addenda and errata\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido­tetra­kis­(imidazole)­copper(II) chloride. Corrigendum

CROSSMARK_Color_square_no_text.svg

aDepartment of Materials Science and Technology, Taishan University, Taian 271021, People's Republic of China
*Correspondence e-mail: tscltb@126.com

(Received 26 February 2021; accepted 26 February 2021; online 31 March 2021)

In the article by Li et al. [Acta Cryst. (2007), E63, m2536], four imidazole H atoms are missing in the refinement.

The structure of chlorido­tetra­kis­(imidazole)­copper(II) chlo­ride, reported in the article by Li et al. (2007[Li, T. B., Hu, Y. L., Li, J. K. & He, G. F. (2007). Acta Cryst. E63, m2536.]), has been rerefined to include four missing imidazole H atoms. The crystal was twinned by pseudomerohedry, which was dealt with using standard SHELXL methods (TWIN and BASF commands). The revised crystal data, data collection and structure refinement details are summarized in Table 1[link] and the revised chemical drawing is shown in Fig. 1[link].

Table 1
Experimental details

Crystal data
Chemical formula [CuCl(C3H4N2)4]Cl
Mr 406.77
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 8.8662 (3), 13.3199 (4), 13.9190 (4)
β (°) 90.042 (1)
V3) 1643.79 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.67
Crystal size (mm) 0.15 × 0.12 × 0.10
 
Data collection
Diffractometer Bruker CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.788, 0.851
No. of measured, independent and observed [I > 2σ(I)] reflections 18819, 3317, 2798
Rint 0.039
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.057, 0.94
No. of reflections 3317
No. of parameters 209
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.37
Computer programs: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]), SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

Chloridotetrakis(imidazole)copper(II) chloride top
Crystal data top
[CuCl(C3H4N2)4]ClF(000) = 828
Mr = 406.77Dx = 1.644 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.8662 (3) ÅCell parameters from 8636 reflections
b = 13.3199 (4) Åθ = 2.7–27.4°
c = 13.9190 (4) ŵ = 1.67 mm1
β = 90.042 (1)°T = 293 K
V = 1643.79 (9) Å3Block, blue
Z = 40.15 × 0.12 × 0.10 mm
Data collection top
Bruker CCD
diffractometer
3317 independent reflections
Radiation source: fine-focus sealed-tube2798 reflections with I > 2σ(I)
Detector resolution: 9.1 pixels mm-1Rint = 0.039
φ and ω scans at fixed χ = 55°θmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.788, Tmax = 0.851k = 1717
18819 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: difference Fourier map
wR(F2) = 0.057H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.022P)2]
where P = (Fo2 + 2Fc2)/3
3317 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.68666 (3)0.28667 (2)0.37745 (2)0.02393 (7)
N10.6959 (2)0.28765 (13)0.23419 (13)0.0259 (4)
N20.6679 (2)0.32558 (15)0.08280 (14)0.0348 (5)
H2N0.6368640.3555230.0317250.042*
N30.58536 (18)0.15168 (11)0.37424 (14)0.0261 (4)
N40.4040 (2)0.04018 (13)0.37092 (16)0.0356 (4)
H4N0.3146250.0150900.3690770.043*
N50.6952 (2)0.27930 (12)0.52089 (13)0.0279 (4)
N60.6741 (3)0.31834 (16)0.67249 (14)0.0378 (5)
H6N0.6490420.3504810.7236350.045*
N70.85774 (18)0.38627 (12)0.37990 (14)0.0272 (4)
N81.0848 (2)0.44900 (14)0.37450 (16)0.0391 (5)
H8N1.1815200.4524390.3714630.047*
C10.6293 (3)0.34862 (18)0.17279 (17)0.0307 (5)
H10.5645070.4005240.1898360.037*
C20.7649 (3)0.24628 (19)0.08597 (19)0.0388 (6)
H20.8104470.2144390.0340830.047*
C30.7813 (3)0.22351 (17)0.17973 (17)0.0332 (6)
H30.8414230.1721160.2038250.040*
C40.4387 (2)0.13815 (16)0.37156 (17)0.0306 (5)
H40.3681570.1897890.3702860.037*
C50.5354 (2)0.01236 (16)0.3737 (2)0.0391 (5)
H50.5462370.0818050.3742640.047*
C60.6467 (2)0.05655 (15)0.3755 (2)0.0359 (5)
H60.7493190.0421220.3772140.043*
C70.6409 (3)0.34477 (18)0.58258 (18)0.0334 (6)
H70.5866070.4018510.5657180.040*
C80.7550 (3)0.2312 (2)0.6690 (2)0.0421 (7)
H80.7934360.1954610.7209410.050*
C90.7680 (3)0.20719 (18)0.57536 (18)0.0354 (6)
H90.8178890.1511930.5512290.042*
C101.0020 (2)0.36497 (17)0.3752 (2)0.0347 (5)
H101.0414310.3003080.3727640.042*
C110.9878 (3)0.52801 (17)0.3794 (2)0.0415 (6)
H111.0128330.5958050.3802730.050*
C120.8483 (2)0.48821 (16)0.3828 (2)0.0367 (5)
H120.7591810.5247840.3866330.044*
Cl10.44359 (6)0.39845 (4)0.37917 (5)0.03331 (12)
Cl21.05460 (6)0.09206 (4)0.37508 (5)0.03696 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02695 (13)0.02467 (12)0.02018 (13)0.00402 (10)0.00038 (13)0.00037 (12)
N10.0273 (10)0.0266 (9)0.0237 (10)0.0037 (8)0.0006 (8)0.0001 (7)
N20.0360 (11)0.0460 (12)0.0225 (10)0.0039 (10)0.0034 (9)0.0096 (9)
N30.0288 (9)0.0259 (8)0.0236 (9)0.0016 (7)0.0004 (9)0.0013 (9)
N40.0293 (9)0.0336 (10)0.0440 (12)0.0093 (8)0.0001 (10)0.0009 (10)
N50.031 (1)0.0302 (9)0.0225 (10)0.0027 (8)0.0000 (9)0.0005 (8)
N60.0375 (12)0.0557 (13)0.0202 (10)0.0025 (11)0.0028 (10)0.0095 (9)
N70.0291 (9)0.0289 (9)0.0236 (9)0.0028 (7)0.0004 (9)0.0008 (8)
N80.0235 (9)0.0516 (11)0.0421 (11)0.0108 (8)0.0014 (11)0.0032 (12)
C10.0297 (13)0.0338 (13)0.0286 (13)0.0002 (10)0.0006 (10)0.0024 (10)
C20.0491 (17)0.0373 (13)0.0301 (14)0.0023 (11)0.0079 (12)0.0052 (11)
C30.0391 (15)0.0295 (12)0.0310 (14)0.0038 (10)0.0036 (11)0.0003 (10)
C40.0313 (11)0.0302 (11)0.0303 (12)0.0012 (9)0.0010 (12)0.0011 (10)
C50.0376 (12)0.0234 (10)0.0563 (15)0.0005 (9)0.0038 (14)0.0010 (13)
C60.0296 (11)0.0304 (10)0.0477 (14)0.0029 (8)0.0006 (13)0.0008 (13)
C70.0325 (14)0.0356 (13)0.0321 (13)0.0019 (10)0.0009 (10)0.0044 (10)
C80.0417 (15)0.0546 (17)0.0299 (15)0.0018 (13)0.0061 (12)0.0089 (12)
C90.0389 (14)0.0367 (13)0.0306 (14)0.0048 (11)0.0027 (11)0.0012 (10)
C100.0337 (12)0.0314 (11)0.0390 (13)0.0017 (9)0.0002 (12)0.0019 (12)
C110.0449 (14)0.0307 (12)0.0489 (15)0.0092 (10)0.0008 (14)0.0005 (13)
C120.0337 (12)0.0289 (11)0.0476 (14)0.0013 (9)0.0003 (13)0.0008 (12)
Cl10.0305 (3)0.0333 (3)0.0362 (3)0.0070 (2)0.0006 (3)0.0032 (3)
Cl20.0329 (3)0.0478 (3)0.0302 (3)0.0087 (2)0.0001 (3)0.0025 (3)
Geometric parameters (Å, º) top
Cu1—N11.9959 (18)N7—C121.361 (3)
Cu1—N52.0002 (18)N8—C101.338 (3)
Cu1—N32.0104 (16)N8—C111.361 (3)
Cu1—N72.0154 (16)N8—H8N0.8600
Cu1—Cl12.6195 (5)C1—H10.9300
N1—C11.318 (3)C2—C31.348 (3)
N1—C31.371 (3)C2—H20.9300
N2—C11.334 (3)C3—H30.9300
N2—C21.363 (3)C4—H40.9300
N2—H2N0.8600C5—C61.348 (3)
N3—C41.313 (3)C5—H50.9300
N3—C61.379 (2)C6—H60.9300
N4—C41.341 (3)C7—H70.9300
N4—C51.360 (3)C8—C91.347 (4)
N4—H4N0.8600C8—H80.9300
N5—C71.315 (3)C9—H90.9300
N5—C91.383 (3)C10—H100.9300
N6—C71.333 (3)C11—C121.346 (3)
N6—C81.366 (3)C11—H110.9300
N6—H6N0.8600C12—H120.9300
N7—C101.312 (3)
N1—Cu1—N5174.86 (7)N1—C1—H1124.7
N1—Cu1—N390.12 (7)N2—C1—H1124.7
N5—Cu1—N389.71 (7)C3—C2—N2105.9 (2)
N1—Cu1—N788.92 (8)C3—C2—H2127.1
N5—Cu1—N789.28 (8)N2—C2—H2127.1
N3—Cu1—N7157.71 (7)C2—C3—N1109.6 (2)
N1—Cu1—Cl192.27 (6)C2—C3—H3125.2
N5—Cu1—Cl192.84 (6)N1—C3—H3125.2
N3—Cu1—Cl198.11 (5)N3—C4—N4111.18 (19)
N7—Cu1—Cl1104.18 (5)N3—C4—H4124.4
C1—N1—C3105.83 (19)N4—C4—H4124.4
C1—N1—Cu1129.29 (16)C6—C5—N4106.12 (18)
C3—N1—Cu1124.85 (15)C6—C5—H5126.9
C1—N2—C2108.0 (2)N4—C5—H5126.9
C1—N2—H2N126.0C5—C6—N3109.66 (19)
C2—N2—H2N126.0C5—C6—H6125.2
C4—N3—C6105.36 (17)N3—C6—H6125.2
C4—N3—Cu1124.45 (14)N5—C7—N6110.9 (2)
C6—N3—Cu1130.19 (14)N5—C7—H7124.5
C4—N4—C5107.68 (18)N6—C7—H7124.5
C4—N4—H4N126.2C9—C8—N6106.4 (2)
C5—N4—H4N126.2C9—C8—H8126.8
C7—N5—C9105.9 (2)N6—C8—H8126.8
C7—N5—Cu1127.25 (17)C8—C9—N5109.0 (2)
C9—N5—Cu1126.77 (15)C8—C9—H9125.5
C7—N6—C8107.9 (2)N5—C9—H9125.5
C7—N6—H6N126.1N7—C10—N8110.73 (19)
C8—N6—H6N126.1N7—C10—H10124.6
C10—N7—C12106.09 (18)N8—C10—H10124.6
C10—N7—Cu1126.20 (14)C12—C11—N8106.1 (2)
C12—N7—Cu1127.67 (14)C12—C11—H11126.9
C10—N8—C11107.46 (18)N8—C11—H11126.9
C10—N8—H8N126.3C11—C12—N7109.6 (2)
C11—N8—H8N126.3C11—C12—H12125.2
N1—C1—N2110.6 (2)N7—C12—H12125.2
C3—N1—C1—N20.4 (3)C9—N5—C7—N60.3 (3)
Cu1—N1—C1—N2178.33 (16)Cu1—N5—C7—N6176.65 (17)
C2—N2—C1—N10.4 (3)C8—N6—C7—N50.3 (3)
C1—N2—C2—C30.3 (3)C7—N6—C8—C90.1 (3)
N2—C2—C3—N10.0 (3)N6—C8—C9—N50.1 (3)
C1—N1—C3—C20.2 (3)C7—N5—C9—C80.2 (3)
Cu1—N1—C3—C2178.27 (18)Cu1—N5—C9—C8176.59 (19)
C6—N3—C4—N40.1 (3)C12—N7—C10—N80.4 (3)
Cu1—N3—C4—N4179.35 (16)Cu1—N7—C10—N8177.33 (16)
C5—N4—C4—N30.2 (3)C11—N8—C10—N70.3 (3)
C4—N4—C5—C60.3 (3)C10—N8—C11—C120.1 (3)
N4—C5—C6—N30.3 (3)N8—C11—C12—N70.1 (3)
C4—N3—C6—C50.1 (3)C10—N7—C12—C110.3 (3)
Cu1—N3—C6—C5179.09 (19)Cu1—N7—C12—C11177.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Cl2i0.862.403.251 (2)169
N4—H4N···Cl2ii0.862.523.1742 (19)133
N6—H6N···Cl2iii0.862.393.241 (2)168
N8—H8N···Cl1iv0.862.433.2523 (19)159
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x1, y, z; (iii) x1/2, y+1/2, z+1/2; (iv) x+1, y, z.
 

References

First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, T. B., Hu, Y. L., Li, J. K. & He, G. F. (2007). Acta Cryst. E63, m2536.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds