research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and structure of a complex of copper(I) with L-cysteine and chloride ions containing Cu12S6 nanoclusters

CROSSMARK_Color_square_no_text.svg

aA. M. Butlerov Chemistry Institute, Kazan Federal University, Kremlevskaya St., 18, Kazan, 420008, Russian Federation, bInstitute of Inorganic and Analytical Chemistry, Justus-Liebig University of Giessen, Heinrich-Buff Ring 17, D-35392 Giessen, Germany, and cA. E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov St. 8, 420088 Kazan, Russian Federation
*Correspondence e-mail: Valery.Shtyrlin@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 November 2020; accepted 20 February 2021; online 2 March 2021)

The title hydrated copper(I)–L-cysteine–chloride complex has a polymeric structure of composition {[Cu16(CysH2)6Cl16xH2O}n [CysH2 = HO2CCH(NH3+)CH2S or C3H7NO2S], namely, poly[[tetra-μ3-chlorido-deca-μ2-chlorido-di­chlorido­hexa­kis­(μ4-L-cysteinato)hexa­deca­copper] polyhydrate]. The copper atoms are linked by thiol­ate groups to form Cu12S6 nanoclusters that take the form of a tetra­kis cubocta­hedron, made up of a Cu12 cubo-octa­hedral subunit that is augmented by six sulfur atoms that are located symmetrically atop of each of the Cu4 square units of the Cu12 cubo-octa­hedron. The six S atoms thus form an octa­hedral subunit themselves. The exterior of the Cu12S6 sphere is decorated by chloride ions and trichlorocuprate units. Three chloride ions are coordinated in an irregular fashion to trigonal Cu3 subunits of the nanocluster, and four trigonal CuCl3 units are bonded via each of their chloride ions to a copper ion on the Cu12S6 sphere. The trigonal CuCl3 units are linked via Cu2Cl2 bridges covalently connected to equivalent units in neighboring nanoclusters. Four such connections are arranged in a tetra­hedral fashion, thus creating an infinite diamond-like net of Cu12S6Cl4(CuCl3)4 nanoclusters. The network thus formed results in large channels occupied by solvent mol­ecules that are mostly too ill-defined to model. The content of the voids, believed to be water mol­ecules, was accounted for via reverse Fourier-transform methods using the SQUEEZE algorithm [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18]. The protonated amino groups of the cysteine ligands are directed away from the sphere, forming N—H⋯Cl hydrogen bonds with chloride-ion acceptors of their cluster. The protonated carb­oxy groups point outwards and presumably form O—H⋯O hydrogen bonds with the unresolved water mol­ecules of the solvent channels. Disorder is observed in one of the two crystallographically unique [Cu16(CysH2)6Cl16] segments for three of the six cysteine anions.

1. Chemical context

L-cysteine is an important proteinogenic amino acid widely distributed in living organisms (Lennarz & Lane, 2013[Lennarz, W. J. & Lane, M. D. (2013). Encyclopedia of Biological Chemistry, 2nd ed. London: Academic Press.]). Copper–cysteine clusters are of inter­est as possible models of active sites of some copper-containing proteins (Kretsinger et al., 2013[Kretsinger, R. H., Uversky, V. N. & Permykov, E. A. (2013). Encyclopedia of Metalloproteins. Heidelberg: Springer.]). It is inter­esting to observe that there are no structures of copper complexes with both chloride ions and cysteine and even cystine determined by single crystal X-ray diffraction. As part of our studies in this area, we now describe the synthesis and structure of the title cluster compound.

[Scheme 1]

2. Structural commentary

The crystallographic analysis of the title compound revealed a complex polymeric structure of composition {[Cu16(CysH2)6Cl16xH2O}n, [CysH2 = HO2CCH(NH3+)CH2S]. The copper atoms are linked by thiol­ate groups to form Cu12S6 copper thiol­ate nanoclusters (`atlas spheres'), which have the form of a tetra­kis cubocta­hedron, made up of a Cu12 cubo-octa­hedral subunit that is augmented by six sulfur atoms that are located symmetrically atop of each of the Cu4 square units of the Cu12 cubo-octa­hedron. The six S atoms form an octa­hedral subunit themselves. The exterior of the Cu12S6 sphere is decorated by chloride ions and trichloro­cuprate units. Three chloride ions are irregularly coordinated to trigonal Cu3 subunits of the nanocluster, and four trigonal CuCl3-units are linked through each of their chloride ions to each one copper ion on the `atlas spheres'. The trigonal CuCl3 units are covalently connected through Cu2Cl2 bridges to equivalent units in neighboring nanoclusters. Four such connections are arranged in a tetra­hedral fashion, forming a diamond like network of Cu12S6Cl4(CuCl3)4 nanoclusters. The rigid diamond-like network results in large channels occupied by solvate mol­ecules, which in most cases were too poorly defined for modeling. The content of the voids, believed to be water mol­ecules, was accounted using reverse Fourier-transform methods using the SQUEEZE algorithm (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). The protonated amino groups of the cysteine ligands are directed away from the sphere, forming N—H⋯Cl hydrogen bonds with chloride ions of their cluster. The protonated –CO2H carb­oxy groups point outwards into the void and presumably form O—H⋯O hydrogen bonds with the unresolved water mol­ecules in the solvate channels (the carboxyl­ate protons are omitted in the structure).

Conclusion about the state of the carb­oxy groups is based on the following facts: (i) the FTIR spectrum confirms the presence of –CO2H groups and the absence of H3O+ ions in the crystal (see below); (ii) the coordination geometries observed are strongly favored by CuI; (iii) the crystals of the complex are colorless, which excludes the presence of copper(II).

Disorder is observed in one of the two crystallographically unique [Cu16(CysH2)6Cl16] clusters for three of the six cysteine ligands. The asymmetric unit consists of two Cu12 distorted cubo-octa­hedra (Figs. 1[link], 2[link]). Almost all of the Cu—S bonds are similar in length (mean 2.25 ± 0.03 Å) except for the bonds formed by the disordered S1_1, S1_5 and S1_12 atoms, where the Cu—S bond lengths were determined with higher errors. The S—Cu—S angles are clustered in a narrow range (mean 130 ± 4°). Thus the Cu—S bonds and angles are typical for such Cu12S6 copper thiol­ate nanoclusters (see Database survey).

[Figure 1]
Figure 1
Asymmetric unit of the title compound. Orange: copper, yellow: sulfur, green: chlorine, red: oxygen, blue: nitro­gen.
[Figure 2]
Figure 2
Displacement ellipsoid plot (50% probability level) of the asymmetric unit.

In the `atlas sphere' there are four tetra­hedral copper atoms (atoms Cu17, Cu26, Cu28, Cu32 for the first core and Cu1, Cu9, Cu11, Cu16 for the second) surrounded by two μ2-chloride ions and one μ3-chloride ion (for example, Cu1 ion is surrounded by Cl1, Cl2 and Cl3 atoms), which are close to planar with copper and the μ3-Cl that is almost perpendicular to this imaginary plane wherein the length of Cu—μ3-Cl bond is longer than the others (mean 2.58 ± 0.04 Å). We note that the lengths of the other Cu—μ3-Cl bonds are about the same as the Cu—μ2-Cl lengths (mean 2.31 ± 0.04 Å) and the Cl—Cu—Cl angle in the [Cu2Cl2] units is 94.9 ± 2.4°. In addition, there are two non-bridging chloride ions: Cl28 and Cl26. The other chloride ions form μ2-bridges between the copper ions in the core except for μ3-Cl15.

The charge distribution per cage is as following: 16 positive charges of Cu+ ions are balanced by the negative charges of 16 chloride ions. The 12 amino acid residues occur as neutral CysH2 = HO2CCH(NH3+)CH2S zwitterions. The `atlas spheres' in the asymmetric unit have differences regarding the presence of disorder, viz. three of the six cysteine mol­ecules are disordered in one `atlas sphere' while the other is not disordered.

3. Supra­molecular features

In the structure, the `atlas spheres' are linked to form a three-dimensional framework with the Cu2Cl2 linkages forming a tetra­hedral environment in each of the clusters (Fig. 3[link]). As a result, the `atlas spheres' form a distorted diamond-like structure (Fig. 4[link]). However, it is not possible to give an exact description of the topology (O'Keeffe et al., 2008[O'Keeffe, M., Peskov, M. A., Ramsden, S. J. & Yaghi, O. M. (2008). Acc. Chem. Res. 41, 1782-1789.]). These bridges are based on the μ3-Cl atoms described above, with the exception of Cl15 and eight copper atoms in a distorted tetra­hedral environment (four such atoms per cage); thus, from the point of view of the coordination environment, it is more accurate to talk about Cu2Cl8 bridges. In addition, the cages are connected by a system of hydrogen bonds. Namely, two water mol­ecules (O4_6 and O3_6) act as donors for two amino groups (N1_9 and N1_6, respectively), forming N—H⋯O hydrogen bonds. In turn, the water mol­ecules are linked by hydrogen bonds. Thus, a chain of three hydrogen bonds exists between neighboring `atlas spheres'. The structure has voids in which there are presumably disordered water mol­ecules (Figs. 5[link], 6[link]). Using PLATON SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]), a void was identified occupying 38.6% of the unit-cell volume for the compound. The void volume of 7685 Å3 contains the equivalent of 3455 electrons, corresponding to about 346 water mol­ecules. The hydrogen-bond geometry is given in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1_1—H1A_1⋯Cl6 0.91 2.73 3.554 (19) 151
N1_1—H1A_1⋯Cl16 0.91 2.66 3.148 (16) 115
N1_1—H1B_1⋯Cl3i 0.91 2.81 3.42 (2) 126
N1A_1—H1AA_1⋯Cl7 0.91 2.74 3.34 (4) 125
N1A_1—H1AA_1⋯Cl9 0.91 2.54 3.28 (3) 138
N1_2—H1A_2⋯Cl4 0.91 2.78 3.395 (15) 126
N1_2—H1A_2⋯O2A_5i 0.91 2.48 3.04 (2) 120
N1_2—H1C_2⋯Cl5 0.91 2.19 3.101 (15) 175
N1_3—H1A_3⋯Cl10 0.91 2.69 3.592 (9) 171
N1_3—H1B_3⋯O2_3 0.91 2.13 2.605 (10) 112
N1_3—H1C_3⋯Cl2 0.91 2.53 3.306 (8) 143
N1_3—H1C_3⋯Cl11 0.91 2.68 3.228 (9) 120
N1_4—H1B_4⋯Cl15 0.91 2.44 3.199 (10) 141
N1_4—H1B_4⋯S1_4 0.91 2.82 3.300 (10) 114
N1_5—H1B_5⋯O2_12 0.91 2.36 3.14 (3) 144
N1_5—H1C_5⋯Cl11 0.91 2.76 3.46 (2) 134
N1_5—H1C_5⋯Cl13 0.91 2.49 3.24 (2) 139
N1A_5—H1A2_5⋯Cl2 0.91 2.74 3.46 (2) 137
N1A_5—H1A2_5⋯Cl11 0.91 2.42 2.99 (2) 121
N1A_5—H1A2_5⋯S1A_5 0.91 2.68 3.22 (4) 119
N1A_5—H1A3_5⋯Cl4ii 0.91 2.82 3.49 (3) 132
N1_6—H1B_6⋯O3_6 0.91 1.92 2.70 (3) 142
N1_6—H1C_6⋯Cl16 0.91 2.53 3.311 (16) 145
N1_6—H1C_6⋯S1_6 0.91 2.89 3.330 (16) 111
N1A_6—H1AC_6⋯Cl11 0.91 2.74 3.60 (7) 158
N1_7—H1B_7⋯Cl23 0.91 2.77 3.435 (9) 131
N1_7—H1B_7⋯Cl26 0.91 2.58 3.315 (9) 138
N1_7—H1C_7⋯O1_13 0.91 1.99 2.803 (12) 148
N1_8—H1C_8⋯Cl26 0.91 2.51 3.370 (12) 158
N1_8—H1C_8⋯S1_8 0.91 2.83 3.286 (13) 112
N1_9—H1A_9⋯Cl20 0.91 2.85 3.585 (9) 139
N1_9—H1A_9⋯O1_10iii 0.91 2.12 2.796 (11) 130
N1_9—H1B_9⋯O4_6 0.91 2.01 2.86 (3) 154
N1_9—H1C_9⋯Cl17 0.91 2.79 3.348 (9) 121
N1_9—H1C_9⋯Cl28 0.91 2.45 3.211 (9) 142
N1_10—H1B_10⋯Cl25 0.91 2.77 3.239 (9) 113
N1_10—H1B_10⋯Cl26 0.91 2.57 3.363 (8) 146
N1_10—H1C_10⋯O2_9iv 0.91 2.15 2.856 (12) 134
N1_11—H1A_11⋯O1_13v 0.91 2.08 2.971 (13) 167
N1_11—H1C_11⋯Cl21 0.91 2.61 3.362 (10) 141
N1_11—H1C_11⋯Cl24 0.91 2.61 3.235 (9) 126
N1_12—H1A_12⋯Cl31 0.91 2.92 3.387 (9) 113
N1_12—H1C_12⋯Cl29 0.91 2.44 3.316 (9) 161
O4_6—H4B_6⋯Cl12 0.84 (1) 2.89 (10) 3.32 (3) 114 (8)
O4_6—H4B_6⋯O3_6 0.84 (1) 1.76 (7) 2.51 (4) 148 (10)
O1_13—H1A_13⋯Cl25 0.82 (3) 2.97 (3) 3.501 (9) 125 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+1]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z]; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z]; (v) [-x+1, y, -z].
[Figure 3]
Figure 3
Tetra­hedral environment of `atlas-sphere' of the title compound.
[Figure 4]
Figure 4
Diamond-like extended structure of the title compound.
[Figure 5]
Figure 5
Crystal packing of the title compound viewed along c-axis direction.
[Figure 6]
Figure 6
Visualization of the void space of the title compound viewed along the b-axis direction.

4. Database survey

Considering copper(I) complexes with cysteine, a number of heteroligand CoIII/CuI complexes with ethyl­enedi­amine are known where the inner sphere of CoIII contains two coord­in­ated ethyl­enedi­amine mol­ecules and one monoprotonated L-cysteine mol­ecule coordinated via nitro­gen and sulfur ([Co(en)2(L-CysH)]). In addition, the sulfur atom of cysteine is coordinated to the CuI atom, which is surrounded by other sulfur atoms and chloride ions ([CuCl3S], [CuClS3], [CuClS2]), for example, see Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) refcodes TOHREO, XOMDEJ, XOMDIN, XOMDOT, XOMDUZ, XOMFAH (Aridomi et al., 2008[Aridomi, T., Igashira-Kamiyama, A. & Konno, T. (2008). Inorg. Chem. 47, 10202-10204.]). A copper(II) complex with S-methyl-L-cysteine of composition [Cu(L-MeCys)2]n (MeCysH = HO2CCH(NH2)CH2SCH3) has been characterized (Dubler et al., 1986[Dubler, E., Cathomas, N. & Jameson, G. B. (1986). Inorg. Chim. Acta, 123, 99-104.]). The ligand coordin­ates to the metal ion via its oxygen and nitro­gen atoms and the structure is polymeric because both carb­oxy­lic groups are also coordinated to other copper(II) atoms. It should be noted that only one copper(II)–cystine complex has been synthesized, which includes 2,2′-bipyridyl as a second ligand (Seko et al., 2010[Seko, H., Tsuge, K., Igashira-Kamiyama, A., Kawamoto, T. & Konno, T. (2010). Chem. Commun. 46, 1962-1964.]).

Several copper–cyste­amine (CyH = SCH2CH2NH3+) structures have been reported: {[Cu8Cl6(CyH)6]Cl2}n (Salehi et al., 1997[Salehi, Z., Parish, R. V. & Pritchard, R. G. (1997). J. Chem. Soc. Dalton Trans. pp. 4241-4246.]); [Cu13Cl13(CyH)6·H2O]n consisting of [Cu12S6Cl12] clusters bridged by Cl and [Cu2Cl2] units (Parish et al., 1997[Parish, R. V., Salehi, Z. & Pritchard, R. G. (1997). Angew. Chem. Int. Ed. Engl. 36, 251-253.]); {[Cu13(CyH)6Br13xH2O}n formed of [Cu12(CyH)6Br12] clusters, which are linked by [Cu2Br2] bridges (Prichard et al., 1999[Prichard, R. G., Parish, R. V. & Salehi, Z. (1999). J. Chem. Soc. Dalton Trans. pp. 243-250.]), and the most recent one [Cu3Cl(Cy)2] (here cyste­amine has deprotonated amino and thio groups) where there are parallel chains [Cu2Cy2]n connected to neighboring ones by [CuCl] links (Ma et al., 2014[Ma, L., Chen, W., Schatte, G., Wang, W., Joly, A. G., Huang, Y., Sammynaiken, R. & Hossu, M. (2014). J. Mater. Chem. C. 2, 4239-4246.]). In addition, there are five complexes of copper(I) with cystamine (H2NCH2CH2S–SCH2CH2NH2) and bromide ligands (Louvain et al., 2008[Louvain, N., Mercier, N. & Kurmoo, M. (2008). Eur. J. Inorg. Chem. pp. 1654-1660.]). The dimethyl derivative of cyste­amine forms a complex {[Cu17(RS)6Cl17]}n [RS = SCH2CH2NH(CH3)2+] including a [Cu12S6] cluster (Prichard et al., 1999[Prichard, R. G., Parish, R. V. & Salehi, Z. (1999). J. Chem. Soc. Dalton Trans. pp. 243-250.]). In addition, the [Cu6S12] cluster has been found in copper–thiol systems: [Cu12(SR′)6Cl12][(Cu(R′SH))6] (R′ = n-Bu) and [H(THF)2]2[Cu17(SR′′)6Cl13(THF)2(R′′SH)3] (R′′ = CH2CH2Ph) (Cook et al., 2019[Cook, A. W., Jones, Z. R., Wu, G., Teat, S. J., Scott, S. L. & Hayton, T. W. (2019). Inorg. Chem. 58, 8739-8749.]).

Thus [Cu12S6] clusters in copper(I) complexes with cyste­amine, a close derivative of cysteine, are stabilized with Cl or Br anions. Chloride ions also stabilize such clusters containing simple thiols. It should be noted that phosphine ligands also can stabilize a [Cu12S6] core containing just sulfur instead of thiols and forming [Cu12S6(PR3)8] complexes: [Cu12S6(PPh2Et)8], [Cu12S6(PEt3)8] (Dehnen et al., 1994[Dehnen, S., Schäfer, A., Fenske, D. & Ahlrichs, R. (1994). Angew. Chem. Int. Ed. Engl. 33, 746-749.]) and [Cu12S6(PnPR3)8] (Dehnen et al., 1996[Dehnen, S., Fenske, D. & Deveson, A. C. (1996). J. Clust Sci. 7, 351-369.]). Moreover, there are some complexes containing four diphosphine ligands (Eichhöfer et al., 2015[Eichhöfer, A., Buth, G., Lebedkin, S., Kühn, M. & Weigend, F. (2015). Inorg. Chem. 54, 9413-9422.], Yang et al., 2014[Yang, X.-X., Issac, I., Lebedkin, S., Kühn, M., Weigend, F., Fenske, D., Fuhr, O. & Eichhöfer, A. (2014). Chem. Commun. 50, 11043-11045.], Khadka et al., 2013[Khadka, C. B., Najafabadi, B. K., Hesari, M., Workentin, M. S. & Corrigan, J. F. (2013). Inorg. Chem. 52, 6798-6805.]) with high photoluminescence quantum yields.

5. Synthesis and crystallization

Masses of 0.085 g (0.500 mmol) of CuCl2·2H2O and 0.060 g (0.50 mmol) of L-cysteine were mixed in 5 ml of water under inert conditions. A precipitate was formed, which was dissolved by adding approximately 1 ml of a 2 M HCl oxygen-free solution. The resulting solution was left to stand in an inert atmosphere. Colorless crystals of the title compound formed within 24 h.

As a result of the rapid degradation of the crystals in air, it was not possible to perform an elemental analysis. The IR spectra of the crystals were recorded using an FTIR Bruker Vertex 70 spectrometer (400–4000 cm−1). The IR spectrum of {[Cu16(CysH2)6Cl16xH2O}n (1) is shown in Fig. 7[link], and the spectroscopic parameters are presented in Table 2[link] in comparison with the corresponding values for the crystal of L-cysteine hydro­chloride, L-CysH2·HCl (Dokken et al., 2009[Dokken, K. M., Parsons, J. G., McClure, J. & Gardea-Torresdey, J. L. (2009). Inorg. Chim. Acta, 362, 395-401.]) along with our assignment of the spectroscopic lines.

Table 2
Comparison of infrared band assignments (cm−1) for 1 and L-cysteine hydro­chloride, L-CysH2·HCl (Dokken et al., 2009[Dokken, K. M., Parsons, J. G., McClure, J. & Gardea-Torresdey, J. L. (2009). Inorg. Chim. Acta, 362, 395-401.])

1 L-CysH2·HCl Assignment
776 w 770 w γ CH2
819 w 839 w δ COO
871 mw 868 mw ν CC, δ COO
944 w 929 w ν CN, ν CC
1060 mw 1058 mw ν CN, ν CC
1127 mw 1141 mw NH3+
1203 s 1201 s ν CO, δ OH (COOH)
1247 mw 1272 w γ CH2
1317 w 1344 w δ CH
1415 m 1427 m δ as CH3, δ CH2
1484 s 1477 sh
1574 mw 1571 mw δ as NH3+, ν as COO
1601 sh 1619 w δ as NH3+, ν as COO
1724 vs 1743 vs ν CO
1968 w
2641 sh 2645 w ν CH2
2923 s 2943 sh ν NH3+, ν CH2, ν CH3
3011 s 3051 sh ν NH3+
3453 m
[Figure 7]
Figure 7
IR spectrum of the title compound.

As follows from Table 2[link], there is a satisfactory correspondence of most bands of both crystals, 1 and L-CysH2·HCl. Of particular note is the almost complete coincidence of the position of the most intense line at 1201–1203 cm−1 for both compounds. According to Dokken et al. (2009[Dokken, K. M., Parsons, J. G., McClure, J. & Gardea-Torresdey, J. L. (2009). Inorg. Chim. Acta, 362, 395-401.]), this intense band is associated with vibrations of the protonated –COOH group. In this case, the possibility of protonation of water mol­ecules instead of a carb­oxy group with the hydroxonium ion formation is practically excluded. Indeed, according to numerous experimental and calculated data for crystals and liquid phases, H3O+ ions show four broad lines in the IR spectra near 1150, 1740, 3160, and 3320 cm−1 (Chukanov, 2014[Chukanov, N. V. (2014). Infrared Spectra of Mineral Species: Extended Library. Dordrecht, Heidelberg, New York, London: Springer-Verlag GmbH.]; Yukhnevich, 1973[Yukhnevich, G. V. (1973). Infrared Spectroscopy of Water. Moscow: Nauka (in Russian).]). As follows from Fig. 7[link] and Table 2[link], no sign of these bands was detected in the spectrum of the crystal 1. On the other hand, there is a satisfactory agreement between the vibration lines of the –NH3+ group at ∼1130, ∼1572, ∼1610, and ∼2930 cm−1 for compounds 1 and L-CysH2·HCl. Thus, according to the IR spectroscopic data, the protons in 1 are localized on the carboxyl and ammonium groups, while the thiol groups are deprotonated and bonded to copper(I).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All non-hydrogen atoms were refined anisotropically and C—H hydrogen atoms were positioned at geometrically calculated positions (C—H = 0.99–1.00 Å, N—H = 0.91 Å) and refined using a riding model. The constraint Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N) was applied in all cases. Three of the cysteine ligands were found to be disordered over two sets of sites with refined major occupancies of 0.826 (8), 0.550 (19) and 0.657 (9). Close to one of the disordered cysteine ligands, two partially occupied water mol­ecules were found, which could not be modeled using SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) because of their proximity to the cysteine disorder. Their occupancy was refined freely and converged to 0.55 (2) and 0.33 (2). The structure was refined with the help of similarity restraints, strong similarity restraints on anisotropic displacement parameters (Müller, 2009[Müller, P. (2009). Crystallogr. Rev. 15, 57-83.]) and rigid bond restraints (Thorn et al., 2012[Thorn, A., Dittrich, B. & Sheldrick, G. M. (2012). Acta Cryst. A68, 448-451.]) on the disordered ligands. One of the partially occupied water mol­ecules was strongly restrained to have a more isotropic behavior using the ISOR instruction as implemented in SHELXL. The unit cell contains a significant amount of solvent, most likely a heavily disordered hydrogen-bonded network of water mol­ecules. To refine the model against the measured data, the SWAT instruction as implemented in SHELXL (Langridge et al., 1960[Langridge, R., Marvin, D. A., Seeds, W. E., Wilson, H. R., Hooper, C. W., Wilkins, M. H. F. & Hamilton, L. D. (1960). J. Mol. Biol. 2, 38-I, N12.]; Driessen et al., 1989[Driessen, H., Haneef, M. I. J., Harris, G. W., Howlin, B., Khan, G. & Moss, D. S. (1989). J. Appl. Cryst. 22, 510-516.]) was used. In addition, SQUEEZE (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]) as implemented in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) was used to model the disordered solvent in the voids of the structure. SQUEEZE identified a void centered at ∼(0 0.1 0) with a volume of 7685 Å3 containing the equivalent of 3455 electrons. This would correspond to about 346 water mol­ecules.

Table 3
Experimental details

Crystal data
Chemical formula [Cu32Cl32(C3H6NO2S)12]·2.68H1.97O
Mr 4643.74
Crystal system, space group Monoclinic, C2
Temperature (K) 100
a, b, c (Å) 29.4665 (14), 22.1299 (11), 28.9371 (14)
β (°) 97.3964 (14)
V3) 18712.6 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.18
Crystal size (mm) 0.36 × 0.31 × 0.13
 
Data collection
Diffractometer Bruker PHOTON100
Absorption correction Multi-scan (SADABS; Sheldrick, 2016[Sheldrick, G. M. (2016). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.487, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 189540, 33050, 26149
Rint 0.050
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.09
No. of reflections 33050
No. of parameters 1568
No. of restraints 1778
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.56, −0.74
Absolute structure Flack x determined using 10959 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.030 (4)
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker Nano Inc., Madison, Wisconsin, USA.]), SHELXT2015 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2017); cell refinement: SAINT (Bruker, 2017); data reduction: SAINT (Bruker, 2017); program(s) used to solve structure: SHELXT2015 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Poly[[tetra-µ3-chlorido-deca-µ2-chlorido-dichloridohexakis(µ4-L-cysteinato)hexadecacopper] polyhydrate] top
Crystal data top
[Cu32Cl32(C3H6NO2S)12]·2.68H1.97OF(000) = 8986
Mr = 4643.74Dx = 1.648 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 29.4665 (14) ÅCell parameters from 9656 reflections
b = 22.1299 (11) Åθ = 2.3–27.0°
c = 28.9371 (14) ŵ = 4.18 mm1
β = 97.3964 (14)°T = 100 K
V = 18712.6 (16) Å3Block, colourless
Z = 40.36 × 0.31 × 0.13 mm
Data collection top
Bruker PHOTON100
diffractometer
33050 independent reflections
Radiation source: IµS micro-focus sealed tube, multilayer optics26149 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1Rint = 0.050
φ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2016)
h = 3535
Tmin = 0.487, Tmax = 0.746k = 2626
189540 measured reflectionsl = 3434
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0624P)2 + 8.4715P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.005
33050 reflectionsΔρmax = 0.56 e Å3
1568 parametersΔρmin = 0.74 e Å3
1778 restraintsAbsolute structure: Flack x determined using 10959 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.030 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Bruker D8 Venture Dual IµS fixed chi instrument.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.23519 (5)0.31230 (6)0.54032 (5)0.0579 (4)
Cu20.20172 (5)0.44258 (8)0.54083 (5)0.0691 (5)
Cu30.26766 (5)0.41381 (6)0.47398 (5)0.0672 (5)
Cu40.17391 (5)0.36921 (6)0.46655 (5)0.0559 (4)
Cu50.21846 (5)0.58001 (6)0.51074 (5)0.0567 (4)
Cu60.13091 (5)0.53887 (6)0.51306 (6)0.0630 (5)
Cu70.09631 (5)0.44665 (8)0.42588 (6)0.0798 (5)
Cu80.10651 (7)0.57526 (9)0.40780 (7)0.0977 (7)
Cu90.02387 (5)0.54135 (7)0.45601 (6)0.0745 (5)
Cu100.20700 (6)0.61803 (6)0.41657 (6)0.0698 (5)
Cu110.28239 (5)0.67012 (6)0.48669 (5)0.0626 (5)
Cu120.28192 (5)0.54007 (6)0.45474 (5)0.0614 (4)
Cu130.17952 (6)0.53201 (8)0.33686 (5)0.0785 (5)
Cu140.15793 (5)0.40690 (7)0.36370 (5)0.0695 (5)
Cu150.25597 (7)0.45178 (6)0.37674 (6)0.0824 (6)
Cu160.20923 (6)0.43008 (6)0.27659 (5)0.0651 (5)
Cl170.22173 (9)0.37582 (11)0.19939 (9)0.0545 (7)
Cl180.34231 (11)0.45854 (12)0.21509 (10)0.0665 (8)
Cl190.33498 (9)0.28328 (11)0.24565 (9)0.0570 (7)
Cl200.19600 (9)0.48492 (10)0.00147 (9)0.0517 (7)
Cl210.40264 (9)0.49108 (12)0.11204 (9)0.0552 (7)
Cl220.32955 (9)0.54141 (10)0.00565 (9)0.0505 (6)
Cl230.27217 (9)0.44123 (11)0.09437 (9)0.0510 (6)
Cl240.48113 (8)0.37736 (11)0.06546 (9)0.0475 (6)
Cl250.44196 (8)0.25954 (10)0.03622 (9)0.0457 (6)
Cl260.31903 (10)0.28123 (11)0.09826 (9)0.0569 (7)
Cl270.46038 (9)0.20465 (13)0.09290 (11)0.0633 (8)
Cl280.15872 (11)0.35724 (12)0.07666 (11)0.0684 (8)
Cl290.36295 (11)0.16125 (14)0.15790 (12)0.0724 (9)
Cl300.16584 (9)0.20464 (11)0.03029 (10)0.0576 (7)
Cl310.26426 (9)0.09887 (10)0.07751 (9)0.0544 (7)
Cl320.24954 (9)0.15419 (10)0.05720 (9)0.0499 (7)
Cu170.29960 (5)0.37517 (6)0.23092 (5)0.0575 (4)
Cu180.34600 (5)0.40742 (6)0.14677 (5)0.0554 (4)
Cu190.32706 (5)0.27978 (6)0.16614 (5)0.0544 (4)
Cu200.25792 (4)0.35959 (5)0.13493 (4)0.0491 (4)
Cu210.34111 (5)0.45217 (6)0.05047 (5)0.0597 (5)
Cu220.40555 (4)0.36029 (5)0.07127 (4)0.0449 (4)
Cu230.38409 (5)0.23608 (6)0.09839 (5)0.0588 (4)
Cu240.27759 (5)0.23655 (6)0.01539 (6)0.0726 (5)
Cu250.21648 (5)0.28572 (6)0.05507 (5)0.0591 (4)
Cu260.47292 (4)0.27944 (6)0.04148 (5)0.0530 (4)
Cu270.24038 (5)0.40504 (5)0.03107 (5)0.0531 (4)
Cu280.26203 (5)0.50137 (6)0.02970 (5)0.0547 (4)
Cu290.29722 (5)0.37054 (8)0.03934 (5)0.0725 (5)
Cu300.37891 (4)0.28444 (5)0.00011 (5)0.0526 (4)
Cu310.29053 (5)0.19625 (5)0.07819 (5)0.0558 (4)
Cu320.21772 (5)0.13500 (6)0.01025 (5)0.0584 (4)
Cl10.21146 (14)0.37186 (13)0.59869 (11)0.0872 (11)
Cl20.17357 (9)0.26957 (10)0.49121 (10)0.0506 (7)
Cl30.30254 (9)0.33463 (13)0.51603 (12)0.0676 (8)
Cl40.25123 (12)0.65910 (13)0.55372 (10)0.0698 (9)
Cl50.16698 (12)0.54014 (15)0.59363 (11)0.0775 (9)
Cl60.24411 (10)0.71154 (11)0.41794 (10)0.0596 (7)
Cl70.05734 (10)0.56982 (13)0.52772 (12)0.0727 (9)
Cl80.34112 (11)0.60748 (13)0.47090 (12)0.0725 (9)
Cl90.03342 (11)0.60746 (15)0.39359 (13)0.0813 (10)
Cl100.01797 (10)0.44353 (12)0.42994 (12)0.0674 (8)
Cl110.09607 (10)0.32954 (13)0.39005 (11)0.0674 (8)
Cl120.19252 (11)0.52940 (12)0.26019 (10)0.0651 (8)
Cl130.14881 (11)0.37007 (14)0.28865 (10)0.0691 (8)
Cl140.28293 (10)0.40796 (12)0.31312 (9)0.0584 (7)
Cl150.34099 (11)0.44163 (14)0.43265 (11)0.0729 (8)
Cl160.14480 (14)0.65016 (15)0.33655 (12)0.0871 (11)
S1_10.1561 (9)0.6131 (9)0.4672 (12)0.052 (3)0.658 (9)
O1_10.0759 (5)0.8191 (6)0.4557 (6)0.113 (5)0.658 (9)
O2_10.0863 (8)0.7659 (9)0.5246 (7)0.118 (5)0.658 (9)
N1_10.1252 (7)0.7406 (8)0.4156 (6)0.111 (6)0.658 (9)
H1A_10.1511610.7198060.4120190.166*0.658 (9)
H1B_10.1316090.7808280.4177920.166*0.658 (9)
H1C_10.1037870.7338530.3905380.166*0.658 (9)
C1_10.1448 (12)0.6878 (13)0.4909 (10)0.070 (4)0.658 (9)
H1D_10.1364530.6831680.5227500.084*0.658 (9)
H1E_10.1727900.7128140.4927890.084*0.658 (9)
C2_10.1065 (7)0.7191 (7)0.4607 (6)0.080 (4)0.658 (9)
H2_10.0814620.6891750.4518120.096*0.658 (9)
C3_10.0861 (7)0.7744 (8)0.4811 (7)0.090 (4)0.658 (9)
S1A_10.1520 (18)0.6071 (19)0.464 (2)0.059 (5)0.342 (9)
O1A_10.0945 (11)0.8049 (13)0.5349 (12)0.105 (7)0.342 (9)
O2A_10.1397 (11)0.7542 (13)0.5775 (12)0.101 (8)0.342 (9)
N1A_10.0682 (12)0.7037 (16)0.4767 (13)0.103 (7)0.342 (9)
H1AA_10.0614180.6649400.4679330.154*0.342 (9)
H1AB_10.0711440.7264520.4511030.154*0.342 (9)
H1AC_10.0452930.7189960.4915690.154*0.342 (9)
C1A_10.140 (2)0.685 (3)0.483 (2)0.070 (4)0.342 (9)
H1BA_10.1693340.7005920.4980290.084*0.342 (9)
H1BB_10.1329590.7080720.4533910.084*0.342 (9)
C2A_10.1108 (13)0.7049 (16)0.5080 (15)0.080 (4)0.342 (9)
H2A_10.1071820.6699490.5291610.096*0.342 (9)
C3A_10.1142 (19)0.759 (2)0.542 (2)0.089 (5)0.342 (9)
S1_20.26016 (10)0.49555 (12)0.51876 (9)0.0543 (7)
O1_20.3397 (6)0.4979 (8)0.6846 (5)0.194 (7)
O2_20.3717 (6)0.4512 (8)0.6279 (5)0.207 (7)
N1_20.2702 (5)0.5443 (6)0.6317 (5)0.134 (5)
H1A_20.2836160.5796450.6246470.202*
H1B_20.2718270.5405740.6631350.202*
H1C_20.2403930.5442650.6187450.202*
C1_20.3100 (4)0.4995 (7)0.5638 (4)0.087 (3)
H1AA_20.3323320.4678940.5579370.104*
H1AB_20.3250320.5393300.5623320.104*
C2_20.2956 (5)0.4905 (7)0.6119 (4)0.113 (4)
H2_20.2748030.4546900.6103150.136*
C3_20.3374 (6)0.4757 (9)0.6452 (5)0.139 (5)
S1_30.13160 (9)0.43683 (12)0.49842 (10)0.0559 (8)
O1_30.0699 (3)0.3400 (3)0.6162 (3)0.064 (2)
O2_30.0193 (3)0.2967 (3)0.5619 (3)0.062 (2)
N1_30.0668 (3)0.3145 (4)0.4932 (3)0.060 (2)
H1A_30.0521310.3439360.4751200.091*
H1B_30.0466520.2846370.4978540.091*
H1C_30.0897990.2988640.4786030.091*
C1_30.0914 (4)0.4085 (4)0.5362 (4)0.058 (3)
H1D_30.1009980.4236640.5681130.069*
H1DE_30.0608960.4259450.5255030.069*
C2_30.0863 (3)0.3404 (4)0.5387 (3)0.054 (3)
H2_30.1171070.3221640.5481520.064*
C3_30.0555 (3)0.3246 (4)0.5750 (4)0.053 (3)
S1_40.24826 (10)0.55195 (11)0.38094 (10)0.0555 (8)
O1_40.3746 (4)0.5903 (4)0.2768 (4)0.099 (3)
O2_40.3076 (4)0.6387 (5)0.2617 (3)0.100 (3)
N1_40.3531 (4)0.5391 (5)0.3535 (3)0.086 (3)
H1A_40.3653530.5064140.3406400.128*
H1B_40.3422950.5279120.3803340.128*
H1C_40.3750560.5679340.3600140.128*
C1_40.2815 (4)0.5998 (4)0.3464 (4)0.070 (4)
H1AA_40.2602300.6230590.3238060.085*
H1AB_40.2993310.6290540.3673220.085*
C2_40.3144 (4)0.5642 (5)0.3198 (4)0.076 (4)
H2_40.2971160.5292010.3043790.091*
C3_40.3353 (5)0.5980 (6)0.2830 (5)0.085 (4)
S1_50.2212 (13)0.3822 (12)0.4101 (14)0.042 (3)0.549 (19)
O1_50.3101 (6)0.2390 (8)0.3591 (7)0.065 (4)0.549 (19)
O2_50.2538 (7)0.1796 (7)0.3275 (7)0.070 (4)0.549 (19)
N1_50.1852 (7)0.2529 (8)0.3495 (9)0.070 (5)0.549 (19)
H1A_50.1798360.2331800.3758270.105*0.549 (19)
H1B_50.1813300.2268630.3249190.105*0.549 (19)
H1C_50.1651450.2841840.3439730.105*0.549 (19)
C1_50.2459 (11)0.3084 (13)0.4011 (10)0.048 (4)0.549 (19)
H1AA_50.2795750.3127450.4066700.058*0.549 (19)
H1AB_50.2371150.2810740.4255760.058*0.549 (19)
C2_50.2343 (7)0.2773 (8)0.3556 (7)0.053 (3)0.549 (19)
H2_50.2361550.3081720.3306860.063*0.549 (19)
C3_50.2687 (7)0.2277 (8)0.3484 (9)0.056 (4)0.549 (19)
S1A_50.2191 (17)0.3740 (15)0.4142 (18)0.047 (4)0.451 (19)
O1A_50.2899 (9)0.2343 (11)0.3394 (8)0.062 (5)0.451 (19)
O2A_50.2275 (9)0.1722 (9)0.3300 (8)0.067 (5)0.451 (19)
N1A_50.1740 (8)0.2498 (11)0.3727 (9)0.065 (5)0.451 (19)
H1A1_50.1502340.2501760.3492890.097*0.451 (19)
H1A2_50.1676560.2748710.3959680.097*0.451 (19)
H1A3_50.1782720.2115650.3840060.097*0.451 (19)
C1A_50.2514 (16)0.3002 (19)0.4055 (15)0.055 (4)0.451 (19)
H1AC_50.2825460.3078910.3973600.066*0.451 (19)
H1AD_50.2533850.2737030.4332670.066*0.451 (19)
C2A_50.2129 (12)0.2691 (12)0.3560 (11)0.058 (4)0.451 (19)
H2A_50.2057480.2999460.3308700.070*0.451 (19)
C3A_50.2450 (11)0.2183 (12)0.3405 (11)0.059 (4)0.451 (19)
S1_60.11738 (19)0.49435 (19)0.36352 (19)0.0583 (11)0.826 (8)
O1_60.0079 (5)0.5202 (8)0.2134 (5)0.140 (5)0.826 (8)
O2_60.0236 (6)0.4271 (7)0.2359 (6)0.157 (6)0.826 (8)
N1_60.0591 (6)0.5742 (6)0.2781 (6)0.118 (5)0.826 (8)
H1A_60.0286200.5796760.2790430.176*0.826 (8)
H1B_60.0674840.5934660.2527410.176*0.826 (8)
H1C_60.0751390.5896630.3044290.176*0.826 (8)
C1_60.0642 (5)0.4796 (8)0.3219 (5)0.092 (3)0.826 (8)
H1D_60.0586960.4355780.3191640.110*0.826 (8)
H1E_60.0375510.4984170.3338760.110*0.826 (8)
C2_60.0694 (6)0.5054 (7)0.2748 (5)0.109 (4)0.826 (8)
H2_60.1003280.4973190.2653670.131*0.826 (8)
C3_60.0289 (7)0.4819 (6)0.2374 (7)0.125 (5)0.826 (8)
O3_60.0965 (9)0.5789 (13)0.1979 (8)0.174 (11)0.63 (3)
O4_60.1142 (9)0.4710 (12)0.1799 (9)0.126 (15)0.34 (2)
H4A_60.104 (3)0.457 (2)0.2032 (15)0.189*0.34 (2)
H4B_60.119 (4)0.5077 (14)0.186 (3)0.189*0.34 (2)
S1A_60.1183 (9)0.4940 (7)0.3643 (9)0.076 (5)0.174 (8)
O1A_60.0009 (18)0.566 (3)0.253 (2)0.131 (9)0.174 (8)
O2A_60.0670 (19)0.557 (3)0.230 (2)0.131 (7)0.174 (8)
N1A_60.039 (2)0.421 (2)0.298 (3)0.115 (9)0.174 (8)
H1AA_60.0469710.3992680.2737290.172*0.174 (8)
H1AB_60.0085310.4163140.2996820.172*0.174 (8)
H1AC_60.0554040.4089460.3249330.172*0.174 (8)
C1A_60.1033 (14)0.491 (3)0.2993 (12)0.093 (4)0.174 (8)
H1BA_60.1155530.5265350.2844860.111*0.174 (8)
H1BB_60.1161650.4538840.2865950.111*0.174 (8)
C2A_60.049 (2)0.490 (2)0.290 (2)0.108 (4)0.174 (8)
H2A_60.0404810.5084810.3189760.130*0.174 (8)
C3A_60.0366 (16)0.543 (2)0.2528 (15)0.118 (5)0.174 (8)
S1_70.36689 (8)0.38424 (10)0.00077 (8)0.0404 (6)
O1_70.4468 (2)0.4789 (3)0.1283 (3)0.0589 (19)
O2_70.4529 (3)0.5238 (3)0.0570 (3)0.071 (2)
N1_70.3819 (3)0.4029 (4)0.1109 (3)0.060 (2)
H1A_70.3780610.4212940.1392490.091*
H1B_70.3548020.3867840.1050290.091*
H1C_70.4031110.3730070.1107930.091*
C1_70.4124 (3)0.4198 (4)0.0277 (3)0.043 (2)
H1AA_70.4273580.4511260.0064990.051*
H1AB_70.4357870.3887580.0317100.051*
C2_70.3979 (4)0.4484 (4)0.0740 (3)0.056 (3)
H2_70.3716360.4759480.0705010.067*
C3_70.4356 (4)0.4859 (4)0.0895 (4)0.058 (3)
S1_80.23844 (8)0.32201 (10)0.01282 (9)0.0447 (6)
O1_80.1102 (4)0.2923 (6)0.1457 (4)0.126 (4)
O2_80.0919 (4)0.2791 (7)0.0744 (4)0.135 (5)
N1_80.2039 (4)0.2799 (7)0.1205 (4)0.113 (4)
H1A_80.1950950.3087180.1422530.170*
H1B_80.2022570.2428690.1343230.170*
H1C_80.2332260.2871000.1075690.170*
C1_80.1848 (4)0.3330 (5)0.0509 (4)0.078 (4)
H1AA_80.1598720.3391700.0315310.093*
H1AB_80.1871850.3701610.0695660.093*
C2_80.1727 (4)0.2815 (6)0.0831 (4)0.084 (4)
H2_80.1776430.2434020.0645190.101*
C3_80.1220 (4)0.2840 (8)0.1037 (5)0.097 (5)
S1_90.28393 (9)0.43517 (10)0.09544 (9)0.0456 (6)
O1_90.2567 (3)0.6072 (3)0.1752 (3)0.067 (2)
O2_90.1845 (3)0.6009 (3)0.1452 (3)0.066 (2)
N1_90.1864 (3)0.4857 (3)0.1237 (3)0.062 (3)
H1A_90.1773840.5012910.0948650.093*
H1B_90.1647740.4939250.1426420.093*
H1C_90.1898210.4449840.1214990.093*
C1_90.2675 (4)0.5114 (4)0.1116 (3)0.050 (3)
H1D_90.2951580.5325410.1265300.060*
H1DE_90.2561050.5337300.0828300.060*
C2_90.2317 (3)0.5140 (4)0.1439 (3)0.053 (3)
H2_90.2434680.4915120.1729710.064*
C3_90.2233 (4)0.5788 (4)0.1571 (4)0.057 (3)
S1_100.34156 (9)0.20907 (10)0.02913 (9)0.0453 (6)
O1_100.3877 (2)0.0336 (3)0.0650 (3)0.0577 (19)
O2_100.4188 (2)0.0312 (3)0.0089 (3)0.065 (2)
N1_100.3713 (3)0.1500 (3)0.0661 (3)0.056 (2)
H1A_100.3923150.1453720.0862860.083*
H1B_100.3650340.1899310.0630850.083*
H1C_100.3452240.1299130.0770950.083*
C1_100.3564 (3)0.1313 (4)0.0164 (4)0.049 (3)
H1D_100.3699840.1117940.0457750.059*
H1DE_100.3279570.1091600.0050120.059*
C2_100.3901 (3)0.1250 (4)0.0198 (3)0.050 (2)
H2_100.4193760.1459570.0082070.060*
C3_100.3996 (4)0.0576 (4)0.0274 (4)0.060 (3)
S1_110.38783 (9)0.32509 (11)0.13855 (9)0.0448 (6)
O1_110.5256 (3)0.3758 (6)0.2567 (3)0.105 (3)
O2_110.4636 (4)0.3444 (6)0.2834 (3)0.129 (4)
N1_110.4846 (3)0.4092 (4)0.1750 (3)0.065 (2)
H1A_110.5089890.3861100.1696710.097*
H1B_110.4948090.4440970.1893890.097*
H1C_110.4674960.4180430.1473440.097*
C1_110.4369 (3)0.3176 (5)0.1838 (4)0.060 (3)
H1AA_110.4277240.2917270.2089780.072*
H1AB_110.4615950.2961870.1703040.072*
C2_110.4561 (3)0.3754 (5)0.2053 (3)0.064 (3)
H2_110.4301470.4018460.2116970.077*
C3_110.4854 (4)0.3628 (6)0.2501 (3)0.079 (4)
S1_120.25882 (9)0.25913 (10)0.12410 (9)0.0461 (6)
O1_120.1909 (3)0.1233 (4)0.2376 (3)0.084 (3)
O2_120.1752 (3)0.2212 (4)0.2429 (3)0.087 (3)
N1_120.2607 (3)0.1363 (4)0.1905 (3)0.066 (3)
H1A_120.2414930.1112170.1723950.099*
H1B_120.2712260.1174140.2176840.099*
H1C_120.2847960.1462150.1751430.099*
C1_120.2162 (3)0.2244 (4)0.1561 (3)0.053 (3)
H1AA_120.1947050.2560910.1637700.064*
H1AB_120.1984930.1947250.1354720.064*
C2_120.2355 (3)0.1927 (4)0.2007 (3)0.054 (3)
H2_120.2573450.2206350.2194420.065*
C3_120.1972 (4)0.1767 (5)0.2292 (4)0.075 (4)
O1_130.4453 (3)0.3261 (4)0.1455 (3)0.075 (2)
H1A_130.4610 (11)0.302 (2)0.1292 (14)0.113*
H1B_130.4318 (11)0.310 (2)0.1691 (11)0.113*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0695 (9)0.0469 (8)0.0612 (9)0.0022 (6)0.0228 (7)0.0054 (6)
Cu20.0668 (10)0.0784 (10)0.0671 (10)0.0047 (8)0.0277 (7)0.0144 (8)
Cu30.0886 (11)0.0427 (8)0.0688 (10)0.0137 (7)0.0043 (8)0.0085 (7)
Cu40.0662 (8)0.0386 (7)0.0706 (9)0.0057 (6)0.0381 (7)0.0037 (6)
Cu50.0663 (9)0.0384 (7)0.0702 (9)0.0073 (6)0.0271 (7)0.0109 (6)
Cu60.0628 (9)0.0400 (7)0.0946 (11)0.0042 (6)0.0422 (8)0.0084 (7)
Cu70.0564 (9)0.0954 (13)0.0946 (12)0.0039 (8)0.0363 (8)0.0186 (10)
Cu80.0959 (13)0.0811 (12)0.1121 (15)0.0341 (10)0.0019 (11)0.0430 (11)
Cu90.0705 (10)0.0455 (8)0.1142 (13)0.0015 (7)0.0377 (9)0.0014 (8)
Cu100.0987 (11)0.0370 (7)0.0857 (11)0.0071 (7)0.0573 (9)0.0131 (7)
Cu110.0792 (10)0.0467 (8)0.0690 (10)0.0138 (6)0.0373 (8)0.0074 (7)
Cu120.0805 (10)0.0476 (8)0.0625 (9)0.0060 (7)0.0340 (7)0.0006 (6)
Cu130.0888 (11)0.0962 (12)0.0579 (10)0.0041 (9)0.0378 (8)0.0132 (8)
Cu140.0789 (10)0.0568 (9)0.0713 (10)0.0205 (7)0.0040 (8)0.0159 (7)
Cu150.1385 (15)0.0323 (7)0.0943 (12)0.0080 (8)0.0829 (11)0.0085 (7)
Cu160.0938 (11)0.0477 (8)0.0590 (9)0.0080 (7)0.0299 (8)0.0013 (6)
Cl170.0777 (17)0.0387 (12)0.0531 (15)0.0059 (12)0.0316 (13)0.0027 (11)
Cl180.094 (2)0.0466 (14)0.0667 (18)0.0101 (14)0.0416 (16)0.0090 (13)
Cl190.0714 (17)0.0458 (13)0.0589 (16)0.0051 (12)0.0274 (13)0.0043 (12)
Cl200.0591 (15)0.0337 (12)0.0680 (17)0.0063 (10)0.0297 (13)0.0058 (11)
Cl210.0609 (16)0.0498 (14)0.0589 (16)0.0025 (12)0.0236 (13)0.0037 (12)
Cl220.0670 (16)0.0292 (11)0.0604 (16)0.0047 (11)0.0278 (13)0.0054 (11)
Cl230.0636 (16)0.0382 (12)0.0539 (15)0.0063 (11)0.0185 (12)0.0020 (11)
Cl240.0442 (13)0.0399 (12)0.0617 (15)0.0011 (10)0.0193 (11)0.0059 (11)
Cl250.0465 (14)0.0349 (11)0.0600 (15)0.0022 (9)0.0231 (11)0.0013 (10)
Cl260.0774 (18)0.0352 (12)0.0620 (16)0.0057 (12)0.0242 (14)0.0025 (11)
Cl270.0633 (17)0.0524 (15)0.081 (2)0.0136 (13)0.0367 (15)0.0168 (14)
Cl280.087 (2)0.0369 (13)0.089 (2)0.0048 (13)0.0405 (17)0.0066 (13)
Cl290.0744 (19)0.0572 (17)0.094 (2)0.0090 (14)0.0406 (17)0.0264 (16)
Cl300.0598 (16)0.0381 (13)0.0799 (19)0.0079 (11)0.0280 (14)0.0121 (13)
Cl310.0727 (17)0.0331 (12)0.0631 (17)0.0138 (11)0.0298 (14)0.0096 (11)
Cl320.0692 (17)0.0268 (11)0.0597 (16)0.0071 (10)0.0311 (13)0.0057 (10)
Cu170.0797 (9)0.0432 (7)0.0547 (8)0.0008 (6)0.0280 (7)0.0016 (6)
Cu180.0648 (9)0.0380 (7)0.0666 (9)0.0070 (6)0.0212 (7)0.0037 (6)
Cu190.0596 (8)0.0526 (8)0.0557 (8)0.0054 (6)0.0251 (6)0.0032 (6)
Cu200.0690 (8)0.0270 (6)0.0577 (8)0.0020 (5)0.0327 (6)0.0005 (5)
Cu210.0868 (10)0.0319 (7)0.0704 (9)0.0149 (6)0.0484 (8)0.0098 (6)
Cu220.0513 (7)0.0387 (7)0.0482 (7)0.0001 (5)0.0196 (6)0.0019 (5)
Cu230.0639 (9)0.0450 (7)0.0707 (9)0.0076 (6)0.0214 (7)0.0111 (6)
Cu240.0809 (11)0.0362 (7)0.0980 (12)0.0146 (7)0.0008 (9)0.0216 (7)
Cu250.0714 (9)0.0493 (8)0.0604 (9)0.0164 (7)0.0228 (7)0.0064 (6)
Cu260.0529 (8)0.0410 (7)0.0692 (9)0.0003 (6)0.0230 (6)0.0047 (6)
Cu270.0649 (8)0.0309 (6)0.0664 (9)0.0079 (5)0.0196 (7)0.0045 (6)
Cu280.0643 (9)0.0385 (7)0.0673 (9)0.0042 (6)0.0313 (7)0.0044 (6)
Cu290.0535 (9)0.0941 (12)0.0710 (10)0.0127 (8)0.0128 (7)0.0350 (9)
Cu300.0597 (8)0.0277 (6)0.0773 (9)0.0017 (5)0.0358 (7)0.0006 (6)
Cu310.0714 (9)0.0310 (7)0.0737 (9)0.0083 (6)0.0424 (7)0.0090 (6)
Cu320.0748 (9)0.0384 (7)0.0691 (9)0.0047 (6)0.0367 (7)0.0057 (6)
Cl10.157 (3)0.0459 (16)0.0664 (19)0.0100 (18)0.044 (2)0.0021 (14)
Cl20.0529 (14)0.0330 (12)0.0703 (17)0.0034 (10)0.0246 (13)0.0023 (11)
Cl30.0546 (16)0.0535 (16)0.096 (2)0.0047 (12)0.0133 (15)0.0251 (15)
Cl40.105 (2)0.0479 (15)0.0650 (18)0.0293 (15)0.0416 (17)0.0163 (13)
Cl50.099 (2)0.0708 (19)0.0665 (19)0.0157 (17)0.0264 (17)0.0030 (16)
Cl60.087 (2)0.0333 (12)0.0648 (17)0.0048 (12)0.0320 (15)0.0064 (12)
Cl70.0625 (18)0.0525 (16)0.111 (3)0.0026 (13)0.0429 (17)0.0128 (16)
Cl80.076 (2)0.0488 (16)0.099 (2)0.0061 (14)0.0352 (17)0.0013 (15)
Cl90.076 (2)0.0588 (18)0.114 (3)0.0073 (15)0.0324 (19)0.0191 (17)
Cl100.0578 (16)0.0471 (15)0.105 (2)0.0066 (12)0.0384 (16)0.0053 (15)
Cl110.0685 (19)0.0560 (16)0.079 (2)0.0113 (14)0.0156 (16)0.0024 (14)
Cl120.100 (2)0.0477 (14)0.0542 (16)0.0138 (14)0.0366 (15)0.0073 (12)
Cl130.090 (2)0.0618 (17)0.0603 (17)0.0062 (15)0.0264 (15)0.0095 (14)
Cl140.0828 (19)0.0454 (13)0.0542 (15)0.0034 (12)0.0363 (14)0.0042 (11)
Cl150.077 (2)0.0669 (18)0.080 (2)0.0005 (15)0.0287 (16)0.0111 (16)
Cl160.132 (3)0.0600 (19)0.070 (2)0.0096 (19)0.014 (2)0.0117 (16)
S1_10.066 (5)0.026 (4)0.073 (5)0.008 (3)0.039 (4)0.008 (3)
O1_10.106 (11)0.058 (8)0.170 (13)0.028 (8)0.003 (10)0.017 (8)
O2_10.147 (11)0.083 (9)0.129 (9)0.013 (10)0.042 (10)0.026 (9)
N1_10.152 (15)0.086 (12)0.099 (11)0.053 (11)0.036 (10)0.006 (9)
C1_10.084 (7)0.042 (6)0.090 (8)0.003 (6)0.034 (6)0.014 (6)
C2_10.089 (8)0.050 (6)0.104 (8)0.014 (6)0.026 (7)0.022 (6)
C3_10.097 (8)0.055 (6)0.119 (8)0.017 (6)0.026 (7)0.031 (7)
S1A_10.071 (8)0.036 (8)0.075 (7)0.005 (8)0.032 (7)0.006 (8)
O1A_10.124 (14)0.059 (11)0.137 (15)0.017 (11)0.034 (13)0.039 (11)
O2A_10.111 (17)0.069 (15)0.123 (15)0.002 (13)0.018 (12)0.021 (13)
N1A_10.107 (11)0.072 (12)0.127 (14)0.008 (12)0.006 (11)0.018 (12)
C1A_10.085 (7)0.040 (7)0.089 (8)0.003 (7)0.030 (7)0.015 (7)
C2A_10.089 (8)0.050 (7)0.105 (8)0.014 (7)0.028 (7)0.024 (7)
C3A_10.097 (11)0.060 (8)0.114 (10)0.014 (9)0.028 (9)0.031 (8)
S1_20.0725 (18)0.0388 (13)0.0534 (16)0.0094 (12)0.0153 (14)0.0002 (12)
O1_20.244 (16)0.191 (14)0.131 (10)0.066 (12)0.030 (11)0.056 (10)
O2_20.272 (16)0.206 (15)0.129 (11)0.112 (13)0.026 (11)0.051 (11)
N1_20.154 (12)0.099 (10)0.150 (12)0.013 (9)0.018 (10)0.018 (9)
C1_20.106 (8)0.069 (7)0.082 (7)0.001 (6)0.001 (6)0.000 (6)
C2_20.157 (10)0.088 (8)0.088 (7)0.021 (7)0.009 (7)0.002 (7)
C3_20.187 (12)0.119 (10)0.097 (9)0.049 (9)0.040 (9)0.019 (8)
S1_30.0564 (16)0.0403 (14)0.0796 (19)0.0027 (11)0.0417 (15)0.0025 (13)
O1_30.069 (5)0.059 (5)0.069 (5)0.006 (4)0.028 (4)0.005 (4)
O2_30.074 (5)0.047 (4)0.073 (5)0.013 (4)0.037 (4)0.007 (4)
N1_30.060 (5)0.036 (4)0.093 (7)0.008 (4)0.037 (5)0.010 (4)
C1_30.056 (6)0.051 (6)0.075 (7)0.003 (5)0.043 (6)0.002 (5)
C2_30.060 (6)0.029 (5)0.080 (8)0.002 (4)0.038 (6)0.005 (5)
C3_30.045 (6)0.041 (6)0.082 (9)0.003 (5)0.034 (6)0.008 (5)
S1_40.085 (2)0.0317 (13)0.0572 (16)0.0029 (12)0.0379 (15)0.0028 (11)
O1_40.134 (9)0.056 (5)0.121 (8)0.012 (5)0.074 (7)0.008 (5)
O2_40.142 (9)0.088 (7)0.074 (6)0.012 (7)0.033 (6)0.016 (5)
N1_40.104 (8)0.084 (8)0.078 (7)0.006 (6)0.048 (7)0.018 (6)
C1_40.114 (10)0.037 (6)0.070 (8)0.016 (6)0.048 (7)0.000 (5)
C2_40.102 (10)0.047 (6)0.088 (9)0.008 (6)0.048 (8)0.003 (6)
C3_40.105 (11)0.073 (9)0.090 (10)0.009 (8)0.058 (9)0.017 (8)
S1_50.053 (4)0.023 (6)0.056 (7)0.001 (4)0.027 (4)0.005 (5)
O1_50.081 (9)0.044 (7)0.074 (11)0.009 (7)0.027 (8)0.002 (8)
O2_50.095 (12)0.046 (7)0.073 (9)0.009 (8)0.023 (9)0.019 (6)
N1_50.077 (9)0.043 (8)0.093 (12)0.009 (8)0.026 (9)0.019 (9)
C1_50.067 (7)0.020 (7)0.064 (7)0.008 (6)0.031 (6)0.000 (6)
C2_50.072 (7)0.029 (6)0.063 (6)0.007 (6)0.032 (6)0.000 (5)
C3_50.081 (9)0.034 (6)0.059 (7)0.013 (7)0.028 (8)0.006 (6)
S1A_50.064 (6)0.025 (7)0.059 (7)0.004 (6)0.031 (5)0.006 (6)
O1A_50.077 (11)0.055 (9)0.058 (11)0.011 (8)0.025 (9)0.003 (9)
O2A_50.101 (13)0.045 (7)0.062 (9)0.005 (8)0.033 (11)0.016 (7)
N1A_50.084 (10)0.059 (10)0.059 (12)0.001 (8)0.039 (9)0.022 (9)
C1A_50.076 (8)0.029 (8)0.067 (7)0.006 (7)0.033 (7)0.003 (7)
C2A_50.079 (8)0.034 (6)0.067 (7)0.011 (6)0.031 (7)0.002 (6)
C3A_50.081 (9)0.035 (6)0.065 (7)0.010 (7)0.030 (7)0.004 (6)
S1_60.069 (2)0.045 (2)0.065 (2)0.0061 (19)0.019 (2)0.001 (2)
O1_60.136 (10)0.172 (11)0.101 (9)0.010 (9)0.027 (8)0.019 (8)
O2_60.150 (12)0.146 (10)0.161 (12)0.003 (10)0.035 (10)0.035 (10)
N1_60.125 (10)0.112 (9)0.110 (10)0.003 (8)0.007 (9)0.007 (8)
C1_60.098 (7)0.086 (7)0.088 (6)0.010 (6)0.000 (6)0.012 (6)
C2_60.113 (8)0.112 (7)0.097 (7)0.001 (7)0.007 (6)0.007 (7)
C3_60.127 (9)0.136 (8)0.105 (8)0.001 (8)0.013 (7)0.015 (8)
O3_60.17 (2)0.19 (2)0.155 (19)0.008 (16)0.015 (15)0.008 (16)
O4_60.077 (18)0.18 (3)0.13 (2)0.046 (17)0.046 (16)0.041 (19)
S1A_60.085 (9)0.067 (9)0.077 (9)0.007 (9)0.009 (9)0.003 (9)
O1A_60.127 (14)0.144 (17)0.117 (17)0.011 (14)0.008 (14)0.016 (16)
O2A_60.137 (13)0.150 (14)0.102 (14)0.007 (13)0.003 (12)0.007 (12)
N1A_60.112 (17)0.114 (13)0.114 (17)0.004 (14)0.002 (17)0.005 (16)
C1A_60.102 (8)0.086 (8)0.088 (8)0.004 (7)0.002 (7)0.007 (8)
C2A_60.113 (8)0.110 (8)0.098 (8)0.001 (8)0.007 (8)0.012 (8)
C3A_60.120 (9)0.125 (9)0.102 (9)0.001 (9)0.010 (8)0.007 (8)
S1_70.0493 (14)0.0293 (11)0.0467 (14)0.0008 (9)0.0215 (11)0.0035 (10)
O1_70.066 (5)0.049 (4)0.065 (5)0.000 (3)0.020 (4)0.012 (4)
O2_70.085 (6)0.051 (5)0.084 (6)0.011 (4)0.037 (5)0.004 (4)
N1_70.070 (6)0.063 (6)0.051 (5)0.001 (5)0.020 (5)0.001 (4)
C1_70.054 (6)0.033 (5)0.043 (5)0.009 (4)0.015 (4)0.000 (4)
C2_70.080 (7)0.032 (5)0.063 (7)0.001 (5)0.036 (6)0.000 (5)
C3_70.062 (7)0.045 (6)0.072 (8)0.002 (5)0.032 (6)0.006 (6)
S1_80.0515 (15)0.0308 (12)0.0546 (16)0.0010 (10)0.0180 (12)0.0011 (10)
O1_80.127 (9)0.165 (12)0.091 (8)0.001 (8)0.031 (7)0.010 (8)
O2_80.099 (8)0.173 (13)0.142 (10)0.001 (8)0.054 (8)0.009 (9)
N1_80.096 (9)0.126 (12)0.121 (11)0.001 (8)0.027 (8)0.040 (9)
C1_80.093 (9)0.066 (8)0.073 (9)0.033 (7)0.010 (7)0.001 (7)
C2_80.104 (11)0.075 (9)0.074 (9)0.014 (8)0.011 (8)0.003 (7)
C3_80.083 (11)0.119 (13)0.091 (11)0.004 (9)0.016 (9)0.016 (10)
S1_90.0616 (16)0.0257 (11)0.0558 (15)0.0067 (10)0.0314 (13)0.0023 (10)
O1_90.102 (6)0.042 (4)0.062 (5)0.003 (4)0.028 (5)0.010 (4)
O2_90.105 (6)0.034 (4)0.066 (5)0.017 (4)0.041 (5)0.002 (3)
N1_90.081 (7)0.034 (4)0.079 (7)0.022 (4)0.038 (5)0.007 (4)
C1_90.079 (7)0.023 (4)0.055 (6)0.014 (4)0.033 (5)0.001 (4)
C2_90.080 (8)0.030 (5)0.055 (6)0.012 (5)0.029 (6)0.013 (4)
C3_90.092 (9)0.028 (5)0.057 (7)0.014 (6)0.035 (7)0.003 (5)
S1_100.0616 (16)0.0238 (11)0.0561 (15)0.0028 (10)0.0292 (13)0.0019 (10)
O1_100.067 (5)0.040 (4)0.073 (5)0.003 (3)0.033 (4)0.007 (4)
O2_100.061 (5)0.049 (4)0.088 (6)0.007 (3)0.026 (4)0.009 (4)
N1_100.076 (6)0.037 (4)0.060 (6)0.007 (4)0.034 (5)0.004 (4)
C1_100.065 (6)0.031 (5)0.059 (6)0.001 (4)0.034 (5)0.005 (4)
C2_100.055 (6)0.041 (5)0.056 (6)0.003 (4)0.021 (5)0.001 (5)
C3_100.070 (8)0.045 (6)0.073 (8)0.001 (5)0.045 (7)0.001 (6)
S1_110.0534 (15)0.0369 (12)0.0473 (15)0.0039 (10)0.0182 (12)0.0020 (10)
O1_110.070 (6)0.159 (10)0.081 (7)0.019 (7)0.015 (5)0.000 (7)
O2_110.166 (11)0.161 (11)0.071 (7)0.008 (9)0.053 (7)0.008 (7)
N1_110.066 (6)0.069 (6)0.060 (6)0.009 (5)0.010 (5)0.002 (5)
C1_110.066 (7)0.055 (6)0.063 (7)0.001 (5)0.024 (6)0.001 (5)
C2_110.055 (7)0.092 (9)0.047 (6)0.001 (6)0.016 (5)0.005 (6)
C3_110.105 (11)0.090 (10)0.044 (7)0.003 (8)0.019 (7)0.001 (7)
S1_120.0602 (16)0.0288 (12)0.0551 (16)0.0066 (10)0.0300 (13)0.0017 (10)
O1_120.118 (7)0.061 (5)0.083 (6)0.042 (5)0.056 (5)0.008 (4)
O2_120.103 (7)0.074 (6)0.095 (7)0.014 (5)0.058 (6)0.030 (5)
N1_120.086 (7)0.056 (5)0.062 (6)0.010 (5)0.038 (5)0.010 (5)
C1_120.074 (7)0.040 (5)0.054 (6)0.002 (5)0.042 (6)0.004 (5)
C2_120.069 (7)0.034 (5)0.067 (7)0.001 (5)0.034 (6)0.002 (5)
C3_120.083 (9)0.074 (9)0.074 (9)0.003 (7)0.039 (7)0.013 (7)
O1_130.091 (6)0.064 (5)0.069 (5)0.004 (4)0.007 (5)0.009 (4)
Geometric parameters (Å, º) top
Cu1—Cl32.244 (3)N1_1—H1B_10.9100
Cu1—Cl12.320 (3)N1_1—H1C_10.9100
Cu1—Cl22.355 (3)C1_1—C2_11.503 (19)
Cu1—Cl6i2.572 (3)C1_1—H1D_10.9900
Cu1—Cu42.900 (2)C1_1—H1E_10.9900
Cu1—Cu23.048 (2)C2_1—C3_11.518 (16)
Cu2—S1_22.243 (3)C2_1—H2_11.0000
Cu2—S1_32.267 (3)S1A_1—C1A_11.86 (5)
Cu2—Cl12.283 (3)O1A_1—C3A_11.17 (6)
Cu2—Cu42.734 (2)O2A_1—C3A_11.20 (6)
Cu2—Cu32.982 (2)N1A_1—C2A_11.45 (5)
Cu2—Cu63.018 (2)N1A_1—H1AA_10.9100
Cu3—S1_22.253 (3)N1A_1—H1AB_10.9100
Cu3—S1_52.26 (4)N1A_1—H1AC_10.9100
Cu3—S1A_52.28 (5)C1A_1—C2A_11.26 (7)
Cu3—Cl32.299 (3)C1A_1—H1BA_10.9900
Cu3—Cl152.673 (3)C1A_1—H1BB_10.9900
Cu3—Cu122.890 (2)C2A_1—C3A_11.54 (6)
Cu3—Cu152.914 (2)C2A_1—H2A_11.0000
Cu3—Cu42.915 (2)S1_2—C1_21.835 (11)
Cu4—S1A_52.14 (4)O1_2—C3_21.235 (15)
Cu4—S1_32.223 (3)O2_2—C3_21.302 (16)
Cu4—S1_52.30 (3)N1_2—C2_21.553 (15)
Cu4—Cl22.318 (3)N1_2—H1A_20.9100
Cu4—Cu72.976 (2)N1_2—H1B_20.9100
Cu5—S1_12.21 (3)N1_2—H1C_20.9100
Cu5—S1_22.232 (3)C1_2—C2_21.520 (15)
Cu5—Cl42.288 (3)C1_2—H1AA_20.9900
Cu5—S1A_12.31 (6)C1_2—H1AB_20.9900
Cu5—Cu62.7449 (19)C2_2—C3_21.499 (16)
Cu5—Cu122.7721 (18)C2_2—H2_21.0000
Cu5—Cu102.830 (2)S1_3—C1_31.824 (8)
Cu5—Cu112.8889 (18)O1_3—C3_31.260 (11)
Cu6—S1A_12.21 (6)O2_3—C3_31.248 (11)
Cu6—S1_12.29 (3)N1_3—C2_31.482 (11)
Cu6—S1_32.298 (3)N1_3—H1A_30.9100
Cu6—Cl72.363 (3)N1_3—H1B_30.9100
Cu6—Cl52.435 (4)N1_3—H1C_30.9100
Cu7—S1_32.230 (4)C1_3—C2_31.517 (11)
Cu7—S1A_62.234 (17)C1_3—H1D_30.9900
Cu7—S1_62.246 (5)C1_3—H1DE_30.9900
Cu7—Cl102.328 (3)C2_3—C3_31.513 (11)
Cu7—Cu142.855 (2)C2_3—H2_31.0000
Cu7—Cu82.916 (3)S1_4—C1_41.826 (9)
Cu8—S1A_12.10 (6)O1_4—C3_41.208 (12)
Cu8—S1A_62.248 (18)O2_4—C3_41.314 (13)
Cu8—S1_62.249 (5)N1_4—C2_41.509 (13)
Cu8—Cl92.255 (4)N1_4—H1A_40.9100
Cu8—S1_12.27 (3)N1_4—H1B_40.9100
Cu8—Cu93.052 (3)N1_4—H1C_40.9100
Cu9—Cl72.269 (4)C1_4—C2_41.531 (13)
Cu9—Cl102.292 (3)C1_4—H1AA_40.9900
Cu9—Cl92.369 (4)C1_4—H1AB_40.9900
Cu9—Cl7ii2.576 (3)C2_4—C3_41.496 (13)
Cu10—S1_12.23 (3)C2_4—H2_41.0000
Cu10—S1_42.236 (3)S1_5—C1_51.819 (19)
Cu10—S1A_12.27 (6)O1_5—C3_51.245 (17)
Cu10—Cl62.338 (3)O2_5—C3_51.273 (17)
Cu10—Cu122.906 (2)N1_5—C2_51.535 (17)
Cu10—Cu133.020 (2)N1_5—H1A_50.9100
Cu10—Cu113.036 (2)N1_5—H1B_50.9100
Cu11—Cl42.264 (3)N1_5—H1C_50.9100
Cu11—Cl82.308 (3)C1_5—C2_51.486 (19)
Cu11—Cl62.344 (3)C1_5—H1AA_50.9900
Cu11—Cl2iii2.593 (3)C1_5—H1AB_50.9900
Cu11—Cu123.0223 (19)C2_5—C3_51.525 (17)
Cu12—S1_42.251 (3)C2_5—H2_51.0000
Cu12—S1_22.263 (3)S1A_5—C1A_51.92 (3)
Cu12—Cl82.297 (3)O1A_5—C3A_51.37 (3)
Cu12—Cu153.009 (2)O2A_5—C3A_51.16 (3)
Cu13—S1A_62.228 (18)N1A_5—C2A_51.37 (4)
Cu13—S1_62.237 (5)N1A_5—H1A1_50.9100
Cu13—S1_42.293 (4)N1A_5—H1A2_50.9100
Cu13—Cl122.300 (3)N1A_5—H1A3_50.9100
Cu13—C1A_62.54 (4)C1A_5—C2A_51.84 (5)
Cu13—Cu142.966 (2)C1A_5—H1AC_50.9900
Cu13—Cu152.981 (3)C1A_5—H1AD_50.9900
Cu13—Cu163.048 (2)C2A_5—C3A_51.57 (3)
Cu14—S1_52.22 (4)C2A_5—H2A_51.0000
Cu14—S1A_62.255 (18)S1_6—C1_61.878 (14)
Cu14—S1_62.274 (4)O1_6—C3_61.214 (11)
Cu14—S1A_52.29 (5)O2_6—C3_61.222 (11)
Cu14—Cl132.303 (3)N1_6—C2_61.558 (16)
Cu14—Cl112.682 (3)N1_6—H1A_60.9100
Cu14—Cu153.032 (2)N1_6—H1B_60.9100
Cu15—S1_52.15 (3)N1_6—H1C_60.9100
Cu15—S1_42.233 (3)C1_6—C2_61.502 (17)
Cu15—Cl142.310 (3)C1_6—H1D_60.9900
Cu15—S1A_52.37 (4)C1_6—H1E_60.9900
Cu16—Cl132.284 (3)C2_6—C3_61.594 (16)
Cu16—Cl122.289 (3)C2_6—H2_61.0000
Cu16—Cl142.341 (3)O4_6—H4A_60.8401 (15)
Cu16—Cl172.604 (3)O4_6—H4B_60.8400 (17)
Cl17—Cu202.293 (2)S1A_6—C1A_61.877 (19)
Cl17—Cu172.358 (3)O1A_6—C3A_61.211 (14)
Cl18—Cu182.292 (3)O2A_6—C3A_61.214 (14)
Cl18—Cu172.312 (3)N1A_6—C2A_61.57 (2)
Cl19—Cu192.284 (3)N1A_6—H1AA_60.9100
Cl19—Cu172.300 (3)N1A_6—H1AB_60.9100
Cl20—Cu282.277 (3)N1A_6—H1AC_60.9100
Cl20—Cu272.298 (3)C1A_6—C2A_61.59 (7)
Cl21—Cu212.524 (3)C1A_6—H1BA_60.9900
Cl21—Cu182.767 (3)C1A_6—H1BB_60.9900
Cl22—Cu282.295 (3)C2A_6—C3A_61.61 (2)
Cl22—Cu212.363 (3)C2A_6—H2A_61.0000
Cl22—Cu32iv2.505 (3)S1_7—C1_71.840 (9)
Cl23—Cu292.286 (3)O1_7—C3_71.222 (10)
Cl23—Cu282.347 (3)O2_7—C3_71.312 (11)
Cl24—Cu262.279 (3)N1_7—C2_71.499 (11)
Cl24—Cu222.286 (2)N1_7—H1A_70.9100
Cl25—Cu302.312 (2)N1_7—H1B_70.9100
Cl25—Cu262.356 (3)N1_7—H1C_70.9100
Cl25—Cu26v2.570 (3)C1_7—C2_71.493 (11)
Cl26—Cu292.740 (3)C1_7—H1AA_70.9900
Cl27—Cu262.287 (3)C1_7—H1AB_70.9900
Cl27—Cu232.378 (3)C2_7—C3_71.500 (11)
Cl28—Cu252.463 (3)C2_7—H2_71.0000
Cl29—Cu232.524 (3)S1_8—C1_81.823 (11)
Cl30—Cu322.297 (3)O1_8—C3_81.234 (13)
Cl30—Cu252.384 (3)O2_8—C3_81.309 (13)
Cl31—Cu312.289 (3)N1_8—C2_81.509 (13)
Cl31—Cu322.371 (3)N1_8—H1A_80.9100
Cl31—Cu28vi2.626 (3)N1_8—H1B_80.9100
Cl32—Cu242.283 (3)N1_8—H1C_80.9100
Cl32—Cu322.311 (3)C1_8—C2_81.485 (14)
Cu17—Cl142.594 (3)C1_8—H1AA_80.9900
Cu17—Cu202.9094 (19)C1_8—H1AB_80.9900
Cu17—Cu193.0024 (18)C2_8—C3_81.537 (14)
Cu17—Cu183.0272 (18)C2_8—H2_81.0000
Cu18—S1_112.229 (3)S1_9—C1_91.832 (8)
Cu18—S1_92.287 (3)O1_9—C3_91.226 (11)
Cu18—Cu202.7830 (19)O2_9—C3_91.252 (11)
Cu18—Cu212.9437 (19)N1_9—C2_91.523 (12)
Cu18—Cu192.9469 (18)N1_9—H1A_90.9100
Cu19—S1_122.259 (3)N1_9—H1B_90.9100
Cu19—S1_112.284 (3)N1_9—H1C_90.9100
Cu19—Cu202.7589 (18)C1_9—C2_91.496 (11)
Cu19—Cu232.9070 (18)C1_9—H1D_90.9900
Cu20—S1_92.217 (2)C1_9—H1DE_90.9900
Cu20—S1_122.246 (2)C2_9—C3_91.513 (11)
Cu20—Cu252.9624 (19)C2_9—H2_91.0000
Cu21—S1_72.277 (3)S1_10—C1_101.825 (8)
Cu21—S1_92.289 (3)O1_10—C3_101.221 (11)
Cu21—Cu222.7944 (17)O2_10—C3_101.270 (11)
Cu22—S1_112.221 (3)N1_10—C2_101.487 (11)
Cu22—S1_72.268 (3)N1_10—H1A_100.9100
Cu22—Cu302.6986 (18)N1_10—H1B_100.9100
Cu22—Cu262.8853 (16)N1_10—H1C_100.9100
Cu22—Cu232.9494 (17)C1_10—C2_101.540 (11)
Cu23—S1_112.282 (3)C1_10—H1D_100.9900
Cu23—S1_102.302 (3)C1_10—H1DE_100.9900
Cu23—Cu312.882 (2)C2_10—C3_101.538 (12)
Cu23—Cu303.030 (2)C2_10—H2_101.0000
Cu24—S1_82.222 (3)S1_11—C1_111.830 (10)
Cu24—S1_102.226 (3)O1_11—C3_111.211 (13)
Cu24—Cu312.830 (2)O2_11—C3_111.290 (12)
Cu24—Cu323.008 (2)N1_11—C2_111.491 (11)
Cu25—S1_82.291 (3)N1_11—H1A_110.9100
Cu25—S1_122.291 (3)N1_11—H1B_110.9100
Cu25—Cu272.8418 (17)N1_11—H1C_110.9100
Cu25—Cu312.959 (2)C1_11—C2_111.501 (13)
Cu26—Cu302.8768 (19)C1_11—H1AA_110.9900
Cu26—Cu26v3.049 (2)C1_11—H1AB_110.9900
Cu27—S1_92.224 (3)C2_11—C3_111.489 (13)
Cu27—S1_82.230 (3)C2_11—H2_111.0000
Cu27—Cu282.8866 (18)S1_12—C1_121.823 (8)
Cu27—Cu292.901 (2)O1_12—C3_121.226 (12)
Cu28—Cu32iv3.0548 (18)O2_12—C3_121.269 (12)
Cu29—S1_72.245 (3)N1_12—C2_121.501 (11)
Cu29—S1_82.255 (3)N1_12—H1A_120.9100
Cu30—S1_102.225 (2)N1_12—H1B_120.9100
Cu30—S1_72.238 (2)N1_12—H1C_120.9100
Cu31—S1_122.212 (3)C1_12—C2_121.514 (12)
Cu31—S1_102.215 (3)C1_12—H1AA_120.9900
Cu31—Cu323.036 (2)C1_12—H1AB_120.9900
S1_1—C1_11.837 (19)C2_12—C3_121.522 (12)
O1_1—C3_11.246 (16)C2_12—H2_121.0000
O2_1—C3_11.272 (17)O1_13—H1A_130.82 (3)
N1_1—C2_11.555 (17)O1_13—H1B_130.83 (3)
N1_1—H1A_10.9100
Cl3—Cu1—Cl1117.68 (14)Cl27—Cu26—Cu26v131.07 (7)
Cl3—Cu1—Cl2122.94 (12)Cl25—Cu26—Cu26v55.00 (7)
Cl1—Cu1—Cl2112.72 (13)Cl25v—Cu26—Cu26v48.68 (7)
Cl3—Cu1—Cl6i99.92 (10)Cu30—Cu26—Cu26v104.12 (7)
Cl1—Cu1—Cl6i103.06 (11)Cu22—Cu26—Cu26v133.25 (5)
Cl2—Cu1—Cl6i93.04 (10)S1_9—Cu27—S1_8133.93 (11)
Cl3—Cu1—Cu499.55 (9)S1_9—Cu27—Cl20108.72 (10)
Cl1—Cu1—Cu494.11 (10)S1_8—Cu27—Cl20116.73 (11)
Cl2—Cu1—Cu451.07 (7)S1_9—Cu27—Cu25102.03 (8)
Cl6i—Cu1—Cu4144.07 (9)S1_8—Cu27—Cu2552.02 (7)
Cl3—Cu1—Cu295.34 (9)Cl20—Cu27—Cu25131.21 (9)
Cl1—Cu1—Cu248.02 (8)S1_9—Cu27—Cu2898.04 (8)
Cl2—Cu1—Cu299.09 (8)S1_8—Cu27—Cu28104.65 (8)
Cl6i—Cu1—Cu2151.08 (8)Cl20—Cu27—Cu2850.55 (7)
Cu4—Cu1—Cu254.66 (5)Cu25—Cu27—Cu28156.37 (6)
S1_2—Cu2—S1_3123.71 (12)S1_9—Cu27—Cu29110.13 (8)
S1_2—Cu2—Cl1122.58 (15)S1_8—Cu27—Cu2950.06 (7)
S1_3—Cu2—Cl1112.23 (14)Cl20—Cu27—Cu29107.03 (8)
S1_2—Cu2—Cu4104.48 (9)Cu25—Cu27—Cu2996.36 (5)
S1_3—Cu2—Cu451.76 (8)Cu28—Cu27—Cu2964.77 (5)
Cl1—Cu2—Cu499.56 (10)Cl20—Cu28—Cl22128.41 (11)
S1_2—Cu2—Cu348.59 (8)Cl20—Cu28—Cl23115.36 (11)
S1_3—Cu2—Cu3105.17 (9)Cl22—Cu28—Cl23112.48 (10)
Cl1—Cu2—Cu3107.37 (11)Cl20—Cu28—Cl31iv97.52 (9)
Cu4—Cu2—Cu361.16 (5)Cl22—Cu28—Cl31iv95.60 (10)
S1_2—Cu2—Cu694.88 (9)Cl23—Cu28—Cl31iv96.03 (9)
S1_3—Cu2—Cu649.06 (8)Cl20—Cu28—Cu2751.21 (7)
Cl1—Cu2—Cu6134.15 (11)Cl22—Cu28—Cu27105.10 (8)
Cu4—Cu2—Cu694.76 (6)Cl23—Cu28—Cu2797.34 (7)
Cu3—Cu2—Cu6117.65 (6)Cl31iv—Cu28—Cu27148.71 (8)
S1_2—Cu2—Cu1103.43 (9)Cl20—Cu28—Cu32iv103.79 (8)
S1_3—Cu2—Cu1102.55 (9)Cl22—Cu28—Cu32iv53.59 (7)
Cl1—Cu2—Cu149.07 (8)Cl23—Cu28—Cu32iv130.85 (8)
Cu4—Cu2—Cu159.92 (5)Cl31iv—Cu28—Cu32iv48.61 (7)
Cu3—Cu2—Cu163.67 (5)Cu27—Cu28—Cu32iv130.99 (6)
Cu6—Cu2—Cu1151.60 (7)S1_7—Cu29—S1_8125.43 (11)
S1_2—Cu3—S1_5128.6 (7)S1_7—Cu29—Cl23117.35 (11)
S1_2—Cu3—S1A_5130.5 (10)S1_8—Cu29—Cl23111.70 (11)
S1_2—Cu3—Cl3112.21 (13)S1_7—Cu29—Cl2698.46 (10)
S1_5—Cu3—Cl3112.2 (7)S1_8—Cu29—Cl2696.90 (10)
S1A_5—Cu3—Cl3107.6 (10)Cl23—Cu29—Cl2698.08 (10)
S1_2—Cu3—Cl15102.54 (12)S1_7—Cu29—Cu2799.99 (9)
S1_5—Cu3—Cl1598.3 (9)S1_8—Cu29—Cu2749.32 (7)
S1A_5—Cu3—Cl15102.4 (11)Cl23—Cu29—Cu2798.35 (9)
Cl3—Cu3—Cl1594.60 (11)Cl26—Cu29—Cu27146.06 (8)
S1_2—Cu3—Cu1250.35 (8)S1_10—Cu30—S1_7130.46 (10)
S1_5—Cu3—Cu12103.3 (8)S1_10—Cu30—Cl25117.32 (10)
S1A_5—Cu3—Cu12108.7 (10)S1_7—Cu30—Cl25112.21 (9)
Cl3—Cu3—Cu12140.59 (10)S1_10—Cu30—Cu22106.53 (8)
Cl15—Cu3—Cu1262.95 (8)S1_7—Cu30—Cu2253.71 (7)
S1_2—Cu3—Cu15108.40 (9)Cl25—Cu30—Cu22108.82 (8)
S1_5—Cu3—Cu1546.9 (8)S1_10—Cu30—Cu26108.00 (9)
S1A_5—Cu3—Cu1552.6 (11)S1_7—Cu30—Cu26100.28 (8)
Cl3—Cu3—Cu15136.06 (11)Cl25—Cu30—Cu2652.66 (7)
Cl15—Cu3—Cu1560.23 (9)Cu22—Cu30—Cu2662.23 (5)
Cu12—Cu3—Cu1562.43 (5)S1_10—Cu30—Cu2349.07 (8)
S1_2—Cu3—Cu498.75 (9)S1_7—Cu30—Cu23109.07 (8)
S1_5—Cu3—Cu450.8 (9)Cl25—Cu30—Cu23113.25 (8)
S1A_5—Cu3—Cu446.8 (11)Cu22—Cu30—Cu2361.65 (4)
Cl3—Cu3—Cu497.81 (9)Cu26—Cu30—Cu2370.35 (5)
Cl15—Cu3—Cu4149.09 (10)S1_12—Cu31—S1_10132.71 (10)
Cu12—Cu3—Cu4118.22 (6)S1_12—Cu31—Cl31115.40 (10)
Cu15—Cu3—Cu491.90 (6)S1_10—Cu31—Cl31111.83 (10)
S1_2—Cu3—Cu248.31 (8)S1_12—Cu31—Cu24111.17 (9)
S1_5—Cu3—Cu2102.7 (8)S1_10—Cu31—Cu2450.59 (8)
S1A_5—Cu3—Cu2100.2 (11)Cl31—Cu31—Cu24106.54 (9)
Cl3—Cu3—Cu295.96 (10)S1_12—Cu31—Cu2398.79 (9)
Cl15—Cu3—Cu2150.81 (10)S1_10—Cu31—Cu2351.70 (8)
Cu12—Cu3—Cu292.38 (5)Cl31—Cu31—Cu23127.11 (9)
Cu15—Cu3—Cu2123.98 (7)Cu24—Cu31—Cu2396.04 (6)
Cu4—Cu3—Cu255.23 (5)S1_12—Cu31—Cu2550.10 (8)
S1A_5—Cu4—S1_3133.8 (9)S1_10—Cu31—Cu25108.12 (9)
S1_3—Cu4—S1_5129.4 (7)Cl31—Cu31—Cu25112.92 (9)
S1A_5—Cu4—Cl2107.0 (9)Cu24—Cu31—Cu2564.41 (5)
S1_3—Cu4—Cl2119.20 (10)Cu23—Cu31—Cu25119.97 (5)
S1_5—Cu4—Cl2111.4 (7)S1_12—Cu31—Cu32110.60 (9)
S1A_5—Cu4—Cu2112.0 (12)S1_10—Cu31—Cu3297.10 (9)
S1_3—Cu4—Cu253.22 (9)Cl31—Cu31—Cu3250.52 (8)
S1_5—Cu4—Cu2109.7 (8)Cu24—Cu31—Cu3261.59 (5)
Cl2—Cu4—Cu2109.62 (9)Cu23—Cu31—Cu32147.74 (6)
S1A_5—Cu4—Cu199.0 (14)Cu25—Cu31—Cu3273.34 (5)
S1_3—Cu4—Cu1108.44 (10)Cl30—Cu32—Cl32116.45 (11)
S1_5—Cu4—Cu1101.5 (10)Cl30—Cu32—Cl31110.64 (11)
Cl2—Cu4—Cu152.21 (8)Cl32—Cu32—Cl31120.05 (11)
Cu2—Cu4—Cu165.42 (5)Cl30—Cu32—Cl22vi103.22 (10)
S1A_5—Cu4—Cu350.7 (14)Cl32—Cu32—Cl22vi105.85 (9)
S1_3—Cu4—Cu3108.56 (9)Cl31—Cu32—Cl22vi96.96 (9)
S1_5—Cu4—Cu349.8 (10)Cl30—Cu32—Cu2489.52 (8)
Cl2—Cu4—Cu3109.93 (9)Cl32—Cu32—Cu2448.68 (7)
Cu2—Cu4—Cu363.62 (5)Cl31—Cu32—Cu2499.14 (8)
Cu1—Cu4—Cu366.32 (5)Cl22vi—Cu32—Cu24154.43 (8)
S1A_5—Cu4—Cu7102.0 (13)Cl30—Cu32—Cu3188.56 (8)
S1_3—Cu4—Cu748.16 (9)Cl32—Cu32—Cu3197.77 (8)
S1_5—Cu4—Cu798.8 (9)Cl31—Cu32—Cu3148.18 (7)
Cl2—Cu4—Cu7129.50 (9)Cl22vi—Cu32—Cu31144.87 (9)
Cu2—Cu4—Cu796.09 (6)Cu24—Cu32—Cu3155.83 (5)
Cu1—Cu4—Cu7156.21 (6)Cl30—Cu32—Cu28vi136.35 (8)
Cu3—Cu4—Cu7120.44 (6)Cl32—Cu32—Cu28vi104.04 (7)
S1_1—Cu5—S1_2137.8 (6)Cl31—Cu32—Cu28vi56.20 (7)
S1_1—Cu5—Cl4108.5 (6)Cl22vi—Cu32—Cu28vi47.49 (7)
S1_2—Cu5—Cl4113.32 (13)Cu24—Cu32—Cu28vi131.43 (6)
S1_2—Cu5—S1A_1133.8 (12)Cu31—Cu32—Cu28vi102.00 (6)
Cl4—Cu5—S1A_1112.7 (11)Cu2—Cl1—Cu182.91 (11)
S1_1—Cu5—Cu653.9 (6)Cu4—Cl2—Cu176.72 (9)
S1_2—Cu5—Cu6103.08 (9)Cu4—Cl2—Cu11i149.49 (12)
Cl4—Cu5—Cu6124.94 (9)Cu1—Cl2—Cu11i82.50 (9)
S1A_1—Cu5—Cu651.0 (13)Cu1—Cl3—Cu388.88 (11)
S1_1—Cu5—Cu12110.2 (8)Cu11—Cl4—Cu578.80 (10)
S1_2—Cu5—Cu1252.42 (8)Cu10—Cl6—Cu1180.86 (10)
Cl4—Cu5—Cu12107.01 (9)Cu10—Cl6—Cu1iii149.02 (12)
S1A_1—Cu5—Cu12109.1 (15)Cu11—Cl6—Cu1iii83.18 (10)
Cu6—Cu5—Cu12127.98 (6)Cu9—Cl7—Cu693.22 (12)
S1_1—Cu5—Cu1050.7 (7)Cu9—Cl7—Cu9ii78.14 (12)
S1_2—Cu5—Cu10110.17 (9)Cu6—Cl7—Cu9ii149.00 (14)
Cl4—Cu5—Cu10106.60 (9)Cu12—Cl8—Cu1182.02 (11)
S1A_1—Cu5—Cu1051.3 (15)Cu8—Cl9—Cu982.54 (13)
Cu6—Cu5—Cu1097.24 (7)Cu9—Cl10—Cu787.41 (11)
Cu12—Cu5—Cu1062.47 (5)Cu16—Cl12—Cu1383.23 (10)
S1_1—Cu5—Cu1198.8 (6)Cu16—Cl13—Cu1486.53 (12)
S1_2—Cu5—Cu11103.63 (9)Cu15—Cl14—Cu1682.98 (10)
Cl4—Cu5—Cu1150.23 (8)Cu15—Cl14—Cu17166.76 (15)
S1A_1—Cu5—Cu11102.2 (12)Cu16—Cl14—Cu1785.33 (10)
Cu6—Cu5—Cu11151.51 (7)C1_1—S1_1—Cu5105.2 (13)
Cu12—Cu5—Cu1164.50 (5)C1_1—S1_1—Cu10111.8 (16)
Cu10—Cu5—Cu1164.12 (5)Cu5—S1_1—Cu1079.1 (8)
S1A_1—Cu6—S1_3122.9 (14)C1_1—S1_1—Cu8118.9 (14)
S1_1—Cu6—S1_3125.8 (6)Cu5—S1_1—Cu8135.7 (10)
S1A_1—Cu6—Cl7104.9 (13)Cu10—S1_1—Cu886.7 (11)
S1_1—Cu6—Cl7105.6 (6)C1_1—S1_1—Cu6109.9 (18)
S1_3—Cu6—Cl7110.36 (11)Cu5—S1_1—Cu675.0 (9)
S1A_1—Cu6—Cl5118.6 (16)Cu10—S1_1—Cu6135.3 (10)
S1_1—Cu6—Cl5114.3 (8)Cu8—S1_1—Cu687.1 (7)
S1_3—Cu6—Cl5100.06 (13)C2_1—N1_1—H1A_1109.5
Cl7—Cu6—Cl597.02 (13)C2_1—N1_1—H1B_1109.5
S1A_1—Cu6—Cu554.2 (15)H1A_1—N1_1—H1B_1109.5
S1_1—Cu6—Cu551.2 (7)C2_1—N1_1—H1C_1109.5
S1_3—Cu6—Cu5106.91 (8)H1A_1—N1_1—H1C_1109.5
Cl7—Cu6—Cu5142.66 (9)H1B_1—N1_1—H1C_1109.5
Cl5—Cu6—Cu573.96 (9)C2_1—C1_1—S1_1110.9 (16)
S1A_1—Cu6—Cu2114.2 (13)C2_1—C1_1—H1D_1109.5
S1_1—Cu6—Cu2113.3 (6)S1_1—C1_1—H1D_1109.5
S1_3—Cu6—Cu248.17 (9)C2_1—C1_1—H1E_1109.5
Cl7—Cu6—Cu2140.86 (10)S1_1—C1_1—H1E_1109.5
Cl5—Cu6—Cu263.36 (10)H1D_1—C1_1—H1E_1108.0
Cu5—Cu6—Cu267.72 (5)C1_1—C2_1—C3_1116.8 (16)
S1_3—Cu7—S1A_6130.5 (8)C1_1—C2_1—N1_1108.0 (19)
S1_3—Cu7—S1_6131.18 (19)C3_1—C2_1—N1_1106.3 (13)
S1_3—Cu7—Cl10107.14 (12)C1_1—C2_1—H2_1108.5
S1A_6—Cu7—Cl10116.4 (7)C3_1—C2_1—H2_1108.5
S1_6—Cu7—Cl10115.66 (18)N1_1—C2_1—H2_1108.5
S1_3—Cu7—Cu14107.82 (9)O1_1—C3_1—O2_1132.1 (17)
S1A_6—Cu7—Cu1450.8 (4)O1_1—C3_1—C2_1119.3 (15)
S1_6—Cu7—Cu1451.27 (12)O2_1—C3_1—C2_1108.3 (15)
Cl10—Cu7—Cu14137.58 (12)C1A_1—S1A_1—Cu8114 (3)
S1_3—Cu7—Cu8102.57 (10)C1A_1—S1A_1—Cu6112 (4)
S1A_6—Cu7—Cu849.6 (4)Cu8—S1A_1—Cu693.7 (18)
S1_6—Cu7—Cu849.59 (12)C1A_1—S1A_1—Cu10105 (3)
Cl10—Cu7—Cu899.43 (10)Cu8—S1A_1—Cu1090 (2)
Cu14—Cu7—Cu895.69 (7)Cu6—S1A_1—Cu10138 (2)
S1_3—Cu7—Cu447.95 (7)C1A_1—S1A_1—Cu5105 (3)
S1A_6—Cu7—Cu4107.4 (6)Cu8—S1A_1—Cu5141 (2)
S1_6—Cu7—Cu4108.10 (14)Cu6—S1A_1—Cu574.9 (19)
Cl10—Cu7—Cu4132.80 (10)Cu10—S1A_1—Cu576.4 (16)
Cu14—Cu7—Cu463.46 (5)C2A_1—N1A_1—H1AA_1109.5
Cu8—Cu7—Cu4122.77 (7)C2A_1—N1A_1—H1AB_1109.5
S1A_1—Cu8—S1A_6125.1 (15)H1AA_1—N1A_1—H1AB_1109.5
S1A_1—Cu8—Cl9122.4 (13)C2A_1—N1A_1—H1AC_1109.5
S1A_6—Cu8—Cl9111.3 (8)H1AA_1—N1A_1—H1AC_1109.5
S1_6—Cu8—Cl9110.5 (2)H1AB_1—N1A_1—H1AC_1109.5
S1_6—Cu8—S1_1126.9 (6)C2A_1—C1A_1—S1A_1131 (6)
Cl9—Cu8—S1_1121.9 (6)C2A_1—C1A_1—H1BA_1104.4
S1A_1—Cu8—Cu7104.9 (13)S1A_1—C1A_1—H1BA_1104.4
S1A_6—Cu8—Cu749.2 (4)C2A_1—C1A_1—H1BB_1104.4
S1_6—Cu8—Cu749.50 (12)S1A_1—C1A_1—H1BB_1104.4
Cl9—Cu8—Cu7102.89 (12)H1BA_1—C1A_1—H1BB_1105.6
S1_1—Cu8—Cu7107.2 (6)C1A_1—C2A_1—N1A_1103 (4)
S1A_1—Cu8—Cu9101.2 (16)C1A_1—C2A_1—C3A_1130 (5)
S1A_6—Cu8—Cu9104.4 (5)N1A_1—C2A_1—C3A_1113 (3)
S1_6—Cu8—Cu9104.20 (14)C1A_1—C2A_1—H2A_1102.5
Cl9—Cu8—Cu950.34 (10)N1A_1—C2A_1—H2A_1102.5
S1_1—Cu8—Cu9102.6 (7)C3A_1—C2A_1—H2A_1102.5
Cu7—Cu8—Cu964.62 (6)O1A_1—C3A_1—O2A_1118 (5)
Cl7—Cu9—Cl10124.68 (14)O1A_1—C3A_1—C2A_1125 (6)
Cl7—Cu9—Cl9116.46 (14)O2A_1—C3A_1—C2A_1117 (4)
Cl10—Cu9—Cl9110.10 (14)C1_2—S1_2—Cu5114.4 (5)
Cl7—Cu9—Cl7ii93.99 (13)C1_2—S1_2—Cu2113.3 (4)
Cl10—Cu9—Cl7ii104.96 (11)Cu5—S1_2—Cu291.98 (12)
Cl9—Cu9—Cl7ii101.10 (12)C1_2—S1_2—Cu3108.5 (5)
Cl7—Cu9—Cu894.09 (9)Cu5—S1_2—Cu3134.92 (14)
Cl10—Cu9—Cu896.49 (9)Cu2—S1_2—Cu383.10 (11)
Cl9—Cu9—Cu847.12 (9)C1_2—S1_2—Cu12106.0 (4)
Cl7ii—Cu9—Cu8146.94 (10)Cu5—S1_2—Cu1276.15 (10)
S1_1—Cu10—S1_4136.2 (5)Cu2—S1_2—Cu12140.31 (15)
S1_4—Cu10—S1A_1133.0 (10)Cu3—S1_2—Cu1279.60 (10)
S1_1—Cu10—Cl6112.6 (5)C2_2—N1_2—H1A_2109.5
S1_4—Cu10—Cl6107.80 (11)C2_2—N1_2—H1B_2109.5
S1A_1—Cu10—Cl6116.9 (11)H1A_2—N1_2—H1B_2109.5
S1_1—Cu10—Cu550.2 (8)C2_2—N1_2—H1C_2109.5
S1_4—Cu10—Cu5104.17 (10)H1A_2—N1_2—H1C_2109.5
S1A_1—Cu10—Cu552.3 (16)H1B_2—N1_2—H1C_2109.5
Cl6—Cu10—Cu5104.43 (9)C2_2—C1_2—S1_2110.6 (9)
S1_1—Cu10—Cu12105.3 (7)C2_2—C1_2—H1AA_2109.5
S1_4—Cu10—Cu1249.87 (9)S1_2—C1_2—H1AA_2109.5
S1A_1—Cu10—Cu12105.7 (14)C2_2—C1_2—H1AB_2109.5
Cl6—Cu10—Cu12100.85 (10)S1_2—C1_2—H1AB_2109.5
Cu5—Cu10—Cu1257.78 (5)H1AA_2—C1_2—H1AB_2108.1
S1_1—Cu10—Cu13109.5 (6)C3_2—C2_2—C1_2108.3 (13)
S1_4—Cu10—Cu1349.00 (9)C3_2—C2_2—N1_2109.0 (12)
S1A_1—Cu10—Cu13104.8 (14)C1_2—C2_2—N1_2116.2 (12)
Cl6—Cu10—Cu13130.52 (9)C3_2—C2_2—H2_2107.7
Cu5—Cu10—Cu13122.34 (6)C1_2—C2_2—H2_2107.7
Cu12—Cu10—Cu1391.83 (6)N1_2—C2_2—H2_2107.7
S1_1—Cu10—Cu1194.3 (7)O1_2—C3_2—O2_2124.6 (16)
S1_4—Cu10—Cu1199.32 (10)O1_2—C3_2—C2_2116.7 (15)
S1A_1—Cu10—Cu1198.7 (15)O2_2—C3_2—C2_2117.3 (14)
Cl6—Cu10—Cu1149.64 (9)C1_3—S1_3—Cu4117.3 (3)
Cu5—Cu10—Cu1158.87 (5)C1_3—S1_3—Cu7109.7 (4)
Cu12—Cu10—Cu1161.10 (5)Cu4—S1_3—Cu783.88 (11)
Cu13—Cu10—Cu11148.31 (7)C1_3—S1_3—Cu2108.2 (4)
Cl4—Cu11—Cl8120.14 (14)Cu4—S1_3—Cu275.02 (10)
Cl4—Cu11—Cl6124.44 (13)Cu7—S1_3—Cu2141.82 (12)
Cl8—Cu11—Cl6110.98 (12)C1_3—S1_3—Cu6101.9 (3)
Cl4—Cu11—Cl2iii97.20 (10)Cu4—S1_3—Cu6139.18 (12)
Cl8—Cu11—Cl2iii101.21 (10)Cu7—S1_3—Cu693.65 (12)
Cl6—Cu11—Cl2iii92.76 (10)Cu2—S1_3—Cu682.77 (11)
Cl4—Cu11—Cu550.96 (8)C2_3—N1_3—H1A_3109.5
Cl8—Cu11—Cu599.32 (9)C2_3—N1_3—H1B_3109.5
Cl6—Cu11—Cu5102.54 (9)H1A_3—N1_3—H1B_3109.5
Cl2iii—Cu11—Cu5147.94 (8)C2_3—N1_3—H1C_3109.5
Cl4—Cu11—Cu1299.98 (8)H1A_3—N1_3—H1C_3109.5
Cl8—Cu11—Cu1248.83 (8)H1B_3—N1_3—H1C_3109.5
Cl6—Cu11—Cu1297.48 (8)C2_3—C1_3—S1_3116.5 (6)
Cl2iii—Cu11—Cu12150.02 (8)C2_3—C1_3—H1D_3108.2
Cu5—Cu11—Cu1255.88 (4)S1_3—C1_3—H1D_3108.2
Cl4—Cu11—Cu10100.91 (10)C2_3—C1_3—H1DE_3108.2
Cl8—Cu11—Cu1098.19 (10)S1_3—C1_3—H1DE_3108.2
Cl6—Cu11—Cu1049.50 (7)H1D_3—C1_3—H1DE_3107.3
Cl2iii—Cu11—Cu10141.90 (9)N1_3—C2_3—C3_3109.3 (8)
Cu5—Cu11—Cu1057.01 (5)N1_3—C2_3—C1_3111.8 (9)
Cu12—Cu11—Cu1057.32 (5)C3_3—C2_3—C1_3109.5 (7)
S1_4—Cu12—S1_2133.70 (12)N1_3—C2_3—H2_3108.7
S1_4—Cu12—Cl8110.34 (12)C3_3—C2_3—H2_3108.7
S1_2—Cu12—Cl8113.81 (13)C1_3—C2_3—H2_3108.7
S1_4—Cu12—Cu5105.62 (9)O2_3—C3_3—O1_3126.2 (9)
S1_2—Cu12—Cu551.44 (8)O2_3—C3_3—C2_3118.0 (9)
Cl8—Cu12—Cu5103.03 (10)O1_3—C3_3—C2_3115.8 (9)
S1_4—Cu12—Cu3103.80 (9)C1_4—S1_4—Cu15118.7 (3)
S1_2—Cu12—Cu350.04 (8)C1_4—S1_4—Cu10103.6 (3)
Cl8—Cu12—Cu3135.56 (11)Cu15—S1_4—Cu10137.67 (13)
Cu5—Cu12—Cu394.01 (5)C1_4—S1_4—Cu12112.7 (5)
S1_4—Cu12—Cu1049.43 (8)Cu15—S1_4—Cu1284.27 (12)
S1_2—Cu12—Cu10106.76 (9)Cu10—S1_4—Cu1280.70 (10)
Cl8—Cu12—Cu10102.22 (10)C1_4—S1_4—Cu13107.8 (5)
Cu5—Cu12—Cu1059.75 (5)Cu15—S1_4—Cu1382.38 (12)
Cu3—Cu12—Cu10121.68 (7)Cu10—S1_4—Cu1383.61 (12)
S1_4—Cu12—Cu1547.61 (8)Cu12—S1_4—Cu13139.02 (13)
S1_2—Cu12—Cu15105.08 (9)C2_4—N1_4—H1A_4109.5
Cl8—Cu12—Cu15133.43 (10)C2_4—N1_4—H1B_4109.5
Cu5—Cu12—Cu15121.35 (6)H1A_4—N1_4—H1B_4109.5
Cu3—Cu12—Cu1559.18 (5)C2_4—N1_4—H1C_4109.5
Cu10—Cu12—Cu1589.61 (6)H1A_4—N1_4—H1C_4109.5
S1_4—Cu12—Cu1199.38 (8)H1B_4—N1_4—H1C_4109.5
S1_2—Cu12—Cu1198.90 (8)C2_4—C1_4—S1_4113.4 (7)
Cl8—Cu12—Cu1149.15 (8)C2_4—C1_4—H1AA_4108.9
Cu5—Cu12—Cu1159.63 (4)S1_4—C1_4—H1AA_4108.9
Cu3—Cu12—Cu11148.94 (6)C2_4—C1_4—H1AB_4108.9
Cu10—Cu12—Cu1161.58 (5)S1_4—C1_4—H1AB_4108.9
Cu15—Cu12—Cu11146.99 (7)H1AA_4—C1_4—H1AB_4107.7
S1A_6—Cu13—S1_4124.9 (8)C3_4—C2_4—N1_4107.4 (9)
S1_6—Cu13—S1_4125.68 (18)C3_4—C2_4—C1_4116.4 (9)
S1A_6—Cu13—Cl12125.2 (7)N1_4—C2_4—C1_4109.8 (10)
S1_6—Cu13—Cl12124.64 (19)C3_4—C2_4—H2_4107.6
S1_4—Cu13—Cl12107.25 (12)N1_4—C2_4—H2_4107.6
S1A_6—Cu13—C1A_645.8 (7)C1_4—C2_4—H2_4107.6
S1_4—Cu13—C1A_6167.9 (12)O1_4—C3_4—O2_4125.2 (11)
Cl12—Cu13—C1A_680.0 (9)O1_4—C3_4—C2_4121.7 (12)
S1A_6—Cu13—Cu1449.0 (4)O2_4—C3_4—C2_4113.0 (10)
S1_6—Cu13—Cu1449.42 (12)C1_5—S1_5—Cu15111 (2)
S1_4—Cu13—Cu14103.76 (9)C1_5—S1_5—Cu14117.0 (18)
Cl12—Cu13—Cu14107.28 (10)Cu15—S1_5—Cu1487.9 (14)
C1A_6—Cu13—Cu1464.4 (12)C1_5—S1_5—Cu3100.6 (18)
S1A_6—Cu13—Cu15104.1 (6)Cu15—S1_5—Cu382.7 (11)
S1_6—Cu13—Cu15104.82 (15)Cu14—S1_5—Cu3142.1 (12)
S1_4—Cu13—Cu1547.94 (8)C1_5—S1_5—Cu4106.3 (16)
Cl12—Cu13—Cu1598.45 (9)Cu15—S1_5—Cu4141.0 (12)
C1A_6—Cu13—Cu15122.3 (13)Cu14—S1_5—Cu485.5 (12)
Cu14—Cu13—Cu1561.30 (5)Cu3—S1_5—Cu479.4 (12)
S1A_6—Cu13—Cu1096.7 (6)C2_5—N1_5—H1A_5109.5
S1_6—Cu13—Cu1097.03 (15)C2_5—N1_5—H1B_5109.5
S1_4—Cu13—Cu1047.39 (8)H1A_5—N1_5—H1B_5109.5
Cl12—Cu13—Cu10133.71 (11)C2_5—N1_5—H1C_5109.5
C1A_6—Cu13—Cu10133.6 (10)H1A_5—N1_5—H1C_5109.5
Cu14—Cu13—Cu10115.71 (6)H1B_5—N1_5—H1C_5109.5
Cu15—Cu13—Cu1087.99 (6)C2_5—C1_5—S1_5119.5 (19)
S1A_6—Cu13—Cu16103.3 (5)C2_5—C1_5—H1AA_5107.4
S1_6—Cu13—Cu16103.28 (13)S1_5—C1_5—H1AA_5107.4
S1_4—Cu13—Cu1699.36 (9)C2_5—C1_5—H1AB_5107.4
Cl12—Cu13—Cu1648.22 (8)S1_5—C1_5—H1AB_5107.4
C1A_6—Cu13—Cu1678.0 (11)H1AA_5—C1_5—H1AB_5107.0
Cu14—Cu13—Cu1663.01 (5)C1_5—C2_5—C3_5111.9 (17)
Cu15—Cu13—Cu1661.47 (5)C1_5—C2_5—N1_5111.8 (18)
Cu10—Cu13—Cu16146.63 (8)C3_5—C2_5—N1_5111.4 (13)
S1_5—Cu14—S1_6127.7 (7)C1_5—C2_5—H2_5107.1
S1A_6—Cu14—S1A_5129.3 (12)C3_5—C2_5—H2_5107.2
S1_5—Cu14—Cl13118.0 (8)N1_5—C2_5—H2_5107.2
S1A_6—Cu14—Cl13108.2 (7)O1_5—C3_5—O2_5123.5 (17)
S1_6—Cu14—Cl13107.55 (18)O1_5—C3_5—C2_5117.9 (14)
S1A_5—Cu14—Cl13118.5 (10)O2_5—C3_5—C2_5118.2 (16)
S1_5—Cu14—Cl11102.7 (8)C1A_5—S1A_5—Cu4114 (2)
S1A_6—Cu14—Cl1199.9 (5)C1A_5—S1A_5—Cu399 (2)
S1_6—Cu14—Cl1199.65 (14)Cu4—S1A_5—Cu382.5 (16)
S1A_5—Cu14—Cl1197.1 (11)C1A_5—S1A_5—Cu14123 (2)
Cl13—Cu14—Cl1192.35 (11)Cu4—S1A_5—Cu1487.6 (17)
S1_5—Cu14—Cu7104.3 (9)Cu3—S1A_5—Cu14136.8 (15)
S1A_6—Cu14—Cu750.2 (4)C1A_5—S1A_5—Cu15107 (2)
S1_6—Cu14—Cu750.40 (12)Cu4—S1A_5—Cu15136.2 (15)
S1A_5—Cu14—Cu7102.0 (11)Cu3—S1A_5—Cu1577.7 (13)
Cl13—Cu14—Cu7134.18 (11)Cu14—S1A_5—Cu1581.2 (15)
Cl11—Cu14—Cu760.45 (8)C2A_5—N1A_5—H1A1_5109.5
S1_5—Cu14—Cu13101.3 (7)C2A_5—N1A_5—H1A2_5109.5
S1A_6—Cu14—Cu1348.2 (5)H1A1_5—N1A_5—H1A2_5109.5
S1_6—Cu14—Cu1348.36 (12)C2A_5—N1A_5—H1A3_5109.5
S1A_5—Cu14—Cu13106.6 (10)H1A1_5—N1A_5—H1A3_5109.5
Cl13—Cu14—Cu1394.96 (10)H1A2_5—N1A_5—H1A3_5109.5
Cl11—Cu14—Cu13147.85 (9)C2A_5—C1A_5—S1A_599 (2)
Cu7—Cu14—Cu1393.02 (6)C2A_5—C1A_5—H1AC_5112.0
S1_5—Cu14—Cu1545.0 (8)S1A_5—C1A_5—H1AC_5112.0
S1A_6—Cu14—Cu15101.9 (6)C2A_5—C1A_5—H1AD_5112.0
S1_6—Cu14—Cu15102.33 (15)S1A_5—C1A_5—H1AD_5112.0
S1A_5—Cu14—Cu1550.6 (11)H1AC_5—C1A_5—H1AD_5109.7
Cl13—Cu14—Cu15103.12 (10)N1A_5—C2A_5—C3A_5116 (2)
Cl11—Cu14—Cu15147.70 (9)N1A_5—C2A_5—C1A_5108 (2)
Cu7—Cu14—Cu15119.59 (7)C3A_5—C2A_5—C1A_599 (2)
Cu13—Cu14—Cu1559.59 (5)N1A_5—C2A_5—H2A_5111.2
S1_5—Cu15—S1_4129.1 (7)C3A_5—C2A_5—H2A_5111.2
S1_5—Cu15—Cl14106.9 (8)C1A_5—C2A_5—H2A_5111.2
S1_4—Cu15—Cl14120.52 (11)O2A_5—C3A_5—O1A_5128 (3)
S1_4—Cu15—S1A_5129.8 (9)O2A_5—C3A_5—C2A_5116 (3)
Cl14—Cu15—S1A_5106.5 (9)O1A_5—C3A_5—C2A_5116 (2)
S1_5—Cu15—Cu350.4 (11)C1_6—S1_6—Cu13119.7 (6)
S1_4—Cu15—Cu3103.52 (9)C1_6—S1_6—Cu798.0 (5)
Cl14—Cu15—Cu3129.66 (10)Cu13—S1_6—Cu7140.8 (3)
S1A_5—Cu15—Cu349.7 (13)C1_6—S1_6—Cu8109.6 (6)
S1_5—Cu15—Cu13102.8 (10)Cu13—S1_6—Cu894.8 (2)
S1_4—Cu15—Cu1349.68 (10)Cu7—S1_6—Cu880.91 (17)
Cl14—Cu15—Cu13105.18 (10)C1_6—S1_6—Cu14104.4 (6)
S1A_5—Cu15—Cu13104.0 (12)Cu13—S1_6—Cu1482.22 (17)
Cu3—Cu15—Cu13122.34 (6)Cu7—S1_6—Cu1478.33 (16)
S1_5—Cu15—Cu12102.6 (9)Cu8—S1_6—Cu14142.2 (3)
S1_4—Cu15—Cu1248.12 (9)C2_6—N1_6—H1A_6109.5
Cl14—Cu15—Cu12142.19 (10)C2_6—N1_6—H1B_6109.5
S1A_5—Cu15—Cu12102.4 (11)H1A_6—N1_6—H1B_6109.5
Cu3—Cu15—Cu1258.39 (5)C2_6—N1_6—H1C_6109.5
Cu13—Cu15—Cu1290.58 (6)H1A_6—N1_6—H1C_6109.5
S1_5—Cu15—Cu1447.1 (11)H1B_6—N1_6—H1C_6109.5
S1_4—Cu15—Cu14103.29 (11)C2_6—C1_6—S1_6109.9 (11)
Cl14—Cu15—Cu14100.56 (10)C2_6—C1_6—H1D_6109.7
S1A_5—Cu15—Cu1448.2 (13)S1_6—C1_6—H1D_6109.7
Cu3—Cu15—Cu1491.03 (6)C2_6—C1_6—H1E_6109.7
Cu13—Cu15—Cu1459.11 (6)S1_6—C1_6—H1E_6109.7
Cu12—Cu15—Cu14116.88 (6)H1D_6—C1_6—H1E_6108.2
Cl13—Cu16—Cl12116.04 (13)C1_6—C2_6—N1_6105.8 (14)
Cl13—Cu16—Cl14120.37 (12)C1_6—C2_6—C3_6109.7 (13)
Cl12—Cu16—Cl14117.17 (13)N1_6—C2_6—C3_6103.0 (11)
Cl13—Cu16—Cl1793.56 (10)C1_6—C2_6—H2_6112.6
Cl12—Cu16—Cl17108.38 (10)N1_6—C2_6—H2_6112.6
Cl14—Cu16—Cl1793.75 (10)C3_6—C2_6—H2_6112.6
Cl13—Cu16—Cu1393.21 (9)O1_6—C3_6—O2_6128.3 (18)
Cl12—Cu16—Cu1348.55 (7)O1_6—C3_6—C2_6116.3 (11)
Cl14—Cu16—Cu13102.38 (8)O2_6—C3_6—C2_6115.4 (11)
Cl17—Cu16—Cu13156.21 (9)H4A_6—O4_6—H4B_6105.8 (3)
Cu20—Cl17—Cu1777.44 (9)C1A_6—S1A_6—Cu1375.8 (15)
Cu20—Cl17—Cu16154.44 (13)C1A_6—S1A_6—Cu7137 (2)
Cu17—Cl17—Cu1684.78 (10)Cu13—S1A_6—Cu7142.4 (15)
Cu18—Cl18—Cu1782.21 (10)C1A_6—S1A_6—Cu8124 (2)
Cu19—Cl19—Cu1781.85 (10)Cu13—S1A_6—Cu895.0 (8)
Cu28—Cl20—Cu2778.24 (9)Cu7—S1A_6—Cu881.2 (6)
Cu21—Cl21—Cu1867.43 (8)C1A_6—S1A_6—Cu1490.9 (17)
Cu28—Cl22—Cu2188.70 (9)Cu13—S1A_6—Cu1482.8 (7)
Cu28—Cl22—Cu32iv78.91 (9)Cu7—S1A_6—Cu1479.0 (6)
Cu21—Cl22—Cu32iv146.01 (11)Cu8—S1A_6—Cu14143.6 (15)
Cu29—Cl23—Cu2883.99 (10)C2A_6—N1A_6—H1AA_6109.5
Cu26—Cl24—Cu2278.41 (9)C2A_6—N1A_6—H1AB_6109.5
Cu30—Cl25—Cu2676.07 (9)H1AA_6—N1A_6—H1AB_6109.5
Cu30—Cl25—Cu26v146.40 (12)C2A_6—N1A_6—H1AC_6109.5
Cu26—Cl25—Cu26v76.32 (9)H1AA_6—N1A_6—H1AC_6109.5
Cu26—Cl27—Cu2393.73 (11)H1AB_6—N1A_6—H1AC_6109.5
Cu32—Cl30—Cu2599.77 (11)C2A_6—C1A_6—S1A_6106 (3)
Cu31—Cl31—Cu3281.30 (10)C2A_6—C1A_6—Cu13154 (3)
Cu31—Cl31—Cu28vi148.72 (13)S1A_6—C1A_6—Cu1358.4 (11)
Cu32—Cl31—Cu28vi75.18 (9)C2A_6—C1A_6—H1BA_6110.5
Cu24—Cl32—Cu3281.82 (10)S1A_6—C1A_6—H1BA_6110.5
Cl19—Cu17—Cl18119.80 (12)Cu13—C1A_6—H1BA_663.0
Cl19—Cu17—Cl17118.19 (11)C2A_6—C1A_6—H1BB_6110.5
Cl18—Cu17—Cl17116.48 (12)S1A_6—C1A_6—H1BB_6110.5
Cl19—Cu17—Cl14102.26 (10)Cu13—C1A_6—H1BB_695.5
Cl18—Cu17—Cl1497.50 (10)H1BA_6—C1A_6—H1BB_6108.7
Cl17—Cu17—Cl1493.63 (10)N1A_6—C2A_6—C1A_6101 (3)
Cl19—Cu17—Cu20101.40 (9)N1A_6—C2A_6—C3A_6142 (4)
Cl18—Cu17—Cu2094.54 (9)C1A_6—C2A_6—C3A_6104 (3)
Cl17—Cu17—Cu2050.29 (7)N1A_6—C2A_6—H2A_6101.6
Cl14—Cu17—Cu20143.34 (9)C1A_6—C2A_6—H2A_6101.6
Cl19—Cu17—Cu1948.85 (7)C3A_6—C2A_6—H2A_6101.6
Cl18—Cu17—Cu19103.89 (8)O1A_6—C3A_6—O2A_6129 (2)
Cl17—Cu17—Cu1995.15 (8)O1A_6—C3A_6—C2A_6115.2 (14)
Cl14—Cu17—Cu19150.15 (8)O2A_6—C3A_6—C2A_6115.3 (14)
Cu20—Cu17—Cu1955.61 (4)C1_7—S1_7—Cu30107.0 (3)
Cl19—Cu17—Cu1896.70 (8)C1_7—S1_7—Cu29119.8 (3)
Cl18—Cu17—Cu1848.61 (7)Cu30—S1_7—Cu2989.79 (10)
Cl17—Cu17—Cu18101.84 (8)C1_7—S1_7—Cu22101.1 (3)
Cl14—Cu17—Cu18146.12 (8)Cu30—S1_7—Cu2273.59 (8)
Cu20—Cu17—Cu1855.87 (4)Cu29—S1_7—Cu22138.90 (11)
Cu19—Cu17—Cu1858.51 (4)C1_7—S1_7—Cu21108.8 (3)
S1_11—Cu18—S1_9123.85 (11)Cu30—S1_7—Cu21136.47 (11)
S1_11—Cu18—Cl18125.71 (12)Cu29—S1_7—Cu2193.35 (10)
S1_9—Cu18—Cl18107.75 (11)Cu22—S1_7—Cu2175.88 (9)
S1_11—Cu18—Cl2198.07 (9)C2_7—N1_7—H1A_7109.5
S1_9—Cu18—Cl2193.08 (9)C2_7—N1_7—H1B_7109.5
Cl18—Cu18—Cl2194.64 (10)H1A_7—N1_7—H1B_7109.5
S1_11—Cu18—Cu20101.28 (8)C2_7—N1_7—H1C_7109.5
S1_9—Cu18—Cu2050.72 (7)H1A_7—N1_7—H1C_7109.5
Cl18—Cu18—Cu2098.45 (9)H1B_7—N1_7—H1C_7109.5
Cl21—Cu18—Cu20143.74 (8)C2_7—C1_7—S1_7116.2 (7)
S1_11—Cu18—Cu2197.71 (8)C2_7—C1_7—H1AA_7108.2
S1_9—Cu18—Cu2149.99 (7)S1_7—C1_7—H1AA_7108.2
Cl18—Cu18—Cu21130.42 (9)C2_7—C1_7—H1AB_7108.2
Cl21—Cu18—Cu2152.36 (7)S1_7—C1_7—H1AB_7108.2
Cu20—Cu18—Cu2194.60 (6)H1AA_7—C1_7—H1AB_7107.4
S1_11—Cu18—Cu1950.05 (7)C1_7—C2_7—N1_7112.5 (7)
S1_9—Cu18—Cu19103.05 (8)C1_7—C2_7—C3_7111.4 (9)
Cl18—Cu18—Cu19106.13 (9)N1_7—C2_7—C3_7109.6 (7)
Cl21—Cu18—Cu19148.03 (7)C1_7—C2_7—H2_7107.7
Cu20—Cu18—Cu1957.48 (4)N1_7—C2_7—H2_7107.7
Cu21—Cu18—Cu19121.01 (6)C3_7—C2_7—H2_7107.7
S1_11—Cu18—Cu17101.91 (8)O1_7—C3_7—O2_7127.9 (9)
S1_9—Cu18—Cu17100.34 (8)O1_7—C3_7—C2_7120.2 (9)
Cl18—Cu18—Cu1749.18 (7)O2_7—C3_7—C2_7111.9 (8)
Cl21—Cu18—Cu17143.70 (8)C1_8—S1_8—Cu24120.5 (4)
Cu20—Cu18—Cu1759.92 (5)C1_8—S1_8—Cu27101.0 (4)
Cu21—Cu18—Cu17150.31 (6)Cu24—S1_8—Cu27138.17 (14)
Cu19—Cu18—Cu1760.32 (4)C1_8—S1_8—Cu29112.0 (4)
S1_12—Cu19—Cl19121.19 (10)Cu24—S1_8—Cu2988.23 (11)
S1_12—Cu19—S1_11125.74 (11)Cu27—S1_8—Cu2980.61 (10)
Cl19—Cu19—S1_11110.75 (11)C1_8—S1_8—Cu25104.3 (4)
S1_12—Cu19—Cu2052.02 (7)Cu24—S1_8—Cu2586.31 (10)
Cl19—Cu19—Cu20106.47 (8)Cu27—S1_8—Cu2577.87 (9)
S1_11—Cu19—Cu20100.58 (8)Cu29—S1_8—Cu25140.61 (13)
S1_12—Cu19—Cu2396.96 (8)C2_8—N1_8—H1A_8109.5
Cl19—Cu19—Cu23134.24 (9)C2_8—N1_8—H1B_8109.5
S1_11—Cu19—Cu2350.44 (7)H1A_8—N1_8—H1B_8109.5
Cu20—Cu19—Cu23117.31 (6)C2_8—N1_8—H1C_8109.5
S1_12—Cu19—Cu18105.59 (8)H1A_8—N1_8—H1C_8109.5
Cl19—Cu19—Cu1899.31 (8)H1B_8—N1_8—H1C_8109.5
S1_11—Cu19—Cu1848.44 (7)C2_8—C1_8—S1_8113.3 (9)
Cu20—Cu19—Cu1858.27 (4)C2_8—C1_8—H1AA_8108.9
Cu23—Cu19—Cu1892.90 (5)S1_8—C1_8—H1AA_8108.9
S1_12—Cu19—Cu17100.71 (8)C2_8—C1_8—H1AB_8108.9
Cl19—Cu19—Cu1749.31 (7)S1_8—C1_8—H1AB_8108.9
S1_11—Cu19—Cu17101.30 (8)H1AA_8—C1_8—H1AB_8107.7
Cu20—Cu19—Cu1760.49 (5)C1_8—C2_8—N1_8110.4 (11)
Cu23—Cu19—Cu17151.71 (6)C1_8—C2_8—C3_8111.0 (11)
Cu18—Cu19—Cu1761.16 (4)N1_8—C2_8—C3_8111.9 (10)
S1_9—Cu20—S1_12131.59 (10)C1_8—C2_8—H2_8107.8
S1_9—Cu20—Cl17121.93 (10)N1_8—C2_8—H2_8107.8
S1_12—Cu20—Cl17106.48 (9)C3_8—C2_8—H2_8107.8
S1_9—Cu20—Cu19111.22 (8)O1_8—C3_8—O2_8121.3 (13)
S1_12—Cu20—Cu1952.45 (8)O1_8—C3_8—C2_8121.7 (12)
Cl17—Cu20—Cu19103.60 (8)O2_8—C3_8—C2_8116.9 (12)
S1_9—Cu20—Cu1852.97 (8)C1_9—S1_9—Cu20116.2 (3)
S1_12—Cu20—Cu18111.47 (9)C1_9—S1_9—Cu27110.3 (4)
Cl17—Cu20—Cu18111.36 (9)Cu20—S1_9—Cu2790.28 (10)
Cu19—Cu20—Cu1864.24 (5)C1_9—S1_9—Cu18107.3 (4)
S1_9—Cu20—Cu17105.73 (9)Cu20—S1_9—Cu1876.31 (9)
S1_12—Cu20—Cu17103.85 (9)Cu27—S1_9—Cu18142.24 (11)
Cl17—Cu20—Cu1752.28 (8)C1_9—S1_9—Cu21103.4 (3)
Cu19—Cu20—Cu1763.90 (5)Cu20—S1_9—Cu21138.21 (11)
Cu18—Cu20—Cu1764.21 (5)Cu27—S1_9—Cu2187.75 (10)
S1_9—Cu20—Cu2598.59 (8)Cu18—S1_9—Cu2180.08 (10)
S1_12—Cu20—Cu2549.91 (8)C2_9—N1_9—H1A_9109.5
Cl17—Cu20—Cu25122.20 (9)C2_9—N1_9—H1B_9109.5
Cu19—Cu20—Cu2596.60 (5)H1A_9—N1_9—H1B_9109.5
Cu18—Cu20—Cu25126.17 (5)C2_9—N1_9—H1C_9109.5
Cu17—Cu20—Cu25153.01 (6)H1A_9—N1_9—H1C_9109.5
S1_7—Cu21—S1_9125.47 (10)H1B_9—N1_9—H1C_9109.5
S1_7—Cu21—Cl22103.97 (9)C2_9—C1_9—S1_9115.2 (6)
S1_9—Cu21—Cl22112.63 (10)C2_9—C1_9—H1D_9108.5
S1_7—Cu21—Cl21113.78 (10)S1_9—C1_9—H1D_9108.5
S1_9—Cu21—Cl2199.74 (10)C2_9—C1_9—H1DE_9108.5
Cl22—Cu21—Cl2198.17 (10)S1_9—C1_9—H1DE_9108.5
S1_7—Cu21—Cu2251.90 (7)H1D_9—C1_9—H1DE_9107.5
S1_9—Cu21—Cu22106.71 (8)C1_9—C2_9—C3_9110.2 (7)
Cl22—Cu21—Cu22140.56 (8)C1_9—C2_9—N1_9113.5 (8)
Cl21—Cu21—Cu2271.92 (7)C3_9—C2_9—N1_9108.8 (8)
S1_7—Cu21—Cu18113.33 (8)C1_9—C2_9—H2_9108.1
S1_9—Cu21—Cu1849.93 (8)C3_9—C2_9—H2_9108.1
Cl22—Cu21—Cu18141.89 (8)N1_9—C2_9—H2_9108.1
Cl21—Cu21—Cu1860.22 (7)O1_9—C3_9—O2_9124.9 (9)
Cu22—Cu21—Cu1866.55 (4)O1_9—C3_9—C2_9116.5 (9)
S1_11—Cu22—S1_7136.31 (10)O2_9—C3_9—C2_9118.3 (10)
S1_11—Cu22—Cl24117.62 (11)C1_10—S1_10—Cu31102.0 (3)
S1_7—Cu22—Cl24106.06 (10)C1_10—S1_10—Cu30119.2 (3)
S1_11—Cu22—Cu30112.01 (8)Cu31—S1_10—Cu30138.57 (12)
S1_7—Cu22—Cu3052.69 (7)C1_10—S1_10—Cu24110.4 (4)
Cl24—Cu22—Cu30103.69 (8)Cu31—S1_10—Cu2479.16 (10)
S1_11—Cu22—Cu21102.36 (8)Cu30—S1_10—Cu2489.92 (11)
S1_7—Cu22—Cu2152.22 (7)C1_10—S1_10—Cu23107.6 (4)
Cl24—Cu22—Cu21120.35 (8)Cu31—S1_10—Cu2379.26 (10)
Cu30—Cu22—Cu2199.50 (6)Cu30—S1_10—Cu2384.02 (10)
S1_11—Cu22—Cu26107.03 (8)Cu24—S1_10—Cu23139.33 (12)
S1_7—Cu22—Cu2699.29 (7)C2_10—N1_10—H1A_10109.5
Cl24—Cu22—Cu2650.68 (7)C2_10—N1_10—H1B_10109.5
Cu30—Cu22—Cu2661.91 (4)H1A_10—N1_10—H1B_10109.5
Cu21—Cu22—Cu26149.48 (6)C2_10—N1_10—H1C_10109.5
S1_11—Cu22—Cu2350.00 (7)H1A_10—N1_10—H1C_10109.5
S1_7—Cu22—Cu23110.93 (8)H1B_10—N1_10—H1C_10109.5
Cl24—Cu22—Cu23114.70 (8)C2_10—C1_10—S1_10114.5 (6)
Cu30—Cu22—Cu2364.71 (5)C2_10—C1_10—H1D_10108.6
Cu21—Cu22—Cu23124.92 (5)S1_10—C1_10—H1D_10108.6
Cu26—Cu22—Cu2371.40 (4)C2_10—C1_10—H1DE_10108.6
S1_11—Cu23—S1_10130.74 (11)S1_10—C1_10—H1DE_10108.6
S1_11—Cu23—Cl27107.60 (11)H1D_10—C1_10—H1DE_10107.6
S1_10—Cu23—Cl27106.22 (11)N1_10—C2_10—C3_10106.6 (8)
S1_11—Cu23—Cl29102.64 (11)N1_10—C2_10—C1_10112.5 (8)
S1_10—Cu23—Cl29105.62 (11)C3_10—C2_10—C1_10109.3 (7)
Cl27—Cu23—Cl2999.91 (11)N1_10—C2_10—H2_10109.5
S1_11—Cu23—Cu31110.46 (8)C3_10—C2_10—H2_10109.5
S1_10—Cu23—Cu3149.04 (7)C1_10—C2_10—H2_10109.5
Cl27—Cu23—Cu31141.71 (9)O1_10—C3_10—O2_10125.8 (9)
Cl29—Cu23—Cu3167.92 (9)O1_10—C3_10—C2_10120.8 (10)
S1_11—Cu23—Cu1950.49 (7)O2_10—C3_10—C2_10113.4 (9)
S1_10—Cu23—Cu19112.11 (8)C1_11—S1_11—Cu22114.0 (3)
Cl27—Cu23—Cu19140.89 (10)C1_11—S1_11—Cu18113.2 (3)
Cl29—Cu23—Cu1962.83 (8)Cu22—S1_11—Cu1890.15 (10)
Cu31—Cu23—Cu1967.52 (5)C1_11—S1_11—Cu23105.6 (3)
S1_11—Cu23—Cu2248.18 (7)Cu22—S1_11—Cu2381.82 (9)
S1_10—Cu23—Cu2296.99 (8)Cu18—S1_11—Cu23140.22 (14)
Cl27—Cu23—Cu2291.03 (8)C1_11—S1_11—Cu19107.0 (3)
Cl29—Cu23—Cu22150.82 (10)Cu22—S1_11—Cu19138.06 (13)
Cu31—Cu23—Cu22117.61 (6)Cu18—S1_11—Cu1981.51 (9)
Cu19—Cu23—Cu2291.82 (5)Cu23—S1_11—Cu1979.07 (9)
S1_11—Cu23—Cu3099.64 (8)C2_11—N1_11—H1A_11109.5
S1_10—Cu23—Cu3046.90 (7)C2_11—N1_11—H1B_11109.5
Cl27—Cu23—Cu3088.51 (8)H1A_11—N1_11—H1B_11109.5
Cl29—Cu23—Cu30152.44 (11)C2_11—N1_11—H1C_11109.5
Cu31—Cu23—Cu3089.21 (6)H1A_11—N1_11—H1C_11109.5
Cu19—Cu23—Cu30123.60 (6)H1B_11—N1_11—H1C_11109.5
Cu22—Cu23—Cu3053.64 (4)C2_11—C1_11—S1_11116.1 (7)
S1_8—Cu24—S1_10128.15 (11)C2_11—C1_11—H1AA_11108.3
S1_8—Cu24—Cl32122.91 (12)S1_11—C1_11—H1AA_11108.3
S1_10—Cu24—Cl32108.09 (11)C2_11—C1_11—H1AB_11108.3
S1_8—Cu24—Cu31104.05 (9)S1_11—C1_11—H1AB_11108.3
S1_10—Cu24—Cu3150.24 (7)H1AA_11—C1_11—H1AB_11107.4
Cl32—Cu24—Cu31104.50 (9)C3_11—C2_11—N1_11107.5 (8)
S1_8—Cu24—Cu32107.70 (9)C3_11—C2_11—C1_11110.2 (10)
S1_10—Cu24—Cu3297.64 (8)N1_11—C2_11—C1_11113.3 (8)
Cl32—Cu24—Cu3249.49 (7)C3_11—C2_11—H2_11108.6
Cu31—Cu24—Cu3262.58 (5)N1_11—C2_11—H2_11108.6
S1_8—Cu25—S1_12130.93 (11)C1_11—C2_11—H2_11108.6
S1_8—Cu25—Cl30103.93 (11)O1_11—C3_11—O2_11121.8 (12)
S1_12—Cu25—Cl30108.56 (10)O1_11—C3_11—C2_11122.6 (10)
S1_8—Cu25—Cl28105.84 (11)O2_11—C3_11—C2_11115.0 (11)
S1_12—Cu25—Cl28105.10 (11)C1_12—S1_12—Cu31114.3 (3)
Cl30—Cu25—Cl2897.69 (10)C1_12—S1_12—Cu20109.0 (3)
S1_8—Cu25—Cu2750.11 (7)Cu31—S1_12—Cu20136.06 (11)
S1_12—Cu25—Cu27109.11 (8)C1_12—S1_12—Cu19115.8 (4)
Cl30—Cu25—Cu27142.27 (10)Cu31—S1_12—Cu1992.02 (11)
Cl28—Cu25—Cu2770.49 (8)Cu20—S1_12—Cu1975.54 (9)
S1_8—Cu25—Cu3198.45 (8)C1_12—S1_12—Cu25102.6 (4)
S1_12—Cu25—Cu3147.78 (7)Cu31—S1_12—Cu2582.12 (10)
Cl30—Cu25—Cu3188.80 (8)Cu20—S1_12—Cu2581.52 (10)
Cl28—Cu25—Cu31152.41 (10)Cu19—S1_12—Cu25139.87 (11)
Cu27—Cu25—Cu31118.57 (6)C2_12—N1_12—H1A_12109.5
S1_8—Cu25—Cu20109.99 (8)C2_12—N1_12—H1B_12109.5
S1_12—Cu25—Cu2048.57 (7)H1A_12—N1_12—H1B_12109.5
Cl30—Cu25—Cu20146.00 (9)C2_12—N1_12—H1C_12109.5
Cl28—Cu25—Cu2071.12 (9)H1A_12—N1_12—H1C_12109.5
Cu27—Cu25—Cu2065.65 (5)H1B_12—N1_12—H1C_12109.5
Cu31—Cu25—Cu2088.57 (5)C2_12—C1_12—S1_12114.9 (7)
Cl24—Cu26—Cl27120.65 (11)C2_12—C1_12—H1AA_12108.5
Cl24—Cu26—Cl25118.76 (10)S1_12—C1_12—H1AA_12108.5
Cl27—Cu26—Cl25114.22 (11)C2_12—C1_12—H1AB_12108.5
Cl24—Cu26—Cl25v96.60 (9)S1_12—C1_12—H1AB_12108.5
Cl27—Cu26—Cl25v98.93 (10)H1AA_12—C1_12—H1AB_12107.5
Cl25—Cu26—Cl25v99.93 (9)N1_12—C2_12—C1_12111.0 (8)
Cl24—Cu26—Cu3098.60 (8)N1_12—C2_12—C3_12109.5 (8)
Cl27—Cu26—Cu3094.15 (9)C1_12—C2_12—C3_12110.2 (9)
Cl25—Cu26—Cu3051.27 (7)N1_12—C2_12—H2_12108.7
Cl25v—Cu26—Cu30151.19 (8)C1_12—C2_12—H2_12108.7
Cl24—Cu26—Cu2250.91 (6)C3_12—C2_12—H2_12108.7
Cl27—Cu26—Cu2294.55 (8)O1_12—C3_12—O2_12126.1 (10)
Cl25—Cu26—Cu22101.78 (7)O1_12—C3_12—C2_12118.2 (10)
Cl25v—Cu26—Cu22146.94 (8)O2_12—C3_12—C2_12115.7 (9)
Cu30—Cu26—Cu2255.85 (4)H1A_13—O1_13—H1B_13112 (5)
Cl24—Cu26—Cu26v101.19 (7)
Cu5—S1_1—C1_1—C2_1173 (2)Cu13—S1A_6—C1A_6—C2A_6157 (3)
Cu10—S1_1—C1_1—C2_189 (3)Cu7—S1A_6—C1A_6—C2A_646 (4)
Cu8—S1_1—C1_1—C2_110 (3)Cu8—S1A_6—C1A_6—C2A_670 (3)
Cu6—S1_1—C1_1—C2_1108 (3)Cu14—S1A_6—C1A_6—C2A_6121 (2)
S1_1—C1_1—C2_1—C3_1166.7 (19)Cu7—S1A_6—C1A_6—Cu13157 (2)
S1_1—C1_1—C2_1—N1_174 (3)Cu8—S1A_6—C1A_6—Cu1386.5 (14)
C1_1—C2_1—C3_1—O1_1140 (3)Cu14—S1A_6—C1A_6—Cu1382.4 (8)
N1_1—C2_1—C3_1—O1_119 (3)S1A_6—C1A_6—C2A_6—N1A_681 (5)
C1_1—C2_1—C3_1—O2_135 (3)Cu13—C1A_6—C2A_6—N1A_6131 (6)
N1_1—C2_1—C3_1—O2_1156 (2)S1A_6—C1A_6—C2A_6—C3A_6128 (4)
Cu8—S1A_1—C1A_1—C2A_181 (6)Cu13—C1A_6—C2A_6—C3A_679 (7)
Cu6—S1A_1—C1A_1—C2A_124 (7)N1A_6—C2A_6—C3A_6—O1A_677 (10)
Cu10—S1A_1—C1A_1—C2A_1177 (5)C1A_6—C2A_6—C3A_6—O1A_6154 (4)
Cu5—S1A_1—C1A_1—C2A_1103 (6)N1A_6—C2A_6—C3A_6—O2A_6106 (10)
S1A_1—C1A_1—C2A_1—N1A_178 (6)C1A_6—C2A_6—C3A_6—O2A_623 (4)
S1A_1—C1A_1—C2A_1—C3A_1147 (5)Cu30—S1_7—C1_7—C2_7110.9 (6)
C1A_1—C2A_1—C3A_1—O1A_1107 (7)Cu29—S1_7—C1_7—C2_711.1 (8)
N1A_1—C2A_1—C3A_1—O1A_125 (7)Cu22—S1_7—C1_7—C2_7173.0 (6)
C1A_1—C2A_1—C3A_1—O2A_171 (8)Cu21—S1_7—C1_7—C2_794.3 (6)
N1A_1—C2A_1—C3A_1—O2A_1157 (4)S1_7—C1_7—C2_7—N1_767.5 (9)
Cu5—S1_2—C1_2—C2_279.5 (10)S1_7—C1_7—C2_7—C3_7169.0 (7)
Cu2—S1_2—C1_2—C2_224.2 (11)C1_7—C2_7—C3_7—O1_7129.1 (10)
Cu3—S1_2—C1_2—C2_2114.6 (9)N1_7—C2_7—C3_7—O1_74.0 (14)
Cu12—S1_2—C1_2—C2_2161.2 (9)C1_7—C2_7—C3_7—O2_750.7 (11)
S1_2—C1_2—C2_2—C3_2163.3 (12)N1_7—C2_7—C3_7—O2_7175.7 (9)
S1_2—C1_2—C2_2—N1_273.6 (15)Cu24—S1_8—C1_8—C2_82.2 (11)
C1_2—C2_2—C3_2—O1_2141 (2)Cu27—S1_8—C1_8—C2_8176.5 (8)
N1_2—C2_2—C3_2—O1_214 (3)Cu29—S1_8—C1_8—C2_899.3 (9)
C1_2—C2_2—C3_2—O2_225 (3)Cu25—S1_8—C1_8—C2_896.3 (9)
N1_2—C2_2—C3_2—O2_2152 (2)S1_8—C1_8—C2_8—N1_871.9 (12)
Cu4—S1_3—C1_3—C2_36.5 (11)S1_8—C1_8—C2_8—C3_8163.4 (9)
Cu7—S1_3—C1_3—C2_386.9 (9)C1_8—C2_8—C3_8—O1_8114.5 (17)
Cu2—S1_3—C1_3—C2_388.6 (9)N1_8—C2_8—C3_8—O1_89 (2)
Cu6—S1_3—C1_3—C2_3174.8 (8)C1_8—C2_8—C3_8—O2_863.2 (18)
S1_3—C1_3—C2_3—N1_364.4 (11)N1_8—C2_8—C3_8—O2_8173.0 (14)
S1_3—C1_3—C2_3—C3_3174.3 (8)Cu20—S1_9—C1_9—C2_910.2 (10)
N1_3—C2_3—C3_3—O2_33.6 (12)Cu27—S1_9—C1_9—C2_990.7 (8)
C1_3—C2_3—C3_3—O2_3119.2 (11)Cu18—S1_9—C1_9—C2_993.1 (8)
N1_3—C2_3—C3_3—O1_3174.8 (8)Cu21—S1_9—C1_9—C2_9176.7 (7)
C1_3—C2_3—C3_3—O1_362.4 (12)S1_9—C1_9—C2_9—C3_9176.4 (8)
Cu15—S1_4—C1_4—C2_43.7 (12)S1_9—C1_9—C2_9—N1_961.3 (10)
Cu10—S1_4—C1_4—C2_4177.8 (9)C1_9—C2_9—C3_9—O1_957.1 (13)
Cu12—S1_4—C1_4—C2_492.3 (9)N1_9—C2_9—C3_9—O1_9177.9 (9)
Cu13—S1_4—C1_4—C2_494.7 (10)C1_9—C2_9—C3_9—O2_9116.8 (11)
S1_4—C1_4—C2_4—C3_4167.2 (10)N1_9—C2_9—C3_9—O2_98.2 (12)
S1_4—C1_4—C2_4—N1_470.6 (12)Cu31—S1_10—C1_10—C2_10176.7 (7)
N1_4—C2_4—C3_4—O1_418.0 (18)Cu30—S1_10—C1_10—C2_108.0 (10)
C1_4—C2_4—C3_4—O1_4141.5 (14)Cu24—S1_10—C1_10—C2_1093.9 (8)
N1_4—C2_4—C3_4—O2_4157.4 (12)Cu23—S1_10—C1_10—C2_10100.9 (8)
C1_4—C2_4—C3_4—O2_433.9 (18)S1_10—C1_10—C2_10—N1_1061.7 (10)
Cu15—S1_5—C1_5—C2_578 (3)S1_10—C1_10—C2_10—C3_10179.8 (7)
Cu14—S1_5—C1_5—C2_521 (4)N1_10—C2_10—C3_10—O1_106.8 (12)
Cu3—S1_5—C1_5—C2_5164 (3)C1_10—C2_10—C3_10—O1_10115.0 (10)
Cu4—S1_5—C1_5—C2_5114 (3)N1_10—C2_10—C3_10—O2_10175.3 (8)
S1_5—C1_5—C2_5—C3_5161 (2)C1_10—C2_10—C3_10—O2_1062.9 (12)
S1_5—C1_5—C2_5—N1_573 (3)Cu22—S1_11—C1_11—C2_1173.4 (8)
C1_5—C2_5—C3_5—O1_544 (3)Cu18—S1_11—C1_11—C2_1127.8 (9)
N1_5—C2_5—C3_5—O1_5170 (2)Cu23—S1_11—C1_11—C2_11161.2 (7)
C1_5—C2_5—C3_5—O2_5144 (3)Cu19—S1_11—C1_11—C2_11115.7 (7)
N1_5—C2_5—C3_5—O2_518 (3)S1_11—C1_11—C2_11—C3_11162.7 (7)
S1A_5—C1A_5—C2A_5—N1A_573 (3)S1_11—C1_11—C2_11—N1_1176.8 (10)
S1A_5—C1A_5—C2A_5—C3A_5166 (2)N1_11—C2_11—C3_11—O1_114.1 (18)
N1A_5—C2A_5—C3A_5—O2A_524 (4)C1_11—C2_11—C3_11—O1_11119.8 (14)
C1A_5—C2A_5—C3A_5—O2A_5139 (3)N1_11—C2_11—C3_11—O2_11167.0 (12)
N1A_5—C2A_5—C3A_5—O1A_5158 (3)C1_11—C2_11—C3_11—O2_1169.1 (14)
C1A_5—C2A_5—C3A_5—O1A_543 (3)Cu31—S1_12—C1_12—C2_1283.5 (7)
Cu13—S1_6—C1_6—C2_68.7 (14)Cu20—S1_12—C1_12—C2_12104.3 (7)
Cu7—S1_6—C1_6—C2_6177.8 (11)Cu19—S1_12—C1_12—C2_1221.6 (8)
Cu8—S1_6—C1_6—C2_699.0 (12)Cu25—S1_12—C1_12—C2_12170.4 (6)
Cu14—S1_6—C1_6—C2_697.9 (12)S1_12—C1_12—C2_12—N1_1269.9 (10)
S1_6—C1_6—C2_6—N1_680.6 (15)S1_12—C1_12—C2_12—C3_12168.6 (7)
S1_6—C1_6—C2_6—C3_6168.9 (11)N1_12—C2_12—C3_12—O1_123.2 (17)
C1_6—C2_6—C3_6—O1_6129 (2)C1_12—C2_12—C3_12—O1_12119.2 (13)
N1_6—C2_6—C3_6—O1_617 (3)N1_12—C2_12—C3_12—O2_12175.4 (11)
C1_6—C2_6—C3_6—O2_652 (3)C1_12—C2_12—C3_12—O2_1262.3 (14)
N1_6—C2_6—C3_6—O2_6165 (2)
Symmetry codes: (i) x+1/2, y1/2, z+1; (ii) x, y, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x+1/2, y+1/2, z; (v) x+1, y, z; (vi) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1_1—H1A_1···Cl60.912.733.554 (19)151
N1_1—H1A_1···Cl160.912.663.148 (16)115
N1_1—H1B_1···Cl3iii0.912.813.42 (2)126
N1A_1—H1AA_1···Cl70.912.743.34 (4)125
N1A_1—H1AA_1···Cl90.912.543.28 (3)138
N1_2—H1A_2···Cl40.912.783.395 (15)126
N1_2—H1A_2···O2A_5iii0.912.483.04 (2)120
N1_2—H1C_2···Cl50.912.193.101 (15)175
N1_3—H1A_3···Cl100.912.693.592 (9)171
N1_3—H1B_3···O2_30.912.132.605 (10)112
N1_3—H1C_3···Cl20.912.533.306 (8)143
N1_3—H1C_3···Cl110.912.683.228 (9)120
N1_4—H1B_4···Cl150.912.443.199 (10)141
N1_4—H1B_4···S1_40.912.823.300 (10)114
N1_5—H1B_5···O2_120.912.363.14 (3)144
N1_5—H1C_5···Cl110.912.763.46 (2)134
N1_5—H1C_5···Cl130.912.493.24 (2)139
N1A_5—H1A2_5···Cl20.912.743.46 (2)137
N1A_5—H1A2_5···Cl110.912.422.99 (2)121
N1A_5—H1A2_5···S1A_50.912.683.22 (4)119
N1A_5—H1A3_5···Cl4i0.912.823.49 (3)132
N1_6—H1B_6···O3_60.911.922.70 (3)142
N1_6—H1C_6···Cl160.912.533.311 (16)145
N1_6—H1C_6···S1_60.912.893.330 (16)111
N1A_6—H1AC_6···Cl110.912.743.60 (7)158
N1_7—H1B_7···Cl230.912.773.435 (9)131
N1_7—H1B_7···Cl260.912.583.315 (9)138
N1_7—H1C_7···O1_130.911.992.803 (12)148
N1_8—H1C_8···Cl260.912.513.370 (12)158
N1_8—H1C_8···S1_80.912.833.286 (13)112
N1_9—H1A_9···Cl200.912.853.585 (9)139
N1_9—H1A_9···O1_10iv0.912.122.796 (11)130
N1_9—H1B_9···O4_60.912.012.86 (3)154
N1_9—H1C_9···Cl170.912.793.348 (9)121
N1_9—H1C_9···Cl280.912.453.211 (9)142
N1_10—H1B_10···Cl250.912.773.239 (9)113
N1_10—H1B_10···Cl260.912.573.363 (8)146
N1_10—H1C_10···O2_9vi0.912.152.856 (12)134
N1_11—H1A_11···O1_13v0.912.082.971 (13)167
N1_11—H1C_11···Cl210.912.613.362 (10)141
N1_11—H1C_11···Cl240.912.613.235 (9)126
N1_12—H1A_12···Cl310.912.923.387 (9)113
N1_12—H1C_12···Cl290.912.443.316 (9)161
O4_6—H4B_6···Cl120.84 (1)2.89 (10)3.32 (3)114 (8)
O4_6—H4B_6···O3_60.84 (1)1.76 (7)2.51 (4)148 (10)
O1_13—H1A_13···Cl250.82 (3)2.97 (3)3.501 (9)125 (2)
Symmetry codes: (i) x+1/2, y1/2, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x+1/2, y+1/2, z; (v) x+1, y, z; (vi) x+1/2, y1/2, z.
Comparison of infrared band assignments (cm-1) for 1 and L-cysteine hydrochloride, L-CysH2·HCl (Dokken et al., 2009) top
1L-CysH2·HClAssignment
776 w770 wγ CH2
819 w839 wδ COO-
871 mw868 mwν CC, δ COO-
944 w929 wν CN, ν CC
1060 mw1058 mwν CN, ν CC
1127 mw1141 mwNH3+
1203 s1201 sν CO, δ OH (COOH)
1247 mw1272 wγ CH2
1317 w1344 wδ CH
1415 m1427 mδ as CH3, δ CH2
1484 s1477 sh
1574 mw1571 mwδ as NH3+, ν as COO-
1601 sh1619 wδ as NH3+, ν as COO-
1724 vs1743 vsν CO
1968 w
2641 sh2645 wν CH2
2923 s2943 shν NH3+, ν CH2, ν CH3
3011 s3051 shν NH3+
3453 m
 

Acknowledgements

The work was carried out as a part of the partnership between the Justus-Liebig University Giessen and the Kazan Federal University. We thank Dr Miriam Wern (JLU Giessen) for her assistance with the experiments. We express our sincere gratitude to the Reviewer for the great work on the article, which contributed to its significant improvement.

Funding information

Funding for this research was provided by: RFBR (grant No. 18-33-20072) .

References

First citationAridomi, T., Igashira-Kamiyama, A. & Konno, T. (2008). Inorg. Chem. 47, 10202–10204.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2017). APEX3 and SAINT. Bruker Nano Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChukanov, N. V. (2014). Infrared Spectra of Mineral Species: Extended Library. Dordrecht, Heidelberg, New York, London: Springer-Verlag GmbH.  Google Scholar
First citationCook, A. W., Jones, Z. R., Wu, G., Teat, S. J., Scott, S. L. & Hayton, T. W. (2019). Inorg. Chem. 58, 8739–8749.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDehnen, S., Fenske, D. & Deveson, A. C. (1996). J. Clust Sci. 7, 351–369.  CSD CrossRef CAS Google Scholar
First citationDehnen, S., Schäfer, A., Fenske, D. & Ahlrichs, R. (1994). Angew. Chem. Int. Ed. Engl. 33, 746–749.  CSD CrossRef Web of Science Google Scholar
First citationDokken, K. M., Parsons, J. G., McClure, J. & Gardea-Torresdey, J. L. (2009). Inorg. Chim. Acta, 362, 395–401.  Web of Science CrossRef CAS Google Scholar
First citationDriessen, H., Haneef, M. I. J., Harris, G. W., Howlin, B., Khan, G. & Moss, D. S. (1989). J. Appl. Cryst. 22, 510–516.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDubler, E., Cathomas, N. & Jameson, G. B. (1986). Inorg. Chim. Acta, 123, 99–104.  CSD CrossRef CAS Web of Science Google Scholar
First citationEichhöfer, A., Buth, G., Lebedkin, S., Kühn, M. & Weigend, F. (2015). Inorg. Chem. 54, 9413–9422.  Web of Science PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKhadka, C. B., Najafabadi, B. K., Hesari, M., Workentin, M. S. & Corrigan, J. F. (2013). Inorg. Chem. 52, 6798–6805.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKretsinger, R. H., Uversky, V. N. & Permykov, E. A. (2013). Encyclopedia of Metalloproteins. Heidelberg: Springer.  Google Scholar
First citationLangridge, R., Marvin, D. A., Seeds, W. E., Wilson, H. R., Hooper, C. W., Wilkins, M. H. F. & Hamilton, L. D. (1960). J. Mol. Biol. 2, 38–I, N12.  Google Scholar
First citationLennarz, W. J. & Lane, M. D. (2013). Encyclopedia of Biological Chemistry, 2nd ed. London: Academic Press.  Google Scholar
First citationLouvain, N., Mercier, N. & Kurmoo, M. (2008). Eur. J. Inorg. Chem. pp. 1654–1660.  Web of Science CSD CrossRef Google Scholar
First citationMa, L., Chen, W., Schatte, G., Wang, W., Joly, A. G., Huang, Y., Sammynaiken, R. & Hossu, M. (2014). J. Mater. Chem. C. 2, 4239–4246.  Web of Science CSD CrossRef CAS Google Scholar
First citationMüller, P. (2009). Crystallogr. Rev. 15, 57–83.  Google Scholar
First citationO'Keeffe, M., Peskov, M. A., Ramsden, S. J. & Yaghi, O. M. (2008). Acc. Chem. Res. 41, 1782–1789.  Web of Science CrossRef PubMed CAS Google Scholar
First citationParish, R. V., Salehi, Z. & Pritchard, R. G. (1997). Angew. Chem. Int. Ed. Engl. 36, 251–253.  CSD CrossRef CAS Web of Science Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPrichard, R. G., Parish, R. V. & Salehi, Z. (1999). J. Chem. Soc. Dalton Trans. pp. 243–250.  Web of Science CSD CrossRef Google Scholar
First citationSalehi, Z., Parish, R. V. & Pritchard, R. G. (1997). J. Chem. Soc. Dalton Trans. pp. 4241–4246.  CSD CrossRef Web of Science Google Scholar
First citationSeko, H., Tsuge, K., Igashira-Kamiyama, A., Kawamoto, T. & Konno, T. (2010). Chem. Commun. 46, 1962–1964.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2016). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThorn, A., Dittrich, B. & Sheldrick, G. M. (2012). Acta Cryst. A68, 448–451.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, X.-X., Issac, I., Lebedkin, S., Kühn, M., Weigend, F., Fenske, D., Fuhr, O. & Eichhöfer, A. (2014). Chem. Commun. 50, 11043–11045.  Web of Science CSD CrossRef CAS Google Scholar
First citationYukhnevich, G. V. (1973). Infrared Spectroscopy of Water. Moscow: Nauka (in Russian).  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds