research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Reduced 3,4′-bi­pyrazoles carrying thio­phene and thia­zole substituents: structures of two intermediates and two products

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore-574 199, India, cInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287 Darmstadt, Germany, and dSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK
*Correspondence e-mail: yathirajan@hotmail.com

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 5 February 2021; accepted 28 February 2021; online 5 March 2021)

Cyclo­addition reactions between 3-(5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-1-(thio­phen-2-yl)prop-2-en-1-ones and thio­semicarbazide leads to the formation of reduced 3,4′-bi­pyrazole-2-carbo­thio­amides. Further cyclo­addition of these inter­mediates with either diethyl acetyl­enedi­carboxyl­ate or 4-bromo­phenacyl bromide leads to reduced 3,4′-bi­pyrazoles carrying oxo­thia­zole or thia­zole substituents, respectively. The structures of two representative inter­mediates and two representative products established unambiguously the regiochemistry of the cyclo­addition reactions. The mol­ecules of 3′-methyl-5′-(2-methyl­phen­oxy)-1′-phenyl-5-(thio­phen-2-yl)-3,4-di­hydro-1′H,2H-3,4′-bi­pyra­zole-2-carbo­thio­amide, C25H23N5OS2 (Ia), are linked by N—H⋯N hydrogen bonds to form simple C(8) chains. The analogous compound 5′-(2,4-di­chloro­phen­oxy)-3′-methyl-1′-phenyl-5-(thio­phen-2-yl)-3,4-di­hydro-1′H,2H-3,4′-bi­pyra­zole-2-carbo­thio­amide hemihydrate crystallizes as a hemihydrate, C24H19Cl2N5OS2·0.5H2O (Ib), and the independent components are linked into a chain of spiro-fused R44(20) rings by a combination of O—H⋯N and N—H⋯O hydrogen bonds. In the structure of ethyl (Z)-2-{2-[3′-methyl-1′-phenyl-5-(thio­phen-2-yl)-5′-(2-methyl­phen­oxy)-3,4-di­hydro-1′H,2H-3,4′-bi­pyrazole-2-yl]-4-oxo-4,5-di­hydro­thia­zol-5-yl­idene}acetate, C31H27N5O4S2 (II), inversion-related pairs of mol­ecules are linked by paired C—H⋯π(arene) hydrogen bonds to form cyclic centrosymmetric dimers, but there are no direction-specific inter­molecular inter­actions in 4-(4-bromo­phen­yl)-2-[5′-(2,4-di­chloro­phen­oxy)-3′-methyl-1′-phenyl-5-(thio­phen-2-yl)-3,4-di­hydro-1′H,2H-3,4′-bi­pyrazole-2-yl]-4-thia­zole, C32H22BrCl2N5OS2 (III). Comparisons are made with the structures of some related compounds.

1. Chemical context

Heterocyclic compounds containing the pyrazole unit have been found to exhibit a wide range of biological activities, including anti­bacterial and anti­fungal activity (Rai et al., 2008[Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.]; Isloor et al., 2009[Isloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784-3787.]; Vijesh et al., 2013[Vijesh, A. M., Isloor, A. M., Shetty, P., Sundershan, S. & Fun, H.-K. (2013). Eur. J. Med. Chem. 62, 410-415.]) and analgesic and anti-inflammatory activity (Girisha et al., 2010[Girisha, K. S., Kalluraya, B., Narayana, V. & Padmashree (2010). Eur. J. Med. Chem. 45, 4640-4644.]; Isloor et al., 2010[Isloor, A. M., Kalluraya, B. & Pai, S. K. (2010). Eur. J. Med. Chem. 45, 825-830.]; Vijesh et al., 2013[Vijesh, A. M., Isloor, A. M., Shetty, P., Sundershan, S. & Fun, H.-K. (2013). Eur. J. Med. Chem. 62, 410-415.]). It has also been found that the incorporation of a thia­zole or thia­zolone substituent often leads to enhanced activity (Sulthana et al., 2015[Sulthana, S. S., Antony, S. A., Balachandran, C. & Shafi, S. S. (2015). Bioorg. Med. Chem. Lett. 25, 2753-2757.]; Havrylyuk et al., 2016[Havrylyuk, D., Roman, O. & Lesyk, R. (2016). Eur. J. Med. Chem. 113, 145-166.]), as does the incorporation of a thio­phene substituent (Rostom et al., 2009[Rostom, S. A. F., El-Ashmawy, I. M., Abd El Razik, H. A., Badr, M. H. & Ashour, H. M. A. (2009). Bioorg. Med. Chem. 17, 882-895.]; Bondock et al., 2010[Bondock, S., Fadaly, W. & Metwally, M. A. (2010). Eur. J. Med. Chem. 45, 3692-3701.]). In this connection, a procedure has recently been developed (Manju et al., 2019[Manju, N., Kalluraya, B., Asma, Madan Kumar, S., Revanasiddappa, B. & Chandra (2019). J. Med. Chem. Sci. 2, 101-109.]) for the synthesis of reduced 3,4′-bi­pyrazoles incorporating other heterocyclic units such as thia­zole, thia­zoline and thio­phene as integral components. In brief, condensation of a 5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde with 2-acetyl­thio­phene gives the corresponding chalcone (Shaibah et al., 2020[Shaibah, M. A. E., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 48-52.]); chalcones of this type can undergo cyclo­condensation reactions with semicabazide to provide the inter­mediate carbo­thio­amides of type (I) (see Scheme). Further condensation of type (I) inter­mediates with diethyl acetyl­enedi­carboxyl­ate or with 4-bromo­phenacyl bromide gave the oxo­thia­zolyl­idene ester (II)[link] or the thia­zole (III)[link], respectively (see Scheme). Although the NMR spectra of the inter­mediates (I) and the products (II)[link] and (III)[link] contained all of the expected signals, it was not possible to establish uniquely from these data the regiochemistry of the cyclo­addition reactions leading to their formation, and accordingly we have determined the structures of two representative inter­mediates (Ia)[link] and (Ib)[link] (Figs. 1[link] and 2[link]) and of two representative products (II)[link] (Fig. 3[link]) and (III)[link] (Fig. 4[link]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound (Ia)[link] showing the atom-labelling scheme and the disorder in the thio­phene unit, where the major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The structure of the independent components in compound (Ib)[link] showing the atom-labelling scheme and the disorder in the thio­phene unit, where the major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines. The water mol­ecule lies across a twofold rotation axis and the displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of compound (II)[link] showing the atom-labelling scheme and the disorder in the thio­phene unit, where the major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4]
Figure 4
The mol­ecular structure of compound (III)[link] showing the atom-labelling scheme and the disorder in the thio­phene unit, where the major disorder component is drawn using full lines and the minor disorder component is drawn using broken lines. Displacement ellipsoids are drawn at the 30% probability level.

2. Structural commentary

Although compounds (Ia)[link], (Ib)[link], (II)[link] and (III)[link] were all crystallized under identical conditions, compound (Ib)[link] crystallized as a hemihydrate, in which the water mol­ecules lies across a twofold rotation axis, while the other three compounds all crystallized in solvent-free form. In each compound, the thio­phene substituent is disordered over two sets of atomic sites (Section 6), whose relationship approximately corres­ponds to a rotation of 180° about the bond C45—C452 (Figs. 1[link]–4[link][link][link]). That the cyclo­condensation reactions between the chalcone precursors and thio­semicarbazide lead to the formation of new pyrazole rings indicates that it is the two N atoms of the hydrazine unit in thio­semicarbazide that participate in this reaction step. If the participants had been the two N atoms either side of the thio­carbonyl unit, then the products would have been the regioisomers of type (A), containing a newly formed reduced pyrimidine ring in place of the pyrazole ring actually observed (Fig. 5[link]). Similarly, in the cyclo­condensation reactions between the carbo­thio­amides (I) and either diethyl acetyl­enedi­carboxyl­ate or 4-bromo­phenacyl bromide to form (II)[link] and (III)[link], respectively, alternative regiochemistry is possible in each case, to yield products of types (B) and (C), respectively (Fig. 5[link]). The X-ray analyses reported here have confirmed that the single products formed in each of these cyclo­condensation reactions (Manju et al., 2019[Manju, N., Kalluraya, B., Asma, Madan Kumar, S., Revanasiddappa, B. & Chandra (2019). J. Med. Chem. Sci. 2, 101-109.]) have structures of types (I)–(III), as opposed to the possible alternative isomers (A)–(C).

[Figure 5]
Figure 5
Possible regioisomers (A)–(C) of compounds (I)–(III), respectively.

3. Supra­molecular features

The supra­molecular assembly of compound (Ia)[link] is extremely simple: a single N—H⋯N hydrogen bond (Table 1[link]) links mol­ecules that are related by translation into a C(8) (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]; Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain running parallel to the [100] direction (Fig. 6[link]), but there are no direction-specific inter­actions between adjacent chains.

Table 1
Hydrogen bonds and short inter- and intra­molecular contacts (Å, °)

Cg1 represents the centroid of the C11–C16 ring.

Compound D—H⋯A D—H H⋯A DA D—H⋯A
(Ia) N423—H42A⋯N2i 0.92 (3) 2.28 (3) 3.111 (3) 150 (2)
  N423—H42A⋯N41 0.92 (3) 2.27 (3) 2.628 (4) 103 (2)
(Ib) O61—H61⋯N2 0.88 (3) 2.03 (3) 2.900 (2) 176 (2)
  N423—H42A⋯O61ii 0.84 (3) 2.33 (3) 3.154 (3) 167 (3)
  N423—H42B⋯N41 0.85 (3) 2.27 (3) 2.648 (3) 107 (2)
(II) C13—H13⋯O424iii 0.93 2.49 3.200 (7) 133
  C54—H54⋯Cg1iv 0.93 2.91 3.714 (12) 146
  C553—H553⋯Cg1v 0.93 2.92 3.76 (5) 151
Symmetry codes: (i) 1 + x, y, z; (ii) 1 − x, 1 − y, 1 − z; (iii) x, −1 + y, z; (iv) 2 − x, −y, 1 − z; (v) −1 + x, y, z.
[Figure 6]
Figure 6
Part of the crystal structure of compound (Ia)[link] showing the formation of a hydrogen-bonded chain running parallel to the [100] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms which are bonded to C atoms have been omitted.

Compound (Ib)[link] is a hemihydrate in which the water component lies across a twofold rotation axis, and the supra­molecular aggregation is more complex than that in (Ia)[link]. There is an O—H⋯N hydrogen bond within the selected asymmetric unit (Table 1[link]), and pairs of inversion-related bimolecular units of this type are linked by paired N—H⋯O hydrogen bonds to form an R44(20) ring. Propagation of this motif by the action of the twofold rotation axes generates a chain of spiro-fused R44(20) rings running parallel to the [001] direction, in which the centrosymmetric rings are centred at (0.5, 0.5, 0.5n) where n represents an integer (Fig. 7[link]). Within this chain the water mol­ecules, which act as double donors in O—H⋯N hydrogen bonds and double acceptors in N—H⋯O hydrogen bonds, are the points of fusion between adjacent rings (Fig. 7[link]).

[Figure 7]
Figure 7
Part of the crystal structure of compound (Ib)[link] showing the formation of a hydrogen-bonded chain of spiro-fused rings running parallel to the [001] direction. Hydrogen bonds are drawn as dashed lines and, for the sake of clarity, the H atoms which are bonded to C atoms have been omitted.

There are three short inter­molecular contacts in the structure of compound (II)[link]. That involving atom C13 (Table 1[link]) has a very small D—H⋯A angle, and so is unlikely to be structurally significant (Wood et al., 2009[Wood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563-1571.]), while that involving atom C553 applies only to the minor disorder component, and is absent for the majority of the mol­ecules. The only possible significant inter­action is thus that involving atom C54, which links inversion-related pairs of mol­ecules to form a cyclic centrosymmetric motif (Fig. 8[link]). There are no significant hydrogen bonds of any type in the structure of compound (III)[link].

[Figure 8]
Figure 8
Part of the crystal structure of compound (II)[link] showing the formation of a cyclic centrosymmetric dimer containing C—H⋯π(arene) hydrogen bonds. For the sake of clarity, the minor disorder components, and the H atoms not involved in the motif shown have been omitted. The atom marked with an asterisk (*) is at the symmetry position (2 − x, −y, 1 − z).

4. Database survey

Structures have been reported recently for a number of compounds related to those reported here, including precursors and inter­mediates in the synthetic pathways to compounds (I)–(III). The structures of five examples of 5-ar­yloxy-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehydes have been reported (Shahani et al., 2011[Shahani, T., Fun, H.-K., Shetty, S. & Kalluraya, B. (2011). Acta Cryst. E67, o2646.]; Vinutha et al., 2014[Vinutha, N., Kumar, S. M., Shobhitha, S., Kalluraya, B., Lokanath, N. K. & Revannasiddaiah, D. (2014). Acta Cryst. E70, o560.]; Glidewell et al., 2019[Glidewell, C., Kalluraya, B., Rathore, R. S. & Yathirajan, H. S. (2019). CSD Communication (deposition No. 1897876). CCDC, Cambridge, England.]; Kiran Kumar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2019). Acta Cryst. C75, 768-776.]), as have those (Shaibah et al., 2020[Shaibah, M. A. E., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 48-52.]) of two isostructural chalcones derived from two such carbaldehydes by condensation reactions with 2-acetyl­thio­phene, in each of which the thio­phene unit shows the same type of disorder as observed here in compounds (Ia)[link], (Ib)[link], (II)[link] and (III)[link]. Structures have also been reported (Cuartas et al., 2017[Cuartas, V., Insuasty, B., Cobo, J. & Glidewell, C. (2017). Acta Cryst. C73, 784-790.]; Kiran Kumar et al., 2019[Kiran Kumar, H., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2019). Acta Cryst. C75, 768-776.]) for several reduced 3,4′-bi­pyrazoles formed by cyclo­condensation reactions between chalcones and hydrazine followed by N-acetyl­ation. However, the only structure reported to date of a product in which the 3,4′-bi­pyrazole unit is embedded within a group of other cyclic substituents, as in (I)–(III) is that for the methyl ester analogue of (II)[link] (Manju et al., 2019[Manju, N., Kalluraya, B., Asma, Madan Kumar, S., Revanasiddappa, B. & Chandra (2019). J. Med. Chem. Sci. 2, 101-109.]). The original report on this compound provided no crystallographic information other than a mol­ecular structure plot. However, the deposited CIF (CCDC deposition No. 1588961) shows that the reflection data have been subjected to the SQUEEZE procedure (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]), although this is not mentioned in the original report. The CIF also shows two sites for the O atom of the ar­yloxy unit, ca 1.28 Å apart with occupancies of 0.843 (6) and 0.157 (6) and involving some unexpected geometrical features, although all other atoms are reported as being fully ordered. Hence this structure is unlikely to be entirely correct.

5. Synthesis and crystallization

Samples of compounds (Ia)[link], (Ib)[link], (II)[link] and (III)[link] were prepared using the methods previously reported (Manju et al., 2019[Manju, N., Kalluraya, B., Asma, Madan Kumar, S., Revanasiddappa, B. & Chandra (2019). J. Med. Chem. Sci. 2, 101-109.]). Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in the presence of air, of solutions in a mixture of ethanol and N,N-di­methyl­formamide (initial composition 3:1, v/v).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Several bad outlier reflections were omitted from the refinements. i.e. for (Ia)[link] ([\overline{4}],[\overline{1}],18); for (Ic) (1,1,1), (14,0,0), ([\overline{15}],0,6), ([\overline{14}],1,19), ([\overline{8}],9,7) and ([\overline{11}],3,2); and for (II)[link] ([\overline{3}],[\overline{10}],2) and (0,5,13). All H atoms, apart from those in the minor disorder components, were located in difference maps. The H atoms bonded to C atoms were then treated as riding atoms in geometrically idealized positions with C—H distances of 0.93 Å (alkenyl, aromatic and thien­yl), 0.96 Å (CH3), 0.97 Å (CH2) or 0.98 Å (aliphatic C—H), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms bonded to C atoms. For the H atoms bonded to N or O atoms, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O), giving the N—H and O—H distances shown in Table 1[link]. For the minor disorder components, the bonded distances and the 1,3 non-bonded distances were restrained to be the same as the corresponding distances in the major disorder components, subject to s.u. values of 0.01 and 0.02 Å, respectively. In addition, the anisotropic displace­ment parameters associated with pairs of atomic sites occupying essentially the same regions of physical space were constrained to be equal. Subject to these conditions, the occupancies, in the crystals selected for data collection, of the disordered thienyl units refined to 0.866 (3) and 0.134 (3) in (Ia)[link], 0.951 (3) and 0.049 (3) in (Ib)[link], 0.768 (6) and 0.232 (6) in (II)[link], and 0.947 (4) and 0.053 (4) in (III)[link].

Table 2
Experimental details

  (Ia) (Ib) (II) (III)
Crystal data
Chemical formula C25H23N5OS2 2C24H19Cl2N5OS2·H2O C31H27N5O4S2 C32H22BrCl2N5OS2
Mr 473.60 1074.94 597.69 707.47
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P2/c Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 296 296 296 296
a, b, c (Å) 8.6269 (7), 9.8418 (9), 14.900 (1) 15.037 (1), 8.4266 (6), 19.471 (1) 10.783 (2), 11.683 (3), 13.577 (3) 12.3200 (9), 12.5700 (9), 12.7742 (9)
α, β, γ (°) 90.588 (7), 106.162 (8), 101.441 (7) 90, 96.246 (6), 90 93.54 (2), 105.17 (2), 113.20 (2) 117.202 (8), 102.879 (7), 105.727 (7)
V3) 1188.05 (17) 2452.5 (3) 1490.9 (6) 1548.4 (2)
Z 2 2 2 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.25 0.47 0.22 1.67
Crystal size (mm) 0.36 × 0.12 × 0.04 0.36 × 0.12 × 0.12 0.48 × 0.12 × 0.06 0.40 × 0.40 × 0.08
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with Sapphire CCD detector Oxford Diffraction Xcalibur with Sapphire CCD detector Oxford Diffraction Xcalibur with Sapphire CCD detector Oxford Diffraction Xcalibur with Sapphire CCD detector
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.])
Tmin, Tmax 0.949, 0.990 0.922, 0.946 0.849, 0.987 0.779, 0.875
No. of measured, independent and observed [I > 2σ(I)] reflections 8241, 4898, 2524 10494, 5290, 3075 10433, 5561, 1730 10549, 5773, 3158
Rint 0.030 0.033 0.138 0.022
(sin θ/λ)max−1) 0.629 0.651 0.607 0.607
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.112, 1.03 0.046, 0.097, 0.98 0.079, 0.143, 0.88 0.039, 0.095, 0.93
No. of reflections 4898 5290 5561 5773
No. of parameters 319 335 395 402
No. of restraints 10 10 10 10
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.18, −0.18 0.26, −0.30 0.26, −0.24 0.47, −0.34
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015b) and PLATON (Spek, 2020).

3'-Methyl-5'-(2-methylphenoxy)-1'-phenyl-5-(thiophen-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-carbothioamide (Ia) top
Crystal data top
C25H23N5OS2Z = 2
Mr = 473.60F(000) = 496
Triclinic, P1Dx = 1.324 Mg m3
a = 8.6269 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8418 (9) ÅCell parameters from 5098 reflections
c = 14.900 (1) Åθ = 2.9–27.9°
α = 90.588 (7)°µ = 0.25 mm1
β = 106.162 (8)°T = 296 K
γ = 101.441 (7)°Needle, yellow
V = 1188.05 (17) Å30.36 × 0.12 × 0.04 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD detector
diffractometer
4898 independent reflections
Radiation source: Enhance (Mo) X-ray Source2524 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 26.6°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 109
Tmin = 0.949, Tmax = 0.990k = 1012
8241 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.038P)2 + 0.0763P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4898 reflectionsΔρmax = 0.18 e Å3
319 parametersΔρmin = 0.18 e Å3
10 restraints
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., 2009 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.0795 (2)0.6663 (2)0.30851 (14)0.0406 (6)
N20.2192 (2)0.6179 (2)0.23518 (15)0.0451 (6)
C30.1670 (3)0.6245 (3)0.15926 (18)0.0421 (7)
C40.0047 (3)0.6737 (3)0.18050 (17)0.0384 (7)
C50.0541 (3)0.6994 (3)0.27513 (17)0.0384 (7)
C110.0885 (3)0.6605 (3)0.40219 (18)0.0445 (7)
C120.0024 (3)0.7654 (4)0.4690 (2)0.0625 (9)
H120.06870.84260.45320.075*
C130.0067 (4)0.7541 (5)0.5603 (2)0.0816 (12)
H130.05630.82320.60630.098*
C140.1073 (5)0.6421 (5)0.5835 (2)0.0838 (12)
H140.11230.63540.64480.101*
C150.2004 (4)0.5399 (4)0.5157 (3)0.0757 (11)
H150.27040.46480.53100.091*
C160.1904 (3)0.5484 (3)0.4250 (2)0.0565 (8)
H160.25240.47840.37930.068*
C310.2869 (3)0.5831 (3)0.06491 (18)0.0615 (9)
H31A0.27700.65810.02490.092*
H31B0.39700.56160.07070.092*
H31C0.26370.50270.03840.092*
N410.4015 (2)0.7247 (3)0.16104 (14)0.0415 (6)
N420.2565 (2)0.6253 (2)0.14876 (14)0.0393 (6)
C430.1056 (3)0.6826 (3)0.11269 (17)0.0412 (7)
H430.03790.63060.05380.049*
C440.1805 (3)0.8295 (3)0.09133 (18)0.0496 (8)
H44A0.15150.84030.02440.060*
H44B0.14410.89970.12180.060*
C450.3626 (3)0.8383 (3)0.13106 (18)0.0418 (7)
S4210.09307 (9)0.36681 (8)0.14413 (5)0.0559 (3)
C4220.2638 (3)0.4938 (3)0.16724 (17)0.0408 (7)
N4230.4148 (3)0.4679 (3)0.20351 (18)0.0538 (7)
H42A0.506 (3)0.539 (3)0.2180 (18)0.065*
H42B0.426 (3)0.380 (3)0.2139 (19)0.065*
S4510.69257 (13)0.96287 (15)0.18083 (12)0.0769 (5)0.866 (3)
C4520.4879 (3)0.9623 (3)0.13580 (19)0.0515 (8)0.866 (3)
C4530.4652 (18)1.0876 (10)0.1098 (14)0.0769 (15)0.866 (3)
H4530.36151.10670.08300.092*0.866 (3)
C4540.6146 (9)1.1897 (8)0.1270 (14)0.104 (2)0.866 (3)
H4540.62041.28210.11270.125*0.866 (3)
C4550.7456 (8)1.1343 (6)0.1666 (8)0.099 (2)0.866 (3)
H4550.85391.18480.18440.119*0.866 (3)
S5510.456 (3)1.1213 (19)0.104 (3)0.0769 (15)0.134 (3)
C5520.4879 (3)0.9623 (3)0.13580 (19)0.0515 (8)0.134 (3)
C5530.6476 (19)0.960 (4)0.159 (4)0.0769 (5)0.134 (3)
H5530.68770.87920.17400.092*0.134 (3)
C5540.751 (3)1.092 (4)0.158 (6)0.099 (2)0.134 (3)
H5540.86601.10830.17350.119*0.134 (3)
C5550.661 (4)1.189 (4)0.133 (10)0.104 (2)0.134 (3)
H5550.70621.28280.13170.125*0.134 (3)
O510.20838 (18)0.73742 (19)0.33641 (11)0.0434 (5)
C510.2920 (3)0.8764 (3)0.34104 (17)0.0432 (7)
C520.4615 (3)0.8993 (4)0.37778 (18)0.0535 (8)
C530.5473 (5)1.0365 (5)0.3857 (2)0.0833 (13)
H530.66151.05640.41020.100*
C540.4682 (7)1.1423 (5)0.3583 (3)0.1011 (15)
H540.52911.23300.36490.121*
C550.3006 (6)1.1174 (4)0.3213 (3)0.0882 (12)
H550.24781.19010.30180.106*
C560.2104 (4)0.9822 (4)0.3131 (2)0.0626 (9)
H560.09610.96340.28890.075*
C570.5475 (4)0.7841 (4)0.4051 (2)0.0804 (11)
H57A0.66020.82110.43980.121*
H57B0.54410.73100.35000.121*
H57C0.49400.72530.44350.121*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0280 (12)0.0587 (17)0.0333 (13)0.0070 (10)0.0073 (10)0.0036 (11)
N20.0269 (12)0.0642 (18)0.0403 (13)0.0050 (11)0.0063 (11)0.0041 (11)
C30.0276 (14)0.057 (2)0.0382 (16)0.0036 (12)0.0073 (12)0.0040 (13)
C40.0265 (14)0.0520 (19)0.0335 (16)0.0026 (12)0.0072 (12)0.0031 (13)
C50.0237 (14)0.0491 (19)0.0400 (16)0.0047 (12)0.0073 (12)0.0048 (13)
C110.0319 (15)0.070 (2)0.0363 (17)0.0195 (14)0.0112 (13)0.0073 (15)
C120.0516 (19)0.089 (3)0.049 (2)0.0129 (17)0.0179 (16)0.0042 (18)
C130.071 (2)0.129 (4)0.049 (2)0.029 (2)0.0175 (19)0.011 (2)
C140.085 (3)0.143 (4)0.047 (2)0.059 (3)0.031 (2)0.023 (2)
C150.073 (2)0.105 (3)0.069 (2)0.037 (2)0.038 (2)0.039 (2)
C160.0508 (18)0.072 (2)0.053 (2)0.0205 (16)0.0208 (15)0.0169 (16)
C310.0324 (16)0.095 (3)0.0440 (18)0.0081 (15)0.0050 (14)0.0017 (17)
N410.0288 (12)0.0448 (16)0.0471 (14)0.0054 (11)0.0141 (10)0.0002 (12)
N420.0259 (12)0.0429 (16)0.0468 (14)0.0018 (10)0.0132 (10)0.0027 (11)
C430.0313 (15)0.054 (2)0.0342 (15)0.0018 (13)0.0073 (12)0.0049 (13)
C440.0437 (17)0.060 (2)0.0465 (17)0.0070 (14)0.0172 (14)0.0109 (15)
C450.0369 (16)0.049 (2)0.0376 (16)0.0023 (14)0.0154 (13)0.0021 (14)
S4210.0477 (5)0.0563 (6)0.0525 (5)0.0151 (4)0.0143 (4)0.0049 (4)
C4220.0387 (17)0.049 (2)0.0340 (16)0.0004 (14)0.0155 (13)0.0007 (13)
N4230.0410 (15)0.0452 (18)0.0733 (18)0.0051 (13)0.0161 (14)0.0093 (15)
S4510.0458 (7)0.0803 (9)0.0897 (12)0.0215 (6)0.0194 (7)0.0077 (7)
C4520.0507 (18)0.050 (2)0.0530 (19)0.0039 (15)0.0241 (15)0.0042 (15)
C4530.095 (3)0.050 (5)0.095 (3)0.014 (4)0.041 (2)0.022 (5)
C4540.144 (6)0.050 (3)0.120 (5)0.023 (4)0.071 (7)0.013 (3)
C4550.097 (3)0.076 (5)0.106 (4)0.048 (3)0.046 (3)0.013 (5)
S5510.095 (3)0.050 (5)0.095 (3)0.014 (4)0.041 (2)0.022 (5)
C5520.0507 (18)0.050 (2)0.0530 (19)0.0039 (15)0.0241 (15)0.0042 (15)
C5530.0458 (7)0.0803 (9)0.0897 (12)0.0215 (6)0.0194 (7)0.0077 (7)
C5540.097 (3)0.076 (5)0.106 (4)0.048 (3)0.046 (3)0.013 (5)
C5550.144 (6)0.050 (3)0.120 (5)0.023 (4)0.071 (7)0.013 (3)
O510.0265 (10)0.0521 (13)0.0445 (11)0.0054 (8)0.0009 (8)0.0032 (9)
C510.0373 (16)0.050 (2)0.0386 (16)0.0002 (14)0.0115 (13)0.0033 (14)
C520.0380 (17)0.075 (3)0.0406 (17)0.0016 (16)0.0073 (14)0.0046 (16)
C530.064 (2)0.100 (4)0.065 (2)0.028 (2)0.0160 (19)0.015 (2)
C540.129 (4)0.073 (4)0.085 (3)0.032 (3)0.043 (3)0.017 (3)
C550.137 (4)0.054 (3)0.083 (3)0.018 (3)0.048 (3)0.004 (2)
C560.069 (2)0.057 (3)0.066 (2)0.0164 (19)0.0243 (18)0.0042 (18)
C570.0410 (19)0.119 (4)0.072 (2)0.018 (2)0.0016 (17)0.001 (2)
Geometric parameters (Å, º) top
N1—C51.362 (3)S421—C4221.682 (3)
N1—N21.379 (2)C422—N4231.341 (3)
N1—C111.421 (3)N423—H42A0.91 (3)
N2—C31.326 (3)N423—H42B0.90 (3)
C3—C41.407 (3)S451—C4551.690 (6)
C3—C311.491 (3)S451—C4521.704 (3)
C4—C51.360 (3)C452—C4531.331 (8)
C4—C431.499 (3)C453—C4541.426 (13)
C5—O511.366 (3)C453—H4530.9300
C11—C121.376 (4)C454—C4551.343 (7)
C11—C161.376 (4)C454—H4540.9300
C12—C131.389 (4)C455—H4550.9300
C12—H120.9300S551—C5551.690 (12)
C13—C141.372 (5)C553—C5541.428 (16)
C13—H130.9300C553—H5530.9300
C14—C151.372 (5)C554—C5551.344 (12)
C14—H140.9300C554—H5540.9300
C15—C161.382 (4)C555—H5550.9300
C15—H150.9300O51—C511.406 (3)
C16—H160.9300C51—C561.374 (4)
C31—H31A0.9600C51—C521.382 (4)
C31—H31B0.9600C52—C531.392 (5)
C31—H31C0.9600C52—C571.475 (4)
N41—C451.280 (3)C53—C541.361 (5)
N41—N421.392 (3)C53—H530.9300
N42—C4221.336 (3)C54—C551.366 (5)
N42—C431.487 (3)C54—H540.9300
C43—C441.537 (3)C55—C561.387 (4)
C43—H430.9800C55—H550.9300
C44—C451.501 (3)C56—H560.9300
C44—H44A0.9700C57—H57A0.9600
C44—H44B0.9700C57—H57B0.9600
C45—C4521.447 (4)C57—H57C0.9600
C5—N1—N2109.56 (19)N41—C45—C44114.4 (2)
C5—N1—C11130.2 (2)C452—C45—C44124.5 (3)
N2—N1—C11119.8 (2)N42—C422—N423116.4 (2)
C3—N2—N1105.00 (18)N42—C422—S421121.8 (2)
N2—C3—C4112.4 (2)N423—C422—S421121.7 (2)
N2—C3—C31120.2 (2)C422—N423—H42A120.3 (18)
C4—C3—C31127.4 (2)C422—N423—H42B119.2 (18)
C5—C4—C3103.8 (2)H42A—N423—H42B121 (3)
C5—C4—C43129.7 (2)C455—S451—C45291.8 (3)
C3—C4—C43126.3 (2)C453—C452—C45127.5 (7)
C4—C5—N1109.2 (2)C453—C452—S451111.0 (6)
C4—C5—O51130.8 (2)C45—C452—S451121.5 (3)
N1—C5—O51119.7 (2)C452—C453—C454113.8 (8)
C12—C11—C16120.5 (3)C452—C453—H453123.1
C12—C11—N1120.6 (3)C454—C453—H453123.1
C16—C11—N1118.8 (3)C455—C454—C453110.7 (6)
C11—C12—C13118.8 (3)C455—C454—H454124.7
C11—C12—H12120.6C453—C454—H454124.7
C13—C12—H12120.6C454—C455—S451112.7 (5)
C14—C13—C12120.8 (3)C454—C455—H455123.6
C14—C13—H13119.6S451—C455—H455123.6
C12—C13—H13119.6C554—C553—H553123.2
C15—C14—C13119.8 (3)C555—C554—C553110.8 (13)
C15—C14—H14120.1C555—C554—H554124.6
C13—C14—H14120.1C553—C554—H554124.6
C14—C15—C16120.1 (3)C554—C555—S551112.2 (12)
C14—C15—H15119.9C554—C555—H555123.9
C16—C15—H15119.9S551—C555—H555123.9
C11—C16—C15119.9 (3)C5—O51—C51117.9 (2)
C11—C16—H16120.0C56—C51—C52122.6 (3)
C15—C16—H16120.0C56—C51—O51122.3 (2)
C3—C31—H31A109.5C52—C51—O51115.1 (3)
C3—C31—H31B109.5C51—C52—C53116.4 (3)
H31A—C31—H31B109.5C51—C52—C57121.8 (3)
C3—C31—H31C109.5C53—C52—C57121.7 (3)
H31A—C31—H31C109.5C54—C53—C52121.7 (4)
H31B—C31—H31C109.5C54—C53—H53119.2
C45—N41—N42108.1 (2)C52—C53—H53119.2
C422—N42—N41119.9 (2)C53—C54—C55121.0 (4)
C422—N42—C43127.2 (2)C53—C54—H54119.5
N41—N42—C43112.9 (2)C55—C54—H54119.5
N42—C43—C4112.3 (2)C54—C55—C56119.2 (4)
N42—C43—C44101.01 (19)C54—C55—H55120.4
C4—C43—C44116.4 (2)C56—C55—H55120.4
N42—C43—H43108.9C51—C56—C55119.2 (3)
C4—C43—H43108.9C51—C56—H56120.4
C44—C43—H43108.9C55—C56—H56120.4
C45—C44—C43102.9 (2)C52—C57—H57A109.5
C45—C44—H44A111.2C52—C57—H57B109.5
C43—C44—H44A111.2H57A—C57—H57B109.5
C45—C44—H44B111.2C52—C57—H57C109.5
C43—C44—H44B111.2H57A—C57—H57C109.5
H44A—C44—H44B109.1H57B—C57—H57C109.5
N41—C45—C452121.1 (3)
C5—N1—N2—C30.7 (3)N42—C43—C44—C457.5 (2)
C11—N1—N2—C3173.9 (2)C4—C43—C44—C45114.3 (2)
N1—N2—C3—C41.1 (3)N42—N41—C45—C452179.1 (2)
N1—N2—C3—C31178.5 (2)N42—N41—C45—C441.3 (3)
N2—C3—C4—C51.1 (3)C43—C44—C45—N416.1 (3)
C31—C3—C4—C5178.5 (3)C43—C44—C45—C452174.4 (2)
N2—C3—C4—C43174.5 (3)N41—N42—C422—N4234.6 (3)
C31—C3—C4—C435.8 (5)C43—N42—C422—N423177.0 (2)
C3—C4—C5—N10.6 (3)N41—N42—C422—S421174.18 (16)
C43—C4—C5—N1174.8 (3)C43—N42—C422—S4214.2 (3)
C3—C4—C5—O51173.7 (3)N41—C45—C452—C453178.0 (11)
C43—C4—C5—O511.7 (5)C44—C45—C452—C4532.5 (12)
N2—N1—C5—C40.0 (3)N41—C45—C452—S4510.3 (4)
C11—N1—C5—C4172.3 (3)C44—C45—C452—S451179.2 (2)
N2—N1—C5—O51174.0 (2)C455—S451—C452—C4531.4 (10)
C11—N1—C5—O511.7 (4)C455—S451—C452—C45177.2 (4)
C5—N1—C11—C1245.3 (4)C45—C452—C453—C454177.6 (11)
N2—N1—C11—C12143.1 (3)S451—C452—C453—C4540.9 (18)
C5—N1—C11—C16135.0 (3)C452—C453—C454—C4550 (2)
N2—N1—C11—C1636.6 (4)C453—C454—C455—S4511.4 (18)
C16—C11—C12—C132.0 (5)C452—S451—C455—C4541.6 (11)
N1—C11—C12—C13178.3 (3)C553—C554—C555—S5514 (13)
C11—C12—C13—C141.6 (5)C4—C5—O51—C5176.6 (4)
C12—C13—C14—C150.1 (6)N1—C5—O51—C51110.9 (3)
C13—C14—C15—C161.3 (5)C5—O51—C51—C5622.5 (3)
C12—C11—C16—C150.8 (4)C5—O51—C51—C52158.9 (2)
N1—C11—C16—C15179.5 (3)C56—C51—C52—C530.2 (4)
C14—C15—C16—C110.9 (5)O51—C51—C52—C53178.3 (2)
C45—N41—N42—C422174.3 (2)C56—C51—C52—C57178.4 (3)
C45—N41—N42—C434.4 (3)O51—C51—C52—C573.1 (4)
C422—N42—C43—C464.4 (3)C51—C52—C53—C540.2 (5)
N41—N42—C43—C4117.0 (2)C57—C52—C53—C54178.4 (3)
C422—N42—C43—C44170.8 (2)C52—C53—C54—C550.5 (6)
N41—N42—C43—C447.7 (3)C53—C54—C55—C561.1 (6)
C5—C4—C43—N4241.7 (4)C52—C51—C56—C550.4 (4)
C3—C4—C43—N42132.8 (3)O51—C51—C56—C55178.8 (2)
C5—C4—C43—C4474.0 (4)C54—C55—C56—C511.0 (5)
C3—C4—C43—C44111.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N423—H42A···N2i0.92 (3)2.28 (3)3.111 (3)150 (2)
N423—H42A···N410.92 (3)2.27 (3)2.628 (4)103 (2)
Symmetry code: (i) x+1, y, z.
5'-(2,4-Dichlorophenoxy)-3'-methyl-1'-phenyl-5-(thiophen-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-carbothioamide hemihydrate (Ib) top
Crystal data top
2C24H19Cl2N5OS2·H2OF(000) = 1108
Mr = 1074.94Dx = 1.456 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
a = 15.037 (1) ÅCell parameters from 5307 reflections
b = 8.4266 (6) Åθ = 2.6–27.9°
c = 19.471 (1) ŵ = 0.47 mm1
β = 96.246 (6)°T = 296 K
V = 2452.5 (3) Å3Needle, orange
Z = 20.36 × 0.12 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD detector
diffractometer
5290 independent reflections
Radiation source: Enhance (Mo) X-ray Source3075 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 27.6°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1913
Tmin = 0.922, Tmax = 0.946k = 1010
10494 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0411P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
5290 reflectionsΔρmax = 0.26 e Å3
335 parametersΔρmin = 0.30 e Å3
10 restraints
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., 2009 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.68939 (13)0.4363 (2)0.37947 (9)0.0343 (5)
N20.61354 (13)0.3752 (2)0.34400 (9)0.0356 (5)
C30.59656 (15)0.2419 (3)0.37692 (11)0.0318 (5)
C40.66061 (15)0.2149 (3)0.43422 (11)0.0296 (5)
C50.71767 (15)0.3404 (3)0.43322 (11)0.0308 (5)
C110.72930 (16)0.5768 (3)0.35564 (11)0.0354 (6)
C120.81789 (18)0.5775 (3)0.34460 (15)0.0602 (8)
H120.85350.48890.35570.072*
C130.8538 (2)0.7111 (4)0.31678 (17)0.0748 (10)
H130.91370.71270.30890.090*
C140.8006 (2)0.8415 (3)0.30086 (14)0.0580 (8)
H140.82440.93070.28150.070*
C150.7138 (2)0.8410 (3)0.31316 (13)0.0471 (7)
H150.67880.93060.30280.057*
C160.67667 (17)0.7089 (3)0.34090 (11)0.0384 (6)
H160.61700.70920.34950.046*
C310.51811 (17)0.1418 (3)0.35213 (13)0.0438 (6)
H31A0.48460.11800.39010.066*
H31B0.53840.04470.33320.066*
H31C0.48070.19790.31710.066*
N410.75120 (13)0.0972 (2)0.59603 (9)0.0355 (5)
N420.67049 (13)0.1362 (2)0.55799 (9)0.0344 (5)
C430.66437 (16)0.0806 (3)0.48505 (11)0.0335 (6)
H430.61150.01310.47510.040*
C440.74925 (17)0.0209 (3)0.48690 (12)0.0404 (6)
H44A0.73460.13260.48130.048*
H44B0.78550.01100.45100.048*
C450.79663 (16)0.0117 (3)0.55736 (11)0.0336 (6)
S4210.50684 (4)0.25555 (8)0.54387 (3)0.0477 (2)
C4220.60539 (16)0.2113 (3)0.58829 (12)0.0361 (6)
N4230.62484 (18)0.2475 (3)0.65504 (11)0.0512 (7)
H42A0.585 (2)0.293 (3)0.6745 (14)0.061*
H42B0.675 (2)0.220 (3)0.6753 (14)0.061*
S4510.93613 (5)0.02351 (9)0.66256 (4)0.0493 (3)0.951 (3)
C4520.88401 (16)0.0510 (3)0.58006 (12)0.0365 (6)0.951 (3)
C4530.9356 (3)0.1417 (6)0.5435 (2)0.0475 (9)0.951 (3)
H4530.91880.17000.49770.057*0.951 (3)
C4541.0167 (2)0.1900 (7)0.5800 (2)0.0524 (14)0.951 (3)
H4541.05930.25170.56120.063*0.951 (3)
C4551.0251 (2)0.1363 (4)0.64507 (18)0.0537 (12)0.951 (3)
H4551.07400.15800.67720.064*0.951 (3)
S5510.937 (2)0.159 (4)0.5215 (11)0.0475 (9)0.049 (3)
C5520.88401 (16)0.0510 (3)0.58006 (12)0.0365 (6)0.049 (3)
C5530.944 (2)0.005 (7)0.633 (2)0.0493 (3)0.049 (3)
H5530.93410.07670.66310.059*0.049 (3)
C5541.024 (3)0.094 (11)0.637 (3)0.0537 (12)0.049 (3)
H5541.06490.10060.67630.064*0.049 (3)
C5551.032 (4)0.169 (16)0.577 (4)0.0524 (14)0.049 (3)
H5551.08390.22110.56760.063*0.049 (3)
O510.79155 (10)0.37875 (17)0.47791 (7)0.0338 (4)
C510.77558 (16)0.4711 (3)0.53498 (11)0.0326 (6)
C520.84468 (16)0.4851 (3)0.58742 (12)0.0366 (6)
Cl520.94533 (5)0.39239 (9)0.58023 (4)0.0618 (2)
C530.83348 (19)0.5733 (3)0.64567 (13)0.0464 (7)
H530.87990.58270.68110.056*
C540.7533 (2)0.6467 (3)0.65044 (13)0.0453 (7)
Cl540.73886 (6)0.75872 (9)0.72375 (4)0.0733 (3)
C550.68368 (19)0.6329 (3)0.59891 (14)0.0496 (7)
H550.62940.68260.60320.060*
C560.69494 (17)0.5446 (3)0.54082 (13)0.0424 (6)
H560.64820.53480.50570.051*
O610.50000.5746 (3)0.25000.0605 (9)
H610.532 (2)0.511 (3)0.2784 (15)0.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0301 (11)0.0402 (12)0.0312 (11)0.0022 (9)0.0028 (9)0.0066 (9)
N20.0304 (12)0.0441 (12)0.0306 (11)0.0018 (10)0.0039 (9)0.0035 (9)
C30.0300 (13)0.0390 (14)0.0263 (12)0.0011 (11)0.0029 (10)0.0019 (11)
C40.0306 (13)0.0325 (13)0.0254 (12)0.0022 (11)0.0013 (10)0.0006 (10)
C50.0259 (13)0.0372 (14)0.0280 (12)0.0040 (11)0.0024 (10)0.0010 (11)
C110.0334 (14)0.0411 (15)0.0309 (13)0.0047 (12)0.0001 (11)0.0056 (11)
C120.0372 (17)0.0615 (19)0.082 (2)0.0038 (15)0.0074 (16)0.0298 (17)
C130.0392 (18)0.087 (2)0.098 (3)0.0103 (18)0.0100 (18)0.039 (2)
C140.058 (2)0.0583 (19)0.0562 (18)0.0216 (17)0.0028 (16)0.0207 (15)
C150.0563 (19)0.0407 (16)0.0432 (15)0.0018 (14)0.0001 (14)0.0049 (13)
C160.0383 (15)0.0438 (15)0.0332 (14)0.0012 (12)0.0046 (12)0.0012 (12)
C310.0385 (15)0.0491 (16)0.0421 (15)0.0018 (13)0.0030 (12)0.0019 (12)
N410.0348 (12)0.0398 (12)0.0314 (11)0.0032 (10)0.0015 (9)0.0036 (9)
N420.0341 (12)0.0424 (12)0.0264 (10)0.0080 (10)0.0017 (9)0.0004 (9)
C430.0367 (14)0.0345 (13)0.0286 (12)0.0024 (11)0.0009 (11)0.0001 (11)
C440.0496 (16)0.0359 (14)0.0348 (13)0.0073 (13)0.0010 (12)0.0001 (11)
C450.0412 (15)0.0284 (13)0.0313 (13)0.0013 (12)0.0047 (12)0.0032 (11)
S4210.0361 (4)0.0614 (5)0.0457 (4)0.0054 (3)0.0045 (3)0.0036 (3)
C4220.0382 (15)0.0369 (14)0.0336 (13)0.0021 (12)0.0062 (12)0.0045 (11)
N4230.0508 (16)0.0714 (17)0.0317 (13)0.0165 (13)0.0051 (11)0.0039 (12)
S4510.0460 (5)0.0588 (5)0.0412 (5)0.0101 (4)0.0039 (4)0.0069 (4)
C4520.0382 (15)0.0347 (14)0.0361 (13)0.0032 (12)0.0026 (12)0.0038 (11)
C4530.0523 (18)0.057 (2)0.035 (3)0.0135 (15)0.009 (2)0.000 (2)
C4540.041 (2)0.058 (3)0.0590 (19)0.013 (2)0.0074 (17)0.0020 (17)
C4550.0405 (17)0.056 (3)0.061 (2)0.0099 (16)0.0100 (15)0.0011 (18)
S5510.0523 (18)0.057 (2)0.035 (3)0.0135 (15)0.009 (2)0.000 (2)
C5520.0382 (15)0.0347 (14)0.0361 (13)0.0032 (12)0.0026 (12)0.0038 (11)
C5530.0460 (5)0.0588 (5)0.0412 (5)0.0101 (4)0.0039 (4)0.0069 (4)
C5540.0405 (17)0.056 (3)0.061 (2)0.0099 (16)0.0100 (15)0.0011 (18)
C5550.041 (2)0.058 (3)0.0590 (19)0.013 (2)0.0074 (17)0.0020 (17)
O510.0261 (9)0.0424 (10)0.0317 (9)0.0033 (7)0.0025 (7)0.0042 (8)
C510.0356 (14)0.0287 (13)0.0333 (13)0.0006 (11)0.0031 (11)0.0024 (11)
C520.0320 (14)0.0378 (14)0.0392 (14)0.0002 (11)0.0004 (12)0.0004 (12)
Cl520.0389 (4)0.0757 (5)0.0665 (5)0.0146 (4)0.0133 (4)0.0190 (4)
C530.0496 (18)0.0501 (17)0.0385 (15)0.0095 (14)0.0007 (13)0.0065 (13)
C540.0579 (19)0.0391 (15)0.0411 (15)0.0095 (14)0.0155 (14)0.0061 (12)
Cl540.0881 (6)0.0778 (6)0.0589 (5)0.0104 (5)0.0293 (4)0.0278 (4)
C550.0437 (17)0.0510 (17)0.0564 (18)0.0062 (13)0.0157 (15)0.0078 (14)
C560.0352 (15)0.0455 (16)0.0454 (15)0.0029 (12)0.0004 (13)0.0032 (13)
O610.064 (2)0.0498 (18)0.0594 (19)0.0000.0293 (15)0.000
Geometric parameters (Å, º) top
N1—C51.354 (3)C45—C4521.440 (3)
N1—N21.368 (2)S421—C4221.675 (2)
N1—C111.427 (3)C422—N4231.336 (3)
N2—C31.332 (3)N423—H42A0.83 (3)
C3—C41.411 (3)N423—H42B0.84 (3)
C3—C311.488 (3)S451—C4551.705 (3)
C4—C51.363 (3)S451—C4521.725 (2)
C4—C431.500 (3)C452—C4531.347 (5)
C5—O511.373 (2)C453—C4541.404 (5)
C11—C121.372 (3)C453—H4530.9300
C11—C161.378 (3)C454—C4551.339 (4)
C12—C131.385 (4)C454—H4540.9300
C12—H120.9300C455—H4550.9300
C13—C141.375 (4)S551—C5551.707 (11)
C13—H130.9300C553—C5541.407 (11)
C14—C151.352 (4)C553—H5530.9300
C14—H140.9300C554—C5551.342 (10)
C15—C161.382 (3)C554—H5540.9300
C15—H150.9300C555—H5550.9300
C16—H160.9300O51—C511.399 (3)
C31—H31A0.9600C51—C561.377 (3)
C31—H31B0.9600C51—C521.380 (3)
C31—H31C0.9600C52—C531.382 (3)
N41—C451.290 (3)C52—Cl521.722 (2)
N41—N421.391 (2)C53—C541.366 (4)
N42—C4221.354 (3)C53—H530.9300
N42—C431.489 (3)C54—C551.374 (4)
C43—C441.534 (3)C54—Cl541.745 (3)
C43—H430.9800C55—C561.379 (3)
C44—C451.501 (3)C55—H550.9300
C44—H44A0.9700C56—H560.9300
C44—H44B0.9700O61—H610.88 (3)
C5—N1—N2109.89 (18)C43—C44—H44B111.1
C5—N1—C11129.69 (19)H44A—C44—H44B109.1
N2—N1—C11120.32 (17)N41—C45—C452123.3 (2)
C3—N2—N1105.50 (17)N41—C45—C44114.0 (2)
N2—C3—C4111.5 (2)C452—C45—C44122.7 (2)
N2—C3—C31120.6 (2)N423—C422—N42116.0 (2)
C4—C3—C31127.9 (2)N423—C422—S421122.6 (2)
C5—C4—C3103.90 (19)N42—C422—S421121.36 (18)
C5—C4—C43128.0 (2)C422—N423—H42A117.2 (19)
C3—C4—C43128.1 (2)C422—N423—H42B118.9 (19)
N1—C5—C4109.20 (19)H42A—N423—H42B124 (3)
N1—C5—O51120.9 (2)C455—S451—C45291.49 (14)
C4—C5—O51129.8 (2)C453—C452—C45127.2 (3)
C12—C11—C16120.6 (2)C453—C452—S451109.8 (2)
C12—C11—N1120.3 (2)C45—C452—S451122.94 (19)
C16—C11—N1119.1 (2)C452—C453—C454114.6 (3)
C11—C12—C13119.5 (3)C452—C453—H453122.7
C11—C12—H12120.3C454—C453—H453122.7
C13—C12—H12120.3C455—C454—C453111.6 (3)
C14—C13—C12119.7 (3)C455—C454—H454124.2
C14—C13—H13120.1C453—C454—H454124.2
C12—C13—H13120.1C454—C455—S451112.5 (2)
C15—C14—C13120.5 (3)C454—C455—H455123.7
C15—C14—H14119.8S451—C455—H455123.7
C13—C14—H14119.8C554—C553—H553123.6
C14—C15—C16120.7 (3)C555—C554—C553111.1 (15)
C14—C15—H15119.6C555—C554—H554124.5
C16—C15—H15119.6C553—C554—H554124.5
C11—C16—C15119.0 (2)C554—C555—S551112.1 (11)
C11—C16—H16120.5C554—C555—H555123.9
C15—C16—H16120.5S551—C555—H555123.9
C3—C31—H31A109.5C5—O51—C51115.94 (17)
C3—C31—H31B109.5C56—C51—C52120.0 (2)
H31A—C31—H31B109.5C56—C51—O51123.0 (2)
C3—C31—H31C109.5C52—C51—O51117.0 (2)
H31A—C31—H31C109.5C51—C52—C53120.2 (2)
H31B—C31—H31C109.5C51—C52—Cl52119.92 (18)
C45—N41—N42107.92 (18)C53—C52—Cl52119.83 (19)
C422—N42—N41120.58 (18)C54—C53—C52119.1 (2)
C422—N42—C43126.17 (19)C54—C53—H53120.4
N41—N42—C43113.19 (18)C52—C53—H53120.4
N42—C43—C4112.72 (18)C53—C54—C55121.3 (2)
N42—C43—C44100.84 (17)C53—C54—Cl54119.3 (2)
C4—C43—C44114.06 (19)C55—C54—Cl54119.3 (2)
N42—C43—H43109.6C54—C55—C56119.5 (2)
C4—C43—H43109.6C54—C55—H55120.2
C44—C43—H43109.6C56—C55—H55120.2
C45—C44—C43103.32 (18)C51—C56—C55119.9 (2)
C45—C44—H44A111.1C51—C56—H56120.1
C43—C44—H44A111.1C55—C56—H56120.1
C45—C44—H44B111.1
C5—N1—N2—C30.0 (2)C4—C43—C44—C45113.3 (2)
C11—N1—N2—C3176.76 (19)N42—N41—C45—C452179.7 (2)
N1—N2—C3—C40.3 (2)N42—N41—C45—C441.3 (3)
N1—N2—C3—C31179.6 (2)C43—C44—C45—N416.2 (3)
N2—C3—C4—C50.5 (2)C43—C44—C45—C452175.4 (2)
C31—C3—C4—C5179.4 (2)N41—N42—C422—N4231.5 (3)
N2—C3—C4—C43178.8 (2)C43—N42—C422—N423178.6 (2)
C31—C3—C4—C431.4 (4)N41—N42—C422—S421178.60 (16)
N2—N1—C5—C40.3 (3)C43—N42—C422—S4211.5 (3)
C11—N1—C5—C4176.7 (2)N41—C45—C452—C453179.5 (4)
N2—N1—C5—O51178.18 (18)C44—C45—C452—C4531.3 (5)
C11—N1—C5—O515.4 (3)N41—C45—C452—S4512.1 (3)
C3—C4—C5—N10.4 (2)C44—C45—C452—S451176.17 (18)
C43—C4—C5—N1178.8 (2)C455—S451—C452—C4530.4 (3)
C3—C4—C5—O51178.1 (2)C455—S451—C452—C45177.4 (2)
C43—C4—C5—O511.1 (4)C45—C452—C453—C454177.9 (4)
C5—N1—C11—C1250.0 (3)S451—C452—C453—C4540.2 (6)
N2—N1—C11—C12126.0 (3)C452—C453—C454—C4550.9 (7)
C5—N1—C11—C16132.9 (2)C453—C454—C455—S4511.2 (6)
N2—N1—C11—C1651.0 (3)C452—S451—C455—C4540.9 (4)
C16—C11—C12—C131.6 (4)C553—C554—C555—S55110 (12)
N1—C11—C12—C13175.4 (2)N1—C5—O51—C5189.3 (2)
C11—C12—C13—C140.3 (5)C4—C5—O51—C5188.1 (3)
C12—C13—C14—C151.0 (5)C5—O51—C51—C5611.5 (3)
C13—C14—C15—C161.0 (4)C5—O51—C51—C52167.5 (2)
C12—C11—C16—C151.6 (4)C56—C51—C52—C530.4 (3)
N1—C11—C16—C15175.40 (19)O51—C51—C52—C53179.4 (2)
C14—C15—C16—C110.3 (4)C56—C51—C52—Cl52179.72 (18)
C45—N41—N42—C422172.8 (2)O51—C51—C52—Cl520.7 (3)
C45—N41—N42—C434.6 (2)C51—C52—C53—C540.2 (4)
C422—N42—C43—C468.7 (3)Cl52—C52—C53—C54179.7 (2)
N41—N42—C43—C4114.0 (2)C52—C53—C54—C550.7 (4)
C422—N42—C43—C44169.3 (2)C52—C53—C54—Cl54179.85 (18)
N41—N42—C43—C448.0 (2)C53—C54—C55—C560.7 (4)
C5—C4—C43—N4252.6 (3)Cl54—C54—C55—C56179.89 (19)
C3—C4—C43—N42126.5 (2)C52—C51—C56—C550.4 (4)
C5—C4—C43—C4461.7 (3)O51—C51—C56—C55179.4 (2)
C3—C4—C43—C44119.3 (3)C54—C55—C56—C510.1 (4)
N42—C43—C44—C457.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O61—H61···N20.88 (3)2.03 (3)2.900 (2)176 (2)
N423—H42A···O61i0.84 (3)2.33 (3)3.154 (3)167 (3)
N423—H42B···N410.85 (3)2.27 (3)2.648 (3)107 (2)
Symmetry code: (i) x+1, y+1, z+1.
Ethyl (Z)-2-{2-[3'-methyl-1'-phenyl-5-(thiophen-2-yl)-5'-(2-methylphenoxy)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-yl]-4-oxo-4,5-dihydrothiazol-5-ylidene}acetate (II) top
Crystal data top
C31H27N5O4S2Z = 2
Mr = 597.69F(000) = 624
Triclinic, P1Dx = 1.331 Mg m3
a = 10.783 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.683 (3) ÅCell parameters from 6462 reflections
c = 13.577 (3) Åθ = 2.5–28.2°
α = 93.54 (2)°µ = 0.22 mm1
β = 105.17 (2)°T = 296 K
γ = 113.20 (2)°Needle, yellow
V = 1490.9 (6) Å30.48 × 0.12 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD detector
diffractometer
5561 independent reflections
Radiation source: Enhance (Mo) X-ray Source1730 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.138
ω scansθmax = 25.6°, θmin = 2.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 713
Tmin = 0.849, Tmax = 0.987k = 1412
10433 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.079H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0319P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.88(Δ/σ)max < 0.001
5561 reflectionsΔρmax = 0.26 e Å3
395 parametersΔρmin = 0.24 e Å3
10 restraints
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., 2009 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N11.0895 (5)0.0030 (4)0.1894 (3)0.0436 (12)
N21.1527 (4)0.1065 (4)0.1476 (4)0.0459 (12)
C31.0468 (6)0.1321 (4)0.0945 (4)0.0430 (15)
C40.9141 (5)0.0459 (5)0.0992 (4)0.0401 (14)
C50.9473 (6)0.0321 (5)0.1612 (4)0.0424 (15)
C111.1772 (6)0.0460 (5)0.2534 (4)0.0420 (14)
C121.1198 (6)0.1658 (5)0.2763 (5)0.0571 (17)
H121.02290.21710.24900.068*
C131.2090 (7)0.2083 (5)0.3410 (5)0.0644 (18)
H131.17070.28860.35700.077*
C141.3536 (7)0.1337 (6)0.3821 (5)0.0657 (18)
H141.41230.16290.42560.079*
C151.4082 (6)0.0162 (6)0.3573 (5)0.0596 (17)
H151.50540.03430.38320.071*
C161.3214 (6)0.0286 (5)0.2947 (4)0.0459 (14)
H161.36020.10960.28010.055*
C311.0776 (5)0.2433 (4)0.0406 (4)0.0609 (17)
H31A1.02340.21530.03170.091*
H31B1.17700.28230.04770.091*
H31C1.05200.30370.07110.091*
N410.5871 (4)0.0182 (4)0.1331 (3)0.0455 (12)
N420.7101 (4)0.0797 (4)0.1249 (4)0.0482 (13)
C430.7718 (6)0.0410 (4)0.0483 (4)0.0487 (16)
H430.77770.09540.00400.058*
C440.6507 (5)0.0938 (4)0.0010 (4)0.0511 (16)
H44A0.60030.09690.07240.061*
H44B0.68840.15680.00050.061*
C450.5547 (5)0.1162 (5)0.0651 (4)0.0439 (15)
S4210.68139 (15)0.21639 (13)0.27511 (12)0.0544 (5)
C4220.7658 (6)0.1937 (5)0.1848 (5)0.0505 (16)
N4230.8776 (5)0.2867 (4)0.1773 (4)0.0558 (14)
C4240.9084 (6)0.3951 (6)0.2437 (5)0.0622 (18)
O4241.0021 (4)0.4986 (4)0.2506 (3)0.0877 (15)
C4250.8101 (5)0.3718 (5)0.3113 (5)0.0482 (15)
C4260.8307 (6)0.4611 (5)0.3868 (5)0.0636 (18)
H4260.90610.54060.39960.076*
C4270.7337 (7)0.4347 (6)0.4514 (5)0.0637 (19)
O4270.6309 (5)0.3363 (4)0.4379 (3)0.0842 (15)
O4280.7767 (4)0.5339 (4)0.5256 (4)0.0852 (14)
C4280.6931 (7)0.5170 (6)0.5969 (6)0.094 (2)
H48A0.70960.45950.64160.112*
H48B0.59280.48090.55800.112*
C4290.7352 (7)0.6415 (7)0.6602 (6)0.119 (3)
H49A0.68030.63140.70710.179*
H49B0.71840.69800.61550.179*
H49C0.83420.67630.69920.179*
S4510.3311 (4)0.2531 (3)0.1357 (3)0.0655 (10)0.768 (6)
C4520.4337 (6)0.2339 (5)0.0544 (4)0.0499 (15)0.768 (6)
C4530.398 (3)0.339 (2)0.0103 (19)0.073 (3)0.768 (6)
H4530.44750.34670.05520.087*0.768 (6)
C4540.270 (2)0.4427 (17)0.002 (2)0.075 (5)0.768 (6)
H4540.22280.52200.04490.090*0.768 (6)
C4550.2293 (14)0.4072 (9)0.0772 (15)0.073 (4)0.768 (6)
H4550.15400.46140.09710.087*0.768 (6)
S5510.383 (3)0.3635 (19)0.0394 (18)0.073 (3)0.232 (6)
C5520.4337 (6)0.2339 (5)0.0544 (4)0.0499 (15)0.232 (6)
C5530.349 (5)0.251 (4)0.112 (4)0.0655 (10)0.232 (6)
H5530.36520.19240.16900.079*0.232 (6)
C5540.224 (5)0.375 (3)0.073 (5)0.073 (4)0.232 (6)
H5540.14620.40030.09730.087*0.232 (6)
C5550.239 (9)0.446 (5)0.002 (8)0.075 (5)0.232 (6)
H5550.17720.53060.02980.090*0.232 (6)
O510.8569 (3)0.1355 (3)0.1888 (3)0.0513 (10)
C510.8251 (6)0.1159 (6)0.2805 (5)0.0543 (16)
C520.7268 (7)0.2241 (7)0.3002 (6)0.073 (2)
C530.6939 (8)0.2041 (10)0.3902 (8)0.116 (3)
H530.63100.27380.40860.140*
C540.7476 (11)0.0898 (13)0.4529 (8)0.132 (4)
H540.71830.08250.51070.158*
C550.8442 (10)0.0144 (10)0.4315 (6)0.105 (3)
H550.88380.09240.47560.125*
C560.8832 (6)0.0023 (6)0.3421 (5)0.0704 (19)
H560.94680.07250.32470.084*
C570.6674 (7)0.3502 (6)0.2333 (6)0.105 (3)
H57A0.59000.40860.25280.158*
H57B0.73990.38030.24160.158*
H57C0.63370.34350.16200.158*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.042 (3)0.044 (3)0.045 (3)0.016 (3)0.016 (3)0.008 (2)
N20.043 (3)0.043 (3)0.053 (3)0.011 (2)0.028 (3)0.011 (3)
C30.047 (4)0.041 (3)0.046 (4)0.017 (3)0.025 (3)0.007 (3)
C40.039 (4)0.047 (3)0.039 (4)0.020 (3)0.017 (3)0.009 (3)
C50.040 (4)0.042 (3)0.036 (4)0.007 (3)0.016 (3)0.000 (3)
C110.040 (4)0.045 (3)0.037 (4)0.016 (3)0.011 (3)0.001 (3)
C120.050 (4)0.048 (4)0.065 (5)0.014 (3)0.016 (4)0.009 (3)
C130.076 (5)0.053 (4)0.068 (5)0.029 (4)0.024 (4)0.019 (4)
C140.062 (5)0.075 (4)0.058 (5)0.032 (4)0.010 (4)0.015 (4)
C150.052 (4)0.068 (4)0.050 (5)0.018 (4)0.013 (4)0.010 (4)
C160.051 (4)0.050 (3)0.035 (4)0.015 (3)0.020 (3)0.015 (3)
C310.068 (4)0.051 (3)0.067 (5)0.019 (3)0.034 (4)0.019 (3)
N410.047 (3)0.042 (3)0.047 (3)0.015 (2)0.021 (3)0.012 (2)
N420.047 (3)0.046 (3)0.057 (4)0.022 (2)0.022 (3)0.006 (3)
C430.057 (4)0.051 (3)0.043 (4)0.021 (3)0.027 (3)0.003 (3)
C440.043 (4)0.061 (4)0.046 (4)0.021 (3)0.014 (3)0.001 (3)
C450.047 (4)0.047 (3)0.041 (4)0.024 (3)0.013 (3)0.013 (3)
S4210.0588 (11)0.0465 (8)0.0573 (12)0.0175 (8)0.0263 (9)0.0045 (8)
C4220.063 (4)0.051 (4)0.052 (4)0.034 (3)0.027 (4)0.013 (3)
N4230.059 (3)0.042 (3)0.061 (4)0.009 (2)0.030 (3)0.005 (3)
C4240.061 (5)0.055 (4)0.058 (5)0.014 (4)0.018 (4)0.007 (4)
O4240.087 (3)0.056 (2)0.089 (4)0.008 (2)0.043 (3)0.005 (3)
C4250.056 (4)0.038 (3)0.051 (4)0.017 (3)0.021 (3)0.010 (3)
C4260.074 (5)0.053 (4)0.064 (5)0.020 (3)0.035 (4)0.001 (4)
C4270.074 (5)0.053 (4)0.052 (5)0.030 (4)0.001 (4)0.013 (4)
O4270.093 (4)0.071 (3)0.074 (4)0.018 (3)0.033 (3)0.005 (3)
O4280.101 (4)0.074 (3)0.075 (4)0.030 (3)0.036 (3)0.011 (3)
C4280.102 (6)0.107 (6)0.076 (6)0.048 (5)0.033 (5)0.006 (5)
C4290.147 (7)0.131 (6)0.083 (6)0.073 (6)0.028 (5)0.020 (5)
S4510.0732 (19)0.0564 (14)0.068 (2)0.0167 (12)0.0389 (13)0.0163 (14)
C4520.058 (4)0.040 (3)0.048 (4)0.017 (3)0.018 (3)0.004 (3)
C4530.085 (6)0.043 (7)0.053 (11)0.002 (5)0.007 (7)0.003 (5)
C4540.080 (13)0.046 (4)0.066 (6)0.001 (5)0.017 (9)0.002 (4)
C4550.083 (5)0.046 (7)0.079 (6)0.016 (5)0.026 (5)0.014 (7)
S5510.085 (6)0.043 (7)0.053 (11)0.002 (5)0.007 (7)0.003 (5)
C5520.058 (4)0.040 (3)0.048 (4)0.017 (3)0.018 (3)0.004 (3)
C5530.0732 (19)0.0564 (14)0.068 (2)0.0167 (12)0.0389 (13)0.0163 (14)
C5540.083 (5)0.046 (7)0.079 (6)0.016 (5)0.026 (5)0.014 (7)
C5550.080 (13)0.046 (4)0.066 (6)0.001 (5)0.017 (9)0.002 (4)
O510.049 (2)0.056 (2)0.048 (3)0.0145 (19)0.024 (2)0.010 (2)
C510.058 (4)0.075 (4)0.042 (5)0.037 (4)0.020 (4)0.020 (4)
C520.065 (5)0.110 (6)0.068 (6)0.041 (5)0.042 (4)0.065 (5)
C530.098 (7)0.169 (9)0.110 (10)0.054 (7)0.068 (7)0.081 (7)
C540.140 (10)0.248 (15)0.078 (8)0.125 (10)0.068 (7)0.074 (9)
C550.136 (8)0.182 (9)0.049 (6)0.107 (7)0.047 (5)0.035 (6)
C560.077 (5)0.102 (5)0.055 (5)0.052 (4)0.034 (4)0.019 (4)
C570.092 (6)0.082 (5)0.129 (7)0.013 (4)0.041 (5)0.070 (5)
Geometric parameters (Å, º) top
N1—C51.358 (6)C426—C4271.489 (8)
N1—N21.374 (5)C426—H4260.9300
N1—C111.426 (6)C427—O4271.203 (6)
N2—C31.333 (6)C427—O4281.327 (6)
C3—C41.409 (6)O428—C4281.458 (7)
C3—C311.497 (6)C428—C4291.477 (7)
C4—C51.364 (7)C428—H48A0.9700
C4—C431.485 (6)C428—H48B0.9700
C5—O511.367 (6)C429—H49A0.9600
C11—C161.382 (6)C429—H49B0.9600
C11—C121.382 (7)C429—H49C0.9600
C12—C131.390 (7)S451—C4551.699 (9)
C12—H120.9300S451—C4521.723 (6)
C13—C141.384 (7)C452—C4531.320 (16)
C13—H130.9300C453—C4541.47 (2)
C14—C151.367 (7)C453—H4530.9300
C14—H140.9300C454—C4551.359 (10)
C15—C161.377 (7)C454—H4540.9300
C15—H150.9300C455—H4550.9300
C16—H160.9300S551—C5551.698 (14)
C31—H31A0.9600C553—C5541.48 (2)
C31—H31B0.9600C553—H5530.9300
C31—H31C0.9600C554—C5551.359 (13)
N41—C451.293 (5)C554—H5540.9300
N41—N421.405 (5)C555—H5550.9300
N42—C4221.333 (5)O51—C511.405 (6)
N42—C431.507 (6)C51—C561.379 (7)
C43—C441.557 (6)C51—C521.387 (8)
C43—H430.9800C52—C531.390 (10)
C44—C451.499 (7)C52—C571.481 (8)
C44—H44A0.9700C53—C541.355 (10)
C44—H44B0.9700C53—H530.9300
C45—C4521.441 (6)C54—C551.362 (11)
S421—C4251.736 (5)C54—H540.9300
S421—C4221.771 (5)C55—C561.400 (9)
C422—N4231.300 (6)C55—H550.9300
N423—C4241.378 (6)C56—H560.9300
C424—O4241.211 (6)C57—H57A0.9600
C424—C4251.534 (7)C57—H57B0.9600
C425—C4261.325 (6)C57—H57C0.9600
C5—N1—N2109.6 (4)C424—C425—S421109.7 (4)
C5—N1—C11131.7 (5)C425—C426—C427120.3 (5)
N2—N1—C11118.6 (4)C425—C426—H426119.9
C3—N2—N1105.2 (4)C427—C426—H426119.9
N2—C3—C4112.1 (5)O427—C427—O428125.0 (7)
N2—C3—C31120.0 (5)O427—C427—C426124.2 (6)
C4—C3—C31127.9 (6)O428—C427—C426110.7 (6)
C5—C4—C3103.6 (5)C427—O428—C428115.7 (5)
C5—C4—C43128.2 (5)O428—C428—C429108.9 (6)
C3—C4—C43128.2 (5)O428—C428—H48A109.9
N1—C5—C4109.4 (5)C429—C428—H48A109.9
N1—C5—O51122.3 (5)O428—C428—H48B109.9
C4—C5—O51128.2 (5)C429—C428—H48B109.9
C16—C11—C12119.6 (5)H48A—C428—H48B108.3
C16—C11—N1119.3 (5)C428—C429—H49A109.5
C12—C11—N1121.1 (5)C428—C429—H49B109.5
C11—C12—C13119.0 (5)H49A—C429—H49B109.5
C11—C12—H12120.5C428—C429—H49C109.5
C13—C12—H12120.5H49A—C429—H49C109.5
C14—C13—C12121.4 (6)H49B—C429—H49C109.5
C14—C13—H13119.3C455—S451—C45291.1 (5)
C12—C13—H13119.3C453—C452—C45124.6 (12)
C15—C14—C13118.5 (6)C453—C452—S451113.6 (11)
C15—C14—H14120.7C45—C452—S451121.6 (4)
C13—C14—H14120.7C452—C453—C454111.2 (14)
C14—C15—C16121.0 (6)C452—C453—H453124.4
C14—C15—H15119.5C454—C453—H453124.4
C16—C15—H15119.5C455—C454—C453111.1 (10)
C15—C16—C11120.4 (5)C455—C454—H454124.5
C15—C16—H16119.8C453—C454—H454124.5
C11—C16—H16119.8C454—C455—S451112.8 (10)
C3—C31—H31A109.5C454—C455—H455123.6
C3—C31—H31B109.5S451—C455—H455123.6
H31A—C31—H31B109.5C554—C553—H553124.6
C3—C31—H31C109.5C555—C554—C553111.3 (16)
H31A—C31—H31C109.5C555—C554—H554124.4
H31B—C31—H31C109.5C553—C554—H554124.4
C45—N41—N42107.5 (4)C554—C555—S551112.2 (17)
C422—N42—N41120.5 (4)C554—C555—H555123.9
C422—N42—C43125.3 (4)S551—C555—H555123.9
N41—N42—C43114.2 (4)C5—O51—C51117.5 (4)
C4—C43—N42112.5 (4)C56—C51—C52123.9 (6)
C4—C43—C44115.7 (4)C56—C51—O51122.0 (6)
N42—C43—C4498.8 (4)C52—C51—O51114.0 (6)
C4—C43—H43109.8C51—C52—C53114.0 (7)
N42—C43—H43109.8C51—C52—C57122.7 (7)
C44—C43—H43109.8C53—C52—C57123.3 (7)
C45—C44—C43104.6 (4)C54—C53—C52124.3 (10)
C45—C44—H44A110.8C54—C53—H53117.8
C43—C44—H44A110.8C52—C53—H53117.8
C45—C44—H44B110.8C53—C54—C55120.1 (11)
C43—C44—H44B110.8C53—C54—H54119.9
H44A—C44—H44B108.9C55—C54—H54119.9
N41—C45—C452121.4 (5)C54—C55—C56119.1 (9)
N41—C45—C44114.0 (5)C54—C55—H55120.5
C452—C45—C44124.5 (5)C56—C55—H55120.5
C425—S421—C42287.3 (3)C51—C56—C55118.5 (7)
N423—C422—N42121.8 (5)C51—C56—H56120.7
N423—C422—S421120.3 (4)C55—C56—H56120.7
N42—C422—S421117.9 (4)C52—C57—H57A109.5
C422—N423—C424110.0 (5)C52—C57—H57B109.5
O424—C424—N423125.4 (6)H57A—C57—H57B109.5
O424—C424—C425122.0 (6)C52—C57—H57C109.5
N423—C424—C425112.5 (5)H57A—C57—H57C109.5
C426—C425—C424121.8 (5)H57B—C57—H57C109.5
C426—C425—S421128.4 (5)
C5—N1—N2—C30.1 (5)C43—N42—C422—S421176.4 (4)
C11—N1—N2—C3178.6 (4)C425—S421—C422—N4230.2 (5)
N1—N2—C3—C41.0 (5)C425—S421—C422—N42179.4 (4)
N1—N2—C3—C31178.2 (4)N42—C422—N423—C424176.8 (5)
N2—C3—C4—C51.6 (5)S421—C422—N423—C4242.4 (7)
C31—C3—C4—C5177.5 (5)C422—N423—C424—O424176.2 (6)
N2—C3—C4—C43178.3 (4)C422—N423—C424—C4254.1 (7)
C31—C3—C4—C432.7 (8)O424—C424—C425—C4266.1 (9)
N2—N1—C5—C41.1 (5)N423—C424—C425—C426173.5 (5)
C11—N1—C5—C4179.4 (4)O424—C424—C425—S421176.0 (5)
N2—N1—C5—O51177.6 (4)N423—C424—C425—S4214.3 (6)
C11—N1—C5—O514.2 (7)C422—S421—C425—C426175.3 (6)
C3—C4—C5—N11.6 (5)C422—S421—C425—C4242.4 (4)
C43—C4—C5—N1178.3 (4)C424—C425—C426—C427179.5 (6)
C3—C4—C5—O51177.8 (5)S421—C425—C426—C4272.0 (8)
C43—C4—C5—O512.1 (8)C425—C426—C427—O4272.8 (10)
C5—N1—C11—C16160.7 (5)C425—C426—C427—O428176.9 (5)
N2—N1—C11—C1617.5 (6)O427—C427—O428—C4282.3 (9)
C5—N1—C11—C1218.0 (7)C426—C427—O428—C428177.4 (5)
N2—N1—C11—C12163.8 (4)C427—O428—C428—C429168.6 (5)
C16—C11—C12—C130.2 (8)N41—C45—C452—C453177.0 (19)
N1—C11—C12—C13178.5 (4)C44—C45—C452—C4535 (2)
C11—C12—C13—C140.4 (8)N41—C45—C452—S4513.3 (7)
C12—C13—C14—C150.3 (9)C44—C45—C452—S451178.4 (5)
C13—C14—C15—C161.3 (9)C455—S451—C452—C4532.9 (18)
C14—C15—C16—C111.6 (8)C455—S451—C452—C45177.2 (8)
C12—C11—C16—C150.8 (7)C45—C452—C453—C454180 (2)
N1—C11—C16—C15179.5 (5)S451—C452—C453—C4545 (3)
C45—N41—N42—C422178.4 (5)C452—C453—C454—C4556 (4)
C45—N41—N42—C434.1 (6)C453—C454—C455—S4514 (4)
C5—C4—C43—N4270.7 (6)C452—S451—C455—C4541 (2)
C3—C4—C43—N42109.5 (6)C553—C554—C555—S5518 (12)
C5—C4—C43—C4441.9 (7)N1—C5—O51—C5192.8 (5)
C3—C4—C43—C44138.0 (5)C4—C5—O51—C5191.4 (6)
C422—N42—C43—C462.7 (6)C5—O51—C51—C560.8 (7)
N41—N42—C43—C4114.6 (5)C5—O51—C51—C52176.7 (5)
C422—N42—C43—C44174.7 (5)C56—C51—C52—C531.7 (9)
N41—N42—C43—C448.0 (5)O51—C51—C52—C53179.1 (5)
C4—C43—C44—C45111.9 (5)C56—C51—C52—C57179.3 (6)
N42—C43—C44—C458.3 (5)O51—C51—C52—C573.3 (8)
N42—N41—C45—C452179.2 (5)C51—C52—C53—C542.1 (12)
N42—N41—C45—C442.3 (6)C57—C52—C53—C54179.6 (8)
C43—C44—C45—N417.3 (6)C52—C53—C54—C552.4 (15)
C43—C44—C45—C452174.3 (5)C53—C54—C55—C562.2 (14)
N41—N42—C422—N423178.4 (5)C52—C51—C56—C551.7 (9)
C43—N42—C422—N4234.4 (8)O51—C51—C56—C55178.9 (5)
N41—N42—C422—S4210.7 (6)C54—C55—C56—C511.9 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O424i0.932.493.200 (7)133
C54—H54···Cg1ii0.932.913.714 (12)146
C553—H553···Cg1iii0.932.923.76 (5)151
Symmetry codes: (i) x, y1, z; (ii) x+2, y, z+1; (iii) x1, y, z.
4-(4-Bromophenyl)-2-[5'-(2,4-dichlorophenoxy)-3'-methyl-1'-phenyl-5-(thiophen-2-yl)-3,4-dihydro-1'H,2H-3,4'-bipyrazole-2-yl]-4-thiazole (III) top
Crystal data top
C32H22BrCl2N5OS2Z = 2
Mr = 707.47F(000) = 716
Triclinic, P1Dx = 1.517 Mg m3
a = 12.3200 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.5700 (9) ÅCell parameters from 6664 reflections
c = 12.7742 (9) Åθ = 2.6–27.8°
α = 117.202 (8)°µ = 1.67 mm1
β = 102.879 (7)°T = 296 K
γ = 105.727 (7)°Plate, yellow
V = 1548.4 (2) Å30.40 × 0.40 × 0.08 mm
Data collection top
Oxford Diffraction Xcalibur with Sapphire CCD detector
diffractometer
5773 independent reflections
Radiation source: Enhance (Mo) X-ray Source3158 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 25.6°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1314
Tmin = 0.779, Tmax = 0.875k = 1510
10549 measured reflectionsl = 1015
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0475P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
5773 reflectionsΔρmax = 0.47 e Å3
402 parametersΔρmin = 0.34 e Å3
10 restraints
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., 2009 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.5457 (2)0.3735 (2)0.86216 (19)0.0478 (5)
N20.4327 (2)0.3754 (2)0.8277 (2)0.0514 (6)
C30.4368 (3)0.4319 (2)0.7616 (2)0.0495 (7)
C40.5508 (3)0.4674 (2)0.7522 (2)0.0477 (7)
C50.6162 (2)0.4278 (2)0.8157 (2)0.0446 (6)
C110.5693 (3)0.3119 (2)0.9294 (2)0.0449 (6)
C120.6877 (3)0.3383 (3)0.9963 (3)0.0552 (7)
H120.75460.39820.99970.066*
C130.7064 (3)0.2750 (3)1.0586 (3)0.0591 (8)
H130.78630.29151.10290.071*
C140.6089 (3)0.1887 (3)1.0558 (3)0.0630 (8)
H140.62210.14651.09780.076*
C150.4917 (3)0.1647 (3)0.9907 (3)0.0719 (9)
H150.42520.10640.98930.086*
C160.4707 (3)0.2257 (3)0.9271 (3)0.0617 (8)
H160.39060.20880.88300.074*
C310.3270 (3)0.4476 (3)0.7047 (3)0.0686 (8)
H31A0.30530.40750.61400.103*
H31B0.34640.54020.74530.103*
H31C0.25890.40540.71810.103*
N410.7375 (3)0.5162 (3)0.5905 (3)0.0661 (7)
N420.6211 (2)0.4547 (3)0.5794 (2)0.0670 (7)
C430.5928 (3)0.5358 (3)0.6881 (3)0.0576 (7)
H430.52880.55910.65670.069*
C440.7168 (3)0.6608 (3)0.7729 (3)0.0672 (8)
H44A0.70580.73900.78660.081*
H44B0.75460.67410.85580.081*
C450.7931 (3)0.6315 (3)0.6965 (3)0.0622 (8)
S4210.59658 (8)0.25102 (9)0.35914 (8)0.0776 (3)
C4220.5442 (3)0.3311 (3)0.4739 (3)0.0576 (8)
N4230.4313 (2)0.2671 (2)0.4522 (2)0.0554 (6)
C4240.3781 (3)0.1417 (3)0.3379 (3)0.0568 (7)
C4250.4545 (3)0.1182 (3)0.2773 (3)0.0724 (9)
H4250.43250.03940.20040.087*
C4410.2509 (3)0.0523 (3)0.2964 (3)0.0557 (7)
C4420.1828 (3)0.0877 (3)0.3669 (3)0.0663 (8)
H4420.21880.17120.44290.080*
C4430.0635 (3)0.0037 (3)0.3287 (3)0.0738 (9)
H4430.01960.03100.37830.089*
C4440.0085 (3)0.1208 (3)0.2172 (3)0.0667 (8)
Br440.15403 (3)0.23859 (4)0.16704 (4)0.09399 (17)
C4450.0740 (4)0.1594 (3)0.1453 (3)0.0803 (10)
H4450.03780.24350.07000.096*
C4460.1919 (4)0.0751 (3)0.1836 (3)0.0778 (9)
H4460.23490.10300.13310.093*
S4510.99714 (13)0.68706 (13)0.64070 (13)0.1055 (6)0.947 (4)
C4520.9177 (3)0.7199 (4)0.7353 (4)0.0739 (9)0.947 (4)
C4530.9844 (6)0.8384 (6)0.8487 (6)0.0934 (17)0.947 (4)
H4530.95610.87330.91270.112*0.947 (4)
C4541.1069 (5)0.9043 (5)0.8577 (6)0.1124 (18)0.947 (4)
H4541.16650.98650.92890.135*0.947 (4)
C4551.1232 (5)0.8339 (6)0.7532 (7)0.1145 (18)0.947 (4)
H4551.19550.86120.74210.137*0.947 (4)
S5511.025 (3)0.871 (2)0.863 (3)0.0934 (17)0.053 (4)
C5520.9177 (3)0.7199 (4)0.7353 (4)0.0739 (9)0.053 (4)
C5530.966 (5)0.658 (5)0.654 (6)0.1055 (6)0.053 (4)
H5530.92640.56960.58570.127*0.053 (4)
C5541.090 (5)0.750 (6)0.687 (7)0.1145 (18)0.053 (4)
H5541.13740.72700.64030.137*0.053 (4)
C5551.126 (7)0.868 (8)0.790 (10)0.1124 (18)0.053 (4)
H5551.19720.94190.81920.135*0.053 (4)
O510.73172 (16)0.43438 (16)0.83109 (15)0.0493 (4)
C510.7387 (2)0.3304 (2)0.7303 (2)0.0440 (6)
C520.8521 (2)0.3502 (3)0.7240 (3)0.0488 (7)
Cl520.97805 (7)0.50033 (8)0.83960 (9)0.0895 (3)
C530.8662 (3)0.2526 (3)0.6269 (3)0.0586 (8)
H530.94290.26640.62300.070*
C540.7648 (3)0.1344 (3)0.5356 (3)0.0563 (7)
Cl540.77954 (9)0.01019 (9)0.41070 (8)0.0873 (3)
C550.6533 (3)0.1136 (3)0.5414 (3)0.0634 (8)
H550.58560.03300.47930.076*
C560.6397 (3)0.2115 (3)0.6391 (3)0.0576 (7)
H560.56280.19660.64280.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0546 (15)0.0491 (13)0.0455 (13)0.0245 (12)0.0228 (11)0.0279 (12)
N20.0558 (15)0.0592 (14)0.0494 (14)0.0323 (12)0.0271 (12)0.0304 (12)
C30.0627 (19)0.0521 (17)0.0406 (16)0.0336 (15)0.0240 (14)0.0241 (14)
C40.0656 (19)0.0472 (16)0.0404 (16)0.0306 (15)0.0266 (14)0.0257 (14)
C50.0547 (18)0.0403 (15)0.0406 (15)0.0226 (14)0.0252 (14)0.0198 (13)
C110.0557 (18)0.0434 (15)0.0406 (15)0.0250 (14)0.0224 (14)0.0235 (13)
C120.062 (2)0.0595 (18)0.0545 (17)0.0272 (16)0.0278 (15)0.0363 (16)
C130.065 (2)0.070 (2)0.0525 (18)0.0350 (18)0.0262 (16)0.0367 (17)
C140.090 (2)0.060 (2)0.0539 (19)0.0401 (19)0.0315 (18)0.0366 (16)
C150.079 (2)0.068 (2)0.080 (2)0.0250 (19)0.0351 (19)0.0506 (19)
C160.0580 (18)0.066 (2)0.067 (2)0.0224 (17)0.0225 (16)0.0438 (18)
C310.085 (2)0.083 (2)0.065 (2)0.054 (2)0.0393 (18)0.0460 (18)
N410.080 (2)0.0741 (19)0.0642 (18)0.0358 (17)0.0382 (16)0.0471 (17)
N420.0780 (19)0.0714 (18)0.0550 (17)0.0272 (16)0.0397 (15)0.0343 (15)
C430.074 (2)0.0604 (19)0.0558 (18)0.0365 (18)0.0330 (17)0.0377 (16)
C440.089 (2)0.0558 (19)0.066 (2)0.0305 (19)0.0310 (19)0.0409 (17)
C450.078 (2)0.071 (2)0.068 (2)0.039 (2)0.036 (2)0.054 (2)
S4210.0958 (7)0.0867 (6)0.0679 (5)0.0459 (6)0.0536 (5)0.0425 (5)
C4220.080 (2)0.067 (2)0.0479 (19)0.0399 (19)0.0355 (17)0.0392 (18)
N4230.0729 (18)0.0614 (16)0.0449 (14)0.0360 (15)0.0317 (13)0.0311 (13)
C4240.080 (2)0.062 (2)0.0451 (18)0.0416 (19)0.0316 (17)0.0329 (17)
C4250.095 (2)0.072 (2)0.059 (2)0.044 (2)0.0440 (19)0.0326 (17)
C4410.081 (2)0.0597 (19)0.0423 (17)0.0442 (18)0.0298 (16)0.0295 (15)
C4420.078 (2)0.060 (2)0.0572 (19)0.041 (2)0.0311 (18)0.0224 (16)
C4430.077 (2)0.070 (2)0.070 (2)0.042 (2)0.0344 (19)0.0274 (19)
C4440.076 (2)0.069 (2)0.068 (2)0.0457 (19)0.0303 (19)0.0385 (19)
Br440.0795 (3)0.0793 (3)0.1006 (3)0.0331 (2)0.0273 (2)0.0381 (2)
C4450.092 (3)0.061 (2)0.064 (2)0.031 (2)0.031 (2)0.0186 (18)
C4460.101 (3)0.078 (3)0.061 (2)0.048 (2)0.048 (2)0.031 (2)
S4510.0958 (12)0.1464 (12)0.1214 (10)0.0581 (10)0.0620 (8)0.0961 (9)
C4520.074 (2)0.078 (2)0.088 (3)0.030 (2)0.028 (2)0.062 (2)
C4530.067 (4)0.080 (4)0.124 (4)0.012 (3)0.028 (3)0.065 (3)
C4540.076 (4)0.112 (4)0.155 (5)0.026 (3)0.034 (3)0.091 (4)
C4550.075 (3)0.149 (5)0.171 (6)0.044 (4)0.046 (4)0.128 (5)
S5510.067 (4)0.080 (4)0.124 (4)0.012 (3)0.028 (3)0.065 (3)
C5520.074 (2)0.078 (2)0.088 (3)0.030 (2)0.028 (2)0.062 (2)
C5530.0958 (12)0.1464 (12)0.1214 (10)0.0581 (10)0.0620 (8)0.0961 (9)
C5540.075 (3)0.149 (5)0.171 (6)0.044 (4)0.046 (4)0.128 (5)
C5550.076 (4)0.112 (4)0.155 (5)0.026 (3)0.034 (3)0.091 (4)
O510.0512 (12)0.0460 (11)0.0451 (11)0.0196 (9)0.0208 (9)0.0212 (9)
C510.0533 (18)0.0436 (16)0.0432 (16)0.0229 (15)0.0241 (14)0.0266 (14)
C520.0421 (16)0.0517 (17)0.0502 (17)0.0159 (14)0.0166 (14)0.0299 (15)
Cl520.0503 (5)0.0766 (6)0.0886 (6)0.0101 (4)0.0132 (4)0.0238 (5)
C530.0549 (19)0.077 (2)0.064 (2)0.0381 (18)0.0339 (17)0.0431 (19)
C540.073 (2)0.062 (2)0.0535 (18)0.0405 (18)0.0372 (17)0.0341 (17)
Cl540.1139 (7)0.0907 (6)0.0691 (5)0.0620 (6)0.0543 (5)0.0350 (5)
C550.063 (2)0.0437 (17)0.064 (2)0.0156 (15)0.0306 (16)0.0180 (15)
C560.0493 (17)0.0473 (18)0.068 (2)0.0167 (15)0.0322 (16)0.0242 (16)
Geometric parameters (Å, º) top
N1—C51.361 (3)C425—H4250.9300
N1—N21.374 (3)C441—C4421.373 (4)
N1—C111.428 (3)C441—C4461.400 (4)
N2—C31.330 (3)C442—C4431.372 (4)
C3—C41.404 (3)C442—H4420.9300
C3—C311.495 (3)C443—C4441.377 (4)
C4—C51.361 (3)C443—H4430.9300
C4—C431.506 (3)C444—C4451.366 (4)
C5—O511.367 (3)C444—Br441.888 (3)
C11—C121.375 (3)C445—C4461.359 (4)
C11—C161.375 (3)C445—H4450.9300
C12—C131.385 (3)C446—H4460.9300
C12—H120.9300S451—C4521.696 (4)
C13—C141.364 (4)S451—C4551.706 (6)
C13—H130.9300C452—C4531.351 (7)
C14—C151.366 (4)C453—C4541.461 (10)
C14—H140.9300C453—H4530.9300
C15—C161.379 (4)C454—C4551.321 (7)
C15—H150.9300C454—H4540.9300
C16—H160.9300C455—H4550.9300
C31—H31A0.9600S551—C5551.707 (12)
C31—H31B0.9600C553—C5541.461 (14)
C31—H31C0.9600C553—H5530.9300
N41—C451.287 (4)C554—C5551.322 (12)
N41—N421.372 (3)C554—H5540.9300
N42—C4221.359 (4)C555—H5550.9300
N42—C431.484 (3)O51—C511.395 (3)
C43—C441.543 (4)C51—C561.366 (3)
C43—H430.9800C51—C521.379 (3)
C44—C451.496 (4)C52—C531.377 (4)
C44—H44A0.9700C52—Cl521.730 (3)
C44—H44B0.9700C53—C541.374 (4)
C45—C4521.439 (4)C53—H530.9300
S421—C4251.717 (3)C54—C551.353 (4)
S421—C4221.734 (3)C54—Cl541.737 (3)
C422—N4231.295 (3)C55—C561.379 (4)
N423—C4241.399 (3)C55—H550.9300
C424—C4251.356 (4)C56—H560.9300
C424—C4411.460 (4)
C5—N1—N2109.84 (19)C425—C424—C441127.3 (3)
C5—N1—C11130.5 (2)N423—C424—C441118.8 (3)
N2—N1—C11119.5 (2)C424—C425—S421112.0 (2)
C3—N2—N1105.3 (2)C424—C425—H425124.0
N2—C3—C4111.7 (2)S421—C425—H425124.0
N2—C3—C31120.5 (2)C442—C441—C446116.2 (3)
C4—C3—C31127.7 (2)C442—C441—C424121.8 (3)
C5—C4—C3104.5 (2)C446—C441—C424122.0 (3)
C5—C4—C43127.4 (3)C443—C442—C441122.0 (3)
C3—C4—C43128.1 (2)C443—C442—H442119.0
C4—C5—N1108.7 (2)C441—C442—H442119.0
C4—C5—O51128.6 (2)C442—C443—C444120.1 (3)
N1—C5—O51122.7 (2)C442—C443—H443119.9
C12—C11—C16120.1 (2)C444—C443—H443119.9
C12—C11—N1121.3 (2)C445—C444—C443119.3 (3)
C16—C11—N1118.6 (2)C445—C444—Br44120.4 (3)
C11—C12—C13119.4 (3)C443—C444—Br44120.3 (3)
C11—C12—H12120.3C446—C445—C444120.1 (3)
C13—C12—H12120.3C446—C445—H445120.0
C14—C13—C12120.7 (3)C444—C445—H445120.0
C14—C13—H13119.7C445—C446—C441122.3 (3)
C12—C13—H13119.7C445—C446—H446118.9
C13—C14—C15119.5 (3)C441—C446—H446118.9
C13—C14—H14120.2C452—S451—C45592.0 (3)
C15—C14—H14120.2C453—C452—C45124.7 (4)
C14—C15—C16120.9 (3)C453—C452—S451112.1 (3)
C14—C15—H15119.6C45—C452—S451123.2 (3)
C16—C15—H15119.6C452—C453—C454111.1 (6)
C11—C16—C15119.4 (3)C452—C453—H453124.4
C11—C16—H16120.3C454—C453—H453124.4
C15—C16—H16120.3C455—C454—C453112.2 (5)
C3—C31—H31A109.5C455—C454—H454123.9
C3—C31—H31B109.5C453—C454—H454123.9
H31A—C31—H31B109.5C454—C455—S451112.5 (4)
C3—C31—H31C109.5C454—C455—H455123.8
H31A—C31—H31C109.5S451—C455—H455123.8
H31B—C31—H31C109.5C554—C553—H553124.5
C45—N41—N42108.5 (3)C555—C554—C553111.9 (12)
C422—N42—N41119.3 (3)C555—C554—H554124.0
C422—N42—C43126.7 (3)C553—C554—H554124.0
N41—N42—C43114.0 (2)C554—C555—S551112.0 (15)
N42—C43—C4113.5 (2)C554—C555—H555124.0
N42—C43—C44100.3 (2)S551—C555—H555124.0
C4—C43—C44115.3 (2)C5—O51—C51115.95 (19)
N42—C43—H43109.1C56—C51—C52119.1 (2)
C4—C43—H43109.1C56—C51—O51123.4 (2)
C44—C43—H43109.1C52—C51—O51117.5 (2)
C45—C44—C43103.5 (2)C53—C52—C51120.9 (3)
C45—C44—H44A111.1C53—C52—Cl52119.7 (2)
C43—C44—H44A111.1C51—C52—Cl52119.4 (2)
C45—C44—H44B111.1C54—C53—C52118.8 (3)
C43—C44—H44B111.1C54—C53—H53120.6
H44A—C44—H44B109.0C52—C53—H53120.6
N41—C45—C452121.5 (3)C55—C54—C53120.7 (3)
N41—C45—C44113.6 (3)C55—C54—Cl54119.5 (2)
C452—C45—C44124.8 (3)C53—C54—Cl54119.8 (2)
C425—S421—C42287.62 (16)C54—C55—C56120.3 (3)
N423—C422—N42123.9 (3)C54—C55—H55119.8
N423—C422—S421116.5 (2)C56—C55—H55119.8
N42—C422—S421119.6 (3)C51—C56—C55120.1 (3)
C422—N423—C424109.9 (3)C51—C56—H56119.9
C425—C424—N423113.9 (3)C55—C56—H56119.9
C5—N1—N2—C30.4 (3)N42—C422—N423—C424178.4 (2)
C11—N1—N2—C3176.7 (2)S421—C422—N423—C4241.8 (3)
N1—N2—C3—C40.1 (3)C422—N423—C424—C4251.0 (3)
N1—N2—C3—C31178.2 (2)C422—N423—C424—C441179.2 (2)
N2—C3—C4—C50.6 (3)N423—C424—C425—S4210.1 (3)
C31—C3—C4—C5177.6 (2)C441—C424—C425—S421179.6 (2)
N2—C3—C4—C43178.6 (2)C422—S421—C425—C4240.9 (2)
C31—C3—C4—C433.2 (4)C425—C424—C441—C442179.8 (3)
C3—C4—C5—N10.8 (3)N423—C424—C441—C4420.5 (4)
C43—C4—C5—N1178.3 (2)C425—C424—C441—C4460.8 (4)
C3—C4—C5—O51177.3 (2)N423—C424—C441—C446179.5 (2)
C43—C4—C5—O513.5 (4)C446—C441—C442—C4430.5 (4)
N2—N1—C5—C40.8 (3)C424—C441—C442—C443179.6 (3)
C11—N1—C5—C4176.5 (2)C441—C442—C443—C4440.5 (5)
N2—N1—C5—O51177.4 (2)C442—C443—C444—C4450.1 (5)
C11—N1—C5—O511.7 (4)C442—C443—C444—Br44178.1 (2)
C5—N1—C11—C1222.9 (4)C443—C444—C445—C4460.3 (5)
N2—N1—C11—C12161.7 (2)Br44—C444—C445—C446178.5 (2)
C5—N1—C11—C16157.7 (3)C444—C445—C446—C4410.3 (5)
N2—N1—C11—C1617.7 (3)C442—C441—C446—C4450.1 (4)
C16—C11—C12—C131.5 (4)C424—C441—C446—C445179.2 (3)
N1—C11—C12—C13179.1 (2)N41—C45—C452—C453175.4 (5)
C11—C12—C13—C141.0 (4)C44—C45—C452—C4533.4 (6)
C12—C13—C14—C150.0 (4)N41—C45—C452—S4515.6 (4)
C13—C14—C15—C160.5 (5)C44—C45—C452—S451175.5 (2)
C12—C11—C16—C151.0 (4)C455—S451—C452—C4530.1 (4)
N1—C11—C16—C15179.6 (2)C455—S451—C452—C45179.0 (3)
C14—C15—C16—C110.0 (4)C45—C452—C453—C454179.4 (4)
C45—N41—N42—C422179.6 (2)S451—C452—C453—C4540.3 (6)
C45—N41—N42—C430.5 (3)C452—C453—C454—C4550.6 (7)
C422—N42—C43—C455.9 (4)C453—C454—C455—S4510.6 (7)
N41—N42—C43—C4125.0 (3)C452—S451—C455—C4540.4 (5)
C422—N42—C43—C44179.5 (2)C553—C554—C555—S5518 (16)
N41—N42—C43—C441.4 (3)C4—C5—O51—C5184.1 (3)
C5—C4—C43—N4263.0 (4)N1—C5—O51—C5193.9 (3)
C3—C4—C43—N42118.0 (3)C5—O51—C51—C5617.9 (3)
C5—C4—C43—C4451.9 (4)C5—O51—C51—C52162.1 (2)
C3—C4—C43—C44127.1 (3)C56—C51—C52—C530.5 (4)
N42—C43—C44—C451.7 (2)O51—C51—C52—C53179.5 (2)
C4—C43—C44—C45124.0 (2)C56—C51—C52—Cl52179.80 (19)
N42—N41—C45—C452179.8 (2)O51—C51—C52—Cl520.2 (3)
N42—N41—C45—C440.8 (3)C51—C52—C53—C540.1 (4)
C43—C44—C45—N411.7 (3)Cl52—C52—C53—C54179.63 (19)
C43—C44—C45—C452179.3 (2)C52—C53—C54—C550.5 (4)
N41—N42—C422—N423177.2 (2)C52—C53—C54—Cl54179.2 (2)
C43—N42—C422—N4231.9 (4)C53—C54—C55—C560.3 (4)
N41—N42—C422—S4212.6 (3)Cl54—C54—C55—C56179.3 (2)
C43—N42—C422—S421178.31 (19)C52—C51—C56—C550.7 (4)
C425—S421—C422—N4231.6 (2)O51—C51—C56—C55179.4 (2)
C425—S421—C422—N42178.6 (2)C54—C55—C56—C510.3 (4)
Hydrogen bonds and short inter- and intramolecular contacts (Å, °) top
Cg1 represents the centroid of the C11–C16 ring.
CompoundD—H···AD—HH···AD···AD—H···A
(Ia)N423—H42A···N2i0.92 (3)2.28 (3)3.111 (3)150 (2)
N423—H42A···N410.92 (3)2.27 (3)2.628 (4)103 (2)
(Ib)O61—H61···N20.88 (3)2.03 (3)2.900 (2)176 (2)
N423—H42A···O61ii0.84 (3)2.33 (3)3.154 (3)167 (3)
N423—H42B···N410.85 (3)2.27 (3)2.648 (3)107 (2)
(II)C13—H13···O424iii0.932.493.200 (7)133
C54—H54···Cg1iv0.932.913.714 (12)146
C553—H553···Cg1v0.932.923.76 (5)151
Symmetry codes: (i) 1 + x, y, z; (ii) 1 - x, 1 - y, 1 - z; (iii) x, -1 + y, z; (iv) 2 - x, -y, 1 - z; (v) -1 + x, y, z.
 

Acknowledgements

CHC thanks the University of Mysore for research facilities.

Funding information

HSY thanks the University Grants Commission, New Delhi for the award of a BSR Faculty Fellowship for three years.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBondock, S., Fadaly, W. & Metwally, M. A. (2010). Eur. J. Med. Chem. 45, 3692–3701.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCuartas, V., Insuasty, B., Cobo, J. & Glidewell, C. (2017). Acta Cryst. C73, 784–790.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGirisha, K. S., Kalluraya, B., Narayana, V. & Padmashree (2010). Eur. J. Med. Chem. 45, 4640–4644.  Google Scholar
First citationGlidewell, C., Kalluraya, B., Rathore, R. S. & Yathirajan, H. S. (2019). CSD Communication (deposition No. 1897876). CCDC, Cambridge, England.  Google Scholar
First citationHavrylyuk, D., Roman, O. & Lesyk, R. (2016). Eur. J. Med. Chem. 113, 145–166.  Web of Science CrossRef CAS PubMed Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Shetty, P. (2009). Eur. J. Med. Chem. 44, 3784–3787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIsloor, A. M., Kalluraya, B. & Pai, S. K. (2010). Eur. J. Med. Chem. 45, 825–830.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKiran Kumar, H., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2019). Acta Cryst. C75, 768–776.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationManju, N., Kalluraya, B., Asma, Madan Kumar, S., Revanasiddappa, B. & Chandra (2019). J. Med. Chem. Sci. 2, 101–109.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715–1720.  Web of Science PubMed Google Scholar
First citationRostom, S. A. F., El-Ashmawy, I. M., Abd El Razik, H. A., Badr, M. H. & Ashour, H. M. A. (2009). Bioorg. Med. Chem. 17, 882–895.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShahani, T., Fun, H.-K., Shetty, S. & Kalluraya, B. (2011). Acta Cryst. E67, o2646.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShaibah, M. A. E., Yathirajan, H. S., Manju, N., Kalluraya, B., Rathore, R. S. & Glidewell, C. (2020). Acta Cryst. E76, 48–52.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSulthana, S. S., Antony, S. A., Balachandran, C. & Shafi, S. S. (2015). Bioorg. Med. Chem. Lett. 25, 2753–2757.  Web of Science PubMed Google Scholar
First citationVijesh, A. M., Isloor, A. M., Shetty, P., Sundershan, S. & Fun, H.-K. (2013). Eur. J. Med. Chem. 62, 410–415.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVinutha, N., Kumar, S. M., Shobhitha, S., Kalluraya, B., Lokanath, N. K. & Revannasiddaiah, D. (2014). Acta Cryst. E70, o560.  CSD CrossRef IUCr Journals Google Scholar
First citationWood, P. A., Allen, F. H. & Pidcock, E. (2009). CrystEngComm, 11, 1563–1571.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds