research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-1-(3-benzyl-5-phenyl-1,3-thia­zol-2-yl­­idene)-2-[(E)-1,2,3,4-tetra­hydro­naphthalen-1-yl­­idene]hydrazin-1-ium bromide

CROSSMARK_Color_square_no_text.svg

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cChemistry Department, Faculty of Science, Assuit University, Egypt, dOndokuz Mayis University, Faculty of Arts and Sciences, Department of Physics, 55139, Samsun, Turkey, eDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA, and fLaboratory of Medicinal Chemistry, Faculty of Medicine and Pharmacy, Drug, Sciences Research Center, Mohammed V University in Rabat, Morocco
*Correspondence e-mail: shaabankamel@yahoo.com, y.ramli@um5s.net.ma

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 18 January 2021; accepted 17 March 2021; online 23 March 2021)

In the title mol­ecular salt, C26H24N3S+·Br, the dihedral angles between the thia­zole ring and its attached phenyl and benzoyl rings are 54.81 (7) and 85.51 (7)°, respectively. In the crystal, ion pairs are linked by C—H⋯Br and N—H⋯Br hydrogen bonds and are connected into helical chains extending along the c-axis direction by weak, electrostatic S⋯Br inter­actions. A Hirshfeld surface analysis was performed, which showed the dominant role of H⋯H contacts (51.3%).

1. Chemical context

Thia­zoles are a class of heterocyclic compounds found in many biologically active drugs such as sulfa­thia­zol (anti­microbial drug), ritonavir (anti­retroviral drug), abafungin (anti­fungal drug) and tiazofurin (anti­neoplastic drug) (Siddiqui et al., 2009[Siddiqui, N., Arshad, M. F., Ahsan, W. & Alam, M. S. (2009). Int. J. Pharm. Sci. Drug Res. 1, 136-143.]). Other compounds containing the thia­zole or thia­zolyl moiety show numerous biological activities such as anti­microbial and anti­fungal (Vasu et al., 2013[Vasu, N., Goud, B. B., Kumari, Y. B. & Rajitha, B. (2013). Rasayan J. Chem. 6, 201-206.]), anti-inflammatory (Singh et al., 2008[Singh, N., Bhati, S. K. & Kumar, A. (2008). Eur. J. Med. Chem. 43, 2597-2609.]), anti­cancer (Luzina et al., 2009[Luzina, E. L. & Popov, A. V. (2009). Eur. J. Med. Chem. 44, 4944-4953.]), anti­hypertensive (Turan-Zitouni et al., 2000[Turan-Zitouni, G., Chevallet, P., Kiliç, F. S. & Erol, K. (2000). Eur. J. Med. Chem. 35, 635-641.]), anti-HIV (Rawal et al., 2008[Rawal, R. K., Tripathi, R., Katti, S. B., Pannecouque, C. & De Clercq, E. (2008). Eur. J. Med. Chem. 43, 2800-2806.]), anti­convulsant (Satoh et al., 2009[Satoh, A., Nagatomi, Y., Hirata, Y., Ito, S., Suzuki, G., Kimura, T., Maehara, S., Hikichi, H., Satow, A., Hata, M., Ohta, H. & Kawamoto, H. (2009). Bioorg. Med. Chem. Lett. 19, 5464-5468.]) and anti­diabetic properties (Iino et al., 2009[Iino, T., Tsukahara, D., Kamata, K., Sasaki, K., Ohyama, S., Hosaka, H., Hasegawa, T., Chiba, M., Nagata, Y., Eiki, J.-I. & Nishimura, T. (2009). Bioorg. Med. Chem. 17, 2733-2743.]). As with many biologically active mol­ecules, the mol­ecular conformation adopted may have a significant effect on the activity which prompted an examination of the crystal structure of the title salt, C26H24N3S·Br, I (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
The title mol­ecule showing 50% probability ellipsoids.

2. Structural commentary

As expected, the C11/C12/C13/N3/S1 thia­zole ring in I is almost planar (r.m.s. deviation = 0.0056 Å) and the mean planes of the C14–C19 and C21–C26 benzene rings are inclined to this plane by 54.81 (7) and 85.51 (7)°, respectively. The dihedral angle between the mean planes of the thia­zole and C2–C7 rings is 13.1 (1)°. A puckering analysis of the C1/C2/C7–C10 ring yielded the parameters Q = 0.499 (3) Å, θ = 58.6 (3)° and φ = 225.6 (3)°, indicating a half-chair conformation.

3. Supra­molecular features

In the crystal, the S1⋯Br1 distance of 3.5017 (7) Å is some 0.15 Å less than the sum of the van der Waals radii and likely represents an electrostatic inter­action between the two atoms since S1 is near to the cationic charge. Over 200 structures having S⋯Br contacts of this length or shorter are present in the Cambridge Structural Database, two examples being reported by Auffinger et al. (2004[Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789-16794.]) and Thompson & Richardson (1977[Thompson, D. M. & Richardson, M. F. (1977). Acta Cryst. B33, 324-328.]). This inter­action, together with the N2—H2⋯Br1, C10—H10B⋯Br1, C20—H20B⋯Br1 and C26—H26⋯Br1 hydrogen bonds (Table 1[link]) form helical chains extending along the c-axis direction (Fig. 2[link]). It may be noted that the same bromide ion Br1(x, 1 − y, z − [{1\over 2}]) accepts all the identified contacts. These [001] chains pack in the other two dimensions with normal van der Waals contacts (Fig. 3[link]), in agreement with the results of the Hirshfeld surface analysis (vide infra).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Br1i 0.91 2.63 3.4633 (18) 152
C10—H10B⋯Br1i 0.99 2.88 3.837 (2) 164
C20—H20B⋯Br1i 0.99 2.84 3.7560 (19) 155
C26—H26⋯Br1i 0.95 2.90 3.730 (2) 146
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
Detail of a supra­molecular chain viewed along the a-axis direction with C—H⋯Br and N—H⋯Br hydrogen bonds depicted by brown dashed lines. The short Br⋯S contact is depicted by a yellow dashed line.
[Figure 3]
Figure 3
Packing seen along the c-axis direction giving an end view of the chains. Inter­molecular inter­actions are depicted as in Fig. 2[link].

4. Database survey

A search of the Cambridge Structural Database (CSD, updated to Dec. 31, 2020; Groom, et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using the fragment A yielded 30 hits of which 11 were considered similar to I. Among these, (Z)-1-[(2E)-3,4-diphenyl-2,3-di­hydro-1,3-thia­zol-2-yl­idene]-2-[1-(4-hy­droxy­phen­yl)ethyl­idene]hydra­zinium bromide unknown solvate (CSD refcode BOCROC; Mague, et al., 2014[Mague, J. T., Mohamed, S. K., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o647-o648.]) and (E)-2-[(2-nitro­phen­yl)methyl­idene]-1-[(2Z)-4-phenyl-2,3-di­hydro-1,3-thia­zol-2-yl­idene]hydrazinium bromide (NUCLOO; Hassan et al., 2016[Hassan, A. A., Mohamed, S. K., Mohamed, N. K., El-Shaieb, K. M. A., Abdel-Aziz, A. T., Mague, J. T. & Akkurt, M. (2016). J. Sulfur Chem. 37, 162-175.]) are the closest analogues and another similar compound is 2-{1-[(3,4-diphenyl-1,3-thia­zol-2(3H)-yl­idene)hydrazinyl­idene]eth­yl}pyridinium bromide monohydrate (QOCGIA; Akkurt et al., 2014[Akkurt, M., Mague, J. T., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o478-o479.]). Key bond distances and angles for I and these three compounds are listed in supplementary Table 1. In the thia­zole ring there is little variation except for the N—C distance c in NUCLOO, which is marginally shorter than in the others, possibly due to the nitro­gen atom being unsubstituted. The most noticeable differences occur in the N—C and C=N distances d and e where the difference between the two is largest in QOCGIA where the absence of the positive charge on the nitro­gen atom bound to the thia­zole ring leads to a greater localization of the π-electron density in the C=N bond.

[Scheme 2]

5. Hirshfeld surface analysis

The Hirshfeld surface for I was calculated using Crystal Explorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.]) following the procedures described by Tan et al. (2019). Fig. 4[link]a presents the Hirshfeld surface plotted over dnorm with a second cation closest to the bromide ion also present, clearly showing the N—H⋯Br and C—H⋯Br inter­actions as well as the S1⋯Br1 short contact (dashed lines). The surface plotted over shape (Fig. 4[link]b) and curvature indices (Fig. 4[link]c) do not show much flat surface or evidence for π-stacking inter­actions, in agreement with the results given in Section 3. Fig. 5[link] presents fingerprint plots for all inter­molecular inter­actions (a) and resolved into all H⋯H contacts (b, 51.3%), H⋯C/C⋯H contacts (c, 21.9%), Br⋯H/H⋯Br contacts (d, 14.1%) and S⋯H/H⋯S contacts (d, 3.3%). The N⋯H/H⋯N contacts contribute only 1.3%.

[Figure 4]
Figure 4
The Hirshfeld surface plotted over (a) dnorm and (b) shape and (c) curvature indices.
[Figure 5]
Figure 5
Fingerprint plots showing all (a) inter­actions and resolved into (b) H⋯H, (c) H⋯C/C⋯H, (d) Br⋯H/H⋯Br and (e) S⋯H/H⋯S contacts.

6. Synthesis and crystallization

The title compound was prepared according to our previously reported method (Mohamed et al., 2013[Mohamed, S. K., Mague, J. T., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2013). Acta Cryst. E69, o1324.]). Mono-crystals of I suitable for X-ray diffraction were obtained by recrystallization of the crude product from ethanol solution.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms attached to carbon were placed in calculated positions (C—H = 0.95–0.99 Å) while that attached to nitro­gen was placed in a location derived from a difference map and its coordinates adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2–1.5 times those of the attached atoms.

Table 2
Experimental details

Crystal data
Chemical formula C26H24N3S+·Br
Mr 490.45
Crystal system, space group Monoclinic, Cc
Temperature (K) 150
a, b, c (Å) 14.5474 (7), 17.8777 (8), 9.0803 (4)
β (°) 108.773 (2)
V3) 2235.92 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.95
Crystal size (mm) 0.22 × 0.12 × 0.06
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON 3 diffractometer
Absorption correction Numerical (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.69, 0.89
No. of measured, independent and observed [I > 2σ(I)] reflections 48057, 6797, 6460
Rint 0.026
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.052, 1.03
No. of reflections 6797
No. of parameters 280
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.56, −0.22
Absolute structure Parsons et al. (2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.0130 (18)
Computer programs: APEX3 and SAINT (Bruker, 2020[Bruker (2020). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2020); cell refinement: SAINT (Bruker, 2020); data reduction: SAINT (Bruker, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/1 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(E)-1-(3-Benzyl-5-phenyl-1,3-thiazol-2-ylidene)-2-[(E)-1,2,3,4-tetrahydronaphthalen-1-ylidene]hydrazin-1-ium bromide top
Crystal data top
C26H24N3S+·BrF(000) = 1008
Mr = 490.45Dx = 1.457 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 14.5474 (7) ÅCell parameters from 9847 reflections
b = 17.8777 (8) Åθ = 2.6–30.5°
c = 9.0803 (4) ŵ = 1.95 mm1
β = 108.773 (2)°T = 150 K
V = 2235.92 (18) Å3Column, colourless
Z = 40.22 × 0.12 × 0.06 mm
Data collection top
Bruker D8 QUEST PHOTON 3
diffractometer
6797 independent reflections
Radiation source: fine-focus sealed tube6460 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 7.3910 pixels mm-1θmax = 30.6°, θmin = 2.6°
φ and ω scansh = 2020
Absorption correction: numerical
(SADABS; Krause et al., 2015)
k = 2525
Tmin = 0.69, Tmax = 0.89l = 1212
48057 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0262P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6797 reflectionsΔρmax = 0.56 e Å3
280 parametersΔρmin = 0.22 e Å3
2 restraintsAbsolute structure: Parsons et al. (2013)
Primary atom site location: dualAbsolute structure parameter: 0.0130 (18)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.99 Å) while that attached to nitrogen was placed in a location derived from a difference map and its coordinates adjusted to give N—H = 0.91 %A. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.44542 (2)0.28839 (2)0.58421 (2)0.02486 (6)
S10.49752 (4)0.46885 (3)0.48367 (6)0.02090 (10)
N10.62223 (12)0.54541 (10)0.3655 (2)0.0209 (3)
N20.55946 (13)0.59721 (10)0.3976 (2)0.0224 (4)
H20.5439250.6393530.3385740.027*
N30.42532 (11)0.59882 (9)0.49354 (19)0.0175 (3)
C10.68896 (14)0.57005 (11)0.3140 (2)0.0200 (4)
C20.74987 (14)0.51162 (12)0.2755 (2)0.0204 (4)
C30.72405 (16)0.43611 (12)0.2725 (3)0.0253 (4)
H30.6682680.4222110.2988990.030*
C40.77838 (18)0.38168 (12)0.2319 (3)0.0292 (5)
H40.7600100.3306120.2301880.035*
C50.86007 (17)0.40157 (14)0.1934 (3)0.0307 (5)
H50.8974300.3642500.1643620.037*
C60.88672 (17)0.47585 (13)0.1977 (3)0.0307 (5)
H60.9430270.4890200.1721260.037*
C70.83287 (15)0.53211 (12)0.2386 (3)0.0247 (4)
C80.86140 (18)0.61314 (13)0.2398 (4)0.0377 (6)
H8A0.9006260.6204130.1697720.045*
H8B0.9014840.6278200.3461980.045*
C90.77120 (19)0.66194 (13)0.1863 (3)0.0335 (5)
H9A0.7329360.6488360.0779810.040*
H9B0.7906480.7150910.1881040.040*
C100.70864 (16)0.65141 (12)0.2911 (3)0.0251 (4)
H10A0.7418300.6744050.3936770.030*
H10B0.6460750.6777090.2447150.030*
C110.49537 (14)0.56397 (11)0.4544 (2)0.0181 (4)
C120.39810 (15)0.47730 (11)0.5475 (2)0.0212 (4)
H120.3680710.4360440.5796880.025*
C130.36779 (14)0.54826 (10)0.5468 (2)0.0174 (4)
C140.28248 (14)0.57165 (11)0.5907 (2)0.0181 (4)
C150.19406 (15)0.53523 (12)0.5184 (2)0.0248 (4)
H150.1899620.4978900.4420800.030*
C160.11274 (16)0.55376 (13)0.5583 (3)0.0313 (5)
H160.0526610.5294880.5083980.038*
C170.11875 (17)0.60770 (13)0.6709 (3)0.0307 (5)
H170.0626850.6205680.6974310.037*
C180.20603 (17)0.64264 (12)0.7444 (3)0.0273 (5)
H180.2100200.6789920.8225240.033*
C190.28772 (16)0.62514 (11)0.7051 (3)0.0214 (4)
H190.3475380.6495390.7560800.026*
C200.40757 (14)0.68028 (11)0.4697 (2)0.0189 (4)
H20A0.3487150.6935770.4961690.023*
H20B0.3947750.6920020.3582960.023*
C210.49177 (14)0.72801 (11)0.5665 (2)0.0188 (4)
C220.52950 (17)0.72086 (12)0.7273 (3)0.0261 (4)
H220.5051300.6833500.7789640.031*
C230.60270 (18)0.76845 (15)0.8124 (3)0.0329 (5)
H230.6279520.7638140.9223210.039*
C240.63909 (17)0.82285 (15)0.7369 (3)0.0345 (5)
H240.6897050.8550740.7950900.041*
C250.60187 (18)0.82998 (14)0.5785 (3)0.0371 (6)
H250.6265010.8674790.5272080.044*
C260.52811 (19)0.78259 (12)0.4922 (3)0.0287 (5)
H260.5027820.7877440.3823350.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03693 (11)0.01870 (9)0.02011 (9)0.00145 (9)0.01078 (7)0.00129 (8)
S10.0231 (2)0.0190 (2)0.0225 (2)0.00341 (19)0.01004 (18)0.00098 (19)
N10.0207 (8)0.0209 (8)0.0239 (8)0.0026 (7)0.0109 (7)0.0022 (7)
N20.0229 (8)0.0213 (9)0.0274 (9)0.0018 (7)0.0144 (7)0.0006 (7)
N30.0185 (8)0.0170 (7)0.0193 (8)0.0005 (6)0.0091 (6)0.0005 (6)
C10.0196 (9)0.0208 (9)0.0195 (9)0.0018 (8)0.0061 (7)0.0012 (7)
C20.0201 (9)0.0220 (10)0.0201 (9)0.0036 (8)0.0077 (8)0.0008 (8)
C30.0248 (10)0.0241 (10)0.0297 (11)0.0029 (8)0.0123 (9)0.0023 (8)
C40.0337 (12)0.0202 (10)0.0356 (12)0.0037 (9)0.0139 (10)0.0005 (9)
C50.0297 (12)0.0287 (11)0.0356 (12)0.0090 (9)0.0130 (10)0.0043 (9)
C60.0247 (11)0.0332 (12)0.0400 (13)0.0041 (9)0.0182 (10)0.0003 (10)
C70.0222 (10)0.0250 (10)0.0297 (11)0.0013 (8)0.0122 (9)0.0002 (9)
C80.0313 (13)0.0271 (12)0.0657 (18)0.0026 (9)0.0310 (13)0.0010 (12)
C90.0422 (13)0.0214 (10)0.0471 (15)0.0008 (10)0.0288 (12)0.0040 (10)
C100.0252 (11)0.0198 (10)0.0342 (12)0.0015 (8)0.0149 (9)0.0004 (9)
C110.0194 (9)0.0179 (9)0.0169 (9)0.0003 (7)0.0058 (7)0.0019 (7)
C120.0217 (9)0.0209 (9)0.0234 (10)0.0016 (8)0.0105 (8)0.0014 (8)
C130.0187 (9)0.0180 (9)0.0165 (8)0.0007 (7)0.0069 (7)0.0012 (7)
C140.0187 (9)0.0174 (9)0.0199 (9)0.0005 (7)0.0086 (7)0.0039 (7)
C150.0245 (10)0.0258 (11)0.0250 (10)0.0049 (8)0.0094 (8)0.0002 (8)
C160.0195 (10)0.0370 (13)0.0385 (13)0.0060 (9)0.0109 (9)0.0022 (10)
C170.0252 (11)0.0296 (12)0.0441 (13)0.0042 (9)0.0205 (10)0.0047 (10)
C180.0336 (12)0.0206 (10)0.0350 (12)0.0037 (9)0.0213 (10)0.0013 (9)
C190.0229 (10)0.0180 (9)0.0255 (10)0.0007 (8)0.0110 (8)0.0014 (8)
C200.0209 (9)0.0167 (9)0.0209 (9)0.0008 (7)0.0092 (8)0.0008 (7)
C210.0203 (10)0.0177 (9)0.0203 (9)0.0013 (7)0.0094 (8)0.0022 (7)
C220.0273 (11)0.0310 (11)0.0213 (10)0.0025 (8)0.0096 (9)0.0025 (8)
C230.0305 (12)0.0409 (13)0.0233 (11)0.0029 (10)0.0031 (9)0.0048 (10)
C240.0307 (12)0.0338 (13)0.0373 (13)0.0052 (10)0.0088 (10)0.0148 (10)
C250.0446 (15)0.0309 (13)0.0370 (13)0.0187 (11)0.0151 (11)0.0066 (10)
C260.0398 (13)0.0245 (11)0.0225 (11)0.0089 (9)0.0110 (10)0.0032 (8)
Geometric parameters (Å, º) top
S1—C111.720 (2)C10—H10B0.9900
S1—C121.729 (2)C12—C131.342 (3)
N1—C11.283 (3)C12—H120.9500
N1—N21.396 (2)C13—C141.480 (3)
N2—C111.341 (3)C14—C191.396 (3)
N2—H20.9100C14—C151.402 (3)
N3—C111.337 (2)C15—C161.384 (3)
N3—C131.419 (2)C15—H150.9500
N3—C201.483 (2)C16—C171.388 (3)
C1—C21.483 (3)C16—H160.9500
C1—C101.510 (3)C17—C181.379 (3)
C2—C31.399 (3)C17—H170.9500
C2—C71.402 (3)C18—C191.382 (3)
C3—C41.377 (3)C18—H180.9500
C3—H30.9500C19—H190.9500
C4—C51.388 (3)C20—C211.519 (3)
C4—H40.9500C20—H20A0.9900
C5—C61.381 (3)C20—H20B0.9900
C5—H50.9500C21—C261.384 (3)
C6—C71.397 (3)C21—C221.391 (3)
C6—H60.9500C22—C231.387 (3)
C7—C81.506 (3)C22—H220.9500
C8—C91.519 (4)C23—C241.389 (4)
C8—H8A0.9900C23—H230.9500
C8—H8B0.9900C24—C251.370 (4)
C9—C101.525 (3)C24—H240.9500
C9—H9A0.9900C25—C261.394 (3)
C9—H9B0.9900C25—H250.9500
C10—H10A0.9900C26—H260.9500
C11—S1—C1289.42 (10)N2—C11—S1121.16 (15)
C1—N1—N2118.09 (17)C13—C12—S1112.95 (15)
C11—N2—N1111.65 (17)C13—C12—H12123.5
C11—N2—H2121.5S1—C12—H12123.5
N1—N2—H2118.8C12—C13—N3112.01 (17)
C11—N3—C13112.19 (16)C12—C13—C14124.63 (17)
C11—N3—C20122.06 (16)N3—C13—C14123.33 (16)
C13—N3—C20125.56 (15)C19—C14—C15119.26 (19)
N1—C1—C2115.06 (19)C19—C14—C13122.95 (18)
N1—C1—C10125.46 (19)C15—C14—C13117.71 (18)
C2—C1—C10119.48 (18)C16—C15—C14119.9 (2)
C3—C2—C7119.61 (19)C16—C15—H15120.0
C3—C2—C1120.48 (18)C14—C15—H15120.0
C7—C2—C1119.89 (19)C15—C16—C17120.2 (2)
C4—C3—C2120.9 (2)C15—C16—H16119.9
C4—C3—H3119.6C17—C16—H16119.9
C2—C3—H3119.6C18—C17—C16120.1 (2)
C3—C4—C5119.9 (2)C18—C17—H17120.0
C3—C4—H4120.1C16—C17—H17120.0
C5—C4—H4120.1C17—C18—C19120.4 (2)
C6—C5—C4119.7 (2)C17—C18—H18119.8
C6—C5—H5120.2C19—C18—H18119.8
C4—C5—H5120.2C18—C19—C14120.1 (2)
C5—C6—C7121.6 (2)C18—C19—H19119.9
C5—C6—H6119.2C14—C19—H19119.9
C7—C6—H6119.2N3—C20—C21113.39 (16)
C6—C7—C2118.4 (2)N3—C20—H20A108.9
C6—C7—C8121.2 (2)C21—C20—H20A108.9
C2—C7—C8120.42 (19)N3—C20—H20B108.9
C7—C8—C9110.03 (19)C21—C20—H20B108.9
C7—C8—H8A109.7H20A—C20—H20B107.7
C9—C8—H8A109.7C26—C21—C22119.5 (2)
C7—C8—H8B109.7C26—C21—C20118.49 (19)
C9—C8—H8B109.7C22—C21—C20121.89 (19)
H8A—C8—H8B108.2C23—C22—C21120.1 (2)
C8—C9—C10110.9 (2)C23—C22—H22120.0
C8—C9—H9A109.5C21—C22—H22120.0
C10—C9—H9A109.5C22—C23—C24120.1 (2)
C8—C9—H9B109.5C22—C23—H23120.0
C10—C9—H9B109.5C24—C23—H23120.0
H9A—C9—H9B108.0C25—C24—C23119.9 (2)
C1—C10—C9112.50 (18)C25—C24—H24120.1
C1—C10—H10A109.1C23—C24—H24120.1
C9—C10—H10A109.1C24—C25—C26120.4 (2)
C1—C10—H10B109.1C24—C25—H25119.8
C9—C10—H10B109.1C26—C25—H25119.8
H10A—C10—H10B107.8C21—C26—C25120.0 (2)
N3—C11—N2125.43 (18)C21—C26—H26120.0
N3—C11—S1113.41 (14)C25—C26—H26120.0
C1—N1—N2—C11178.27 (18)C11—S1—C12—C130.65 (16)
N2—N1—C1—C2177.26 (17)S1—C12—C13—N30.0 (2)
N2—N1—C1—C102.7 (3)S1—C12—C13—C14177.93 (15)
N1—C1—C2—C310.0 (3)C11—N3—C13—C120.9 (2)
C10—C1—C2—C3170.0 (2)C20—N3—C13—C12176.04 (18)
N1—C1—C2—C7171.39 (19)C11—N3—C13—C14177.07 (18)
C10—C1—C2—C78.6 (3)C20—N3—C13—C141.9 (3)
C7—C2—C3—C40.8 (3)C12—C13—C14—C19125.0 (2)
C1—C2—C3—C4177.8 (2)N3—C13—C14—C1957.4 (3)
C2—C3—C4—C50.1 (3)C12—C13—C14—C1551.8 (3)
C3—C4—C5—C60.6 (4)N3—C13—C14—C15125.9 (2)
C4—C5—C6—C70.6 (4)C19—C14—C15—C161.5 (3)
C5—C6—C7—C20.2 (4)C13—C14—C15—C16178.37 (19)
C5—C6—C7—C8178.8 (2)C14—C15—C16—C170.7 (3)
C3—C2—C7—C60.8 (3)C15—C16—C17—C180.5 (4)
C1—C2—C7—C6177.8 (2)C16—C17—C18—C190.9 (4)
C3—C2—C7—C8179.5 (2)C17—C18—C19—C140.2 (3)
C1—C2—C7—C80.8 (3)C15—C14—C19—C181.1 (3)
C6—C7—C8—C9144.2 (2)C13—C14—C19—C18177.76 (19)
C2—C7—C8—C934.4 (3)C11—N3—C20—C2164.4 (2)
C7—C8—C9—C1058.8 (3)C13—N3—C20—C21120.94 (19)
N1—C1—C10—C9163.3 (2)N3—C20—C21—C26128.1 (2)
C2—C1—C10—C916.7 (3)N3—C20—C21—C2255.2 (2)
C8—C9—C10—C150.3 (3)C26—C21—C22—C230.3 (3)
C13—N3—C11—N2178.69 (19)C20—C21—C22—C23176.3 (2)
C20—N3—C11—N23.3 (3)C21—C22—C23—C240.6 (4)
C13—N3—C11—S11.4 (2)C22—C23—C24—C250.7 (4)
C20—N3—C11—S1176.74 (14)C23—C24—C25—C260.5 (4)
N1—N2—C11—N3178.87 (18)C22—C21—C26—C250.1 (4)
N1—N2—C11—S11.2 (2)C20—C21—C26—C25176.6 (2)
C12—S1—C11—N31.18 (15)C24—C25—C26—C210.2 (4)
C12—S1—C11—N2178.90 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Br1i0.912.633.4633 (18)152
C10—H10B···Br1i0.992.883.837 (2)164
C20—H20B···Br1i0.992.843.7560 (19)155
C26—H26···Br1i0.952.903.730 (2)146
Symmetry code: (i) x, y+1, z1/2.
Comparison of pertinent bond lengths and angles (Å, °) top
Metric*IBOCROCNUCLOOQOCGIA
a1.720 (2)1.711 (4)1.7182 (15)1.740 (2)
b1.729 (2)1.740 (4)1.7373 (15)1.735 (3)
c1.419 (2)1.417 (5)1.3974 (19)1.414 (4)
d1.337 (2)1.341 (4)1.3314 (19)1.373 (4)
e1.341 (3)1.329 (5)1.328 (2)1.309 (3)
f1.396 (2)1.395 (4)1.3806 (17)1.381 (3)
g1.283 (3)1.275 (5)1.280 (2)1.293 (4)
h121.16 (15)123.0 (3)124.94 (11)126.51 (19)
i125.43 (18)123.8 (3)122.85 (13)122.3 (2)
j111.65 (17)114.9 (3)117.49 (12)109.4 (2)
k118.09 (17)115.5 (3)114.40 (13)116.0 (2)
*Key is A in Scheme 2.

Funding information

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAkkurt, M., Mague, J. T., Mohamed, S. K., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o478–o479.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationAuffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2020). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHassan, A. A., Mohamed, S. K., Mohamed, N. K., El-Shaieb, K. M. A., Abdel-Aziz, A. T., Mague, J. T. & Akkurt, M. (2016). J. Sulfur Chem. 37, 162–175.  CSD CrossRef CAS Google Scholar
First citationIino, T., Tsukahara, D., Kamata, K., Sasaki, K., Ohyama, S., Hosaka, H., Hasegawa, T., Chiba, M., Nagata, Y., Eiki, J.-I. & Nishimura, T. (2009). Bioorg. Med. Chem. 17, 2733–2743.  CrossRef PubMed CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLuzina, E. L. & Popov, A. V. (2009). Eur. J. Med. Chem. 44, 4944–4953.  CrossRef PubMed CAS Google Scholar
First citationMague, J. T., Mohamed, S. K., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2014). Acta Cryst. E70, o647–o648.  CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Mague, J. T., Akkurt, M., Hassan, A. A. & Albayati, M. R. (2013). Acta Cryst. E69, o1324.  CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRawal, R. K., Tripathi, R., Katti, S. B., Pannecouque, C. & De Clercq, E. (2008). Eur. J. Med. Chem. 43, 2800–2806.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSatoh, A., Nagatomi, Y., Hirata, Y., Ito, S., Suzuki, G., Kimura, T., Maehara, S., Hikichi, H., Satow, A., Hata, M., Ohta, H. & Kawamoto, H. (2009). Bioorg. Med. Chem. Lett. 19, 5464–5468.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddiqui, N., Arshad, M. F., Ahsan, W. & Alam, M. S. (2009). Int. J. Pharm. Sci. Drug Res. 1, 136–143.  CAS Google Scholar
First citationSingh, N., Bhati, S. K. & Kumar, A. (2008). Eur. J. Med. Chem. 43, 2597–2609.  CrossRef PubMed CAS Google Scholar
First citationThompson, D. M. & Richardson, M. F. (1977). Acta Cryst. B33, 324–328.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationTuran-Zitouni, G., Chevallet, P., Kiliç, F. S. & Erol, K. (2000). Eur. J. Med. Chem. 35, 635–641.  Web of Science PubMed CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer 17. The University of Western Australia.  Google Scholar
First citationVasu, N., Goud, B. B., Kumari, Y. B. & Rajitha, B. (2013). Rasayan J. Chem. 6, 201–206.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds