research communications
Structural and theoretical studies of 4-chloro-2-methyl-6-oxo-3,6-dideuteropyrimidin-1-ium chloride (d6)
aDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, bChemistry Division, Code 6100, Naval Research Laboratory, 4555 Overlook Av, SW, Washington DC 20375-5342, USA, and cChemistry Division, Code 6189, Naval Research Laboratory, 4555 Overlook Av, SW, Washington DC 20375-5342, USA
*Correspondence e-mail: rbutcher99@yahoo.com
The title compound, C5D6ClN2O+·Cl−, crystallizes in the orthorhombic Pbcm, and consists of a 4-chloro-2-methyl-6-oxo-3,6-dihydropyrimidin-1-ium cation and a chloride anion where both moieties lie on a crystallographic mirror. The cation is disordered and was refined as two equivalent forms with occupancies of 0.750 (4)/0.250 (4), while the chloride anion is triply disordered with occupancies of 0.774 (12), 0.12 (2), and 0.11 (2). Unusually, the bond angles around the C=O unit range from 127.2 (6) to 115.2 (3)° and similar angles have been found in other structures containing a 6-oxo-3,6-dihydropyrimidin-1-ium cation, including the monclinic polymorph of the title compound, which crystallizes in the monoclinic P21/c [Kawai et al. (1973). Cryst. Struct. Comm. 2, 663–666]. The cations and anions pack into sheets in the ab plane linked by N—H⋯Cl hydrogen bonds as well as C—H⋯O and Cl⋯O interactions. In graph-set notation, these form R33(11) and R32(9) rings. Theoretical calculations seem to indicate that the reason for the unusual angles at the sp2 C is the electrostatic interaction between the oxygen atom and the adjacent N—H hydrogen.
Keywords: crystal structure; pyrimidinium cation; distorted sp2 C.
CCDC reference: 2069792
1. Chemical context
Heterocycles containing the pyrimidine moiety are of great interest because they constitute an important class of natural and non-natural products, many of which exhibit useful biological activities and clinical applications (Brown, 1984; Elderfield, 1957). Substituted purines and pyrimidines occur very widely in living organisms and were some of the first compounds studied by organic chemists (Bruice, 2007).
The presence of the pyrimidine base in thymine, cytosine, and uracil, which are the essential building blocks of in vitro activity against unrelated DNA and RNA viruses including polio herpes viruses, and diuretic, antitumor, anti-HIV, and cardiovascular (Kappe, 1993) activity. In addition to this, various analogs of pyrimidines have been found to possess antibacterial (Sharma et al., 2004; Prakash et al., 2004; Botta et al., 1992; Cieplik et al., 2015), antifungal (Agarwal et al., 2000; Oliver et al., 2016), antileishmanial (Ram et al., 1992; Alptuzun et al., 2013), anti-inflammatory (Amir et al., 2007; Sondhi et al., 2008), analgesic (Vega et al., 1990; Gupta et al., 2011), antihypertensive (Hannah & Stevens, 2003; Rana et al., 2004; Alam et al., 2010), antipyretic (Smith & Kan, 1964; El-Sharkawy et al., 2018), antiviral (Balzarini & McGuigan, 2002; Nasr & Gineinah, 2002), antidiabetic (Lee et al., 2005; Reddy et al., 2019), antiallergic (Juby et al., 1979; Gupta et al., 1995), anticonvulsant (Gupta et al., 1994; Shaquiquzzaman et al., 2012), antioxidant (Krivonogov, et al., 2001; Abu-Hashem et al., 2010, 2011), antihistaminic (Prasad & Rahaman, 2008; Rahaman et al., 2009), herbicidal (Nezu et al., 1996; Li et al., 2018), and anticancer activities (Abu-Hashem et al., 2010, 2011; Xie et al., 2009; Kaldrikyan et al., 2000; Mohamed et al., 2013) and many pyrimidine derivatives are reported to possess potential central nervous system (CNS) depressant properties (Rodrigues et al., 2005; Tani et al., 1979; Kimura et al., 1993) and also act as calcium channel blockers (Kumar et al., 2002; Ortner & Striessnig, 2016). Thus, in view of this extensive biochemical activity of pyrimidines and their derivatives, much effort has been expended on the structural study of both pyrimidines and their cations.
DNA and RNA, is one possible reason for their widespread therapeutic applications. Pyrimidines represent one of the most active classes of compounds, possessing a wide spectrum of biological activities such as significant2. Structural commentary and database survey
The title compound, [C5D6ClN2O]+Cl−, 1, crystallizes in the orthorhombic Pbcm, unlike its polymorph, 2 (Kawai et al., 1973), which crystallizes in the monoclinic P21/c. It consists of a 4-chloro-2-methyl-6-oxo-3,6-dihydropyrimidin-1-ium cation and a chloride anion (Fig. 1). Since both moieties lie on a crystallographic mirror plane, the cation is strictly planar. The cation is disordered over two equivalent conformations (both of which lie on the mirror plane) with occupancies of 0.750 (4)/0.250 (4) while the chloride anion is triply disordered with occupancies of 0.774 (12), 0.12 (2), and 0.11 (2). The C—C, C—N, and C=O metrical parameters of the 6-oxo-3,6-dihydropyrimidin-1-ium skeleton for the two polymorphs are similar and both exhibit unusual bond angles for the ketonic moiety. The values for C3—C4—O1, N2—C4—O1, and N2—C4—C3 are 127.2 (6), 117.6 (6), and 115.2 (3)° for 1 and 126.1 (9), 118.2 (8), and 115.7 (8)° for 2.
In view of the unusual values for these bond angles, a search was made of the Cambridge Structural Database [CSD version 5.41 (November 2019); Groom et al., 2016] for structures containing a 6-oxo-3,6-dihydropyrimidin-1-ium skeleton, which yielded 52 independent observations. A statistical analysis of the values for corresponding angles gave values of 126.7 (7), 118.8 (8), and 115.3 (10)°. An analysis of both lengths also revealed the similarity in all these derivatives. In all cases, the longest bond was C3—C4 which is 1.430 (7) Å in 1 and 1.430 (12) Å on average, while the second longest bond was N2—C4 at 1.402 (6) Å for 1 and 1.397 (10) Å on average. In fact, all the metrical parameters for the 6-oxo-3,6-dihydropyrimidin-1-ium skeleton are in agreement with average values. One reason to be considered for the unusual values for the C3—C4—O1, N2—C4—O1, and N2—C4—C3 angles is this difference in C3—C4 and C4—N2 distances, which would tilt the carbonyl moiety towards N2. However, there are examples where the lengths of these two distances are reversed [ACEYUD (Muthiah et al., 2004), EHAPOV (Tapmeyer & Prill, 2019), SUZFOJ (Suleiman Gwaram et al., 2010)], but the same trend in angles prevails.
In light of these unusual bond angles for an sp2 C atom, a theoretical analysis of the cation was undertaken. The geometries of the isolated cation, two neutral variants, and a tautomer of the cation were optimized using the PBE0 exchange-correlation functional (Adamo & Barone, 1999; Perdew et al., 1996) and aug-cc-pVTZ basis set (Dunning, 1989; Kendall et al., 1992; Woon & Dunning 1993; Davidson, 1996) via NWChem (Aprà et al., 2020). The geometry of the cation was also optimized as a scan was made of the nuclear charge of the hydrogen bound to N2.
Figs. 2–5 show the optimized geometries for the cation 1, two neutral structures, 3 and 4, which are tautomers of each other, and a tautomer of the cation, 5. When N2 is protonated, as in 1 (Fig. 2) and 4 (Fig. 4), the carbonyl moiety is tilted towards N2. When N2 is not protonated, as in 3 (Fig. 3) and 5 (Fig. 5), the carbonyl moiety assumes a normal orientation for an sp2 C atom. This suggests an electrostatic interaction between oxygen and hydrogen may be responsible for the unusual angles. To explore this further, the geometry of 1 was optimized as the nuclear charge of the hydrogen bound to N2 was scanned from 0.7 to 1.3 e. As can be seen from the plot (Fig. 6), the two angles converge with decreasing nuclear charge on the hydrogen and diverge with increasing nuclear charge. This lends further support to the idea that the origin of the angle difference is an electrostatic interaction between the O1 and the hydrogen on N2.
3. Supramolecular features
In the crystal, the cations and anions pack into sheets in the ab plane linked by N—H⋯Cl hydrogen bonds, as well as Cl⋯O and weak C—H⋯O interactions (Table 1). In graph-set notation (Etter et al., 1990), these make R33(11) and R23(9) rings as seen in Fig. 7. Interestingly there are no N—H⋯O hydrogen bonds.
4. Synthesis and crystallization
Inside a dry box, one side of an H-tube (with no filter between the sides) was charged with 250 mg triphosgene (Aldrich) and the other side was loaded with 20 mg tetramethylammonium chloride in 3 mL dry tetraglyme. Once attached to a vacuum line with Cajon flexible tubing, the components were mixed and the phosgene was collected in a vacuum trap. In one NMR tube, 0.36 mmol of phosgene were measured on the vacuum line, condensed into 0.75 mL of dry CD3CN, and the tube was sealed as an NMR reference. In another tube, 0.36 mmol of phosgene was condensed onto 0.06 g (0.20 mmol) of silver oxalate in CD3CN and the tube was sealed to attempt to prepare a CO2 polymer. Upon warming, the 13C NMR of the reaction tube showed gaseous CO2 and solvent only. After standing unobserved for three years, the reference tube was observed to be filled with crystals of the title compound, which is completely insoluble in acetonitrile, and the tube was opened in a drybox to keep the crystals dry. The 13C{1H} NMR spectrum of the crystals in D2O (DSS ref) is 167.07 (s), 164.11 (s), 161.28 (s), 113.05 (C3, t, 1JC–D = 27.5 Hz) , 22.35 (CD3, septet, 1JC–D = 19.8 Hz) . The previous report (Yanagida et al., 1968) involved a reaction of phosgene, CH3CN and HCl at 338 K. In contrast to a previous report for the structure of the monoclinic polymorph (Kawai et al., 1973), all crystals had the same habit and appearance and one suitable for X-ray diffraction studies was chosen for further study.
5. Refinement
Crystal data, data collection and structure . The cation is disordered and was refined as two equivalent forms with occupancies of 0.750 (4)/0.250 (4), while the chloride anion is triply disordered with occupancies of 0.774 (12), 0.12 (2), and 0.11 (2). The locations of all deuterium atoms for the major component except one attached to N1 were located in difference-Fourier maps and refined in idealized positions using a riding model with atomic displacement parameters of Uiso(D) = 1.2Ueq(C, N) [1.5Ueq(C) for CD3], and C—D and N—D distances of 0.95 and 0.88 Å, respectively. The deuterium atoms for the methyl substituent were refined isotropically.
details are summarized in Table 2
|
Supporting information
CCDC reference: 2069792
https://doi.org/10.1107/S205698902100270X/ru2073sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902100270X/ru2073Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902100270X/ru2073Isup3.cml
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker 2002); data reduction: SAINT (Bruker 2002); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick 2008); software used to prepare material for publication: SHELXTL (Sheldrick 2008).C5D6ClN2O+·Cl− | Dx = 1.696 Mg m−3 |
Mr = 187.05 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbcm | Cell parameters from 8906 reflections |
a = 8.6030 (4) Å | θ = 2.8–35.6° |
b = 13.1389 (6) Å | µ = 0.81 mm−1 |
c = 6.4812 (3) Å | T = 100 K |
V = 732.60 (6) Å3 | Plate, pale yellow |
Z = 4 | 0.25 × 0.18 × 0.06 mm |
F(000) = 368 |
Bruker APEXII CCD diffractometer | 1558 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.041 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | θmax = 35.6°, θmin = 2.8° |
Tmin = 0.635, Tmax = 0.747 | h = −13→14 |
12377 measured reflections | k = −21→14 |
1802 independent reflections | l = −9→10 |
Refinement on F2 | 362 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.064 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.152 | w = 1/[σ2(Fo2) + (0.0253P)2 + 2.2439P] where P = (Fo2 + 2Fc2)/3 |
S = 1.19 | (Δ/σ)max = 0.001 |
1802 reflections | Δρmax = 0.68 e Å−3 |
137 parameters | Δρmin = −1.09 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl2 | 0.79527 (11) | 0.10338 (6) | 0.750000 | 0.0147 (2) | 0.773 (4) |
Cl2A | 0.689 (3) | 0.0986 (17) | 0.750000 | 0.0189 (12) | 0.09 (2) |
Cl2B | 0.714 (3) | 0.1092 (13) | 0.750000 | 0.0191 (11) | 0.13 (2) |
Cl1 | 0.46030 (12) | 0.19112 (9) | 0.250000 | 0.0235 (3) | 0.747 (4) |
O1 | 0.7595 (7) | −0.1423 (3) | 0.250000 | 0.0247 (9) | 0.747 (4) |
N1 | 0.7600 (5) | 0.1616 (3) | 0.250000 | 0.0141 (6) | 0.747 (4) |
D1A | 0.763535 | 0.228547 | 0.250000 | 0.017* | 0.747 (4) |
N2 | 0.8852 (7) | 0.0087 (4) | 0.250000 | 0.0152 (5) | 0.747 (4) |
D2A | 0.973805 | −0.024740 | 0.250000 | 0.018* | 0.747 (4) |
C1 | 0.8910 (6) | 0.1091 (4) | 0.250000 | 0.0143 (6) | 0.747 (4) |
C2 | 0.6181 (6) | 0.1132 (4) | 0.250000 | 0.0153 (6) | 0.747 (4) |
C3 | 0.6072 (8) | 0.0099 (5) | 0.250000 | 0.0185 (7) | 0.747 (4) |
D3A | 0.508666 | −0.022705 | 0.250000 | 0.022* | 0.747 (4) |
C4 | 0.7475 (9) | −0.0484 (3) | 0.250000 | 0.0170 (6) | 0.747 (4) |
C5 | 1.0525 (9) | 0.1617 (5) | 0.250000 | 0.0233 (10) | 0.747 (4) |
D5A | 1.0986 (14) | 0.1441 (10) | 0.1214 (19) | 0.035* | 0.747 (4) |
D5B | 1.0311 (14) | 0.2329 (5) | 0.250000 | 0.035* | 0.747 (4) |
Cl1A | 1.0368 (7) | 0.1850 (5) | 0.250000 | 0.0364 (14) | 0.253 (4) |
O1A | 0.734 (2) | −0.1471 (7) | 0.250000 | 0.026 (2) | 0.253 (4) |
N1A | 0.7367 (12) | 0.1568 (8) | 0.250000 | 0.0163 (11) | 0.253 (4) |
D1AA | 0.733683 | 0.223774 | 0.250000 | 0.020* | 0.253 (4) |
N2A | 0.6105 (17) | 0.0044 (10) | 0.250000 | 0.0179 (11) | 0.253 (4) |
D2AA | 0.521578 | −0.028785 | 0.250000 | 0.021* | 0.253 (4) |
C1A | 0.6051 (12) | 0.1048 (10) | 0.250000 | 0.0168 (11) | 0.253 (4) |
C2A | 0.8783 (12) | 0.1079 (9) | 0.250000 | 0.0164 (11) | 0.253 (4) |
C3A | 0.8883 (18) | 0.0046 (9) | 0.250000 | 0.0168 (11) | 0.253 (4) |
D3AA | 0.986561 | −0.028400 | 0.250000 | 0.020* | 0.253 (4) |
C4A | 0.748 (2) | −0.0533 (7) | 0.250000 | 0.0177 (11) | 0.253 (4) |
C5A | 0.4429 (14) | 0.1574 (10) | 0.250000 | 0.0233 (10) | 0.253 (4) |
D5C | 0.464 (2) | 0.2283 (10) | 0.250000 | 0.035* | 0.253 (4) |
D5D | 0.3968 (19) | 0.1390 (15) | 0.122 (2) | 0.035* | 0.253 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl2 | 0.0144 (5) | 0.0132 (3) | 0.0164 (3) | 0.0011 (3) | 0.000 | 0.000 |
Cl2A | 0.017 (3) | 0.019 (2) | 0.0204 (18) | −0.004 (2) | 0.000 | 0.000 |
Cl2B | 0.017 (2) | 0.021 (2) | 0.0193 (16) | −0.004 (2) | 0.000 | 0.000 |
Cl1 | 0.0173 (4) | 0.0233 (5) | 0.0298 (5) | 0.0084 (3) | 0.000 | 0.000 |
O1 | 0.0121 (18) | 0.0141 (12) | 0.048 (2) | −0.0039 (10) | 0.000 | 0.000 |
N1 | 0.0155 (12) | 0.0117 (11) | 0.0151 (11) | −0.0013 (9) | 0.000 | 0.000 |
N2 | 0.0132 (11) | 0.0139 (11) | 0.0187 (12) | −0.0029 (9) | 0.000 | 0.000 |
C1 | 0.0144 (12) | 0.0139 (11) | 0.0145 (12) | −0.0012 (10) | 0.000 | 0.000 |
C2 | 0.0133 (12) | 0.0160 (13) | 0.0165 (12) | 0.0030 (10) | 0.000 | 0.000 |
C3 | 0.0161 (12) | 0.0182 (13) | 0.0212 (14) | 0.0006 (11) | 0.000 | 0.000 |
C4 | 0.0129 (12) | 0.0158 (12) | 0.0224 (13) | −0.0015 (10) | 0.000 | 0.000 |
C5 | 0.0257 (17) | 0.0149 (18) | 0.029 (2) | 0.0063 (13) | 0.000 | 0.000 |
Cl1A | 0.029 (2) | 0.045 (3) | 0.035 (2) | −0.005 (2) | 0.000 | 0.000 |
O1A | 0.018 (5) | 0.017 (3) | 0.044 (5) | 0.001 (3) | 0.000 | 0.000 |
N1A | 0.018 (2) | 0.014 (2) | 0.016 (2) | 0.0017 (18) | 0.000 | 0.000 |
N2A | 0.016 (2) | 0.0172 (19) | 0.021 (2) | 0.0011 (18) | 0.000 | 0.000 |
C1A | 0.0154 (19) | 0.017 (2) | 0.018 (2) | 0.0020 (18) | 0.000 | 0.000 |
C2A | 0.0168 (19) | 0.0158 (19) | 0.017 (2) | 0.0003 (18) | 0.000 | 0.000 |
C3A | 0.015 (2) | 0.0171 (19) | 0.019 (2) | 0.0007 (18) | 0.000 | 0.000 |
C4A | 0.014 (2) | 0.0166 (19) | 0.022 (2) | −0.0006 (18) | 0.000 | 0.000 |
C5A | 0.0257 (17) | 0.0149 (18) | 0.029 (2) | 0.0063 (13) | 0.000 | 0.000 |
Cl1—C2 | 1.700 (5) | Cl1A—D5A | 1.126 (8) |
Cl1—D5Di | 1.206 (11) | Cl1A—D5B | 0.631 (10) |
O1—C4 | 1.238 (4) | O1A—C4A | 1.238 (5) |
N1—C1 | 1.322 (6) | N1A—C1A | 1.322 (7) |
N1—C2 | 1.377 (6) | N1A—C2A | 1.378 (7) |
N1—D1A | 0.8800 | N1A—D1AA | 0.8800 |
N2—C1 | 1.320 (6) | N2A—C1A | 1.321 (8) |
N2—C4 | 1.402 (6) | N2A—C4A | 1.402 (8) |
N2—D2A | 0.8800 | N2A—D2AA | 0.8800 |
C1—C5 | 1.552 (9) | C1A—C5A | 1.556 (10) |
C2—C3 | 1.360 (7) | C2A—C3A | 1.361 (8) |
C3—C4 | 1.430 (7) | C3A—C4A | 1.429 (9) |
C3—D3A | 0.9500 | C3A—D3AA | 0.9500 |
C5—D5A | 0.952 (5) | C5A—D5C | 0.950 (5) |
C5—D5B | 0.953 (5) | C5A—D5D | 0.950 (5) |
C5—D5Ai | 0.952 (5) | C5A—D5Di | 0.950 (5) |
Cl1A—C2A | 1.698 (7) | ||
C2—Cl1—D5Di | 91.1 (7) | D5A—Cl1A—D5B | 120.9 (9) |
C1—N1—C2 | 121.0 (3) | D5A—Cl1A—D5Ai | 96 (2) |
C1—N1—D1A | 119.5 | D5B—Cl1A—D5Ai | 120.9 (9) |
C2—N1—D1A | 119.5 | C1A—N1A—C2A | 121.1 (5) |
C1—N2—C4 | 124.5 (4) | C1A—N1A—D1AA | 119.5 |
C1—N2—D2A | 117.7 | C2A—N1A—D1AA | 119.5 |
C4—N2—D2A | 117.7 | C1A—N2A—C4A | 124.7 (8) |
N2—C1—N1 | 119.3 (4) | C1A—N2A—D2AA | 117.6 |
N2—C1—C5 | 118.7 (5) | C4A—N2A—D2AA | 117.6 |
N1—C1—C5 | 122.1 (4) | N2A—C1A—N1A | 119.1 (8) |
C3—C2—N1 | 121.4 (4) | N2A—C1A—C5A | 118.4 (8) |
C3—C2—Cl1 | 123.1 (4) | N1A—C1A—C5A | 122.5 (8) |
N1—C2—Cl1 | 115.4 (3) | C3A—C2A—N1A | 121.4 (8) |
C2—C3—C4 | 118.5 (5) | C3A—C2A—Cl1A | 123.0 (8) |
C2—C3—D3A | 120.8 | N1A—C2A—Cl1A | 115.6 (7) |
C4—C3—D3A | 120.8 | C2A—C3A—C4A | 118.5 (8) |
O1—C4—N2 | 117.6 (6) | C2A—C3A—D3AA | 120.7 |
O1—C4—C3 | 127.2 (6) | C4A—C3A—D3AA | 120.7 |
N2—C4—C3 | 115.2 (3) | O1A—C4A—N2A | 117.2 (10) |
C1—C5—D5A | 105.3 (8) | O1A—C4A—C3A | 127.7 (10) |
C1—C5—D5B | 105.3 (8) | N2A—C4A—C3A | 115.2 (5) |
D5A—C5—D5B | 108.7 (8) | C1A—C5A—D5C | 105.2 (9) |
C1—C5—D5Ai | 105.3 (8) | C1A—C5A—D5D | 105.2 (9) |
D5A—C5—D5Ai | 122 (2) | D5C—C5A—D5D | 109.3 (8) |
D5B—C5—D5Ai | 108.7 (8) | C1A—C5A—D5Di | 105.2 (9) |
C2A—Cl1A—D5A | 95.4 (7) | D5C—C5A—D5Di | 109.3 (8) |
C2A—Cl1A—D5B | 122.1 (14) | D5D—C5A—D5Di | 121 (3) |
C4—N2—C1—N1 | 0.0 | C4A—N2A—C1A—N1A | 0.0 |
C4—N2—C1—C5 | 180.0 | C4A—N2A—C1A—C5A | 180.0 |
C2—N1—C1—N2 | 0.0 | C2A—N1A—C1A—N2A | 0.0 |
C2—N1—C1—C5 | 180.0 | C2A—N1A—C1A—C5A | 180.0 |
C1—N1—C2—C3 | 0.0 | C1A—N1A—C2A—C3A | 0.0 |
C1—N1—C2—Cl1 | 180.0 | C1A—N1A—C2A—Cl1A | 180.0 |
N1—C2—C3—C4 | 0.0 | N1A—C2A—C3A—C4A | 0.0 |
Cl1—C2—C3—C4 | 180.0 | Cl1A—C2A—C3A—C4A | 180.0 |
C1—N2—C4—O1 | 180.0 | C1A—N2A—C4A—O1A | 180.0 |
C1—N2—C4—C3 | 0.0 | C1A—N2A—C4A—C3A | 0.0 |
C2—C3—C4—O1 | 180.0 | C2A—C3A—C4A—O1A | 180.0 |
C2—C3—C4—N2 | 0.0 | C2A—C3A—C4A—N2A | 0.0 |
Symmetry code: (i) x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—D1A···Cl2ii | 0.88 | 2.23 | 3.103 (4) | 175 |
N2—D2A···Cl2iii | 0.88 | 2.24 | 3.119 (6) | 178 |
C3—D3A···Cl2iv | 0.95 | 2.82 | 3.769 (7) | 175 |
C5—D5B···Cl2ii | 0.95 (1) | 2.96 (1) | 3.798 (6) | 148 (1) |
C5—D5B···O1v | 0.95 (1) | 2.44 (1) | 3.040 (8) | 121 (1) |
Cl1A—D5B···O1Av | 0.63 (1) | 2.57 (2) | 2.960 (16) | 123 (1) |
N1A—D1AA···Cl2Aii | 0.88 | 2.37 | 3.24 (3) | 172 |
N2A—D2AA···Cl2Aiv | 0.88 | 2.03 | 2.91 (4) | 177 |
C3A—D3AA···Cl2Aiii | 0.95 | 2.94 | 3.88 (3) | 171 |
C5A—D5C···O1Avi | 0.95 (1) | 2.36 (2) | 2.985 (16) | 123 (1) |
C5A—D5D···O1Avii | 0.95 (1) | 2.66 (1) | 3.582 (9) | 163 (1) |
Symmetry codes: (ii) x, −y+1/2, −z+1; (iii) −x+2, −y, −z+1; (iv) −x+1, −y, −z+1; (v) −x+2, y+1/2, z; (vi) −x+1, y+1/2, z; (vii) −x+1, −y, −z. |
Funding information
RJB wishes to acknowledge the ONR Summer Faculty Research Program for funding in 2019 and 2020.
References
Abu-Hashem, A. A., El-Shehry, M. F. & Badria, F. A. (2010). Acta Pharm. 60, 311–323. CAS PubMed Google Scholar
Abu-Hashem, A. A., Youssef, M. M. & Hussein, H. A. R. (2011). Jnl Chin. Chem. Soc. 58, 41–48. CAS Google Scholar
Adamo, C. & Barone, V. (1999). J. Chem. Phys. 110, 6158–6170. Web of Science CrossRef CAS Google Scholar
Agarwal, N., Raghuwanshi, S. K., Upadhyay, D. N., Shukla, P. K. & Ram, V. J. (2000). Bioorg. Med. Chem. Lett. 10, 703–706. Web of Science CrossRef PubMed CAS Google Scholar
Alam, O., Khan, S. A., Siddiqui, N., Ahsan, W., Verma, S. P. & Gilani, S. J. (2010). Eur. J. Med. Chem. 45, 5113–5119. CrossRef CAS PubMed Google Scholar
Alptuzun, V., Cakiroglu, G., Limoncu, E. M., Erac, B., Hosgor-Limoncu, M. & Erciyas, E. (2013). J. Enzyme Inhib. Med. Chem. 28, 960–967. CrossRef CAS PubMed Google Scholar
Amir, M., Javed, S. A. & Kumar, H. (2007). Indian J. Pharm. Sci. 69, 337–343. CrossRef CAS Google Scholar
Aprà, E., Bylaska, E. J., de Jong, W. A., Govind, N., Kowalski, K., Straatsma, T. P., Valiev, M., van Dam, H. J. J., Alexeev, Y., Anchell, J., Anisimov, V., Aquino, F. W., Atta-Fynn, R., Autschbach, J., Bauman, N. P., Becca, J. C., Bernholdt, D. E., Bhaskaran-Nair, K., Bogatko, S., Borowski, P., Boschen, J., Brabec, J., Bruner, A., Cauët, E., Chen, Y., Chuev, G. N., Cramer, C. J., Daily, J., Deegan, M. J. O., Dunning, T. H. Jr, Dupuis, M., Dyall, K. G., Fann, G. I., Fischer, S. A., Fonari, A., Früchtl, H., Gagliardi, L., Garza, J., Gawande, N., Ghosh, S., Glaesemann, K., Götz, A. W., Hammond, J., Helms, V., Hermes, E. D., Hirao, K., Hirata, S., Jacquelin, M., Jensen, L., Johnson, B. G., Jónsson, H., Kendall, R. A., Klemm, M., Kobayashi, R., Konkov, V., Krishnamoorthy, S., Krishnan, M., Lin, Z., Lins, R. D., Littlefield, R. J., Logsdail, A. J., Lopata, K., Ma, W., Marenich, A. V., Martin del Campo, J., Mejia-Rodriguez, D., Moore, J. E., Mullin, J. M., Nakajima, T., Nascimento, D. R., Nichols, J. A., Nichols, P. J., Nieplocha, J., Otero-de-la-Roza, A., Palmer, B., Panyala, A., Pirojsirikul, T., Peng, B., Peverati, R., Pittner, J., Pollack, L., Richard, R. M., Sadayappan, P., Schatz, G. C., Shelton, W. A., Silverstein, D. W., Smith, D. M. A., Soares, T. A., Song, D., Swart, M., Taylor, H. L., Thomas, G. S., Tipparaju, V., Truhlar, D. G., Tsemekhman, K., Van Voorhis, T., Vázquez-Mayagoitia, , Verma, P., Villa, O., Vishnu, A., Vogiatzis, K. D., Wang, D., Weare, J. H., Williamson, M. J., Windus, T. L., Woliński, K., Wong, A. T., Wu, Q., Yang, C., Yu, Q., Zacharias, M., Zhang, Z., Zhao, Y. & Harrison, R. J. (2020). J. Chem. Phys. 152, 184102. Google Scholar
Balzarini, J. & McGuigan, C. (2002). J. Antimicrob. Chemother. 50, 5–9. CrossRef PubMed CAS Google Scholar
Botta, M., Artico, M., Massa, S., Gambacorta, A., Marongiu, M., Pani, A. & La Colla, P. (1992). Eur. J. Med. Chem. 27, 251–257. CrossRef CAS Google Scholar
Brown, D. J. (1984). Comprehensive Heterocyclic Chemistry, Vol. 14, edited by A. R. Katritzky and C. W. Rees. Oxford: Pergamon Press. Google Scholar
Bruice, P. Y. (2007). Essential Organic Chemistry, 3rd ed. Singapore: Pearson Education. Google Scholar
Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2.Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cieplik, J., Stolarczyk, M., Pluta, J., Gubrynowicz, O., Bryndal, I., Lis, T. & Mikulewicz, M. (2015). Acta Pol. Pharm. 72, 53–64. Web of Science PubMed Google Scholar
Davidson, E. R. (1996). Chem. Phys. Lett. 260, 514–518. CrossRef CAS Google Scholar
Dunning, T. H. Jr (1989). J. Chem. Phys. 90, 1007–1023. CrossRef CAS Web of Science Google Scholar
Elderfield, R. C. (1957). Heterocyclic Compounds, vol. 6. New York: John Wiley & Sons. Google Scholar
El-Sharkawy, K. A., AlBratty, M. M. & Alhazmi, H. A. (2018). Braz. J. Pharm. Sci. 54, e00153. Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gupta, A. K., Sanjay, K. H. P., Singh, A., Sharma, G. & Mishra, K. C. (1994). Indian J. Pharmacol. 26, 227–228. CAS Google Scholar
Gupta, J. K., Sharma, P. K., Dudhe, R., Mondal, S. C., Chaudhary, A. & Verma, P. K. (2011). Acta Pol. Pharm. 68, 785–793. CAS PubMed Google Scholar
Gupta, P. P., Srimal, R. C., Avasthi, K., Garg, N., Chandra, T. & Bhakuni, D. S. (1995). Indian J. Exp. Biol. 33, 38–40. CAS PubMed Google Scholar
Hannah, D. R. & Stevens, M. F. G. (2003). J. Chem. Res. pp. 398–401. CrossRef Google Scholar
Juby, P. F., Hudyma, T. W., Brown, M., Essery, J. M. & Partyka, R. A. (1979). J. Med. Chem. 22, 263–269. CrossRef CAS PubMed Google Scholar
Kaldrikyan, M. A., Grigoryan, L. A., Geboyan, V. A., Arsenyan, F. G., Stepanyan, G. M. & Garibdzhanyan, B. T. (2000). Pharm. Chem. J. 34, 521–524. CrossRef CAS Google Scholar
Kappe, C. O. (1993). Tetrahedron, 49, 6937–6963. CrossRef CAS Google Scholar
Kawai, T., Yasuoka, N., Kasai, N. & Kakudo, M. (1973). Cryst. Struct. Comm. 2, 663–666. CAS Google Scholar
Kendall, R. A., Dunning, T. H. Jr & Harrison, R. J. (1992). J. Chem. Phys. 96, 6796–6806. CrossRef CAS Web of Science Google Scholar
Kimura, T., Teraoka, S., Kuze, J., Watanabe, K., Kondo, S., Ho, I. K. & Yamamoto, I. (1993). Nucleic Acids Symp. Ser. pp. 51–52. Google Scholar
Krivonogov, V. P., Myshkin, V. A., Sivkova, G. A., Greben'kova, N. A., Srubillin, D. V., Kozlova, G. G., Abdrakhmanov, I. B., Mannapova, R. T., Spirikhin, L. V. & Tolstikov, G. A. (2001). Pharm. Chem. J. 35, 411–413. CrossRef CAS Google Scholar
Kumar, B., Kaur, B., Kaur, J., Parmar, A., Anand, R. D. & Kumar, H. (2002). Indian Journal of Chemistry B, 41, 1526–1530. Google Scholar
Lee, H. W., Kim, B. Y., Ahn, J. B., Kang, S. K., Lee, J. H., Shin, J. S., Ahn, S. K., Lee, S. J. & Yoon, S. S. (2005). Eur. J. Med. Chem. 40, 862–874. CrossRef PubMed CAS Google Scholar
Li, K.-J., Qu, R.-Y., Liu, Y.-C., Yang, J.-F., Devendar, P., Chen, Q., Niu, C.-W., Xi, Z. & Yang, G.-F. (2018). J. Agric. Food Chem. 66, 3773–3782. CrossRef CAS PubMed Google Scholar
Mohamed, A. M., El-Sayed, W. A., Alsharari, M. A., Al-Qalawi, H. R. M. & Germoush, M. O. (2013). Arch. Pharm. Res. 36, 1055–1065. Web of Science CrossRef CAS PubMed Google Scholar
Muthiah, P. T., Hemamalini, M., Bocelli, G. & Cantoni, A. (2004). Acta Cryst. E60, o2038–o2040. Web of Science CSD CrossRef IUCr Journals Google Scholar
Nasr, M. N. & Gineinah, M. M. (2002). Arch. Pharm. Pharm. Med. Chem. 335, 289–295. Web of Science CrossRef CAS Google Scholar
Nezu, Y., Miyazaki, M., Sugiyama, K. & Kajiwara, I. (1996). Pestic. Sci. 47, 103–113. CrossRef CAS Google Scholar
Oliver, J. D., Sibley, G. E. M., Beckmann, N., Dobb, K. S., Slater, M. J., McEntee, L., du Pré, S., Livermore, J., Bromley, M. J., Wiederhold, N. P., Hope, W. W., Anthony, J., Kennedy, A. J., Law, D. & Birch, M. (2016). PNAS 113, 12809–12814. CrossRef CAS PubMed Google Scholar
Ortner, N. J. & Striessnig, J. (2016). Channels, 10, 7–13. CrossRef PubMed Google Scholar
Perdew, J. P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865–3868. CrossRef PubMed CAS Web of Science Google Scholar
Prakash, O., Bhardwaj, V., Kumar, R., Tyagi, P. & Aneja, K. R. (2004). Eur. J. Med. Chem. 39, 1073–1077. CrossRef PubMed CAS Google Scholar
Prasad, Y. R. & Rahaman, S. A. (2008). Int. J. Chem. Sci. 6, 2038–2044. CAS Google Scholar
Rahaman, S. A., Rajendra Pasad, Y., Kumar, P. & Kumar, B. (2009). Saudi Pharm. J. 17, 255–258. CrossRef PubMed Google Scholar
Ram, V. J., Haque, N. & Guru, P. Y. (1992). Eur. J. Med. Chem. 27, 851–855. CrossRef CAS Google Scholar
Rana, K., Kaur, B. & Kumar, B. (2004). Indian J. Chem. B, 43, 1553–1557. Google Scholar
Reddy, B. N., Ruddarraju, R. R., Kiran, G., Pathak, M. & Reddy, A. R. N. (2019). Chemistry Select, 4, 10072–10078. CAS Google Scholar
Rodrigues, A. L., Rosa, J. M., Gadotti, V. M., Goulart, E. C., Santos, M. M., Silva, A. V., Sehnem, B., Rosa, L. S., Gonçalves, R. M., Corrêa, R. & Santos, A. R. (2005). Pharmacol. Biochem. Behav. 82, 156–162. CrossRef PubMed CAS Google Scholar
Shaquiquzzaman, M., Khan, S. A., Amir, M. & Alam, M. M. (2012). Saudi Pharm. J. 20, 149–154. CrossRef PubMed Google Scholar
Sharma, P., Rane, N. & Gurram, V. K. (2004). Bioorg. Med. Chem. Lett. 14, 4185–4190. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Smith, P. A. S. & Kan, R. O. (1964). J. Org. Chem. 29, 2261–2265. CrossRef CAS Web of Science Google Scholar
Sondhi, S. M., Jain, S., Dwivedi, A. D., Shukla, R. & Raghubir, R. (2008). Indian J. Chem. B, 47, 136–143. Google Scholar
Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, o2294. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tani, J., Yamada, Y., Oine, T., Ochiai, T., Ishida, R. & Inoue, I. (1979). J. Med. Chem. 22, 95–99. CrossRef CAS PubMed Web of Science Google Scholar
Tapmeyer, L. & Prill, D. (2019). IUCrData, 4, x190689. Google Scholar
Vega, S., Alonso, J., Diaz, J. A. & Junquera, F. (1990). J. Heterocycl. Chem. 27, 269–273. CrossRef CAS Web of Science Google Scholar
Woon, D. E. & Dunning, T. H. Jr (1993). J. Chem. Phys. 98, 1358–1371. CrossRef CAS Web of Science Google Scholar
Xie, F., Zhao, H., Zhao, L., Lou, L. & Hu, Y. (2009). Bioorg. Med. Chem. Lett. 19, 275–278. Web of Science CrossRef PubMed CAS Google Scholar
Yanagida, S., Ohoka, M., Okahara, M. & Komori, S. (1968). Tetrahedron Lett. 9, 2351–2353. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.