research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

`Foxtrot' fumarate: a water-soluble salt of N,N-di­allyl-5-methoxytryptamine (5-MeO-DALT)

CROSSMARK_Color_square_no_text.svg

aUniversity of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA, and bCaaMTech, Inc., 58 East Sunset Way, Suite 209, Issaquah, WA 98027, USA
*Correspondence e-mail: dmanke@umassd.edu

Edited by D. Gray, University of Illinois Urbana-Champaign, USA (Received 19 January 2021; accepted 16 March 2021; online 19 March 2021)

The title compound, bis­(N,N-diallyl-5-meth­oxy­tryptammonium) (5-MeO-DALT) fumarate (systematic name: bis­{N-[2-(5-meth­oxy-1H-indol-3-yl)eth­yl]- N-(prop-2-en-1-yl)prop-2-en-1-aminium} (E)-but-2-enedioate), 2C17H23N2O+·C4H2O42−, has a single tryptammonium cation and half of a fumarate dianion in the asymmetric unit. The tryptammonium and fumarate ions are held together in one-dimensional chains by a series of N—H⋯O hydrogen bonds. These chains are combinations of R44(22) rings, and C22(14) and C44(28) parallel chains along [111].

1. Chemical context

Psychotropic compounds have gained a lot of attention in recent years for their potential as therapeutics to treat depression, anxiety, post-traumatic stress disorder, and addiction, among other disorders (Nichols & Hendricks, 2020[Nichols, C. D. & Hendricks, P. S. (2020). Handb. Behav. Neurosci, 31, 959-966.]). 5-Meth­oxy-N,N-di­methyl­tryptamine (5-MeO-DMT) is a naturally occurring tryptamine found in the parotid gland of some toads, and this compound has been explored for its clinical effects in treating mood disorders (Davis et al., 2018[Davis, A. K., Barsuglia, J. P., Lancelotta, R., Grant, R. M. & Renn, E. (2018). J. Psychopharmacol. 32, 779-792.]). 5-MeO-DMT is highly active at the serotonin (5-hy­droxy­tryptamine, 5-HT) 2A receptor, which is the origin of its psychotropic activity. It can be administered via inhalation or injection, but does not function as a psychedelic when consumed orally (Weil & Davis, 1994[Weil, A. T. & Davis, W. (1994). J. Ethnopharmacol. 41, 1-8.]). A recent report described the synthesis of a water-soluble succinate salt of 5-MeO-DMT (Sherwood et al., 2020[Sherwood, A. M., Claveau, R., Lancelotta, R., Kaylo, K. W. & Lenoch, K. (2020). ACS Omega, 5, 32067-32075.]).

[Scheme 1]

5-Meth­oxy-N,N-di­allyl­tryptamine (5-MeO-DALT) is a synthetic analogue of 5-MeO-DMT, which was synthesized in 2004 by Alexander Shulgin (Shulgin & Shulgin, 2016[Shulgin, A. T. & Shulgin, A. (2016). TiKHAL: The Continuation. Isomerdesign. Available at: https://isomerdesign.com/PiHKAL/read.php?domain=tk&id=56. Accessed 25 December 2020.]). The compound has potential as a therapeutic because it has a quick onset and rapid drop-off relative to other psychotropic tryptamines (Corkery et al., 2012[Corkery, J. M., Durkin, E., Elliott, S., Schifano, F. & Ghodse, A. H. (2012). Prog. Neuropsychopharmacol. Biol. Psychiatry, 39, 259-262.]). Unlike 5-MeO-DMT, 5-MeO-DALT demonstrates activity when consumed orally, further improving its potential as a drug candidate. 5-MeO-DALT shows activity at a number of serotonin receptors, including 5-HT1A, 5-HT1D, 5-HT2A, 5-HT2B, 5-HT6 and 5-HT7 (Cozzi & Daley, 2016[Cozzi, N. V. & Daley, P. F. (2016). Bioorg. Med. Chem. Lett. 26, 959-964.]). As this class of mol­ecules become more significant in the treatment of mood disorders, it is important to have analytically pure, well-characterized, crystalline material to study the unique impact of individual compounds from the diverse range of compounds. It is also important to explore the effects of analytically pure combinations of these compounds to explore potential entourage effects. To best administer these compounds orally active, water-soluble crystalline materials are ideal. To that end, we set out to synthesize a water-soluble salt of 5-MeO-DALT, and report the synthesis and structure of bis­(5-meth­oxy-N,N-di­allyl­tryptammonium) fumarate herein.

2. Structural commentary

The asymmetric unit of bis­(5-meth­oxy-N,N-di­allyl­tryptammonium) fumarate contains one tryptammonium cation and one half of a fumarate dianion (Fig. 1[link]). The cation possesses a near planar indole ring, with a mean deviation from planarity of 0.011 Å. The meth­oxy group is turned slightly away from this plane, with a C2—C3—O1—C17 torsion angle of −13.9 (2)°. The ethyl­amino group is turned away from this plane, with a C7—C8—C9—C10 torsion angle of −103.9 (2)°. The second half of the fumarate dianion is generated by inversion, and the dianion is near planar, with a mean deviation from planarity of 0.057 Å. The carboxyl­ate unit is delocalized, with C—O distances of 1.271 (2) and 1.240 (2) Å. The nature of this salt allows for it to have high solubility in water, while the freebase does not.

[Figure 1]
Figure 1
The mol­ecular structure of bis­(5-meth­oxy-N,N-di­allyl­tryptammonium) fumarate, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. Symmetry code: (i) −x, 1 − y, −z.

3. Supra­molecular features

The tryptammonium cation and the fumarate dianion are linked together in the asymmetric unit through an N—H⋯O hydrogen bond between the ammonium nitro­gen and a carboxyl­ate oxygen (Table 1[link], Fig. 2[link]). The indole nitro­gen also exhibits an N—H⋯O hydrogen bond with another symmetry generated fumarate dianion. Two tryptammonium cations and two fumarate dianions are joined together through the N—H⋯O hydrogen bonds to form rings with graph-set notation R44(22) (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). The rings are joined together by two parallel chains along [111]. These chains have graph-set notation C22(14) and C44(28). The chains and rings are shown in Fig. 3[link]. The hydrogen bond donor–acceptor distances of 2.5669 (16) Å and 2.7729 (17) Å indicate strong hydrogen bonds, with the N2—H2⋯O3 bond being stronger due to a charged donor and acceptor (Desiraju & Steiner, 2001[Desiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.87 (1) 1.91 (1) 2.7729 (17) 175 (2)
N2—H2⋯O3 0.90 (1) 1.68 (1) 2.5669 (16) 171 (2)
Symmetry code: (i) [-x+1, -y+2, -z+1].
[Figure 2]
Figure 2
The crystal packing of bis­(5-meth­oxy-N,N-di­allyl­tryptammonium) fumarate, viewed along the b axis. The N—H⋯O hydrogen bonds (Table 1[link]) are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.
[Figure 3]
Figure 3
The hydrogen-bonding network along [111], which consists of R44(22) rings that are joined together by two parallel C22(14) and C44(28) chains. The three components described in graph-set notation and the combined chain are shown. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity. Hydrogen bonds are shown as dashed lines.

4. Database survey

The structure of the freebase of 5-MeO-DALT has previously been reported (CCDC 1995802; Chadeayne et al., 2020d[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020d). IUCrData, 5, x200498.]). The other tryptamine fumarate salts reported are those of 4-hy­droxy-N-methyl-N-iso­propyl­tryptamine (4-HO-MiPT) (TUFQAP; Chadeayne et al., 2020a[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020a). Acta Cryst. E76, 514-517.]), norpsilocin (4-HO-NMT) (MULXEZ; Chadeayne et al., 2020b[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020b). Acta Cryst. E76, 589-593.]), 4-acet­oxy-N,N-di­methyl­tryptamine (4-AcO-DMT) (XOFDOO; Chadeayne, Golen & Manke, 2019a[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 900-902.]) and 4-hy­droxy-N,N-di-n-propyl­tryptamine (4-HO-DPT) (WUCGAF; Chadeayne, Pham et al., 2019b[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019b). IUCrData, 4, x191469.]). There have also been a number of hydro­fumarate tryptamine salts reported, namely those of 4-AcO-DMT (HOCJUH; Chadeayne, Golen & Manke, 2019b[Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2019b). Psychedelic Science Review, https://psychedelicreview.com/the-crystal-structure-of-4-aco-dmt-fumarate/]), N-methyl-N-iso­propyl­tryptamine (MiPT) and 4-HO-MiPT (RONSOF and RONSUL; Chadeayne, Pham et al., 2019a[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 1316-1320.]), N-ethyl-N-n-propyl­tryptamine (EPT) and N-methyl-N-allyl­tryptamine (MALT) (GUPBOL and GUPBUR; Chadeayne et al., 2020c[Chadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020c). Acta Cryst. E76, 1201-1205.]). The MALT structure is the only other structure of an N-allyl tryptamine reported. There are a number of other 5-O-substituted tryptamines whose structures have been reported, including bufotenine (BUFTEN; Falkenberg, 1972[Falkenberg, G. (1972). Acta Cryst. B28, 3075-3083.]), 5-MeO-DMT hydro­chloride (MOTYPT; Falkenberg & Carlström, 1971[Falkenberg, G. & Carlström, D. (1971). Acta Cryst. B27, 411-418.]), 5-meth­oxy­tryptamine (MXTRUP; Quarles et al., 1974[Quarles, W. G., Templeton, D. H. & Zalkin, A. (1974). Acta Cryst. B30, 95-98.]), 5-MeO-DMT and 5-meth­oxy­mono­methyl­tryptamine (QQQAGY and QQQAHA; Bergin et al., 1968[Bergin, R., Carlström, D., Falkenberg, G. & Ringertz, H. (1968). Acta Cryst. B24, 882.]). Three 2-Me-substituted 5-MeO-tryptamines were recently reported (CCDC 2058143, 2058144, 2058145; Pham et al. 2021[Pham, D. N. K., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). Acta Cryst. E77, 190-194.]).

5. Synthesis and crystallization

110 mg of 5-MeO-DALT freebase were dissolved in 10 mL of methanol and 47 mg of fumaric acid was added and refluxed overnight. 129 mg (82% yield) of white powder was obtained upon removal of solvent in vacuo. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an aqueous solution. The product was analysed by 1H NMR and 13C NMR. 1H NMR (400 MHz, D2O): δ 7.44 (d, J = 8.8 Hz, 1 H, ArH), 7.27 (s, 1 H, ArH), 7.10 (d, J = 2.3 Hz, 1 H, ArH), 6.94 (dd, J = 8.8, 2.4 Hz, 1 H, ArH), 6.67 (s, 2 H, CH), 5.91–5.81 (m, 2 H, CH), 5.62–5.56 (m, 4 H, CH2), 3.87 (s, 3 H, CH3), 3.79 (d, J = 7.2 Hz, 4 H, CH2), 3.42–3.38 (m, 2 H, CH2), 3.17–3.13 (m, 2 H, CH2); 13C NMR (100 MHz, D2O): δ 172.1 (COO), 152.7 (CH), 135.3 (ArC), 132.5 (ArC), 127.22 (ArC), 127.20 (ArC), 126.2 (ArC), 125.8 (ArC), 113.7 (ArC), 112.6 (ArC), 108.9 (CH=CH2), 101.3 (CH=CH2), 56.8 (AkC), 55.7 (AkC), 52.2 (AkC), 20.4 (AkC).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms on the indole nitro­gen (H1), and the amine (H2), were found in a difference-Fourier map and were refined isotropically, using DFIX restraints with N—H distances of 0.87 (1) Å. Isotropic displacement parameters were set to 1.2Ueq of the parent nitro­gen atom. All other hydrogen atoms were placed in calculated positions (C—H = 0.93–0.97 Å). Isotropic displacement parameters were set to 1.2Ueq (CH,CH2) or 1.5Ueq (CH3).

Table 2
Experimental details

Crystal data
Chemical formula C17H23N2O+·0.5C4H2O42−
Mr 328.40
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 297
a, b, c (Å) 7.8791 (7), 9.2908 (7), 13.5352 (11)
α, β, γ (°) 108.081 (3), 104.365 (3), 95.903 (3)
V3) 894.87 (13)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.34 × 0.28 × 0.22
 
Data collection
Diffractometer Bruker D8 Venture CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.711, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 27913, 3383, 2788
Rint 0.035
(sin θ/λ)max−1) 0.611
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.114, 1.05
No. of reflections 3383
No. of parameters 226
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.16
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis{N-[2-(5-methoxy-1H-indol-3-yl)ethyl]- N-(prop-2-en-1-yl)prop-2-en-1-aminium} (E)-but-2-enedioate top
Crystal data top
C17H23N2O+·0.5C4H2O42Z = 2
Mr = 328.40F(000) = 352
Triclinic, P1Dx = 1.219 Mg m3
a = 7.8791 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2908 (7) ÅCell parameters from 9847 reflections
c = 13.5352 (11) Åθ = 2.7–25.7°
α = 108.081 (3)°µ = 0.08 mm1
β = 104.365 (3)°T = 297 K
γ = 95.903 (3)°Block, orange
V = 894.87 (13) Å30.34 × 0.28 × 0.22 mm
Data collection top
Bruker D8 Venture CMOS
diffractometer
2788 reflections with I > 2σ(I)
φ and ω scansRint = 0.035
Absorption correction: multi-scan
(SADABS; Bruker, 2018)
θmax = 25.7°, θmin = 2.7°
Tmin = 0.711, Tmax = 0.745h = 99
27913 measured reflectionsk = 1111
3383 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0485P)2 + 0.266P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3383 reflectionsΔρmax = 0.26 e Å3
226 parametersΔρmin = 0.16 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.32558 (15)0.59832 (14)0.09859 (10)0.0582 (3)
O20.21841 (18)0.81313 (14)0.10656 (11)0.0675 (4)
O10.7398 (2)0.32650 (13)0.56660 (10)0.0647 (4)
N10.7725 (2)0.95161 (15)0.70532 (10)0.0491 (3)
H10.773 (2)1.0212 (17)0.7654 (10)0.058 (5)*
N20.63718 (16)0.74775 (14)0.22313 (9)0.0392 (3)
H20.5248 (15)0.704 (2)0.1812 (15)0.078 (6)*
C10.77565 (19)0.72996 (16)0.57820 (11)0.0372 (3)
C20.7682 (2)0.57053 (17)0.53501 (11)0.0412 (3)
H2A0.7748060.5244000.4648480.049*
C30.7507 (2)0.48447 (17)0.59951 (12)0.0453 (4)
C40.7447 (2)0.55271 (19)0.70629 (13)0.0503 (4)
H40.7355050.4913810.7482340.060*
C50.7522 (2)0.70801 (19)0.74980 (12)0.0494 (4)
H50.7478390.7530960.8205810.059*
C60.7667 (2)0.79678 (17)0.68493 (11)0.0420 (3)
C70.7879 (2)0.98335 (18)0.61541 (12)0.0460 (4)
H70.7952381.0808100.6096120.055*
C80.79099 (19)0.85197 (16)0.53544 (11)0.0386 (3)
C90.80805 (19)0.83539 (17)0.42450 (11)0.0400 (3)
H9A0.8940160.7704550.4093450.048*
H9B0.8528860.9361300.4237230.048*
C100.63041 (19)0.76520 (17)0.33583 (11)0.0386 (3)
H10A0.5871590.6643070.3369600.046*
H10B0.5445680.8294010.3527760.046*
C110.7478 (2)0.63509 (19)0.18188 (13)0.0508 (4)
H11A0.7501820.6328500.1101190.061*
H11B0.8694100.6687900.2297590.061*
C120.6761 (3)0.4763 (2)0.17570 (15)0.0624 (5)
H120.5557030.4361570.1388050.075*
C130.7660 (4)0.3904 (3)0.2168 (2)0.0886 (7)
H13A0.8868680.4258910.2543580.106*
H13B0.7104200.2925440.2090100.106*
C140.6880 (2)0.90039 (18)0.21243 (12)0.0501 (4)
H14A0.6231770.9723700.2487430.060*
H14B0.8144720.9397130.2494930.060*
C170.7066 (3)0.2475 (2)0.45399 (15)0.0660 (5)
H17A0.6736480.1385660.4380670.099*
H17B0.8124470.2683520.4337500.099*
H17C0.6110400.2820800.4136940.099*
C150.6516 (3)0.8949 (2)0.09796 (13)0.0570 (4)
H150.5388800.8459170.0499250.068*
C160.7676 (3)0.9543 (3)0.06119 (18)0.0783 (6)
H16A0.8814091.0040330.1073180.094*
H16B0.7370800.9472860.0113170.094*
C190.02229 (19)0.57392 (16)0.00887 (11)0.0392 (3)
H190.0630890.6213250.0227690.047*
C180.2012 (2)0.67065 (17)0.07656 (11)0.0416 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0431 (6)0.0573 (7)0.0615 (7)0.0031 (5)0.0059 (5)0.0244 (6)
O20.0745 (9)0.0416 (7)0.0662 (8)0.0010 (6)0.0246 (7)0.0080 (6)
O10.1008 (10)0.0379 (6)0.0513 (7)0.0104 (6)0.0145 (7)0.0174 (5)
N10.0683 (9)0.0402 (7)0.0320 (6)0.0074 (6)0.0156 (6)0.0039 (5)
N20.0384 (7)0.0423 (7)0.0301 (6)0.0001 (5)0.0070 (5)0.0083 (5)
C10.0399 (7)0.0378 (7)0.0291 (6)0.0026 (6)0.0067 (6)0.0096 (6)
C20.0487 (8)0.0389 (8)0.0314 (7)0.0058 (6)0.0097 (6)0.0086 (6)
C30.0518 (9)0.0386 (8)0.0404 (8)0.0040 (7)0.0070 (7)0.0137 (6)
C40.0587 (10)0.0528 (10)0.0397 (8)0.0012 (7)0.0100 (7)0.0231 (7)
C50.0597 (10)0.0556 (10)0.0299 (7)0.0036 (8)0.0138 (7)0.0127 (7)
C60.0478 (8)0.0411 (8)0.0308 (7)0.0040 (6)0.0094 (6)0.0073 (6)
C70.0574 (9)0.0367 (8)0.0388 (8)0.0033 (7)0.0097 (7)0.0115 (6)
C80.0423 (8)0.0369 (7)0.0311 (7)0.0015 (6)0.0064 (6)0.0097 (6)
C90.0420 (8)0.0421 (8)0.0323 (7)0.0006 (6)0.0077 (6)0.0132 (6)
C100.0393 (7)0.0416 (8)0.0316 (7)0.0020 (6)0.0111 (6)0.0096 (6)
C110.0533 (9)0.0577 (10)0.0385 (8)0.0129 (8)0.0176 (7)0.0089 (7)
C120.0685 (12)0.0557 (11)0.0576 (11)0.0183 (9)0.0149 (9)0.0133 (9)
C130.0978 (18)0.0812 (16)0.0977 (17)0.0381 (14)0.0339 (14)0.0358 (14)
C140.0596 (10)0.0456 (9)0.0391 (8)0.0012 (7)0.0108 (7)0.0134 (7)
C170.0925 (15)0.0400 (9)0.0539 (10)0.0135 (9)0.0097 (10)0.0099 (8)
C150.0681 (11)0.0579 (10)0.0403 (8)0.0039 (8)0.0085 (8)0.0191 (8)
C160.1000 (17)0.0871 (15)0.0617 (12)0.0149 (13)0.0341 (12)0.0381 (11)
C190.0391 (7)0.0439 (7)0.0314 (7)0.0085 (6)0.0087 (6)0.0097 (6)
C180.0472 (8)0.0436 (8)0.0272 (7)0.0006 (7)0.0120 (6)0.0049 (6)
Geometric parameters (Å, º) top
O3—C181.2709 (19)C9—H9B0.9700
O2—C181.2400 (19)C9—C101.5224 (19)
O1—C31.3817 (19)C10—H10A0.9700
O1—C171.414 (2)C10—H10B0.9700
N1—H10.865 (9)C11—H11A0.9700
N1—C61.372 (2)C11—H11B0.9700
N1—C71.368 (2)C11—C121.494 (3)
N2—H20.897 (9)C12—H120.9300
N2—C101.4982 (17)C12—C131.282 (3)
N2—C111.494 (2)C13—H13A0.9300
N2—C141.494 (2)C13—H13B0.9300
C1—C21.402 (2)C14—H14A0.9700
C1—C61.4073 (19)C14—H14B0.9700
C1—C81.431 (2)C14—C151.488 (2)
C2—H2A0.9300C17—H17A0.9600
C2—C31.375 (2)C17—H17B0.9600
C3—C41.402 (2)C17—H17C0.9600
C4—H40.9300C15—H150.9300
C4—C51.367 (2)C15—C161.297 (3)
C5—H50.9300C16—H16A0.9300
C5—C61.394 (2)C16—H16B0.9300
C7—H70.9300C19—C19i1.312 (3)
C7—C81.364 (2)C19—H190.9300
C8—C91.5025 (19)C19—C181.491 (2)
C9—H9A0.9700
C3—O1—C17116.62 (13)N2—C10—H10A108.6
C6—N1—H1127.5 (13)N2—C10—H10B108.6
C7—N1—H1123.8 (13)C9—C10—H10A108.6
C7—N1—C6108.60 (12)C9—C10—H10B108.6
C10—N2—H2103.9 (13)H10A—C10—H10B107.5
C11—N2—H2105.0 (13)N2—C11—H11A109.3
C11—N2—C10113.75 (12)N2—C11—H11B109.3
C14—N2—H2109.2 (13)H11A—C11—H11B107.9
C14—N2—C10111.74 (11)C12—C11—N2111.77 (14)
C14—N2—C11112.46 (13)C12—C11—H11A109.3
C2—C1—C6119.75 (13)C12—C11—H11B109.3
C2—C1—C8133.20 (13)C11—C12—H12117.1
C6—C1—C8107.05 (12)C13—C12—C11125.7 (2)
C1—C2—H2A121.0C13—C12—H12117.1
C3—C2—C1118.00 (13)C12—C13—H13A120.0
C3—C2—H2A121.0C12—C13—H13B120.0
O1—C3—C4114.40 (14)H13A—C13—H13B120.0
C2—C3—O1123.88 (14)N2—C14—H14A108.8
C2—C3—C4121.71 (14)N2—C14—H14B108.8
C3—C4—H4119.5H14A—C14—H14B107.6
C5—C4—C3121.06 (14)C15—C14—N2114.01 (13)
C5—C4—H4119.5C15—C14—H14A108.8
C4—C5—H5121.0C15—C14—H14B108.8
C4—C5—C6118.05 (14)O1—C17—H17A109.5
C6—C5—H5121.0O1—C17—H17B109.5
N1—C6—C1107.68 (13)O1—C17—H17C109.5
N1—C6—C5130.91 (14)H17A—C17—H17B109.5
C5—C6—C1121.41 (14)H17A—C17—H17C109.5
N1—C7—H7124.8H17B—C17—H17C109.5
C8—C7—N1110.47 (14)C14—C15—H15118.1
C8—C7—H7124.8C16—C15—C14123.87 (18)
C1—C8—C9125.93 (13)C16—C15—H15118.1
C7—C8—C1106.20 (13)C15—C16—H16A120.0
C7—C8—C9127.88 (14)C15—C16—H16B120.0
C8—C9—H9A109.2H16A—C16—H16B120.0
C8—C9—H9B109.2C19i—C19—H19118.0
C8—C9—C10112.05 (12)C19i—C19—C18124.09 (18)
H9A—C9—H9B107.9C18—C19—H19118.0
C10—C9—H9A109.2O3—C18—C19116.27 (13)
C10—C9—H9B109.2O2—C18—O3125.12 (14)
N2—C10—C9114.87 (11)O2—C18—C19118.62 (15)
O1—C3—C4—C5179.30 (16)C6—C1—C8—C9178.77 (14)
N1—C7—C8—C10.28 (18)C7—N1—C6—C11.02 (18)
N1—C7—C8—C9179.37 (14)C7—N1—C6—C5179.81 (17)
N2—C11—C12—C13128.3 (2)C7—C8—C9—C10103.93 (18)
N2—C14—C15—C16130.4 (2)C8—C1—C2—C3179.20 (15)
C1—C2—C3—O1179.27 (15)C8—C1—C6—N11.18 (17)
C1—C2—C3—C41.5 (2)C8—C1—C6—C5179.56 (14)
C1—C8—C9—C1076.48 (19)C8—C9—C10—N2179.04 (12)
C2—C1—C6—N1178.59 (13)C10—N2—C11—C1261.28 (17)
C2—C1—C6—C50.7 (2)C10—N2—C14—C15164.89 (14)
C2—C1—C8—C7178.83 (16)C11—N2—C10—C965.56 (16)
C2—C1—C8—C91.5 (3)C11—N2—C14—C1565.76 (18)
C2—C3—C4—C51.4 (3)C14—N2—C10—C963.11 (17)
C3—C4—C5—C60.2 (3)C14—N2—C11—C12170.43 (13)
C4—C5—C6—N1178.27 (16)C17—O1—C3—C213.9 (2)
C4—C5—C6—C10.8 (2)C17—O1—C3—C4166.81 (16)
C6—N1—C7—C80.46 (19)C19i—C19—C18—O314.9 (3)
C6—C1—C2—C30.5 (2)C19i—C19—C18—O2165.31 (18)
C6—C1—C8—C70.89 (17)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii0.87 (1)1.91 (1)2.7729 (17)175 (2)
N2—H2···O30.90 (1)1.68 (1)2.5669 (16)171 (2)
Symmetry code: (ii) x+1, y+2, z+1.
 

Acknowledgements

Financial statements and conflict of inter­est: This study was funded by CaaMTech, Inc. ARC reports an ownership inter­est in CaaMTech, Inc., which owns US and worldwide patent applications, covering new tryptamine compounds, compositions, formulations, novel crystalline forms, and methods of making and using the same.

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. CHE-1429086).

References

First citationBergin, R., Carlström, D., Falkenberg, G. & Ringertz, H. (1968). Acta Cryst. B24, 882.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationBruker (2018). APEX3, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChadeayne, A. R., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 900–902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Golen, J. A. & Manke, D. R. (2019b). Psychedelic Science Review, https://psychedelicreview.com/the-crystal-structure-of-4-aco-dmt-fumarate/  Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019a). Acta Cryst. E75, 1316–1320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2019b). IUCrData, 4, x191469.  Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020a). Acta Cryst. E76, 514–517.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020b). Acta Cryst. E76, 589–593.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020c). Acta Cryst. E76, 1201–1205.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChadeayne, A. R., Pham, D. N. K., Golen, J. A. & Manke, D. R. (2020d). IUCrData, 5, x200498.  Google Scholar
First citationCorkery, J. M., Durkin, E., Elliott, S., Schifano, F. & Ghodse, A. H. (2012). Prog. Neuropsychopharmacol. Biol. Psychiatry, 39, 259–262.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCozzi, N. V. & Daley, P. F. (2016). Bioorg. Med. Chem. Lett. 26, 959–964.  Web of Science CrossRef CAS PubMed Google Scholar
First citationDavis, A. K., Barsuglia, J. P., Lancelotta, R., Grant, R. M. & Renn, E. (2018). J. Psychopharmacol. 32, 779–792.  CrossRef CAS PubMed Google Scholar
First citationDesiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFalkenberg, G. (1972). Acta Cryst. B28, 3075–3083.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationFalkenberg, G. & Carlström, D. (1971). Acta Cryst. B27, 411–418.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNichols, C. D. & Hendricks, P. S. (2020). Handb. Behav. Neurosci, 31, 959–966.  CrossRef Google Scholar
First citationPham, D. N. K., Chadeayne, A. R., Golen, J. A. & Manke, D. R. (2021). Acta Cryst. E77, 190–194.  CSD CrossRef IUCr Journals Google Scholar
First citationQuarles, W. G., Templeton, D. H. & Zalkin, A. (1974). Acta Cryst. B30, 95–98.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSherwood, A. M., Claveau, R., Lancelotta, R., Kaylo, K. W. & Lenoch, K. (2020). ACS Omega, 5, 32067–32075.  CrossRef CAS PubMed Google Scholar
First citationShulgin, A. T. & Shulgin, A. (2016). TiKHAL: The Continuation. Isomerdesign. Available at: https://isomerdesign.com/PiHKAL/read.php?domain=tk&id=56. Accessed 25 December 2020.  Google Scholar
First citationWeil, A. T. & Davis, W. (1994). J. Ethnopharmacol. 41, 1–8.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds