research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of (3S,3aR,6aS)-3-(1,3-di­phenyl-1H-pyrazol-4-yl)-5-(4-meth­­oxy­phen­yl)-2-phenyl-3,3a,4,5,6,6a-hexa­hydro-2H-pyrrolo­[3,4-d][1,2]oxazole-4,6-dione

CROSSMARK_Color_square_no_text.svg

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cChemistry Department, Faculty of Science, Assuit University, Egypt, dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and fFaculty of Science, Department of Bio Chemistry, Beni Suef University, Beni Suef, Egypt
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 25 January 2021; accepted 1 March 2021; online 5 March 2021)

In the title compound, C33H26N4O4, the two fused five-membered rings and their N-bound aromatic substituents form a pincer-like motif. The relative conformations about the three chiral carbon atoms are established. In the crystal, a combination of C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π(ring) inter­actions leads to the formation of layers parallel to the bc plane. A Hirshfeld surface analysis indicates that the most significant contributions to the crystal packing are from H⋯H (44.3%), C⋯H/H⋯C (29.8%) and O⋯H/H⋯O (15.0%) contacts.

1. Chemical context

Oxazole scaffold compounds currently find application in medicinal drugs such as Aleglitazar (anti­diabetic), Ditazole (platelets aggregation inhibitor), Mubritinib (tyrosine kinase inhibitor), and Oxaprozin (COX-2 inhibitor) (Kakkar et al., 2018[Kakkar, S., Kumar, S., Lim, S. M., Ramasamy, K., Mani, V., Shah, S. A. A. & Narasimhan, B. (2018). Chem. Cent. J. 12, article No. 130. https://doi.org/10.1186/s13065-018-0499-x]). In addition they show anti-microbial (Tomi et al., 2015[Tomi, I. H. R., Tomma, J. H., Al-Daraji, A. H. R. & Al-Dujaili, A. H. (2015). J. Saudi Chem. Soc. 19, 392-398.]) and anti-cancer (Liu et al., 2009[Liu, X. H., Bai, L. S., Pan, C. X., Song, B. A. & Zhu, H. L. (2009). Chin. J. Chem. 27, 1957-1961.]) activity. In this context, we determined the crystal structure of the title compound.

[Scheme 1]

2. Structural commentary

A puckering analysis of the oxazole fragment (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) of the title mol­ecule (Fig. 1[link]) indicates it to have an envelope conformation on N1 with Q(2) = 0.3541 (14) Å and φ(2) = 223.2 (2)°. The pyrrolo­oxazole fragment is folded along the C2⋯C5 axis by 62.63 (8)° while the dihedral angle between the C2/C3/N2/C4/C5 and C27–C32 rings is 67.11 (8)°. The C9–C14 and C15–C20 rings are inclined to the C6/C7/N3/N4/C8 ring by 32.32 (9) and 33.52 (9)°, respectively.

[Figure 1]
Figure 1
The title mol­ecule with labeling scheme and 50% probability ellipsoids. The intra­molecular C—H⋯π(ring) inter­action is shown by a dashed line.

3. Supra­molecular features

In the crystal, the mol­ecules form chains along the c-axis direction through C33—H33A⋯N1 hydrogen bonds. On one side, the chains are connected by C7—H7⋯O3 and C31—H31⋯O3 hydrogen bonds and on the other by inversion-related C29—H29⋯O2 hydrogen bonds, forming layers parallel to the bc plane (Table 1[link] and Figs. 2[link] and 3[link]). The layer formation is bolstered by C2—H2⋯Cg5, C23—H23⋯Cg7, C28—H28⋯Cg6 and C32—H32⋯Cg4 inter­actions (Table 1[link] and Fig. 4[link]). The di­phenyl­pyrrole groups protrude from both faces of the layers.

Table 1
Hydrogen-bond geometry (Å, °)

Cg4, Cg5, Cg6 and Cg7 are the centroids of the C9–C14, C15–C20, C21–C26 and C27–C32 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg5i 0.992 (16) 2.817 (19) 3.7292 (17) 153.2 (12)
C7—H7⋯O3ii 0.954 (15) 2.329 (15) 3.2666 (16) 167.4 (12)
C22—H22⋯O4iii 0.981 (17) 2.648 (17) 3.4762 (18) 142.3 (13)
C23—H23⋯Cg7iii 0.970 (19) 2.97 (2) 3.6086 (18) 124.2 (16)
C28—H28⋯Cg6 0.986 (18) 2.66 (2) 3.4522 (17) 138.1 (14)
C29—H29⋯O2iii 0.950 (18) 2.374 (18) 3.2803 (17) 159.3 (14)
C31—H31⋯O3iv 0.985 (17) 2.360 (17) 3.3133 (17) 162.5 (14)
C32—H32⋯Cg4v 0.979 (16) 2.71 (2) 3.3750 (18) 125.3 (12)
C33—H33A⋯N1v 0.98 (2) 2.58 (2) 3.393 (2) 140.6 (17)
Symmetry codes: (i) [-x, -y+1, -z+1]; (ii) [-x+1, -y, -z+1]; (iii) [-x+1, -y+1, -z]; (iv) [-x+1, -y, -z]; (v) [x, y, z-1].
[Figure 2]
Figure 2
Detail of the inter­molecular C—H⋯O and C—H⋯N hydrogen bonds (black and light-blue dashed lines, respectively) viewed along the a-axis direction.
[Figure 3]
Figure 3
Packing viewed along the a-axis direction with C—H⋯O and C—H⋯N hydrogen bonds depicted as in Fig. 2[link]. The C—H⋯π(ring) inter­actions are omitted for clarity.
[Figure 4]
Figure 4
Detail of the C—H⋯π(ring) inter­actions (green dashed lines). C—H⋯O and C—H⋯N hydrogen bonds between the involved mol­ecules are depicted as in Fig. 2[link].

4. Hirshfeld surface analysis

A Hirshfeld surface analysis and the associated two-dimensional fingerprint plots were performed with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]) for the identification of the inter­molecular inter­actions in the title compound. Fig. 5[link](a) and Fig. 5[link](b) show the front and back sides of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.3067 to 1.6634 a.u. The red spots highlight the inter­atomic contacts, including the C—H⋯O hydrogen bonds.

[Figure 5]
Figure 5
(a) Front and (b) back sides of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm in the range −0.3067 to 1.6634 a.u.

The overall two-dimensional fingerprint plot, and those delineated into H⋯H (44.3%), C⋯H/H⋯C (29.8%) and O⋯H/H⋯O (15.0%) contacts (Table 2[link]) are illustrated in Fig. 6[link]ad, respectively. The other minor contributions to the Hirshfeld surface are by N⋯H/H⋯N (6.5%), C⋯C (1.8%), O⋯C/C⋯O (1.3%), N⋯O/O⋯N (0.5%), O⋯O (0.5%) and N⋯C/C⋯N (0.3%) contacts. The large number of H⋯H, C⋯H/H⋯C and O⋯H/H⋯O inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

Table 2
Summary of short inter­atomic contacts (Å) in the title compound

Contact Distance Symmetry operation
H7⋯O3 2.33 1 − x, −y, 1 − z
H29⋯O2 2.37 1 − x, 1 − y, −z
H31⋯O3 2.36 1 − x, −y, −z
N1⋯H33A 2.58 x, y, 1 + z
H16⋯H13 2.41 x, 1 − y, 2 − z
H2⋯C16 2.84 x, 1 − y, 1 − z
C13⋯H24 2.82 −1 + x, y, 1 + z
H17⋯H17 2.56 x, 2 − y, 1 − z
H24⋯H14 2.57 1 − x, 1 − y, 1 − z
[Figure 6]
Figure 6
A view of the two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, and (d) O⋯H/H⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

In the crystal structure of the related compound (6R,7aS)-1,3,5,6,7,7a-hexa­hydro-3-(2-hy­droxy­phen­yl)-1,1-di­phenyl­pyr­rolo­(1,2-c)(1,3)oxazol-6-ol [CSD Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcode FOMYEM: Shen et al., 2005[Shen, Z., Ding, Y., Zhang, Y., Zhang, Y. & Zhang, D.-C. (2005). Acta Cryst. E61, o1715-o1717.]], the mol­ecules are connected by O—H⋯O and C—H⋯O hydrogen bonds, forming chains along [010]. The chains further inter­act through C—H⋯O hydrogen bonds, stacking along [100]. In the third direction [001], there are only weak van der Waals inter­actions, which explains the thin plate habit of the crystals.

6. Synthesis and crystallization

A mixture of N-(4-meth­oxy­phen­yl) male­imide (0.6 g, 3 mmol) and (Z)-N-[(1,3-diphenyl-1H-pyrazol-4-yl)methyl­ene]benz­en­amine oxide (1.1 g, 3 mmol) in toluene (15 ml) was heated at 373 K under reflux for 24 h, the reaction was monitored by TLC. The endo isomer was filtered off as a major product. The title compound was recrystallized from a mixture of toluene and petroleum ether as colorless crystals in 60% yield; mp: 469–471 K.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms on C atoms were located in a difference-Fourier map and were freely refined.

Table 3
Experimental details

Crystal data
Chemical formula C33H26N4O4
Mr 542.58
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 150
a, b, c (Å) 11.5014 (3), 11.5340 (3), 11.7878 (3)
α, β, γ (°) 73.567 (1), 74.613 (1), 64.218 (1)
V3) 1332.10 (6)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.73
Crystal size (mm) 0.13 × 0.11 × 0.05
 
Data collection
Diffractometer Bruker D8 VENTURE PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.86, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 10211, 4940, 4357
Rint 0.027
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.05
No. of reflections 4940
No. of parameters 475
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.23, −0.20
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2016[Bruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]), and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/6 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(3S,3aR,6aS)-3-(1,3-Diphenyl-1H-pyrazol-4-yl)-5-(4-methoxyphenyl)-2-phenyl-3,3a,4,5,6,6a-hexahydro-2H-pyrrolo[3,4-d][1,2]oxazole-4,6-dione top
Crystal data top
C33H26N4O4Z = 2
Mr = 542.58F(000) = 568
Triclinic, P1Dx = 1.353 Mg m3
a = 11.5014 (3) ÅCu Kα radiation, λ = 1.54178 Å
b = 11.5340 (3) ÅCell parameters from 8367 reflections
c = 11.7878 (3) Åθ = 4.0–72.0°
α = 73.567 (1)°µ = 0.73 mm1
β = 74.613 (1)°T = 150 K
γ = 64.218 (1)°Block, colourless
V = 1332.10 (6) Å30.13 × 0.11 × 0.05 mm
Data collection top
Bruker D8 VENTURE PHOTON 100 CMOS
diffractometer
4940 independent reflections
Radiation source: INCOATEC IµS micro–focus source4357 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.027
Detector resolution: 10.4167 pixels mm-1θmax = 72.0°, θmin = 4.0°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1413
Tmin = 0.86, Tmax = 0.96l = 1314
10211 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037All H-atom parameters refined
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.394P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4940 reflectionsΔρmax = 0.23 e Å3
475 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL 2016/6 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0058 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.46877 (9)0.14792 (8)0.46118 (8)0.0270 (2)
O20.26199 (10)0.45329 (9)0.17596 (9)0.0302 (2)
O30.52260 (10)0.01734 (9)0.25051 (9)0.0336 (2)
O40.67552 (11)0.26355 (11)0.28302 (9)0.0390 (3)
N10.46935 (11)0.27693 (10)0.44250 (10)0.0245 (2)
N20.40487 (11)0.23670 (10)0.18438 (10)0.0236 (2)
N30.18502 (11)0.33463 (10)0.75289 (10)0.0246 (2)
N40.10816 (10)0.46224 (10)0.71745 (10)0.0243 (2)
C10.33181 (12)0.36685 (12)0.43619 (11)0.0228 (3)
H10.3304 (15)0.4527 (15)0.3909 (13)0.024 (4)*
C20.28461 (13)0.30151 (12)0.36855 (12)0.0245 (3)
H20.1901 (16)0.3188 (15)0.3945 (13)0.026 (4)*
C30.31112 (12)0.34491 (12)0.23320 (12)0.0238 (3)
C40.44410 (13)0.12338 (12)0.27068 (12)0.0258 (3)
C50.37528 (13)0.15754 (13)0.39352 (12)0.0265 (3)
H50.3347 (16)0.0972 (15)0.4409 (14)0.028 (4)*
C60.25513 (12)0.37807 (12)0.55967 (12)0.0235 (3)
C70.27413 (13)0.28120 (13)0.66093 (12)0.0256 (3)
H70.3367 (15)0.1930 (15)0.6739 (13)0.022 (4)*
C80.14996 (12)0.48910 (12)0.59946 (11)0.0228 (3)
C90.16696 (12)0.27185 (13)0.87539 (12)0.0253 (3)
C100.19210 (14)0.13870 (14)0.90401 (13)0.0289 (3)
H100.2233 (16)0.0892 (15)0.8422 (14)0.028 (4)*
C110.17540 (14)0.07874 (15)1.02412 (14)0.0345 (3)
H110.1937 (18)0.0118 (19)1.0384 (16)0.044 (5)*
C120.13366 (14)0.15145 (16)1.11359 (13)0.0355 (3)
H120.1232 (18)0.1059 (18)1.1967 (17)0.044 (5)*
C130.10923 (14)0.28455 (15)1.08380 (13)0.0331 (3)
H130.0795 (18)0.3375 (17)1.1455 (16)0.043 (5)*
C140.12613 (13)0.34511 (14)0.96421 (12)0.0281 (3)
H140.1116 (16)0.4389 (17)0.9412 (14)0.034 (4)*
C150.08571 (12)0.62188 (12)0.53116 (12)0.0241 (3)
C160.03690 (14)0.72978 (13)0.58761 (13)0.0285 (3)
H160.0510 (16)0.7157 (15)0.6670 (15)0.028 (4)*
C170.02833 (15)0.85474 (14)0.52723 (15)0.0351 (3)
H170.0626 (18)0.9299 (18)0.5673 (15)0.041 (5)*
C180.04373 (15)0.87516 (15)0.40921 (15)0.0386 (4)
H180.088 (2)0.962 (2)0.3644 (17)0.052 (5)*
C190.00554 (15)0.76944 (15)0.35259 (14)0.0361 (3)
H190.0036 (18)0.7840 (17)0.2689 (17)0.043 (5)*
C200.06899 (13)0.64321 (14)0.41334 (13)0.0289 (3)
H200.1000 (16)0.5690 (16)0.3741 (15)0.032 (4)*
C210.56878 (12)0.29685 (13)0.34556 (12)0.0250 (3)
C220.56937 (14)0.42275 (14)0.30470 (14)0.0318 (3)
H220.5019 (17)0.4971 (17)0.3399 (15)0.033 (4)*
C230.66806 (15)0.44335 (16)0.21469 (15)0.0373 (3)
H230.6673 (18)0.5311 (19)0.1846 (16)0.043 (5)*
C240.76798 (14)0.33984 (16)0.16605 (15)0.0375 (3)
H240.838 (2)0.3552 (18)0.1016 (17)0.049 (5)*
C250.76971 (14)0.21467 (15)0.20983 (14)0.0347 (3)
H250.8426 (18)0.1395 (18)0.1773 (16)0.040 (5)*
C260.67152 (13)0.19190 (14)0.29954 (13)0.0295 (3)
H260.6735 (17)0.1023 (17)0.3297 (15)0.035 (4)*
C270.46908 (12)0.24495 (12)0.06130 (11)0.0233 (3)
C280.54580 (14)0.31853 (13)0.01970 (12)0.0279 (3)
H280.5515 (17)0.3678 (17)0.0727 (16)0.038 (4)*
C290.61394 (14)0.32202 (14)0.09549 (13)0.0310 (3)
H290.6701 (17)0.3686 (17)0.1243 (15)0.037 (4)*
C300.60485 (13)0.25230 (13)0.16986 (12)0.0281 (3)
C310.52736 (13)0.17974 (13)0.12874 (12)0.0272 (3)
H310.5212 (16)0.1302 (16)0.1811 (15)0.033 (4)*
C320.45934 (13)0.17575 (13)0.01174 (12)0.0251 (3)
H320.4043 (16)0.1249 (15)0.0197 (14)0.026 (4)*
C330.67512 (19)0.1895 (2)0.36073 (16)0.0462 (4)
H33A0.587 (2)0.219 (2)0.3788 (19)0.063 (6)*
H33B0.710 (2)0.090 (2)0.3253 (19)0.062 (6)*
H33C0.731 (2)0.209 (2)0.4359 (19)0.056 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0298 (5)0.0207 (4)0.0256 (5)0.0064 (4)0.0054 (4)0.0018 (4)
O20.0324 (5)0.0225 (5)0.0320 (5)0.0048 (4)0.0113 (4)0.0039 (4)
O30.0408 (6)0.0213 (5)0.0303 (5)0.0045 (4)0.0039 (4)0.0070 (4)
O40.0393 (6)0.0507 (7)0.0265 (5)0.0213 (5)0.0036 (5)0.0087 (5)
N10.0233 (5)0.0207 (5)0.0256 (6)0.0052 (4)0.0043 (4)0.0041 (4)
N20.0254 (5)0.0220 (5)0.0219 (6)0.0075 (4)0.0032 (4)0.0056 (4)
N30.0244 (5)0.0212 (5)0.0224 (6)0.0050 (4)0.0017 (4)0.0040 (4)
N40.0231 (5)0.0218 (5)0.0244 (6)0.0057 (4)0.0032 (4)0.0048 (4)
C10.0214 (6)0.0211 (6)0.0221 (6)0.0048 (5)0.0033 (5)0.0044 (5)
C20.0218 (6)0.0245 (7)0.0250 (7)0.0069 (5)0.0019 (5)0.0067 (5)
C30.0220 (6)0.0224 (6)0.0276 (7)0.0071 (5)0.0063 (5)0.0062 (5)
C40.0286 (7)0.0221 (6)0.0263 (7)0.0100 (5)0.0041 (5)0.0044 (5)
C50.0291 (7)0.0232 (6)0.0256 (7)0.0105 (6)0.0019 (6)0.0041 (5)
C60.0227 (6)0.0225 (6)0.0232 (6)0.0066 (5)0.0023 (5)0.0062 (5)
C70.0255 (6)0.0224 (7)0.0234 (7)0.0049 (5)0.0010 (5)0.0061 (5)
C80.0221 (6)0.0220 (6)0.0237 (6)0.0075 (5)0.0031 (5)0.0062 (5)
C90.0208 (6)0.0268 (7)0.0240 (7)0.0074 (5)0.0026 (5)0.0024 (5)
C100.0273 (7)0.0271 (7)0.0283 (7)0.0083 (5)0.0041 (6)0.0038 (6)
C110.0282 (7)0.0302 (8)0.0356 (8)0.0083 (6)0.0051 (6)0.0024 (6)
C120.0273 (7)0.0434 (9)0.0257 (7)0.0110 (6)0.0023 (6)0.0019 (6)
C130.0236 (6)0.0436 (8)0.0263 (7)0.0091 (6)0.0000 (6)0.0088 (6)
C140.0230 (6)0.0298 (7)0.0275 (7)0.0077 (5)0.0003 (5)0.0072 (5)
C150.0191 (6)0.0227 (6)0.0276 (7)0.0064 (5)0.0023 (5)0.0051 (5)
C160.0284 (7)0.0255 (7)0.0289 (7)0.0103 (6)0.0002 (6)0.0060 (5)
C170.0313 (7)0.0218 (7)0.0439 (9)0.0061 (6)0.0002 (6)0.0066 (6)
C180.0310 (7)0.0262 (7)0.0467 (9)0.0049 (6)0.0104 (7)0.0040 (6)
C190.0314 (7)0.0390 (8)0.0339 (8)0.0103 (6)0.0133 (6)0.0008 (6)
C200.0240 (6)0.0301 (7)0.0314 (7)0.0074 (5)0.0071 (6)0.0068 (6)
C210.0212 (6)0.0284 (7)0.0240 (6)0.0072 (5)0.0069 (5)0.0039 (5)
C220.0249 (7)0.0302 (7)0.0404 (8)0.0098 (6)0.0064 (6)0.0075 (6)
C230.0283 (7)0.0354 (8)0.0483 (9)0.0157 (6)0.0081 (7)0.0013 (7)
C240.0238 (7)0.0463 (9)0.0398 (9)0.0157 (6)0.0042 (6)0.0021 (7)
C250.0219 (7)0.0401 (8)0.0354 (8)0.0068 (6)0.0023 (6)0.0084 (6)
C260.0226 (6)0.0290 (7)0.0310 (7)0.0048 (5)0.0057 (6)0.0044 (6)
C270.0231 (6)0.0228 (6)0.0209 (6)0.0060 (5)0.0039 (5)0.0043 (5)
C280.0322 (7)0.0268 (7)0.0274 (7)0.0127 (6)0.0078 (6)0.0045 (5)
C290.0332 (7)0.0310 (7)0.0312 (7)0.0173 (6)0.0061 (6)0.0007 (6)
C300.0259 (6)0.0300 (7)0.0224 (7)0.0077 (5)0.0028 (5)0.0026 (5)
C310.0274 (7)0.0284 (7)0.0258 (7)0.0083 (5)0.0053 (6)0.0086 (5)
C320.0236 (6)0.0236 (6)0.0280 (7)0.0084 (5)0.0047 (5)0.0055 (5)
C330.0416 (9)0.0681 (13)0.0281 (8)0.0206 (9)0.0018 (7)0.0166 (8)
Geometric parameters (Å, º) top
O1—N11.4440 (14)C14—H140.986 (17)
O1—C51.4511 (16)C15—C201.3905 (19)
O2—C31.2032 (16)C15—C161.4034 (18)
O3—C41.2073 (16)C16—C171.382 (2)
O4—C301.3694 (17)C16—H160.949 (16)
O4—C331.420 (2)C17—C181.390 (2)
N1—C211.4329 (17)C17—H170.982 (18)
N1—C11.4748 (16)C18—C191.383 (2)
N2—C41.3875 (17)C18—H180.97 (2)
N2—C31.3993 (16)C19—C201.389 (2)
N2—C271.4400 (17)C19—H190.978 (19)
N3—N41.3559 (15)C20—H200.972 (17)
N3—C71.3580 (17)C21—C261.3939 (19)
N3—C91.4257 (16)C21—C221.397 (2)
N4—C81.3389 (17)C22—C231.387 (2)
C1—C61.4965 (18)C22—H220.981 (17)
C1—C21.5570 (17)C23—C241.385 (2)
C1—H10.978 (16)C23—H230.970 (19)
C2—C51.5204 (18)C24—C251.382 (2)
C2—C31.5205 (18)C24—H240.99 (2)
C2—H20.992 (16)C25—C261.389 (2)
C4—C51.5237 (19)C25—H250.994 (18)
C5—H50.969 (16)C26—H260.985 (17)
C6—C71.3757 (19)C27—C321.3815 (18)
C6—C81.4192 (17)C27—C281.3877 (19)
C7—H70.954 (15)C28—C291.375 (2)
C8—C151.4742 (18)C28—H280.986 (18)
C9—C141.3874 (19)C29—C301.395 (2)
C9—C101.3886 (19)C29—H290.950 (18)
C10—C111.392 (2)C30—C311.386 (2)
C10—H100.951 (16)C31—C321.393 (2)
C11—C121.388 (2)C31—H310.985 (17)
C11—H110.945 (19)C32—H320.979 (16)
C12—C131.390 (2)C33—H33A0.98 (2)
C12—H120.976 (19)C33—H33B1.03 (2)
C13—C141.389 (2)C33—H33C0.98 (2)
C13—H130.978 (18)
N1—O1—C5107.88 (9)C13—C14—H14121.2 (9)
C30—O4—C33117.49 (12)C20—C15—C16118.93 (13)
C21—N1—O1112.08 (10)C20—C15—C8121.98 (12)
C21—N1—C1118.58 (10)C16—C15—C8119.08 (12)
O1—N1—C1104.26 (9)C17—C16—C15120.27 (14)
C4—N2—C3112.73 (11)C17—C16—H16120.8 (9)
C4—N2—C27122.68 (11)C15—C16—H16119.0 (9)
C3—N2—C27123.94 (10)C16—C17—C18120.35 (14)
N4—N3—C7112.51 (11)C16—C17—H17119.9 (10)
N4—N3—C9120.07 (10)C18—C17—H17119.7 (10)
C7—N3—C9127.42 (11)C19—C18—C17119.65 (14)
C8—N4—N3104.61 (10)C19—C18—H18118.2 (12)
N1—C1—C6110.28 (10)C17—C18—H18122.2 (12)
N1—C1—C2103.54 (10)C18—C19—C20120.39 (14)
C6—C1—C2112.28 (11)C18—C19—H19119.6 (11)
N1—C1—H1108.2 (9)C20—C19—H19120.0 (11)
C6—C1—H1110.3 (9)C19—C20—C15120.39 (13)
C2—C1—H1112.0 (9)C19—C20—H20119.9 (10)
C5—C2—C3105.11 (10)C15—C20—H20119.7 (10)
C5—C2—C1103.42 (10)C26—C21—C22119.39 (13)
C3—C2—C1112.44 (10)C26—C21—N1121.46 (12)
C5—C2—H2114.6 (9)C22—C21—N1118.85 (12)
C3—C2—H2109.0 (9)C23—C22—C21119.91 (14)
C1—C2—H2112.1 (9)C23—C22—H22119.0 (10)
O2—C3—N2124.77 (12)C21—C22—H22121.0 (10)
O2—C3—C2126.87 (12)C24—C23—C22120.74 (14)
N2—C3—C2108.36 (10)C24—C23—H23119.2 (11)
O3—C4—N2125.05 (13)C22—C23—H23120.0 (11)
O3—C4—C5126.56 (12)C25—C24—C23119.17 (14)
N2—C4—C5108.36 (11)C25—C24—H24120.5 (11)
O1—C5—C2106.71 (10)C23—C24—H24120.4 (11)
O1—C5—C4110.42 (11)C24—C25—C26121.04 (14)
C2—C5—C4105.31 (11)C24—C25—H25119.7 (10)
O1—C5—H5106.3 (9)C26—C25—H25119.3 (10)
C2—C5—H5116.3 (9)C25—C26—C21119.67 (13)
C4—C5—H5111.7 (9)C25—C26—H26120.3 (10)
C7—C6—C8104.76 (11)C21—C26—H26120.0 (10)
C7—C6—C1126.68 (11)C32—C27—C28120.90 (12)
C8—C6—C1128.55 (12)C32—C27—N2120.45 (12)
N3—C7—C6106.86 (11)C28—C27—N2118.57 (11)
N3—C7—H7121.3 (9)C29—C28—C27119.68 (12)
C6—C7—H7131.8 (9)C29—C28—H28120.3 (10)
N4—C8—C6111.26 (11)C27—C28—H28120.0 (10)
N4—C8—C15118.98 (11)C28—C29—C30119.83 (13)
C6—C8—C15129.76 (12)C28—C29—H29120.8 (10)
C14—C9—C10121.14 (13)C30—C29—H29119.3 (10)
C14—C9—N3119.11 (12)O4—C30—C31124.41 (13)
C10—C9—N3119.75 (12)O4—C30—C29115.05 (12)
C9—C10—C11118.96 (13)C31—C30—C29120.53 (13)
C9—C10—H10120.1 (9)C30—C31—C32119.40 (12)
C11—C10—H10120.9 (10)C30—C31—H31120.6 (10)
C12—C11—C10120.31 (14)C32—C31—H31120.0 (10)
C12—C11—H11124.3 (11)C27—C32—C31119.65 (12)
C10—C11—H11115.4 (11)C27—C32—H32119.3 (9)
C11—C12—C13120.17 (14)C31—C32—H32121.1 (9)
C11—C12—H12117.9 (11)O4—C33—H33A110.8 (13)
C13—C12—H12121.9 (11)O4—C33—H33B111.9 (12)
C14—C13—C12119.92 (14)H33A—C33—H33B109.9 (18)
C14—C13—H13118.7 (11)O4—C33—H33C105.6 (12)
C12—C13—H13121.4 (11)H33A—C33—H33C107.3 (17)
C9—C14—C13119.49 (13)H33B—C33—H33C111.2 (17)
C9—C14—H14119.3 (9)
C5—O1—N1—C2193.40 (11)N4—N3—C9—C10148.20 (12)
C5—O1—N1—C136.07 (12)C7—N3—C9—C1031.9 (2)
C7—N3—N4—C80.44 (14)C14—C9—C10—C110.2 (2)
C9—N3—N4—C8179.62 (11)N3—C9—C10—C11179.26 (12)
C21—N1—C1—C6151.26 (11)C9—C10—C11—C120.3 (2)
O1—N1—C1—C683.28 (11)C10—C11—C12—C130.5 (2)
C21—N1—C1—C288.43 (13)C11—C12—C13—C140.2 (2)
O1—N1—C1—C237.03 (12)C10—C9—C14—C130.4 (2)
N1—C1—C2—C524.76 (12)N3—C9—C14—C13179.52 (12)
C6—C1—C2—C594.18 (12)C12—C13—C14—C90.2 (2)
N1—C1—C2—C388.10 (12)N4—C8—C15—C20145.50 (13)
C6—C1—C2—C3152.95 (11)C6—C8—C15—C2034.8 (2)
C4—N2—C3—O2179.52 (12)N4—C8—C15—C1632.83 (18)
C27—N2—C3—O29.52 (19)C6—C8—C15—C16146.91 (14)
C4—N2—C3—C21.03 (14)C20—C15—C16—C170.9 (2)
C27—N2—C3—C2169.93 (11)C8—C15—C16—C17177.43 (12)
C5—C2—C3—O2178.08 (13)C15—C16—C17—C181.4 (2)
C1—C2—C3—O266.26 (17)C16—C17—C18—C190.6 (2)
C5—C2—C3—N21.36 (13)C17—C18—C19—C200.6 (2)
C1—C2—C3—N2113.18 (11)C18—C19—C20—C151.1 (2)
C3—N2—C4—O3179.04 (13)C16—C15—C20—C190.3 (2)
C27—N2—C4—O39.9 (2)C8—C15—C20—C19178.64 (13)
C3—N2—C4—C53.01 (15)O1—N1—C21—C2615.87 (16)
C27—N2—C4—C5168.09 (11)C1—N1—C21—C26137.45 (12)
N1—O1—C5—C219.58 (12)O1—N1—C21—C22170.53 (11)
N1—O1—C5—C494.36 (11)C1—N1—C21—C2248.95 (16)
C3—C2—C5—O1114.40 (11)C26—C21—C22—C233.3 (2)
C1—C2—C5—O13.69 (13)N1—C21—C22—C23177.07 (13)
C3—C2—C5—C42.97 (13)C21—C22—C23—C241.2 (2)
C1—C2—C5—C4121.07 (11)C22—C23—C24—C251.2 (2)
O3—C4—C5—O166.77 (17)C23—C24—C25—C261.5 (2)
N2—C4—C5—O1111.15 (11)C24—C25—C26—C210.6 (2)
O3—C4—C5—C2178.40 (13)C22—C21—C26—C253.0 (2)
N2—C4—C5—C23.68 (14)N1—C21—C26—C25176.59 (12)
N1—C1—C6—C733.17 (18)C4—N2—C27—C3268.77 (17)
C2—C1—C6—C781.74 (16)C3—N2—C27—C32121.14 (14)
N1—C1—C6—C8145.50 (13)C4—N2—C27—C28108.13 (14)
C2—C1—C6—C899.60 (15)C3—N2—C27—C2861.95 (17)
N4—N3—C7—C60.12 (15)C32—C27—C28—C290.5 (2)
C9—N3—C7—C6179.94 (12)N2—C27—C28—C29176.40 (12)
C8—C6—C7—N30.22 (14)C27—C28—C29—C300.4 (2)
C1—C6—C7—N3178.70 (12)C33—O4—C30—C313.9 (2)
N3—N4—C8—C60.58 (14)C33—O4—C30—C29176.95 (14)
N3—N4—C8—C15179.64 (11)C28—C29—C30—O4179.37 (12)
C7—C6—C8—N40.51 (15)C28—C29—C30—C310.2 (2)
C1—C6—C8—N4178.38 (12)O4—C30—C31—C32179.77 (12)
C7—C6—C8—C15179.73 (13)C29—C30—C31—C320.7 (2)
C1—C6—C8—C151.4 (2)C28—C27—C32—C310.0 (2)
N4—N3—C9—C1432.70 (18)N2—C27—C32—C31176.82 (11)
C7—N3—C9—C14147.23 (13)C30—C31—C32—C270.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg4, Cg5, Cg6 and Cg7 are the centroids of the C9–C14, C15–C20, C21–C26 and C27–C32 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg5i0.992 (16)2.817 (19)3.7292 (17)153.2 (12)
C7—H7···O3ii0.954 (15)2.329 (15)3.2666 (16)167.4 (12)
C22—H22···O4iii0.981 (17)2.648 (17)3.4762 (18)142.3 (13)
C23—H23···Cg7iii0.970 (19)2.97 (2)3.6086 (18)124.2 (16)
C28—H28···Cg60.986 (18)2.66 (2)3.4522 (17)138.1 (14)
C29—H29···O2iii0.950 (18)2.374 (18)3.2803 (17)159.3 (14)
C31—H31···O3iv0.985 (17)2.360 (17)3.3133 (17)162.5 (14)
C32—H32···Cg4v0.979 (16)2.71 (2)3.3750 (18)125.3 (12)
C33—H33A···N1v0.98 (2)2.58 (2)3.393 (2)140.6 (17)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1, z; (iv) x+1, y, z; (v) x, y, z1.
Summary of short interatomic contacts (Å) in the title compound top
ContactDistanceSymmetry operation
H7···O32.331 - x, -y, 1 - z
H29···O22.371 - x, 1 - y, -z
H31···O32.361 - x, -y, -z
N1···H33A2.58x, y, 1 + z
H16···H132.41-x, 1 - y, 2 - z
H2···C162.84-x, 1 - y, 1 - z
C13···H242.82-1 + x, y, 1 + z
H17···H172.56-x, 2 - y, 1 - z
H24···H142.571 - x, 1 - y, 1 - z
 

Funding information

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged.

References

First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationKakkar, S., Kumar, S., Lim, S. M., Ramasamy, K., Mani, V., Shah, S. A. A. & Narasimhan, B. (2018). Chem. Cent. J. 12, article No. 130. https://doi.org/10.1186/s13065-018-0499-x  Google Scholar
First citationLiu, X. H., Bai, L. S., Pan, C. X., Song, B. A. & Zhu, H. L. (2009). Chin. J. Chem. 27, 1957–1961.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShen, Z., Ding, Y., Zhang, Y., Zhang, Y. & Zhang, D.-C. (2005). Acta Cryst. E61, o1715–o1717.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTomi, I. H. R., Tomma, J. H., Al-Daraji, A. H. R. & Al-Dujaili, A. H. (2015). J. Saudi Chem. Soc. 19, 392–398.  Web of Science CrossRef Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds