.44 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.74652 (5)0.55414 (5)0.53950 (3)0.02594 (13)
O10.32628 (13)0.11057 (14)0.96738 (9)0.0263 (3)
O20.71088 (13)0.03280 (14)0.88152 (10)0.0278 (3)
H20.7056990.0167020.9314970.042 (8)*
O30.57170 (13)0.31030 (12)0.74923 (9)0.0212 (3)
O40.75506 (15)0.67311 (14)0.53936 (11)0.0353 (4)
O50.73338 (14)0.51910 (15)0.46520 (10)0.0317 (4)
N10.50789 (16)0.12179 (15)0.89107 (10)0.0221 (4)
N20.63120 (16)0.52671 (16)0.60548 (11)0.0240 (4)
C10.41649 (19)0.06714 (19)0.92534 (12)0.0216 (4)
C20.44704 (19)0.05190 (19)0.90475 (13)0.0235 (4)
C30.3823 (2)0.1414 (2)0.92483 (14)0.0280 (5)
H30.3053190.1305490.9543750.034*
C40.4354 (2)0.2480 (2)0.89974 (15)0.0334 (6)
H40.3938440.3112700.9123270.040*
C50.5482 (2)0.2629 (2)0.85654 (15)0.0339 (6)
H50.5827600.3367050.8408820.041*
C60.6117 (2)0.1720 (2)0.83572 (15)0.0310 (5)
H60.6882860.1821610.8055200.037*
C70.5589 (2)0.06640 (19)0.86068 (13)0.0242 (4)
C80.60631 (19)0.04558 (19)0.84880 (13)0.0245 (4)
H80.6184370.0795260.7886100.029*
C90.5108 (2)0.24198 (19)0.89628 (13)0.0237 (4)
H9A0.5896610.2458660.9064160.028*
H9B0.4539310.2649800.9439980.028*
C100.48228 (19)0.32883 (18)0.81931 (13)0.0217 (4)
C110.3729 (2)0.3272 (2)0.78461 (14)0.0274 (5)
H110.3043410.3005020.8143520.033*
C120.3917 (2)0.3702 (2)0.70465 (14)0.0289 (5)
H120.3401000.3799790.6652630.035*
C130.51173 (19)0.40013 (19)0.68953 (13)0.0230 (4)
C140.5869 (2)0.4180 (2)0.60650 (13)0.0266 (5)
H14A0.6522590.3504640.6014470.032*
H14B0.5401990.4285830.5611040.032*
C150.4833 (2)0.45976 (19)0.82203 (13)0.0271 (5)
H15A0.4079070.4983580.8497410.032*
H15B0.5478560.4665030.8500030.032*
C160.5028 (2)0.51120 (19)0.72882 (13)0.0262 (5)
H160.4349740.5734930.7125670.031*
C170.6189 (2)0.5493 (2)0.69070 (14)0.0268 (5)
H17A0.6153100.6334460.6911890.032*
H17B0.6840240.5015090.7196960.032*
C180.86926 (19)0.46288 (19)0.57944 (13)0.0237 (4)
C190.9263 (2)0.5017 (2)0.63118 (15)0.0295 (5)
H190.9017620.5790770.6431010.035*
C201.0194 (2)0.4264 (2)0.66527 (14)0.0298 (5)
H201.0595700.4531390.6998670.036*
C211.0548 (2)0.3122 (2)0.64953 (14)0.0268 (5)
C220.9972 (2)0.2756 (2)0.59696 (14)0.0257 (5)
H221.0217070.1983040.5849740.031*
C230.90444 (19)0.3498 (2)0.56163 (13)0.0246 (4)
H230.8655800.3238130.5258330.030*
C241.1564 (2)0.2296 (2)0.68509 (17)0.0381 (6)
H24A1.1360520.1517440.7056180.057*
H24B1.1747110.2596040.7306840.057*
H24C1.2248170.2237800.6421510.057*
S1'0.76670 (5)1.04803 (5)0.53217 (3)0.02277 (12)
O1'1.14505 (15)0.50110 (16)0.91923 (11)0.0362 (4)
O2'0.76049 (15)0.54898 (17)0.93007 (12)0.0410 (5)
H2'0.7827530.5348950.9805890.078 (12)*
O3'0.90933 (13)0.76045 (13)0.73711 (9)0.0234 (3)
O4'0.80016 (14)0.99924 (15)0.45795 (9)0.0300 (4)
O5'0.75650 (14)1.17211 (14)0.52883 (10)0.0289 (4)
N1'0.95957 (17)0.56602 (18)0.88347 (12)0.0302 (4)
N2'0.86625 (15)0.98216 (16)0.59042 (11)0.0223 (4)
C1'1.0534 (2)0.4821 (2)0.90414 (14)0.0297 (5)
C2'1.0214 (2)0.3675 (2)0.90349 (14)0.0306 (5)
C3'1.0859 (2)0.2544 (2)0.91983 (15)0.0349 (6)
H3'1.1624860.2406260.9342240.042*
C4'1.0340 (3)0.1626 (3)0.91428 (18)0.0469 (7)
H4'1.0756070.0842060.9253240.056*
C5'0.9228 (3)0.1828 (3)0.8930 (2)0.0513 (8)
H5'0.8897310.1182350.8890340.062*
C6'0.8584 (3)0.2968 (3)0.87730 (19)0.0457 (7)
H6'0.7817830.3108030.8629510.055*
C7'0.9096 (2)0.3884 (2)0.88328 (15)0.0345 (6)
C8'0.8596 (2)0.5185 (2)0.87297 (16)0.0350 (6)
H8'0.8404570.5479810.8155820.042*
C9'0.9530 (2)0.6906 (2)0.87978 (14)0.0314 (5)
H9'A1.0034830.7010440.9178350.038*
H9'B0.8714710.7262030.8992870.038*
C10'0.98998 (19)0.7553 (2)0.79436 (13)0.0239 (4)
C11'1.1054 (2)0.7027 (2)0.74680 (14)0.0260 (5)
H11'1.1702780.6523110.7695350.031*
C12'1.09712 (19)0.74141 (19)0.66761 (14)0.0251 (5)
H12'1.1540550.7240370.6217690.030*
C13'0.97764 (19)0.81916 (19)0.66568 (13)0.0221 (4)
C14'0.9156 (2)0.8553 (2)0.59063 (14)0.0264 (5)
H14C0.9710280.8439250.5397410.032*
H14D0.8527470.8099510.5954420.032*
C15'0.9874 (2)0.8886 (2)0.78895 (13)0.0255 (5)
H15C0.9185420.9249930.8243800.031*
H15D1.0597220.9024980.8042520.031*
C16'0.97915 (18)0.93444 (19)0.69668 (13)0.0223 (4)
H16'1.0482760.9702750.6680760.027*
C17'0.86454 (19)1.01119 (19)0.67252 (13)0.0222 (4)
H17C0.7960710.9893470.7117670.027*
H17D0.8646831.0956950.6689010.027*
C18'0.63222 (18)1.01004 (19)0.58149 (13)0.0226 (4)
C19'0.6003 (2)0.9103 (2)0.56757 (15)0.0285 (5)
H19'0.6486190.8653970.5290540.034*
C20'0.4977 (2)0.8770 (2)0.61023 (15)0.0308 (5)
H20'0.4761410.8084530.6011030.037*
C21'0.4257 (2)0.9424 (2)0.66633 (14)0.0293 (5)
C22'0.4569 (2)1.0438 (2)0.67779 (14)0.0283 (5)
H22'0.4070971.0901520.7148630.034*
C23'0.55990 (19)1.0784 (2)0.63577 (13)0.0248 (4)
H23'0.5807171.1478400.6439890.030*
C24'0.3143 (2)0.9045 (3)0.71372 (16)0.0400 (6)
H24D0.2859770.9470620.7599350.060*
H24E0.3301630.8198090.7349470.060*
H24F0.2546110.9220220.6769260.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0286 (3)0.0229 (3)0.0220 (3)0.0052 (2)0.0008 (2)0.0024 (2)
O10.0220 (8)0.0272 (8)0.0249 (8)0.0003 (6)0.0020 (6)0.0004 (6)
O20.0233 (8)0.0326 (9)0.0245 (8)0.0072 (7)0.0000 (6)0.0010 (7)
O30.0247 (7)0.0199 (7)0.0166 (7)0.0036 (6)0.0020 (6)0.0007 (5)
O40.0367 (10)0.0216 (8)0.0409 (10)0.0069 (7)0.0025 (8)0.0042 (7)
O50.0322 (9)0.0389 (10)0.0194 (8)0.0058 (7)0.0017 (7)0.0023 (7)
N10.0260 (9)0.0207 (9)0.0175 (8)0.0043 (7)0.0010 (7)0.0003 (7)
N20.0269 (9)0.0236 (9)0.0188 (9)0.0063 (7)0.0026 (7)0.0008 (7)
C10.0233 (10)0.0237 (11)0.0159 (9)0.0033 (8)0.0067 (8)0.0035 (8)
C20.0278 (11)0.0228 (11)0.0191 (10)0.0045 (9)0.0076 (8)0.0015 (8)
C30.0327 (12)0.0272 (12)0.0253 (11)0.0083 (10)0.0102 (10)0.0010 (9)
C40.0486 (15)0.0247 (12)0.0315 (12)0.0112 (11)0.0190 (11)0.0005 (10)
C50.0481 (15)0.0242 (12)0.0308 (12)0.0012 (11)0.0153 (11)0.0056 (10)
C60.0355 (13)0.0287 (13)0.0266 (12)0.0005 (10)0.0074 (10)0.0043 (9)
C70.0291 (11)0.0249 (11)0.0170 (10)0.0030 (9)0.0047 (8)0.0013 (8)
C80.0254 (11)0.0266 (11)0.0179 (10)0.0025 (9)0.0002 (8)0.0013 (8)
C90.0294 (11)0.0218 (11)0.0191 (10)0.0056 (9)0.0030 (9)0.0012 (8)
C100.0252 (10)0.0208 (10)0.0176 (9)0.0045 (8)0.0009 (8)0.0015 (8)
C110.0244 (11)0.0292 (12)0.0262 (11)0.0067 (9)0.0030 (9)0.0018 (9)
C120.0265 (11)0.0341 (13)0.0247 (11)0.0072 (10)0.0071 (9)0.0027 (9)
C130.0280 (11)0.0201 (10)0.0181 (10)0.0034 (8)0.0033 (8)0.0018 (8)
C140.0342 (12)0.0264 (12)0.0195 (10)0.0110 (9)0.0011 (9)0.0015 (8)
C150.0360 (13)0.0226 (11)0.0203 (10)0.0070 (9)0.0042 (9)0.0042 (8)
C160.0315 (12)0.0203 (11)0.0219 (10)0.0025 (9)0.0005 (9)0.0010 (8)
C170.0348 (12)0.0205 (11)0.0231 (11)0.0080 (9)0.0015 (9)0.0016 (8)
C180.0260 (11)0.0236 (11)0.0203 (10)0.0068 (9)0.0008 (8)0.0027 (8)
C190.0336 (12)0.0250 (12)0.0320 (12)0.0099 (10)0.0008 (10)0.0082 (9)
C200.0343 (13)0.0346 (13)0.0267 (11)0.0146 (10)0.0075 (10)0.0081 (10)
C210.0258 (11)0.0324 (13)0.0220 (11)0.0098 (9)0.0007 (9)0.0021 (9)
C220.0282 (11)0.0237 (11)0.0252 (11)0.0052 (9)0.0006 (9)0.0063 (9)
C230.0261 (11)0.0269 (12)0.0236 (11)0.0071 (9)0.0045 (9)0.0074 (9)
C240.0322 (13)0.0454 (16)0.0372 (14)0.0042 (11)0.0143 (11)0.0033 (12)
S1'0.0233 (3)0.0244 (3)0.0192 (2)0.0058 (2)0.0031 (2)0.0010 (2)
O1'0.0288 (9)0.0474 (11)0.0299 (9)0.0071 (8)0.0058 (7)0.0000 (8)
O2'0.0231 (9)0.0504 (12)0.0405 (11)0.0009 (8)0.0048 (8)0.0061 (8)
O3'0.0216 (7)0.0276 (8)0.0200 (7)0.0079 (6)0.0011 (6)0.0002 (6)
O4'0.0309 (9)0.0383 (10)0.0192 (8)0.0050 (7)0.0038 (7)0.0029 (7)
O5'0.0312 (9)0.0232 (8)0.0311 (9)0.0088 (7)0.0046 (7)0.0023 (6)
N1'0.0264 (10)0.0315 (11)0.0270 (10)0.0065 (8)0.0029 (8)0.0076 (8)
N2'0.0214 (9)0.0258 (10)0.0188 (8)0.0025 (7)0.0037 (7)0.0031 (7)
C1'0.0250 (11)0.0389 (14)0.0186 (10)0.0036 (10)0.0003 (9)0.0041 (9)
C2'0.0254 (11)0.0362 (14)0.0245 (11)0.0044 (10)0.0001 (9)0.0031 (10)
C3'0.0320 (13)0.0372 (14)0.0260 (12)0.0002 (11)0.0043 (10)0.0019 (10)
C4'0.0482 (17)0.0344 (15)0.0467 (17)0.0011 (13)0.0068 (14)0.0007 (12)
C5'0.0491 (18)0.0444 (18)0.060 (2)0.0168 (14)0.0031 (15)0.0084 (15)
C6'0.0356 (15)0.0487 (18)0.0520 (17)0.0157 (13)0.0054 (13)0.0007 (14)
C7'0.0292 (12)0.0395 (15)0.0292 (12)0.0070 (11)0.0008 (10)0.0046 (10)
C8'0.0248 (12)0.0422 (15)0.0323 (13)0.0055 (10)0.0053 (10)0.0067 (11)
C9'0.0330 (13)0.0342 (13)0.0224 (11)0.0049 (10)0.0003 (10)0.0009 (9)
C10'0.0222 (10)0.0295 (12)0.0185 (10)0.0059 (9)0.0027 (8)0.0000 (8)
C11'0.0236 (11)0.0256 (11)0.0267 (11)0.0035 (9)0.0027 (9)0.0017 (9)
C12'0.0227 (11)0.0254 (11)0.0254 (11)0.0030 (9)0.0006 (9)0.0044 (9)
C13'0.0235 (10)0.0245 (11)0.0178 (10)0.0066 (8)0.0005 (8)0.0025 (8)
C14'0.0311 (12)0.0262 (12)0.0228 (11)0.0009 (9)0.0070 (9)0.0080 (9)
C15'0.0261 (11)0.0321 (12)0.0198 (10)0.0067 (9)0.0049 (9)0.0051 (9)
C16'0.0214 (10)0.0252 (11)0.0209 (10)0.0074 (8)0.0025 (8)0.0026 (8)
C17'0.0239 (10)0.0227 (11)0.0200 (10)0.0057 (8)0.0015 (8)0.0041 (8)
C18'0.0201 (10)0.0235 (11)0.0226 (10)0.0039 (8)0.0058 (8)0.0017 (8)
C19'0.0285 (12)0.0235 (11)0.0342 (12)0.0032 (9)0.0086 (10)0.0053 (9)
C20'0.0305 (12)0.0259 (12)0.0389 (14)0.0104 (10)0.0138 (10)0.0009 (10)
C21'0.0239 (11)0.0348 (13)0.0276 (12)0.0092 (9)0.0134 (9)0.0103 (10)
C22'0.0234 (11)0.0358 (13)0.0236 (11)0.0022 (9)0.0055 (9)0.0021 (9)
C23'0.0248 (11)0.0257 (11)0.0239 (11)0.0057 (9)0.0051 (9)0.0021 (8)
C24'0.0281 (13)0.0547 (17)0.0358 (14)0.0165 (12)0.0121 (11)0.0109 (12)
Geometric parameters (Å, º) top
S1—O41.4332 (17)S1'—O4'1.4337 (17)
S1—O51.4337 (17)S1'—O5'1.4378 (17)
S1—N21.6368 (19)S1'—N2'1.6263 (18)
S1—C181.758 (2)S1'—C18'1.758 (2)
O1—C11.240 (3)O1'—C1'1.231 (3)
O2—C81.407 (3)O2'—C8'1.404 (3)
O2—H20.9160O2'—H2'0.9026
O3—C101.449 (2)O3'—C13'1.452 (2)
O3—C131.456 (2)O3'—C10'1.453 (3)
N1—C11.356 (3)N1'—C1'1.363 (3)
N1—C91.452 (3)N1'—C9'1.449 (3)
N1—C81.477 (3)N1'—C8'1.466 (3)
N2—C171.481 (3)N2'—C17'1.480 (3)
N2—C141.487 (3)N2'—C14'1.488 (3)
C1—C21.474 (3)C1'—C2'1.488 (4)
C2—C71.387 (3)C2'—C7'1.382 (3)
C2—C31.390 (3)C2'—C3'1.389 (3)
C3—C41.394 (3)C3'—C4'1.385 (4)
C3—H30.9500C3'—H3'0.9500
C4—C51.391 (4)C4'—C5'1.381 (4)
C4—H40.9500C4'—H4'0.9500
C5—C61.393 (4)C5'—C6'1.396 (4)
C5—H50.9500C5'—H5'0.9500
C6—C71.383 (3)C6'—C7'1.379 (4)
C6—H60.9500C6'—H6'0.9500
C7—C81.511 (3)C7'—C8'1.511 (4)
C8—H81.0000C8'—H8'1.0000
C9—C101.511 (3)C9'—C10'1.510 (3)
C9—H9A0.9900C9'—H9'A0.9900
C9—H9B0.9900C9'—H9'B0.9900
C10—C111.516 (3)C10'—C11'1.526 (3)
C10—C151.563 (3)C10'—C15'1.557 (3)
C11—C121.325 (3)C11'—C12'1.323 (3)
C11—H110.9500C11'—H11'0.9500
C12—C131.502 (3)C12'—C13'1.512 (3)
C12—H120.9500C12'—H12'0.9500
C13—C141.509 (3)C13'—C14'1.507 (3)
C13—C161.565 (3)C13'—C16'1.563 (3)
C14—H14A0.9900C14'—H14C0.9900
C14—H14B0.9900C14'—H14D0.9900
C15—C161.546 (3)C15'—C16'1.540 (3)
C15—H15A0.9900C15'—H15C0.9900
C15—H15B0.9900C15'—H15D0.9900
C16—C171.525 (3)C16'—C17'1.529 (3)
C16—H161.0000C16'—H16'1.0000
C17—H17A0.9900C17'—H17C0.9900
C17—H17B0.9900C17'—H17D0.9900
C18—C191.388 (3)C18'—C19'1.389 (3)
C18—C231.391 (3)C18'—C23'1.392 (3)
C19—C201.387 (3)C19'—C20'1.383 (3)
C19—H190.9500C19'—H19'0.9500
C20—C211.392 (3)C20'—C21'1.391 (4)
C20—H200.9500C20'—H20'0.9500
C21—C221.389 (3)C21'—C22'1.388 (3)
C21—C241.504 (3)C21'—C24'1.515 (3)
C22—C231.387 (3)C22'—C23'1.389 (3)
C22—H220.9500C22'—H22'0.9500
C23—H230.9500C23'—H23'0.9500
C24—H24A0.9800C24'—H24D0.9800
C24—H24B0.9800C24'—H24E0.9800
C24—H24C0.9800C24'—H24F0.9800
O4—S1—O5120.45 (10)O4'—S1'—O5'120.20 (10)
O4—S1—N2106.71 (10)O4'—S1'—N2'105.39 (10)
O5—S1—N2105.53 (10)O5'—S1'—N2'106.73 (10)
O4—S1—C18107.32 (11)O4'—S1'—C18'108.51 (10)
O5—S1—C18109.11 (10)O5'—S1'—C18'107.32 (10)
N2—S1—C18107.01 (10)N2'—S1'—C18'108.20 (10)
C8—O2—H2108.3C8'—O2'—H2'108.3
C10—O3—C1395.72 (15)C13'—O3'—C10'95.37 (15)
C1—N1—C9123.97 (18)C1'—N1'—C9'123.9 (2)
C1—N1—C8113.04 (18)C1'—N1'—C8'113.8 (2)
C9—N1—C8122.98 (17)C9'—N1'—C8'122.0 (2)
C17—N2—C14109.96 (16)C17'—N2'—C14'110.14 (16)
C17—N2—S1119.69 (15)C17'—N2'—S1'121.96 (14)
C14—N2—S1118.46 (14)C14'—N2'—S1'119.12 (14)
O1—C1—N1125.2 (2)O1'—C1'—N1'125.3 (2)
O1—C1—C2127.7 (2)O1'—C1'—C2'128.7 (2)
N1—C1—C2107.04 (18)N1'—C1'—C2'106.0 (2)
C7—C2—C3121.9 (2)C7'—C2'—C3'121.8 (2)
C7—C2—C1108.71 (19)C7'—C2'—C1'108.7 (2)
C3—C2—C1129.4 (2)C3'—C2'—C1'129.6 (2)
C2—C3—C4117.1 (2)C4'—C3'—C2'117.2 (3)
C2—C3—H3121.5C4'—C3'—H3'121.4
C4—C3—H3121.5C2'—C3'—H3'121.4
C5—C4—C3120.9 (2)C5'—C4'—C3'121.3 (3)
C5—C4—H4119.5C5'—C4'—H4'119.3
C3—C4—H4119.5C3'—C4'—H4'119.3
C4—C5—C6121.5 (2)C4'—C5'—C6'121.0 (3)
C4—C5—H5119.2C4'—C5'—H5'119.5
C6—C5—H5119.2C6'—C5'—H5'119.5
C7—C6—C5117.5 (2)C7'—C6'—C5'117.8 (3)
C7—C6—H6121.3C7'—C6'—H6'121.1
C5—C6—H6121.3C5'—C6'—H6'121.1
C6—C7—C2121.1 (2)C6'—C7'—C2'120.8 (3)
C6—C7—C8129.4 (2)C6'—C7'—C8'129.4 (2)
C2—C7—C8109.48 (19)C2'—C7'—C8'109.8 (2)
O2—C8—N1112.16 (17)O2'—C8'—N1'112.0 (2)
O2—C8—C7114.70 (18)O2'—C8'—C7'114.4 (2)
N1—C8—C7101.68 (17)N1'—C8'—C7'101.48 (19)
O2—C8—H8109.3O2'—C8'—H8'109.6
N1—C8—H8109.3N1'—C8'—H8'109.6
C7—C8—H8109.3C7'—C8'—H8'109.6
N1—C9—C10113.26 (17)N1'—C9'—C10'113.6 (2)
N1—C9—H9A108.9N1'—C9'—H9'A108.9
C10—C9—H9A108.9C10'—C9'—H9'A108.9
N1—C9—H9B108.9N1'—C9'—H9'B108.9
C10—C9—H9B108.9C10'—C9'—H9'B108.9
H9A—C9—H9B107.7H9'A—C9'—H9'B107.7
O3—C10—C9111.77 (17)O3'—C10'—C9'112.69 (18)
O3—C10—C11101.29 (16)O3'—C10'—C11'100.79 (17)
C9—C10—C11118.54 (18)C9'—C10'—C11'117.59 (19)
O3—C10—C15100.25 (15)O3'—C10'—C15'100.44 (16)
C9—C10—C15115.28 (18)C9'—C10'—C15'114.75 (19)
C11—C10—C15107.33 (18)C11'—C10'—C15'108.40 (18)
C12—C11—C10106.5 (2)C12'—C11'—C10'106.32 (19)
C12—C11—H11126.7C12'—C11'—H11'126.8
C10—C11—H11126.7C10'—C11'—H11'126.8
C11—C12—C13105.4 (2)C11'—C12'—C13'105.22 (19)
C11—C12—H12127.3C11'—C12'—H12'127.4
C13—C12—H12127.3C13'—C12'—H12'127.4
O3—C13—C12102.11 (16)O3'—C13'—C14'113.05 (18)
O3—C13—C14111.92 (18)O3'—C13'—C12'101.73 (16)
C12—C13—C14125.30 (19)C14'—C13'—C12'124.03 (19)
O3—C13—C16100.04 (16)O3'—C13'—C16'99.92 (16)
C12—C13—C16107.30 (18)C14'—C13'—C16'106.76 (17)
C14—C13—C16107.29 (17)C12'—C13'—C16'108.74 (17)
N2—C14—C13103.49 (17)N2'—C14'—C13'103.46 (17)
N2—C14—H14A111.1N2'—C14'—H14C111.1
C13—C14—H14A111.1C13'—C14'—H14C111.1
N2—C14—H14B111.1N2'—C14'—H14D111.1
C13—C14—H14B111.1C13'—C14'—H14D111.1
H14A—C14—H14B109.0H14C—C14'—H14D109.0
C16—C15—C10100.84 (17)C16'—C15'—C10'100.90 (17)
C16—C15—H15A111.6C16'—C15'—H15C111.6
C10—C15—H15A111.6C10'—C15'—H15C111.6
C16—C15—H15B111.6C16'—C15'—H15D111.6
C10—C15—H15B111.6C10'—C15'—H15D111.6
H15A—C15—H15B109.4H15C—C15'—H15D109.4
C17—C16—C15119.1 (2)C17'—C16'—C15'118.39 (18)
C17—C16—C13101.38 (17)C17'—C16'—C13'101.21 (16)
C15—C16—C13101.55 (17)C15'—C16'—C13'101.62 (17)
C17—C16—H16111.2C17'—C16'—H16'111.5
C15—C16—H16111.2C15'—C16'—H16'111.5
C13—C16—H16111.2C13'—C16'—H16'111.5
N2—C17—C16101.58 (18)N2'—C17'—C16'100.82 (16)
N2—C17—H17A111.5N2'—C17'—H17C111.6
C16—C17—H17A111.5C16'—C17'—H17C111.6
N2—C17—H17B111.5N2'—C17'—H17D111.6
C16—C17—H17B111.5C16'—C17'—H17D111.6
H17A—C17—H17B109.3H17C—C17'—H17D109.4
C19—C18—C23120.8 (2)C19'—C18'—C23'120.5 (2)
C19—C18—S1120.11 (18)C19'—C18'—S1'119.70 (17)
C23—C18—S1119.01 (17)C23'—C18'—S1'119.76 (17)
C20—C19—C18119.2 (2)C20'—C19'—C18'119.4 (2)
C20—C19—H19120.4C20'—C19'—H19'120.3
C18—C19—H19120.4C18'—C19'—H19'120.3
C19—C20—C21121.0 (2)C19'—C20'—C21'120.9 (2)
C19—C20—H20119.5C19'—C20'—H20'119.5
C21—C20—H20119.5C21'—C20'—H20'119.5
C22—C21—C20118.8 (2)C22'—C21'—C20'119.0 (2)
C22—C21—C24119.4 (2)C22'—C21'—C24'120.3 (2)
C20—C21—C24121.7 (2)C20'—C21'—C24'120.7 (2)
C23—C22—C21121.2 (2)C21'—C22'—C23'120.9 (2)
C23—C22—H22119.4C21'—C22'—H22'119.6
C21—C22—H22119.4C23'—C22'—H22'119.6
C22—C23—C18119.0 (2)C22'—C23'—C18'119.2 (2)
C22—C23—H23120.5C22'—C23'—H23'120.4
C18—C23—H23120.5C18'—C23'—H23'120.4
C21—C24—H24A109.5C21'—C24'—H24D109.5
C21—C24—H24B109.5C21'—C24'—H24E109.5
H24A—C24—H24B109.5H24D—C24'—H24E109.5
C21—C24—H24C109.5C21'—C24'—H24F109.5
H24A—C24—H24C109.5H24D—C24'—H24F109.5
H24B—C24—H24C109.5H24E—C24'—H24F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O31.002.633.206 (3)117
C12—H12···O5i0.952.473.333 (3)151
C14—H14A···O5ii0.992.623.506 (3)149
C23—H23···O5ii0.952.413.195 (3)139
C14—H14D···O40.992.583.482 (3)151
C15—H15C···O2iii0.992.623.585 (3)165
C16—H16···O4iv1.002.533.422 (3)149
C19—H19···O40.952.343.078 (3)134
O2—H2···O1v0.921.852.756 (2)172
O2—H2···O1vi0.901.952.840 (3)171
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x, y+1, z; (iv) x+2, y+2, z+1; (v) x+1, y, z+2; (vi) x+2, y+1, z+2.
Summary of short interatomic contacts (Å) in the title compound 3 top
ContactDistanceSymmetry operation
O1···H3'2.27-1 + x, y, z
H2···O11.851 - x, -y, 2 - z
O4···H19'2.34x, y, z
H8···H17C2.41x, -1 + y, z
H12···O52.471 - x, 1 - y, 1 - z
C20···O52.4112 - x, 1 - y, 1 - z
H11···H24B2.43-1 + x, y, z
H15B···H52.42x, 1 + y, z
H22···H14C2.232 - x, 1 - y, 1 - z
H2'···O1'1.952 - x, 1 - y, 2 - z
H24F···O4'2.401 - x, 2 - y, 1 - z
H16'···O4'2.532 - x, 2 - y, 1 - z
H16'···H24F2.411 + x, y, z
Percentage contributions of interatomic contacts to the Hirshfeld surfaces for molecules A and B of the title compound 3 top
Molecule AMolecule B
ContactPercentage contributionPercentage contribution
H···H55.853.5
O···H/H···O24.526.3
C···H/H···C12.615.7
C···C3.32.6
C···O/O···C2.60.4
N···H/H···N0.81.2
C···N/N···C0.50.1
N···O/O···N0.1
S···H/H···S0.1
S···H/H···S0.1
 

Funding information

The authors are grateful to the Russian Foundation for Basic Research (RFBR) (award No. 19–53-04002, Bel_mol_a) and the Belarusian Republican Foundation for Fundamental Research (BRFFR) (award No. X19PM-003) for financial support of this research.

References

First citationAfkhami, F. A., Khandar, A. A., Mahmoudi, G., Maniukiewicz, W., Gurbanov, A. V., Zubkov, F. I., Şahin, O., Yesilel, O. Z. & Frontera, A. (2017). CrystEngComm, 19, 1389–1399.  Web of Science CSD CrossRef CAS Google Scholar
First citationAnderson, R. J., Groundwater, P. W., Todd, A. & Worsley, A. J. (2012). Antibacterial Agents, ch. 3.1 Sulfonamide Antibacterial Agents, pp. 103–126. Chichester: John Wiley & Sons, Ltd.  Google Scholar
First citationAsadov, Z. H., Rahimov, R. A., Ahmadova, G. A., Mammadova, K. A. & Gurbanov, A. V. (2016). J. Surfact. Deterg. 19, 145–153.  Web of Science CrossRef CAS Google Scholar
First citationBreytenbach, J. C., van Dyk, S., van den Heever, I., Allin, S. M., Hodkinson, C. C., Northfield, C. J. & Page, M. I. (2000). Bioorg. Med. Chem. Lett. 10, 1629–1631.  CrossRef PubMed CAS Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDemircan, A., Kandemir, M. K., Colak, M. & Karaarslan, M. (2016). Synthesis, 48, 2873–2880.  CrossRef CAS Google Scholar
First citationDemircan, A., Temel, E., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1628–o1629.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). J. Organomet. Chem. 834, 22–27.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarmakar, A., Rúbio, G. M. D. M., Paul, A., Guedes da Silva, M. F. C., Mahmudov, K. T., Guseinov, F. I., Carabineiro, S. A. C. & Pombeiro, A. J. L. (2017). Dalton Trans. 46, 8649–8657.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Haukka, M., Luzyanin, K. V. & Pombeiro, A. J. L. (2011a). Inorg. Chim. Acta, 374, 175–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationKopylovich, M. N., Mahmudov, K. T., Mizar, A. & Pombeiro, A. J. L. (2011b). Chem. Commun. 47, 7248–7250.  Web of Science CrossRef CAS Google Scholar
First citationKoşar, B., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o994–o995.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoşar, B., Karaarslan, M., Demir, I. & Büyükgüngör, O. (2007). Acta Cryst. E63, o3323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A Chem. 426, 526–533.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). Mol. Catal. 428, 17–23.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaharramov, A. M., Shikhaliyev, N. Q., Suleymanova, G. T., Gurbanov, A. V., Babayeva, G. V., Mammadova, G. Z., Zubkov, F. I., Nenajdenko, V. G., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigments, 159, 135–141.  Web of Science CrossRef CAS Google Scholar
First citationMahmoudi, G., Dey, L., Chowdhury, H., Bauzá, A., Ghosh, B. K., Kirillov, A. M., Seth, S. K., Gurbanov, A. V. & Frontera, A. (2017). Inorg. Chim. Acta, 461, 192–205.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, G., Khandar, A. A., Afkhami, F. A., Miroslaw, B., Gurbanov, A. V., Zubkov, F. I., Kennedy, A., Franconetti, A. & Frontera, A. (2019). CrystEngComm, 21, 108–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmudov, K. T., Gurbanov, A. V., Aliyeva, V. A., Resnati, G. & Pombeiro, A. J. L. (2020). Coord. Chem. Rev. 418, 213381.  Web of Science CrossRef Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Kopylovich, M. N. & Pombeiro, A. J. L. (2010). Anal. Lett. 43, 2923–2938.  Web of Science CrossRef CAS Google Scholar
First citationMitchell, L. A., Stanley, J. M., Espinosa De Hoyos, L. & Holliday, B. J. (2013). Acta Cryst. C69, 638–641.  CSD CrossRef IUCr Journals Google Scholar
First citationMizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.  Web of Science CSD CrossRef Google Scholar
First citationNadirova, M. A., Khanova, A. V., Zubkov, F. I., Mertsalov, D. F., Kolesnik, I. A., Petkevich, S. K., Potkin, V. I., Shetnev, A. A., Presnukhina, S. I., Sinelshchikova, A. A., Grigoriev, M. S. & Zaytsev, V. P. (2020). Tetrahedron. In the press.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStiefl, N. & Baumann, K. (2003). J. Med. Chem. 46, 1390–1407.  CrossRef PubMed CAS Google Scholar
First citationSutradhar, M., Martins, L. M. D. R. S., Guedes da Silva, M. F. C., Mahmudov, K. T., Liu, C.-M. & Pombeiro, A. J. L. (2015). Eur. J. Inorg. Chem. pp. 3959–3969.  Web of Science CSD CrossRef Google Scholar
First citationTemel, E., Demircan, A., Arslan, H. & Büyükgüngör, O. (2011). Acta Cryst. E67, o1304–o1305.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationTemel, E., Demircan, A., Beyazova, G. & Büyükgüngör, O. (2012). Acta Cryst. E68, o1102–o1103.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationTemel, E., Demircan, A., Kandemir, M. K., Çolak, M. & Büyükgüngör, O. (2013). Acta Cryst. E69, o1551–o1552.  CSD CrossRef IUCr Journals Google Scholar
First citationTietze, L. F. & Beifuss, U. (1993). Angew. Chem. Int. Ed. Engl. 32, 131–163.  CrossRef Web of Science Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar
First citationZubkov, F. I., Nikitina, E. V., Galeev, T. R., Zaytsev, V. P., Khrustalev, V. N., Novikov, R. A., Orlova, D. N. & Varlamov, A. V. (2014). Tetrahedron, 70, 1659–1690.  Web of Science CSD CrossRef CAS Google Scholar
First citationZubkov, F. I., Nikitina, E. V. & Varlamov, A. V. (2005). Russ. Chem. Rev. 74, 639–669.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds