research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 3-cyano-4-hy­dr­oxy-2-(4-methyl­phen­yl)-6-oxo-N-phenyl-4-(thio­phen-2-yl)cyclo­hexane-1-carbox­amide 0.04-hydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Baku State University, Z. Khalilov str. 23, Az, 1148 Baku, Azerbaijan, bPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St.6, Moscow, 117198 , Russian Federation, cN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow, 119991 , Russian Federation, dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, e"Composite Materials" Scientific Research Center, Azerbaijan State Economic University (UNEC), H. Aliyev str. 135, Az 1063, Baku, Azerbaijan, and fAcad Sci Republ Tadzhikistan, Kh Yu Yusufbekov Pamir Biol Inst, 1 Kholdorova St, Khorog 736002, Gbao, Tajikistan
*Correspondence e-mail: anzurat2003@mail.ru

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 3 February 2021; accepted 4 March 2021; online 9 March 2021)

In the title compound, C25H22N2O3S·0.04H2O, the central cyclo­hexane ring adopts a chair conformation. In the crystal, mol­ecules are linked by N—H⋯O, C—H⋯O, and C—H⋯N hydrogen bonds, forming the mol­ecular layers parallel to the bc plane, which inter­act by the van der Waals forces between them. A Hirshfeld surface analysis indicates that the contributions from the most prevalent inter­actions are H⋯H (41.2%), C⋯H/H⋯C (20.3%), O⋯H/H⋯O (17.8%) and N⋯H/H⋯N (10.6%).

1. Chemical context

The significance of β-carbonyl compounds in organic chemistry is difficult to overestimate. They are valuable building blocks in organic synthesis and coordination complexes (Shokova et al., 2015[Shokova, E. A., Kim, J. K. & Kovalev, V. V. (2015). Russ. J. Org. Chem. 51, 755-830.]; Ma et al., 2015[Ma, Z., Sutradhar, M., Gurbanov, A. V., Maharramov, A. M., Aliyeva, R. A., Aliyeva, F. S., Bahmanova, F. N., Mardanova, V. I., Chyragov, F. M. & Mahmudov, K. T. (2015). Polyhedron, 101, 14-22.]; Gurbanov et al., 2017[Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107-111.], 2018[Gurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130-136.]; Mittersteiner et al., 2020[Mittersteiner, M., Andrade, V. P., Bonacorso, H. G., Martins, M. A. P. & Zanatta, N. (2020). Eur. J. Org. Chem. pp. 6405-6417.]). Cyclo­condensation reactions of β-diketones with various reagents mainly lead to the formation of carbocyclic and heterocyclic compounds (Mamedov et al., 2013[Mamedov, I. G., Bayramov, M. R., Mamedova, Y. V. & Maharramov, A. M. (2013). Magn. Reson. Chem. 51, 234-239.], 2019[Mamedov, I. G., Khrustalev, V. N., Dorovatovskii, P. V., Naghiev, F. N. & Maharramov, A. M. (2019). Mendeleev Commun. 29, 232-233.]; Naghiyev et al., 2019[Naghiyev, F. N., Mamedov, I., Khrustalev, V. N., Shixaliyev, N. & Maharramov, A. M. (2019). J. Chin. Chem. Soc. 66, 253-256.]; Naghiyev, 2020[Naghiyev, F. N. (2020). Azerbaijan Chem. J. 2, 39-47.]). Being a carbocyclic system, cyclo­hexa­none derivatives are scaffolds in many synthetic and natural products. They possess a broad spectrum of biological assets, such as anthelmintic, anti-inflammatory, anti­bacterial, anti­cancer, anti­convulsant, anti­tubercular, anti­tumor, anti­leukemic, anti­viral, analgesic, herbicidal and enzyme inhibitory activities (Holland et al., 1990[Holland, K. D., Naritoku, D. K., McKeon, A. C., Ferrendelli, J. A. & Covey, D. F. (1990). Mol. Pharmacol. 37, 98-103.]; Fu & Ye, 2004[Fu, Y. & Ye, F. (2004). Chem. Res. Chin. Univ. 20, 124-126.]; Liu et al., 2009[Liu, L., Liu, S., Chen, X., Guo, L. & Che, Y. (2009). Bioorg. & Med. Chem. 17, 606-613.]; Gein et al., 2015[Gein, V. L., Odegova, T. F., Yankin, A. N. & Nosova, N. V. (2015). Pharm. Chem. J. 49, 246-249.]; Mamedov et al., 2017[Mamedov, I. G., Mamedova, Y. V., Khrustalev, V. N., Bayramov, M. R. & Maharramov, A. M. (2017). Indian J. Chem. Sect. B, 56, 192-196.]; Nosova et al., 2020[Nosova, N. V., Lezhnina, D. D., Gein, O. N., Novikova, V. V. & Gein, V. L. (2020). Russ. J. Gen. Chem. 90, 1817-1822.]). The methods used most widely for the synthesis of these functionalized cyclo­hexa­nones involve the condensation of aldehydes with β-carbonyl compounds (Gein et al., 2015[Gein, V. L., Odegova, T. F., Yankin, A. N. & Nosova, N. V. (2015). Pharm. Chem. J. 49, 246-249.]; Nosova et al., 2020[Nosova, N. V., Lezhnina, D. D., Gein, O. N., Novikova, V. V. & Gein, V. L. (2020). Russ. J. Gen. Chem. 90, 1817-1822.]).

As part of our studies on the chemistry of β-dicarbonyl compounds, as well as taking into account our ongoing structural studies (Naghiyev, Akkurt et al., 2020[Naghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720-723.]; Naghiyev, Cisterna et al., 2020[Naghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235.]; Naghiyev, Mammadova et al., 2020[Naghiyev, F. N., Mammadova, G. Z., Mamedov, I. G., Huseynova, A. T., Çelikesir, S. T., Akkurt, M. & Akobirshoeva, A. A. (2020). Acta Cryst. E76, 1365-1368.]; Naghiyev et al., 2021[Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195-199.]), we report here the crystal structure and Hirshfeld surface analysis of the title compound, 3-cyano-4-hy­droxy-2-(4-methyl­phen­yl)-6-oxo-N-phenyl-4-(thio­phen-2-yl)-cyclo­hexane-1-carboxamide 0.04-hydrate.

[Scheme 1]

2. Structural commentary

In the title compound, (Fig. 1[link]), the central cyclo­hexane ring (C1–C6) adopts a chair conformation with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) QT = 0.570 (2) Å, θ = 5.1 (2)° and φ = 226 (2)°. The thio­phene (S1/C22–C25), phenyl (C8–C13) and benzene (C14–C19) rings make dihedral angles of 68.05 (10), 46.41 (9) and 87.95 (10)°, respectively, with the mean plane of the central cyclo­hexane ring. The thio­phene ring forms dihedral angles of 21.88 (10) and 73.64 (10)°, respectively, with the phenyl and benzene rings, which subtend a dihedral angle of 80.91 (10)°. The C2—C7—N1—C8 torsion angle is 178.99 (18)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, N—H⋯O and C—H⋯O hydrogen bonds link adjacent mol­ecules, forming mol­ecular ribbons with R12(6) and R22(10) ring motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) along the c-axis direction (Table 1[link]; Figs. 2[link] and 3[link]). These ribbons are linked by weak C—H⋯N non-classical hydrogen bonds, forming layers of mol­ecules parallel to the bc plane (Table 1[link]; Fig. 4[link]), with only van der Waals inter­actions between them.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.89 (2) 2.00 (2) 2.886 (2) 174 (2)
C2—H2⋯O2i 1.00 2.44 3.320 (2) 146
C4—H4⋯O1i 1.00 2.54 3.434 (2) 149
C9—H9⋯N2ii 0.95 2.57 3.272 (3) 131
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A view down the a axis of the inter­molecular N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds of the title compound.
[Figure 3]
Figure 3
A view down the b axis of the inter­molecular N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds of the title compound.
[Figure 4]
Figure 4
A view down the c axis of the inter­molecular N—H⋯O, C—H⋯O and C—H⋯N hydrogen bonds of the title compound.

4. Hirshfeld surface analysis

The Hirshfeld surface for the title compound and its associated two-dimensional fingerprint plots were calculated using CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.]). The oxygen atom of the water mol­ecule with a low occupancy factor of about 4% was not taken into account in the process. The Hirshfeld surface mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/]) is shown in Fig. 5[link]. The blue regions indicate positive electrostatic potential (hydrogen-bond donors), while the red regions indicate negative electrostatic potential (hydrogen-bond acceptors).

[Figure 5]
Figure 5
The Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range from −0.0500 to 0.0500 a.u. using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms, corresponding to positive and negative potentials, respectively.

The overall two-dimensional fingerprint plot, and those delineated into H⋯H (41.2%), C⋯H/H⋯C (20.3%), O⋯H/H⋯O (17.8%) and N⋯H/H⋯N (10.6%) contacts are illustrated in Fig. 6[link]ae, respectively. The other minor contributions to the Hirshfeld surface are from S⋯H/H⋯S (5.5%), O⋯O (1.9%), C⋯C (1.1%), S⋯C/C⋯S (1.0%), O⋯C/C⋯O (0.5%) and O⋯N/N⋯O (0.1%) contacts. The large number of H⋯H, C⋯H/H⋯C, O⋯H/H⋯O and N⋯H/ H⋯N inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

[Figure 6]
Figure 6
The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O and (e) N⋯H/H⋯N, inter­actions [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

5. Database survey

A search of the Cambridge Structural database (CSD, version 5.42, update November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 4-hy­droxy-5-methyl-2-oxo­cyclo­hexane-1-carboxamide moiety revealed seven hits, of which the structures most similar to the that of the title compound are 4-hy­droxy-4,N,N′-trimethyl-2-(3-nitro­phen­yl)-6-oxo-1,3-cyclo­hexa­nedicarbox-amide (HALROB; Ravikumar & Mehdi, 1993[Ravikumar, K. & Mehdi, S. (1993). Acta Cryst. C49, 2027-2030.]), 4-hy­droxy-N,N,N′,N′,4-penta­methyl-6-oxo-2-phenyl­cyclo­hexane-1,3-di­carboxamide (IFUDOD; Gein et al., 2007[Gein, V. L., Levandovskaya, E. B., Nosova, N. V., Vakhrin, M. I., Kriven'ko, A. P. & Aliev, Z. G. (2007). Zh. Org. Khim. 43, 1101-1102.]), 5-hy­droxy-5-methyl-3-phenyl-2,4-bis­(N-methyl­carbamo­yl)cyclo­hexa­none (IWEVOV; Mohan et al., 2003[Mohan, K. C., Ravikumar, K. & Shetty, M. M. (2003). J. Chem. Crystallogr. 33, 97-103.]), 5-hy­droxy-5-methyl-3-(o-tol­yl)-2,4-bis­(N-methyl­carbamo­yl)cyclo­hexa­none (IWEVUB; Mohan et al., 2003[Mohan, K. C., Ravikumar, K. & Shetty, M. M. (2003). J. Chem. Crystallogr. 33, 97-103.]), 2-(4-chloro­phen­yl)-4-hy­droxy-4-methyl-6-oxo-N,N′-di­phenyl­cyclo­hexane-1,3-dicarboxamide N,N-di­methyl­formamide solvate (OZUKAX; Tkachenko et al., 2014[Tkachenko, V. V., Muravyova, E. A. S. V., Shishkina, S. V., Shishkin, O. V., Desenko, S. M. & Chebanov, V. A. (2014). Chem. Heterocycl. Compd, 50, 1166-1176.]), 4-hy­droxy-4-methyl-2-(4-methyl­phen­yl)-6-oxo-N1,N3-di­phenyl­cyclo­hexane-1,3-dicarboxamide (PEWJUZ; Fatahpour et al., 2018[Fatahpour, M., Hazeri, N., Adrom, B., Maghsoodlou, M. T. & Lashkari, M. (2018). Res. Chem. Intermed. 44, 2111-2122.]) and 4-hy­droxy-4-methyl-2-(3-nitrophen­yl)-6-oxo­cyclo­hexane-1,3-dicarboxamide ethanol solvate (ZOMDUD; Gein et al., 2019[Gein, V. L., Nosova, N. V., Yankin, A. N., Bazhina, A. Y. & Dmitriev, M. V. (2019). Tetrahedron Lett. 60, 1592-1596.]).

ZOMDUD crystallizes in the monoclinic space group P21/c, with Z = 4, HALROB, IFUDOD and IWEVUB in P21/n with Z = 4, PEWJUZ in I2/c with Z = 4, and IWEVOV and OZUKAX in the ortho­rhom­bic space group Pbca with Z = 8.

In the crystal of HALROB, the amide carbonyl groups are oriented in different directions with respect to the cyclo­hexa­none ring. These orientations of the carboxamide groups facilitate the formation of an intra­molecular O—H⋯O hydrogen bond. The mol­ecules are packed such that chains are formed along the b-axis direction. These chains are held together by N—H⋯O hydrogen bonds.

In the crystal IFUDOD, there are no classical hydrogen bonds. Inter­molecular C—H⋯O contacts and weak C—H⋯π inter­actions lead to the formation of a three-dimensional network.

In the crystal of IWEVOV, the mol­ecules pack such that both carbonyl O atoms, participate in hydrogen-bond formation with symmetry-related amide nitro­gen atoms, present in the carbamoyl substituents, forming N—H⋯O hydrogen bonds in a helical arrangement. In the crystal, the phenyl rings are positioned so as to favour edge-to-edge aromatic stacking. When the crystal packing is viewed normal to the ac plane, it reveals a `wire-mesh' type hydrogen-bond network.

In the crystal of IWEVUB, unlike in IWEVOV where both carbonyl O atoms participate in hydrogen bonding, only one of the carbonyl oxygen atoms participates in inter­molecular N—H⋯O hydrogen bonding while the other carbonyl oxygen participates in a weak C—H⋯O inter­action. In addition, one of the amide nitro­gen atoms participates in N—H⋯O hydrogen bonding with the hydroxyl oxygen atom, linking the mol­ecules in a helical arrangement, which is similar to that in the structure of IWEVOV. As observed in the structure of IWEVOV, the packing of the mol­ecules viewed normal to the ab plane resembles a `wiremesh' arrangement of the mol­ecules.

In OZUKAX, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, forming sheets parallel to the ac plane. C—H⋯π inter­actions are also observed. Inter­molecular O—H⋯O hydrogen bonds consolidate the mol­ecular conformation.

In PEWJUZ, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, forming sheets parallel to the bc plane. C—H⋯π inter­actions are also observed.

In ZOMDUD, mol­ecules are linked by inter­molecular N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network. C—H⋯π inter­actions are also observed.

Inter­molecular inter­actions can be weaker or more robust based on the presence or absence of different functional groups and the mol­ecular environment, depending on the crystal system, which all affect the mol­ecular conformation.

6. Synthesis and crystallization

To a dissolved mixture of 2-(thio­phene-2-carbon­yl)-3-(p-tol­yl)acrylo­nitrile (1.32 g; 5.2 mmol) and acetoacetanilide (0.92 g; 5.2 mmol) in methanol (35 mL), 2–3 drops of methyl piperazine were added and the mixture was stirred at room temperature for 5–7 min. The reaction mixture was kept in a closed flask for 24–48 h. Then, 25 mL of methanol was removed from the reaction mixture and it was left overnight. The precipitated needle-like crystals were separated by filtration and recrystallized from ethanol (yield 72%; m.p. 483–484 K).

1H NMR (300 MHz, DMSO-d6, m.h.): δ 2.23 (s, 3H, CH3); 2.79 (d, 2H, CH2, 2JH-H = 18.1 Hz); 3.50 (t, 1H, CH, 3JH-H = 13.8 Hz); 3.63 (s, 1H, OH); 4.06 (d, 1H, CH, 3JH-H = 10.5 Hz); 4.28 (dd, 1H, CH, 3JH-H = 10.5 Hz, 3JH-H = 11.9 Hz); 6.97–7.48 (m, 12H, 9Ar-H + 3CHthien­yl); 9.94 ppm (s, 1H, NH). 13C NMR (75 MHz, DMSO-d6, m.h.): δ 21.14 (CH3–-Ar), 44.26 (CH—Ar), 47.40 (CH—CN), 54.07 (CH2), 62.64 (CH—CO), 75.29 (O—Cquat.), 119.02 (CN), 119.49 (2CHarom), 123.87 (CHthien­yl), 124.45 (CHarom), 125.71 (CHthien­yl), 127.63 (CHthien­yl), 128.75 (2 CHarom), 129.14 (2 CHarom),129.54 (2 CHarom), 137.06 (Carom), 137.17 (Carom), 139.14 (Carom), 150.57 (Cthien­yl), 165.85 (O=C), 203.12 ppm (O=Cket). As a result of the overlap of peaks in the 1H NMR spectrum, it was not possible to determine precisely all coupling constants.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms of the OH and NH groups were located from the difference-Fourier synthesis and refined freely. All C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95–1.00 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C25H22N2O3S·0.04H2O
Mr 1724.87
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.049 (2), 20.223 (4), 9.1743 (18)
β (°) 100.91 (3)
V3) 2195.0 (8)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.18
Crystal size (mm) 0.36 × 0.03 × 0.03
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON-III CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.930, 0.990
No. of measured, independent and observed [I > 2σ(I)] reflections 40890, 4492, 3208
Rint 0.086
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.099, 1.02
No. of reflections 4492
No. of parameters 297
No. of restraints 7
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.24, −0.28
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Data with a resolution higher than 0.8 Å have a mean I/σ(I) of less than 4, and significant errors in the equivalent intensities (high Rmerge). The dataset was therefore truncated at 0.8 Å. Furthermore, there is a small cavity in the crystal, which is only partially occupied by a water mol­ecule (only about 4%) and the protons could not be located. It is also highly probable that, in the presence of a fully occupied water mol­ecule, the proton of the OH group would have a different orientation.

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020).

3-Cyano-4-hydroxy-2-(4-methylphenyl)-6-oxo-N-phenyl-4-(thiophen-2-yl)cyclohexane-1-carboxamide 0.04-hydrate top
Crystal data top
C25H22N2O3S·0.04H2OF(000) = 906
Mr = 1724.87Dx = 1.305 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.049 (2) ÅCell parameters from 6355 reflections
b = 20.223 (4) Åθ = 2.5–27.2°
c = 9.1743 (18) ŵ = 0.18 mm1
β = 100.91 (3)°T = 100 K
V = 2195.0 (8) Å3Needle, colourless
Z = 10.36 × 0.03 × 0.03 mm
Data collection top
Bruker D8 QUEST PHOTON-III CCD
diffractometer
3208 reflections with I > 2σ(I)
φ and ω scansRint = 0.086
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 26.4°, θmin = 2.0°
Tmin = 0.930, Tmax = 0.990h = 1515
40890 measured reflectionsk = 2525
4492 independent reflectionsl = 1111
Refinement top
Refinement on F27 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.034P)2 + 1.3559P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4492 reflectionsΔρmax = 0.24 e Å3
297 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.94322 (4)0.33798 (3)0.19635 (6)0.02478 (14)
O10.64646 (13)0.20448 (7)0.48755 (16)0.0284 (4)
O20.44002 (12)0.28766 (7)0.52178 (15)0.0236 (3)
O30.79249 (12)0.35394 (8)0.55025 (15)0.0262 (4)
H3O0.8523 (16)0.3394 (12)0.595 (3)0.039*
O40.612 (3)0.351 (2)0.700 (4)0.031 (14)0.040 (5)
N10.36773 (14)0.23974 (9)0.29809 (18)0.0206 (4)
H1N0.3849 (18)0.2305 (11)0.211 (3)0.025*
N20.72836 (16)0.51020 (9)0.3630 (2)0.0281 (4)
C10.65290 (17)0.24998 (10)0.4037 (2)0.0209 (4)
C20.55201 (16)0.29125 (10)0.3322 (2)0.0184 (4)
H20.5366290.2825540.2228910.022*
C30.57511 (16)0.36608 (10)0.3578 (2)0.0185 (4)
H30.5823690.3751210.4663580.022*
C40.68857 (16)0.38432 (9)0.3124 (2)0.0180 (4)
H40.6809620.3761650.2034800.022*
C50.78937 (17)0.34269 (10)0.3945 (2)0.0207 (4)
C60.76359 (17)0.26933 (10)0.3603 (2)0.0221 (5)
H6A0.7591970.2611820.2529550.026*
H6B0.8254320.2418030.4157280.026*
C70.44750 (17)0.27263 (10)0.3935 (2)0.0190 (4)
C80.26345 (17)0.21588 (10)0.3278 (2)0.0198 (4)
C90.22262 (17)0.15683 (10)0.2617 (2)0.0230 (4)
H90.2645900.1335170.2003250.028*
C100.12021 (18)0.13192 (11)0.2855 (2)0.0272 (5)
H100.0925620.0912130.2411890.033*
C110.05831 (18)0.16603 (12)0.3732 (2)0.0284 (5)
H110.0121430.1491620.3886220.034*
C120.09986 (18)0.22518 (11)0.4386 (2)0.0280 (5)
H120.0574820.2486060.4993040.034*
C130.20247 (17)0.25057 (11)0.4167 (2)0.0235 (5)
H130.2304700.2910520.4617660.028*
C140.47911 (16)0.40798 (10)0.2754 (2)0.0194 (4)
C150.45216 (18)0.40895 (11)0.1203 (2)0.0246 (5)
H150.4929620.3817030.0645080.030*
C160.36664 (18)0.44924 (11)0.0475 (2)0.0269 (5)
H160.3497130.4493000.0579390.032*
C170.30501 (17)0.48957 (11)0.1251 (2)0.0256 (5)
C180.33140 (18)0.48823 (11)0.2794 (2)0.0257 (5)
H180.2903000.5154370.3348970.031*
C190.41680 (17)0.44777 (10)0.3536 (2)0.0219 (4)
H190.4328380.4472820.4590330.026*
C200.2125 (2)0.53442 (12)0.0457 (3)0.0349 (6)
H20A0.1888060.5195500.0572030.052*
H20B0.2408830.5798540.0465660.052*
H20C0.1477380.5329110.0961570.052*
C210.71119 (17)0.45522 (11)0.3399 (2)0.0216 (4)
C220.89866 (17)0.36488 (10)0.3544 (2)0.0218 (4)
C230.97306 (17)0.40966 (11)0.4282 (2)0.0267 (5)
H230.9629240.4309250.5171230.032*
C241.06711 (19)0.42148 (12)0.3596 (3)0.0312 (5)
H241.1270120.4508450.3982650.037*
C251.06228 (18)0.38632 (11)0.2328 (2)0.0280 (5)
H251.1177720.3881910.1719070.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0239 (3)0.0333 (3)0.0184 (3)0.0043 (2)0.0072 (2)0.0021 (2)
O10.0322 (8)0.0279 (8)0.0260 (8)0.0009 (7)0.0077 (7)0.0086 (7)
O20.0275 (8)0.0310 (8)0.0141 (7)0.0036 (6)0.0085 (6)0.0010 (6)
O30.0262 (8)0.0395 (10)0.0130 (7)0.0029 (7)0.0038 (6)0.0014 (6)
O40.024 (18)0.04 (2)0.027 (19)0.001 (13)0.004 (13)0.009 (13)
N10.0234 (9)0.0270 (10)0.0130 (8)0.0028 (8)0.0077 (7)0.0021 (7)
N20.0329 (10)0.0281 (11)0.0235 (10)0.0047 (8)0.0060 (8)0.0014 (8)
C10.0272 (11)0.0221 (11)0.0143 (10)0.0014 (9)0.0062 (8)0.0013 (8)
C20.0211 (10)0.0236 (11)0.0112 (9)0.0022 (8)0.0050 (8)0.0014 (8)
C30.0218 (10)0.0210 (10)0.0138 (9)0.0012 (8)0.0064 (8)0.0015 (8)
C40.0204 (10)0.0207 (10)0.0132 (9)0.0023 (8)0.0038 (8)0.0020 (8)
C50.0221 (10)0.0272 (11)0.0131 (9)0.0005 (9)0.0042 (8)0.0009 (8)
C60.0214 (10)0.0247 (11)0.0207 (11)0.0021 (9)0.0054 (9)0.0036 (9)
C70.0219 (10)0.0192 (10)0.0168 (10)0.0018 (8)0.0063 (8)0.0026 (8)
C80.0207 (10)0.0243 (11)0.0153 (10)0.0003 (8)0.0055 (8)0.0040 (8)
C90.0277 (11)0.0245 (11)0.0176 (10)0.0006 (9)0.0067 (9)0.0001 (9)
C100.0300 (12)0.0283 (12)0.0223 (11)0.0057 (10)0.0029 (9)0.0025 (9)
C110.0231 (11)0.0386 (13)0.0245 (11)0.0061 (10)0.0065 (9)0.0049 (10)
C120.0271 (11)0.0361 (13)0.0228 (11)0.0029 (10)0.0102 (9)0.0013 (10)
C130.0248 (11)0.0257 (11)0.0200 (10)0.0004 (9)0.0046 (9)0.0001 (9)
C140.0226 (10)0.0193 (10)0.0171 (10)0.0027 (8)0.0058 (8)0.0009 (8)
C150.0292 (11)0.0275 (12)0.0183 (10)0.0021 (9)0.0075 (9)0.0029 (9)
C160.0300 (12)0.0318 (12)0.0183 (10)0.0044 (10)0.0033 (9)0.0014 (9)
C170.0232 (11)0.0261 (11)0.0277 (12)0.0004 (9)0.0056 (9)0.0028 (9)
C180.0267 (11)0.0255 (12)0.0274 (11)0.0024 (9)0.0118 (9)0.0009 (9)
C190.0239 (10)0.0271 (11)0.0165 (10)0.0013 (9)0.0083 (9)0.0028 (9)
C200.0335 (13)0.0390 (14)0.0327 (13)0.0106 (11)0.0075 (11)0.0064 (11)
C210.0215 (10)0.0295 (12)0.0146 (10)0.0020 (9)0.0058 (8)0.0011 (9)
C220.0244 (11)0.0250 (11)0.0161 (10)0.0020 (9)0.0038 (8)0.0016 (8)
C230.0256 (11)0.0329 (13)0.0221 (11)0.0007 (10)0.0057 (9)0.0048 (9)
C240.0266 (11)0.0360 (13)0.0310 (12)0.0065 (10)0.0056 (10)0.0020 (10)
C250.0221 (11)0.0377 (13)0.0253 (11)0.0059 (10)0.0076 (9)0.0011 (10)
Geometric parameters (Å, º) top
S1—C251.716 (2)C9—H90.9500
S1—C221.727 (2)C10—C111.381 (3)
O1—C11.211 (2)C10—H100.9500
O2—C71.236 (2)C11—C121.389 (3)
O3—C51.440 (2)C11—H110.9500
O3—H3O0.815 (16)C12—C131.388 (3)
N1—C71.347 (3)C12—H120.9500
N1—C81.420 (3)C13—H130.9500
N1—H1N0.89 (2)C14—C191.389 (3)
N2—C211.143 (3)C14—C151.398 (3)
C1—C61.514 (3)C15—C161.382 (3)
C1—C21.517 (3)C15—H150.9500
C2—C71.520 (3)C16—C171.387 (3)
C2—C31.549 (3)C16—H160.9500
C2—H21.0000C17—C181.391 (3)
C3—C141.515 (3)C17—C201.513 (3)
C3—C41.547 (3)C18—C191.388 (3)
C3—H31.0000C18—H180.9500
C4—C211.472 (3)C19—H190.9500
C4—C51.551 (3)C20—H20A0.9800
C4—H41.0000C20—H20B0.9800
C5—C221.501 (3)C20—H20C0.9800
C5—C61.536 (3)C22—C231.361 (3)
C6—H6A0.9900C23—C241.417 (3)
C6—H6B0.9900C23—H230.9500
C8—C131.387 (3)C24—C251.355 (3)
C8—C91.387 (3)C24—H240.9500
C9—C101.388 (3)C25—H250.9500
C25—S1—C2292.19 (11)C11—C10—H10119.8
C5—O3—H3O107.5 (18)C9—C10—H10119.8
C7—N1—C8126.29 (17)C10—C11—C12119.5 (2)
C7—N1—H1N115.6 (14)C10—C11—H11120.3
C8—N1—H1N118.0 (14)C12—C11—H11120.3
O1—C1—C6121.94 (19)C13—C12—C11120.9 (2)
O1—C1—C2123.36 (19)C13—C12—H12119.5
C6—C1—C2114.70 (17)C11—C12—H12119.5
C1—C2—C7110.84 (16)C8—C13—C12118.9 (2)
C1—C2—C3111.44 (16)C8—C13—H13120.5
C7—C2—C3108.88 (16)C12—C13—H13120.5
C1—C2—H2108.5C19—C14—C15118.25 (19)
C7—C2—H2108.5C19—C14—C3120.15 (17)
C3—C2—H2108.5C15—C14—C3121.59 (18)
C14—C3—C4111.24 (16)C16—C15—C14120.5 (2)
C14—C3—C2111.86 (16)C16—C15—H15119.7
C4—C3—C2109.56 (16)C14—C15—H15119.7
C14—C3—H3108.0C15—C16—C17121.4 (2)
C4—C3—H3108.0C15—C16—H16119.3
C2—C3—H3108.0C17—C16—H16119.3
C21—C4—C3109.29 (16)C16—C17—C18118.0 (2)
C21—C4—C5110.05 (16)C16—C17—C20121.5 (2)
C3—C4—C5112.98 (16)C18—C17—C20120.5 (2)
C21—C4—H4108.1C19—C18—C17121.1 (2)
C3—C4—H4108.1C19—C18—H18119.5
C5—C4—H4108.1C17—C18—H18119.5
O3—C5—C22109.67 (16)C18—C19—C14120.75 (19)
O3—C5—C6108.76 (16)C18—C19—H19119.6
C22—C5—C6113.04 (17)C14—C19—H19119.6
O3—C5—C4105.49 (16)C17—C20—H20A109.5
C22—C5—C4111.18 (16)C17—C20—H20B109.5
C6—C5—C4108.40 (16)H20A—C20—H20B109.5
C1—C6—C5110.49 (17)C17—C20—H20C109.5
C1—C6—H6A109.6H20A—C20—H20C109.5
C5—C6—H6A109.6H20B—C20—H20C109.5
C1—C6—H6B109.6N2—C21—C4179.1 (2)
C5—C6—H6B109.6C23—C22—C5127.05 (19)
H6A—C6—H6B108.1C23—C22—S1110.32 (16)
O2—C7—N1124.66 (19)C5—C22—S1122.57 (15)
O2—C7—C2120.42 (18)C22—C23—C24113.4 (2)
N1—C7—C2114.92 (17)C22—C23—H23123.3
C13—C8—C9120.61 (19)C24—C23—H23123.3
C13—C8—N1121.85 (19)C25—C24—C23112.6 (2)
C9—C8—N1117.52 (18)C25—C24—H24123.7
C8—C9—C10119.7 (2)C23—C24—H24123.7
C8—C9—H9120.1C24—C25—S1111.40 (17)
C10—C9—H9120.1C24—C25—H25124.3
C11—C10—C9120.3 (2)S1—C25—H25124.3
O1—C1—C2—C76.3 (3)C8—C9—C10—C110.7 (3)
C6—C1—C2—C7174.55 (16)C9—C10—C11—C120.6 (3)
O1—C1—C2—C3127.8 (2)C10—C11—C12—C130.2 (3)
C6—C1—C2—C353.1 (2)C9—C8—C13—C120.1 (3)
C1—C2—C3—C14174.89 (16)N1—C8—C13—C12178.60 (19)
C7—C2—C3—C1462.5 (2)C11—C12—C13—C80.0 (3)
C1—C2—C3—C451.1 (2)C4—C3—C14—C19120.6 (2)
C7—C2—C3—C4173.62 (15)C2—C3—C14—C19116.5 (2)
C14—C3—C4—C2157.0 (2)C4—C3—C14—C1558.1 (2)
C2—C3—C4—C21178.84 (15)C2—C3—C14—C1564.8 (2)
C14—C3—C4—C5179.86 (16)C19—C14—C15—C160.8 (3)
C2—C3—C4—C555.9 (2)C3—C14—C15—C16177.84 (19)
C21—C4—C5—O364.9 (2)C14—C15—C16—C170.2 (3)
C3—C4—C5—O357.6 (2)C15—C16—C17—C180.3 (3)
C21—C4—C5—C2254.0 (2)C15—C16—C17—C20179.1 (2)
C3—C4—C5—C22176.43 (16)C16—C17—C18—C190.0 (3)
C21—C4—C5—C6178.80 (16)C20—C17—C18—C19179.4 (2)
C3—C4—C5—C658.7 (2)C17—C18—C19—C140.7 (3)
O1—C1—C6—C5124.8 (2)C15—C14—C19—C181.1 (3)
C2—C1—C6—C556.1 (2)C3—C14—C19—C18177.61 (18)
O3—C5—C6—C157.7 (2)O3—C5—C22—C2322.9 (3)
C22—C5—C6—C1179.77 (16)C6—C5—C22—C23144.4 (2)
C4—C5—C6—C156.5 (2)C4—C5—C22—C2393.4 (2)
C8—N1—C7—O21.1 (3)O3—C5—C22—S1160.44 (14)
C8—N1—C7—C2178.99 (18)C6—C5—C22—S138.9 (2)
C1—C2—C7—O271.2 (2)C4—C5—C22—S183.3 (2)
C3—C2—C7—O251.7 (2)C25—S1—C22—C230.82 (17)
C1—C2—C7—N1108.87 (19)C25—S1—C22—C5178.01 (18)
C3—C2—C7—N1128.20 (18)C5—C22—C23—C24178.2 (2)
C7—N1—C8—C1336.3 (3)S1—C22—C23—C241.2 (2)
C7—N1—C8—C9145.1 (2)C22—C23—C24—C251.0 (3)
C13—C8—C9—C100.5 (3)C23—C24—C25—S10.4 (3)
N1—C8—C9—C10179.04 (18)C22—S1—C25—C240.26 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.89 (2)2.00 (2)2.886 (2)174 (2)
C2—H2···O2i1.002.443.320 (2)146
C3—H3···O31.002.542.879 (2)100
C4—H4···O1i1.002.543.434 (2)149
C6—H6A···S10.992.833.179 (2)101
C9—H9···N2ii0.952.573.272 (3)131
C13—H13···O20.952.482.939 (3)110
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+1/2.
 

Funding information

The authors would like to thank Baku State University and the Ministry of Education and Science of the Russian Federation [award No. 075–03-2020- 223 (FSSF-2020–0017)] for their support of this research.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFatahpour, M., Hazeri, N., Adrom, B., Maghsoodlou, M. T. & Lashkari, M. (2018). Res. Chem. Intermed. 44, 2111–2122.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, Y. & Ye, F. (2004). Chem. Res. Chin. Univ. 20, 124–126.  CAS Google Scholar
First citationGein, V. L., Levandovskaya, E. B., Nosova, N. V., Vakhrin, M. I., Kriven'ko, A. P. & Aliev, Z. G. (2007). Zh. Org. Khim. 43, 1101–1102.  Google Scholar
First citationGein, V. L., Nosova, N. V., Yankin, A. N., Bazhina, A. Y. & Dmitriev, M. V. (2019). Tetrahedron Lett. 60, 1592–1596.  Web of Science CSD CrossRef CAS Google Scholar
First citationGein, V. L., Odegova, T. F., Yankin, A. N. & Nosova, N. V. (2015). Pharm. Chem. J. 49, 246–249.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Mahmoudi, G., Guedes da Silva, M. F. C., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Inorg. Chim. Acta, 471, 130–136.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, F. M., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017). Dyes Pigments, 138, 107–111.  Web of Science CSD CrossRef CAS Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHolland, K. D., Naritoku, D. K., McKeon, A. C., Ferrendelli, J. A. & Covey, D. F. (1990). Mol. Pharmacol. 37, 98–103.  CAS PubMed Web of Science Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: https://hirshfeldsurface.net/  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLiu, L., Liu, S., Chen, X., Guo, L. & Che, Y. (2009). Bioorg. & Med. Chem. 17, 606–613.  Web of Science CrossRef CAS Google Scholar
First citationMa, Z., Sutradhar, M., Gurbanov, A. V., Maharramov, A. M., Aliyeva, R. A., Aliyeva, F. S., Bahmanova, F. N., Mardanova, V. I., Chyragov, F. M. & Mahmudov, K. T. (2015). Polyhedron, 101, 14–22.  Web of Science CSD CrossRef CAS Google Scholar
First citationMamedov, I. G., Bayramov, M. R., Mamedova, Y. V. & Maharramov, A. M. (2013). Magn. Reson. Chem. 51, 234–239.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMamedov, I. G., Khrustalev, V. N., Dorovatovskii, P. V., Naghiev, F. N. & Maharramov, A. M. (2019). Mendeleev Commun. 29, 232–233.  Web of Science CSD CrossRef CAS Google Scholar
First citationMamedov, I. G., Mamedova, Y. V., Khrustalev, V. N., Bayramov, M. R. & Maharramov, A. M. (2017). Indian J. Chem. Sect. B, 56, 192–196.  Google Scholar
First citationMittersteiner, M., Andrade, V. P., Bonacorso, H. G., Martins, M. A. P. & Zanatta, N. (2020). Eur. J. Org. Chem. pp. 6405–6417.  Web of Science CrossRef Google Scholar
First citationMohan, K. C., Ravikumar, K. & Shetty, M. M. (2003). J. Chem. Crystallogr. 33, 97–103.  Web of Science CSD CrossRef CAS Google Scholar
First citationNaghiyev, F. N. (2020). Azerbaijan Chem. J. 2, 39–47.  CrossRef Google Scholar
First citationNaghiyev, F. N., Akkurt, M., Askerov, R. K., Mamedov, I. G., Rzayev, R. M., Chyrka, T. & Maharramov, A. M. (2020). Acta Cryst. E76, 720–723.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Cisterna, J., Khalilov, A. N., Maharramov, A. M., Askerov, R. K., Asadov, K. A., Mamedov, I. G., Salmanli, K. S., Cárdenas, A. & Brito, I. (2020). Molecules, 25, 2235.  Web of Science CSD CrossRef Google Scholar
First citationNaghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021). Acta Cryst. E77, 195–199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Mamedov, I., Khrustalev, V. N., Shixaliyev, N. & Maharramov, A. M. (2019). J. Chin. Chem. Soc. 66, 253–256.  Web of Science CrossRef CAS Google Scholar
First citationNaghiyev, F. N., Mammadova, G. Z., Mamedov, I. G., Huseynova, A. T., Çelikesir, S. T., Akkurt, M. & Akobirshoeva, A. A. (2020). Acta Cryst. E76, 1365–1368.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNosova, N. V., Lezhnina, D. D., Gein, O. N., Novikova, V. V. & Gein, V. L. (2020). Russ. J. Gen. Chem. 90, 1817–1822.  Web of Science CrossRef CAS Google Scholar
First citationRavikumar, K. & Mehdi, S. (1993). Acta Cryst. C49, 2027–2030.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShokova, E. A., Kim, J. K. & Kovalev, V. V. (2015). Russ. J. Org. Chem. 51, 755–830.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTkachenko, V. V., Muravyova, E. A. S. V., Shishkina, S. V., Shishkin, O. V., Desenko, S. M. & Chebanov, V. A. (2014). Chem. Heterocycl. Compd, 50, 1166–1176.  Web of Science CSD CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. The University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds