research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structural and theoretical studies of 4-chloro-2-methyl-6-oxo-3,6-dideuteropyrimidin-1-ium chloride (d6)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, bChemistry Division, Code 6100, Naval Research Laboratory, 4555 Overlook Av, SW, Washington DC 20375-5342, USA, and cChemistry Division, Code 6189, Naval Research Laboratory, 4555 Overlook Av, SW, Washington DC 20375-5342, USA
*Correspondence e-mail: rbutcher99@yahoo.com

Edited by P. Roussel, ENSCL, France (Received 16 December 2020; accepted 11 March 2021; online 19 March 2021)

The title compound, C5D6ClN2O+·Cl, crystallizes in the ortho­rhom­bic space group, Pbcm, and consists of a 4-chloro-2-methyl-6-oxo-3,6-di­hydro­pyrimidin-1-ium cation and a chloride anion where both moieties lie on a crystallographic mirror. The cation is disordered and was refined as two equivalent forms with occupancies of 0.750 (4)/0.250 (4), while the chloride anion is triply disordered with occupancies of 0.774 (12), 0.12 (2), and 0.11 (2). Unusually, the bond angles around the C=O unit range from 127.2 (6) to 115.2 (3)° and similar angles have been found in other structures containing a 6-oxo-3,6-di­hydro­pyrimidin-1-ium cation, including the monclinic polymorph of the title compound, which crystallizes in the monoclinic space group P21/c [Kawai et al. (1973[Kawai, T., Yasuoka, N., Kasai, N. & Kakudo, M. (1973). Cryst. Struct. Comm. 2, 663-666.]). Cryst. Struct. Comm. 2, 663–666]. The cations and anions pack into sheets in the ab plane linked by N—H⋯Cl hydrogen bonds as well as C—H⋯O and Cl⋯O inter­actions. In graph-set notation, these form R33(11) and R32(9) rings. Theoretical calculations seem to indicate that the reason for the unusual angles at the sp2 C is the electrostatic inter­action between the oxygen atom and the adjacent N—H hydrogen.

1. Chemical context

Heterocycles containing the pyrimidine moiety are of great inter­est because they constitute an important class of natural and non-natural products, many of which exhibit useful biological activities and clinical applications (Brown, 1984[Brown, D. J. (1984). Comprehensive Heterocyclic Chemistry, Vol. 14, edited by A. R. Katritzky and C. W. Rees. Oxford: Pergamon Press.]; Elderfield, 1957[Elderfield, R. C. (1957). Heterocyclic Compounds, vol. 6. New York: John Wiley & Sons.]). Substituted purines and pyrimidines occur very widely in living organisms and were some of the first compounds studied by organic chemists (Bruice, 2007[Bruice, P. Y. (2007). Essential Organic Chemistry, 3rd ed. Singapore: Pearson Education.]).

The presence of the pyrimidine base in thymine, cytosine, and uracil, which are the essential building blocks of nucleic acids DNA and RNA, is one possible reason for their widespread therapeutic applications. Pyrimidines represent one of the most active classes of compounds, possessing a wide spectrum of biological activities such as significant in vitro activity against unrelated DNA and RNA viruses including polio herpes viruses, and diuretic, anti­tumor, anti-HIV, and cardiovascular (Kappe, 1993[Kappe, C. O. (1993). Tetrahedron, 49, 6937-6963.]) activity. In addition to this, various analogs of pyrimidines have been found to possess anti­bacterial (Sharma et al., 2004[Sharma, P., Rane, N. & Gurram, V. K. (2004). Bioorg. Med. Chem. Lett. 14, 4185-4190.]; Prakash et al., 2004[Prakash, O., Bhardwaj, V., Kumar, R., Tyagi, P. & Aneja, K. R. (2004). Eur. J. Med. Chem. 39, 1073-1077.]; Botta et al., 1992[Botta, M., Artico, M., Massa, S., Gambacorta, A., Marongiu, M., Pani, A. & La Colla, P. (1992). Eur. J. Med. Chem. 27, 251-257.]; Cieplik et al., 2015[Cieplik, J., Stolarczyk, M., Pluta, J., Gubrynowicz, O., Bryndal, I., Lis, T. & Mikulewicz, M. (2015). Acta Pol. Pharm. 72, 53-64.]), anti­fungal (Agarwal et al., 2000[Agarwal, N., Raghuwanshi, S. K., Upadhyay, D. N., Shukla, P. K. & Ram, V. J. (2000). Bioorg. Med. Chem. Lett. 10, 703-706.]; Oliver et al., 2016[Oliver, J. D., Sibley, G. E. M., Beckmann, N., Dobb, K. S., Slater, M. J., McEntee, L., du Pré, S., Livermore, J., Bromley, M. J., Wiederhold, N. P., Hope, W. W., Anthony, J., Kennedy, A. J., Law, D. & Birch, M. (2016). PNAS 113, 12809-12814.]), anti­leishmanial (Ram et al., 1992[Ram, V. J., Haque, N. & Guru, P. Y. (1992). Eur. J. Med. Chem. 27, 851-855.]; Alptuzun et al., 2013[Alptuzun, V., Cakiroglu, G., Limoncu, E. M., Erac, B., Hosgor-Limoncu, M. & Erciyas, E. (2013). J. Enzyme Inhib. Med. Chem. 28, 960-967.]), anti-inflammatory (Amir et al., 2007[Amir, M., Javed, S. A. & Kumar, H. (2007). Indian J. Pharm. Sci. 69, 337-343.]; Sondhi et al., 2008[Sondhi, S. M., Jain, S., Dwivedi, A. D., Shukla, R. & Raghubir, R. (2008). Indian J. Chem. B, 47, 136-143.]), analgesic (Vega et al., 1990[Vega, S., Alonso, J., Diaz, J. A. & Junquera, F. (1990). J. Heterocycl. Chem. 27, 269-273.]; Gupta et al., 2011[Gupta, J. K., Sharma, P. K., Dudhe, R., Mondal, S. C., Chaudhary, A. & Verma, P. K. (2011). Acta Pol. Pharm. 68, 785-793.]), anti­hypertensive (Hannah & Stevens, 2003[Hannah, D. R. & Stevens, M. F. G. (2003). J. Chem. Res. pp. 398-401.]; Rana et al., 2004[Rana, K., Kaur, B. & Kumar, B. (2004). Indian J. Chem. B, 43, 1553-1557.]; Alam et al., 2010[Alam, O., Khan, S. A., Siddiqui, N., Ahsan, W., Verma, S. P. & Gilani, S. J. (2010). Eur. J. Med. Chem. 45, 5113-5119.]), anti­pyretic (Smith & Kan, 1964[Smith, P. A. S. & Kan, R. O. (1964). J. Org. Chem. 29, 2261-2265.]; El-Sharkawy et al., 2018[El-Sharkawy, K. A., AlBratty, M. M. & Alhazmi, H. A. (2018). Braz. J. Pharm. Sci. 54, e00153.]), anti­viral (Balzarini & McGuigan, 2002[Balzarini, J. & McGuigan, C. (2002). J. Antimicrob. Chemother. 50, 5-9.]; Nasr & Gineinah, 2002[Nasr, M. N. & Gineinah, M. M. (2002). Arch. Pharm. Pharm. Med. Chem. 335, 289-295.]), anti­diabetic (Lee et al., 2005[Lee, H. W., Kim, B. Y., Ahn, J. B., Kang, S. K., Lee, J. H., Shin, J. S., Ahn, S. K., Lee, S. J. & Yoon, S. S. (2005). Eur. J. Med. Chem. 40, 862-874.]; Reddy et al., 2019[Reddy, B. N., Ruddarraju, R. R., Kiran, G., Pathak, M. & Reddy, A. R. N. (2019). Chemistry Select, 4, 10072-10078.]), anti­allergic (Juby et al., 1979[Juby, P. F., Hudyma, T. W., Brown, M., Essery, J. M. & Partyka, R. A. (1979). J. Med. Chem. 22, 263-269.]; Gupta et al., 1995[Gupta, P. P., Srimal, R. C., Avasthi, K., Garg, N., Chandra, T. & Bhakuni, D. S. (1995). Indian J. Exp. Biol. 33, 38-40.]), anti­convulsant (Gupta et al., 1994[Gupta, A. K., Sanjay, K. H. P., Singh, A., Sharma, G. & Mishra, K. C. (1994). Indian J. Pharmacol. 26, 227-228.]; Shaquiquzzaman et al., 2012[Shaquiquzzaman, M., Khan, S. A., Amir, M. & Alam, M. M. (2012). Saudi Pharm. J. 20, 149-154.]), anti­oxidant (Krivonogov, et al., 2001[Krivonogov, V. P., Myshkin, V. A., Sivkova, G. A., Greben'kova, N. A., Srubillin, D. V., Kozlova, G. G., Abdrakhmanov, I. B., Mannapova, R. T., Spirikhin, L. V. & Tolstikov, G. A. (2001). Pharm. Chem. J. 35, 411-413.]; Abu-Hashem et al., 2010[Abu-Hashem, A. A., El-Shehry, M. F. & Badria, F. A. (2010). Acta Pharm. 60, 311-323.], 2011[Abu-Hashem, A. A., Youssef, M. M. & Hussein, H. A. R. (2011). Jnl Chin. Chem. Soc. 58, 41-48.]), anti­histaminic (Prasad & Rahaman, 2008[Prasad, Y. R. & Rahaman, S. A. (2008). Int. J. Chem. Sci. 6, 2038-2044.]; Rahaman et al., 2009[Rahaman, S. A., Rajendra Pasad, Y., Kumar, P. & Kumar, B. (2009). Saudi Pharm. J. 17, 255-258.]), herbicidal (Nezu et al., 1996[Nezu, Y., Miyazaki, M., Sugiyama, K. & Kajiwara, I. (1996). Pestic. Sci. 47, 103-113.]; Li et al., 2018[Li, K.-J., Qu, R.-Y., Liu, Y.-C., Yang, J.-F., Devendar, P., Chen, Q., Niu, C.-W., Xi, Z. & Yang, G.-F. (2018). J. Agric. Food Chem. 66, 3773-3782.]), and anti­cancer activities (Abu-Hashem et al., 2010[Abu-Hashem, A. A., El-Shehry, M. F. & Badria, F. A. (2010). Acta Pharm. 60, 311-323.], 2011[Abu-Hashem, A. A., Youssef, M. M. & Hussein, H. A. R. (2011). Jnl Chin. Chem. Soc. 58, 41-48.]; Xie et al., 2009[Xie, F., Zhao, H., Zhao, L., Lou, L. & Hu, Y. (2009). Bioorg. Med. Chem. Lett. 19, 275-278.]; Kaldrikyan et al., 2000[Kaldrikyan, M. A., Grigoryan, L. A., Geboyan, V. A., Arsenyan, F. G., Stepanyan, G. M. & Garibdzhanyan, B. T. (2000). Pharm. Chem. J. 34, 521-524.]; Mohamed et al., 2013[Mohamed, A. M., El-Sayed, W. A., Alsharari, M. A., Al-Qalawi, H. R. M. & Germoush, M. O. (2013). Arch. Pharm. Res. 36, 1055-1065.]) and many pyrimidine derivatives are reported to possess potential central nervous system (CNS) depressant properties (Rodrigues et al., 2005[Rodrigues, A. L., Rosa, J. M., Gadotti, V. M., Goulart, E. C., Santos, M. M., Silva, A. V., Sehnem, B., Rosa, L. S., Gonçalves, R. M., Corrêa, R. & Santos, A. R. (2005). Pharmacol. Biochem. Behav. 82, 156-162.]; Tani et al., 1979[Tani, J., Yamada, Y., Oine, T., Ochiai, T., Ishida, R. & Inoue, I. (1979). J. Med. Chem. 22, 95-99.]; Kimura et al., 1993[Kimura, T., Teraoka, S., Kuze, J., Watanabe, K., Kondo, S., Ho, I. K. & Yamamoto, I. (1993). Nucleic Acids Symp. Ser. pp. 51-52.]) and also act as calcium channel blockers (Kumar et al., 2002[Kumar, B., Kaur, B., Kaur, J., Parmar, A., Anand, R. D. & Kumar, H. (2002). Indian Journal of Chemistry B, 41, 1526-1530.]; Ortner & Striessnig, 2016[Ortner, N. J. & Striessnig, J. (2016). Channels, 10, 7-13.]). Thus, in view of this extensive biochemical activity of pyrimidines and their derivatives, much effort has been expended on the structural study of both pyrimidines and their cations.

[Scheme 1]

2. Structural commentary and database survey

The title compound, [C5D6ClN2O]+Cl, 1, crystallizes in the ortho­rhom­bic space group, Pbcm, unlike its polymorph, 2 (Kawai et al., 1973[Kawai, T., Yasuoka, N., Kasai, N. & Kakudo, M. (1973). Cryst. Struct. Comm. 2, 663-666.]), which crystallizes in the monoclinic space group P21/c. It consists of a 4-chloro-2-methyl-6-oxo-3,6-di­hydro­pyrimidin-1-ium cation and a chloride anion (Fig. 1[link]). Since both moieties lie on a crystallographic mirror plane, the cation is strictly planar. The cation is disordered over two equivalent conformations (both of which lie on the mirror plane) with occupancies of 0.750 (4)/0.250 (4) while the chloride anion is triply disordered with occupancies of 0.774 (12), 0.12 (2), and 0.11 (2). The C—C, C—N, and C=O metrical parameters of the 6-oxo-3,6-di­hydro­pyrimidin-1-ium skeleton for the two polymorphs are similar and both exhibit unusual bond angles for the ketonic moiety. The values for C3—C4—O1, N2—C4—O1, and N2—C4—C3 are 127.2 (6), 117.6 (6), and 115.2 (3)° for 1 and 126.1 (9), 118.2 (8), and 115.7 (8)° for 2.

[Figure 1]
Figure 1
Diagram showing the cation and anion and the atom-numbering scheme (only the major component of the disorder is shown) with atomic displacement parameters drawn at the 30% probability level. The N—H⋯Cl hydrogen bond is shown by a dashed line.

In view of the unusual values for these bond angles, a search was made of the Cambridge Structural Database [CSD version 5.41 (November 2019); Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]] for structures containing a 6-oxo-3,6-di­hydro­pyrimidin-1-ium skeleton, which yielded 52 independent observations. A statistical analysis of the values for corresponding angles gave values of 126.7 (7), 118.8 (8), and 115.3 (10)°. An analysis of both lengths also revealed the similarity in all these derivatives. In all cases, the longest bond was C3—C4 which is 1.430 (7) Å in 1 and 1.430 (12) Å on average, while the second longest bond was N2—C4 at 1.402 (6) Å for 1 and 1.397 (10) Å on average. In fact, all the metrical parameters for the 6-oxo-3,6-di­hydro­pyrimidin-1-ium skeleton are in agreement with average values. One reason to be considered for the unusual values for the C3—C4—O1, N2—C4—O1, and N2—C4—C3 angles is this difference in C3—C4 and C4—N2 distances, which would tilt the carbonyl moiety towards N2. However, there are examples where the lengths of these two distances are reversed [ACEYUD (Mu­thiah et al., 2004[Muthiah, P. T., Hemamalini, M., Bocelli, G. & Cantoni, A. (2004). Acta Cryst. E60, o2038-o2040.]), EHAPOV (Tapmeyer & Prill, 2019[Tapmeyer, L. & Prill, D. (2019). IUCrData, 4, x190689.]), SUZFOJ (Suleiman Gwaram et al., 2010[Suleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, o2294.])], but the same trend in angles prevails.

In light of these unusual bond angles for an sp2 C atom, a theoretical analysis of the cation was undertaken. The geometries of the isolated cation, two neutral variants, and a tautomer of the cation were optimized using the PBE0 exchange-correlation functional (Adamo & Barone, 1999[Adamo, C. & Barone, V. (1999). J. Chem. Phys. 110, 6158-6170.]; Perdew et al., 1996[Perdew, J. P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865-3868.]) and aug-cc-pVTZ basis set (Dunning, 1989[Dunning, T. H. Jr (1989). J. Chem. Phys. 90, 1007-1023.]; Kendall et al., 1992[Kendall, R. A., Dunning, T. H. Jr & Harrison, R. J. (1992). J. Chem. Phys. 96, 6796-6806.]; Woon & Dunning 1993[Woon, D. E. & Dunning, T. H. Jr (1993). J. Chem. Phys. 98, 1358-1371.]; Davidson, 1996[Davidson, E. R. (1996). Chem. Phys. Lett. 260, 514-518.]) via NWChem (Aprà et al., 2020[Aprà, E., Bylaska, E. J., de Jong, W. A., Govind, N., Kowalski, K., Straatsma, T. P., Valiev, M., van Dam, H. J. J., Alexeev, Y., Anchell, J., Anisimov, V., Aquino, F. W., Atta-Fynn, R., Autschbach, J., Bauman, N. P., Becca, J. C., Bernholdt, D. E., Bhaskaran-Nair, K., Bogatko, S., Borowski, P., Boschen, J., Brabec, J., Bruner, A., Cauët, E., Chen, Y., Chuev, G. N., Cramer, C. J., Daily, J., Deegan, M. J. O., Dunning, T. H. Jr, Dupuis, M., Dyall, K. G., Fann, G. I., Fischer, S. A., Fonari, A., Früchtl, H., Gagliardi, L., Garza, J., Gawande, N., Ghosh, S., Glaesemann, K., Götz, A. W., Hammond, J., Helms, V., Hermes, E. D., Hirao, K., Hirata, S., Jacquelin, M., Jensen, L., Johnson, B. G., Jónsson, H., Kendall, R. A., Klemm, M., Kobayashi, R., Konkov, V., Krishnamoorthy, S., Krishnan, M., Lin, Z., Lins, R. D., Littlefield, R. J., Logsdail, A. J., Lopata, K., Ma, W., Marenich, A. V., Martin del Campo, J., Mejia-Rodriguez, D., Moore, J. E., Mullin, J. M., Nakajima, T., Nascimento, D. R., Nichols, J. A., Nichols, P. J., Nieplocha, J., Otero-de-la-Roza, A., Palmer, B., Panyala, A., Pirojsirikul, T., Peng, B., Peverati, R., Pittner, J., Pollack, L., Richard, R. M., Sadayappan, P., Schatz, G. C., Shelton, W. A., Silverstein, D. W., Smith, D. M. A., Soares, T. A., Song, D., Swart, M., Taylor, H. L., Thomas, G. S., Tipparaju, V., Truhlar, D. G., Tsemekhman, K., Van Voorhis, T., Vázquez-Mayagoitia, , Verma, P., Villa, O., Vishnu, A., Vogiatzis, K. D., Wang, D., Weare, J. H., Williamson, M. J., Windus, T. L., Woliński, K., Wong, A. T., Wu, Q., Yang, C., Yu, Q., Zacharias, M., Zhang, Z., Zhao, Y. & Harrison, R. J. (2020). J. Chem. Phys. 152, 184102.]). The geometry of the cation was also optimized as a scan was made of the nuclear charge of the hydrogen bound to N2.

Figs. 2[link]–5[link][link][link] show the optimized geometries for the cation 1, two neutral structures, 3 and 4, which are tautomers of each other, and a tautomer of the cation, 5. When N2 is protonated, as in 1 (Fig. 2[link]) and 4 (Fig. 4[link]), the carbonyl moiety is tilted towards N2. When N2 is not protonated, as in 3 (Fig. 3[link]) and 5 (Fig. 5[link]), the carbonyl moiety assumes a normal orientation for an sp2 C atom. This suggests an electrostatic inter­action between oxygen and hydrogen may be responsible for the unusual angles. To explore this further, the geometry of 1 was optimized as the nuclear charge of the hydrogen bound to N2 was scanned from 0.7 to 1.3 e. As can be seen from the plot (Fig. 6[link]), the two angles converge with decreasing nuclear charge on the hydrogen and diverge with increasing nuclear charge. This lends further support to the idea that the origin of the angle difference is an electrostatic inter­action between the O1 and the hydrogen on N2.

[Figure 2]
Figure 2
Diagram showing the results of calculations for the cation, 1. Relevant angles are displayed.
[Figure 3]
Figure 3
Diagram showing the results of calculations for the neutral mol­ecule, 3 (tautomer 1). Relevant angles are displayed.
[Figure 4]
Figure 4
Diagram showing the results of calculations for the neutral mol­ecule, 4 (tautomer 2, with the N—H group adjacent to the C=O bond). Relevant angles are displayed.
[Figure 5]
Figure 5
Diagram showing the results of calculations for 5, a tautomer of the cation. Relevant angles are displayed.
[Figure 6]
Figure 6
Diagram showing a plot of the variation in the C—C—O and N—C—O angles around the sp2 C atom as the nuclear charge of the hydrogen attached to the nitro­gen is varied while keeping all other nuclear charges fixed at their normal values and keeping the number of electrons fixed.

3. Supra­molecular features

In the crystal, the cations and anions pack into sheets in the ab plane linked by N—H⋯Cl hydrogen bonds, as well as Cl⋯O and weak C—H⋯O inter­actions (Table 1[link]). In graph-set notation (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]), these make R33(11) and R23(9) rings as seen in Fig. 7[link]. Inter­estingly there are no N—H⋯O hydrogen bonds.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—D1A⋯Cl2i 0.88 2.23 3.103 (4) 175
N2—D2A⋯Cl2ii 0.88 2.24 3.119 (6) 178
C3—D3A⋯Cl2iii 0.95 2.82 3.769 (7) 175
C5—D5B⋯Cl2i 0.95 (1) 2.96 (1) 3.798 (6) 148 (1)
C5—D5B⋯O1iv 0.95 (1) 2.44 (1) 3.040 (8) 121 (1)
N1A—D1AA⋯Cl2Ai 0.88 2.37 3.24 (3) 172
N2A—D2AA⋯Cl2Aiii 0.88 2.03 2.91 (4) 177
C3A—D3AA⋯Cl2Aii 0.95 2.94 3.88 (3) 171
C5A—D5C⋯O1Av 0.95 (1) 2.36 (2) 2.985 (16) 123 (1)
C5A—D5D⋯O1Avi 0.95 (1) 2.66 (1) 3.582 (9) 163 (1)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+2, -y, -z+1]; (iii) [-x+1, -y, -z+1]; (iv) [-x+2, y+{\script{1\over 2}}, z]; (v) [-x+1, y+{\script{1\over 2}}, z]; (vi) [-x+1, -y, -z].
[Figure 7]
Figure 7
The packing viewed along the c axis showing how the cations and anions pack into sheets in the ab plane linked by N—H⋯Cl hydrogen bonds and Cl⋯O and weak C—H⋯O inter­actions, forming R33(11) and R23(9) rings.

4. Synthesis and crystallization

Inside a dry box, one side of an H-tube (with no filter between the sides) was charged with 250 mg triphosgene (Aldrich) and the other side was loaded with 20 mg tetra­methyl­ammonium chloride in 3 mL dry tetra­glyme. Once attached to a vacuum line with Cajon flexible tubing, the components were mixed and the phosgene was collected in a vacuum trap. In one NMR tube, 0.36 mmol of phosgene were measured on the vacuum line, condensed into 0.75 mL of dry CD3CN, and the tube was sealed as an NMR reference. In another tube, 0.36 mmol of phosgene was condensed onto 0.06 g (0.20 mmol) of silver oxalate in CD3CN and the tube was sealed to attempt to prepare a CO2 polymer. Upon warming, the 13C NMR of the reaction tube showed gaseous CO2 and solvent only. After standing unobserved for three years, the reference tube was observed to be filled with crystals of the title compound, which is completely insoluble in aceto­nitrile, and the tube was opened in a drybox to keep the crystals dry. The 13C{1H} NMR spectrum of the crystals in D2O (DSS ref) is 167.07 (s), 164.11 (s), 161.28 (s), 113.05 (C3, t, 1JC–D = 27.5 Hz) , 22.35 (CD3, septet, 1JC–D = 19.8 Hz) . The previous report (Yanagida et al., 1968[Yanagida, S., Ohoka, M., Okahara, M. & Komori, S. (1968). Tetrahedron Lett. 9, 2351-2353.]) involved a reaction of phosgene, CH3CN and HCl at 338 K. In contrast to a previous report for the structure of the monoclinic polymorph (Kawai et al., 1973[Kawai, T., Yasuoka, N., Kasai, N. & Kakudo, M. (1973). Cryst. Struct. Comm. 2, 663-666.]), all crystals had the same habit and appearance and one suitable for X-ray diffraction studies was chosen for further study.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The cation is disordered and was refined as two equivalent forms with occupancies of 0.750 (4)/0.250 (4), while the chloride anion is triply disordered with occupancies of 0.774 (12), 0.12 (2), and 0.11 (2). The locations of all deuterium atoms for the major component except one attached to N1 were located in difference-Fourier maps and refined in idealized positions using a riding model with atomic displacement parameters of Uiso(D) = 1.2Ueq(C, N) [1.5Ueq(C) for CD3], and C—D and N—D distances of 0.95 and 0.88 Å, respectively. The deuterium atoms for the methyl substituent were refined isotropically.

Table 2
Experimental details

Crystal data
Chemical formula C5D6ClN2O+·Cl
Mr 187.05
Crystal system, space group Orthorhombic, Pbcm
Temperature (K) 100
a, b, c (Å) 8.6030 (4), 13.1389 (6), 6.4812 (3)
V3) 732.60 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.81
Crystal size (mm) 0.25 × 0.18 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.635, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 12377, 1802, 1558
Rint 0.041
(sin θ/λ)max−1) 0.820
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.152, 1.19
No. of reflections 1802
No. of parameters 137
No. of restraints 362
Δρmax, Δρmin (e Å−3) 0.68, −1.09
Computer programs: APEX2 (Bruker, 2005[Bruker (2005). APEX2.Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker 2002[Bruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), and SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker 2002); data reduction: SAINT (Bruker 2002); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: SHELXTL (Sheldrick 2008); software used to prepare material for publication: SHELXTL (Sheldrick 2008).

4-Chloro-2-methyl-6-oxo-3,6-dihydropyrimidin-1-ium chloride top
Crystal data top
C5D6ClN2O+·ClDx = 1.696 Mg m3
Mr = 187.05Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcmCell parameters from 8906 reflections
a = 8.6030 (4) Åθ = 2.8–35.6°
b = 13.1389 (6) ŵ = 0.81 mm1
c = 6.4812 (3) ÅT = 100 K
V = 732.60 (6) Å3Plate, pale yellow
Z = 40.25 × 0.18 × 0.06 mm
F(000) = 368
Data collection top
Bruker APEXII CCD
diffractometer
1558 reflections with I > 2σ(I)
φ and ω scansRint = 0.041
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
θmax = 35.6°, θmin = 2.8°
Tmin = 0.635, Tmax = 0.747h = 1314
12377 measured reflectionsk = 2114
1802 independent reflectionsl = 910
Refinement top
Refinement on F2362 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.064Secondary atom site location: difference Fourier map
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0253P)2 + 2.2439P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max = 0.001
1802 reflectionsΔρmax = 0.68 e Å3
137 parametersΔρmin = 1.09 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl20.79527 (11)0.10338 (6)0.7500000.0147 (2)0.773 (4)
Cl2A0.689 (3)0.0986 (17)0.7500000.0189 (12)0.09 (2)
Cl2B0.714 (3)0.1092 (13)0.7500000.0191 (11)0.13 (2)
Cl10.46030 (12)0.19112 (9)0.2500000.0235 (3)0.747 (4)
O10.7595 (7)0.1423 (3)0.2500000.0247 (9)0.747 (4)
N10.7600 (5)0.1616 (3)0.2500000.0141 (6)0.747 (4)
D1A0.7635350.2285470.2500000.017*0.747 (4)
N20.8852 (7)0.0087 (4)0.2500000.0152 (5)0.747 (4)
D2A0.9738050.0247400.2500000.018*0.747 (4)
C10.8910 (6)0.1091 (4)0.2500000.0143 (6)0.747 (4)
C20.6181 (6)0.1132 (4)0.2500000.0153 (6)0.747 (4)
C30.6072 (8)0.0099 (5)0.2500000.0185 (7)0.747 (4)
D3A0.5086660.0227050.2500000.022*0.747 (4)
C40.7475 (9)0.0484 (3)0.2500000.0170 (6)0.747 (4)
C51.0525 (9)0.1617 (5)0.2500000.0233 (10)0.747 (4)
D5A1.0986 (14)0.1441 (10)0.1214 (19)0.035*0.747 (4)
D5B1.0311 (14)0.2329 (5)0.2500000.035*0.747 (4)
Cl1A1.0368 (7)0.1850 (5)0.2500000.0364 (14)0.253 (4)
O1A0.734 (2)0.1471 (7)0.2500000.026 (2)0.253 (4)
N1A0.7367 (12)0.1568 (8)0.2500000.0163 (11)0.253 (4)
D1AA0.7336830.2237740.2500000.020*0.253 (4)
N2A0.6105 (17)0.0044 (10)0.2500000.0179 (11)0.253 (4)
D2AA0.5215780.0287850.2500000.021*0.253 (4)
C1A0.6051 (12)0.1048 (10)0.2500000.0168 (11)0.253 (4)
C2A0.8783 (12)0.1079 (9)0.2500000.0164 (11)0.253 (4)
C3A0.8883 (18)0.0046 (9)0.2500000.0168 (11)0.253 (4)
D3AA0.9865610.0284000.2500000.020*0.253 (4)
C4A0.748 (2)0.0533 (7)0.2500000.0177 (11)0.253 (4)
C5A0.4429 (14)0.1574 (10)0.2500000.0233 (10)0.253 (4)
D5C0.464 (2)0.2283 (10)0.2500000.035*0.253 (4)
D5D0.3968 (19)0.1390 (15)0.122 (2)0.035*0.253 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl20.0144 (5)0.0132 (3)0.0164 (3)0.0011 (3)0.0000.000
Cl2A0.017 (3)0.019 (2)0.0204 (18)0.004 (2)0.0000.000
Cl2B0.017 (2)0.021 (2)0.0193 (16)0.004 (2)0.0000.000
Cl10.0173 (4)0.0233 (5)0.0298 (5)0.0084 (3)0.0000.000
O10.0121 (18)0.0141 (12)0.048 (2)0.0039 (10)0.0000.000
N10.0155 (12)0.0117 (11)0.0151 (11)0.0013 (9)0.0000.000
N20.0132 (11)0.0139 (11)0.0187 (12)0.0029 (9)0.0000.000
C10.0144 (12)0.0139 (11)0.0145 (12)0.0012 (10)0.0000.000
C20.0133 (12)0.0160 (13)0.0165 (12)0.0030 (10)0.0000.000
C30.0161 (12)0.0182 (13)0.0212 (14)0.0006 (11)0.0000.000
C40.0129 (12)0.0158 (12)0.0224 (13)0.0015 (10)0.0000.000
C50.0257 (17)0.0149 (18)0.029 (2)0.0063 (13)0.0000.000
Cl1A0.029 (2)0.045 (3)0.035 (2)0.005 (2)0.0000.000
O1A0.018 (5)0.017 (3)0.044 (5)0.001 (3)0.0000.000
N1A0.018 (2)0.014 (2)0.016 (2)0.0017 (18)0.0000.000
N2A0.016 (2)0.0172 (19)0.021 (2)0.0011 (18)0.0000.000
C1A0.0154 (19)0.017 (2)0.018 (2)0.0020 (18)0.0000.000
C2A0.0168 (19)0.0158 (19)0.017 (2)0.0003 (18)0.0000.000
C3A0.015 (2)0.0171 (19)0.019 (2)0.0007 (18)0.0000.000
C4A0.014 (2)0.0166 (19)0.022 (2)0.0006 (18)0.0000.000
C5A0.0257 (17)0.0149 (18)0.029 (2)0.0063 (13)0.0000.000
Geometric parameters (Å, º) top
Cl1—C21.700 (5)Cl1A—D5A1.126 (8)
Cl1—D5Di1.206 (11)Cl1A—D5B0.631 (10)
O1—C41.238 (4)O1A—C4A1.238 (5)
N1—C11.322 (6)N1A—C1A1.322 (7)
N1—C21.377 (6)N1A—C2A1.378 (7)
N1—D1A0.8800N1A—D1AA0.8800
N2—C11.320 (6)N2A—C1A1.321 (8)
N2—C41.402 (6)N2A—C4A1.402 (8)
N2—D2A0.8800N2A—D2AA0.8800
C1—C51.552 (9)C1A—C5A1.556 (10)
C2—C31.360 (7)C2A—C3A1.361 (8)
C3—C41.430 (7)C3A—C4A1.429 (9)
C3—D3A0.9500C3A—D3AA0.9500
C5—D5A0.952 (5)C5A—D5C0.950 (5)
C5—D5B0.953 (5)C5A—D5D0.950 (5)
C5—D5Ai0.952 (5)C5A—D5Di0.950 (5)
Cl1A—C2A1.698 (7)
C2—Cl1—D5Di91.1 (7)D5A—Cl1A—D5B120.9 (9)
C1—N1—C2121.0 (3)D5A—Cl1A—D5Ai96 (2)
C1—N1—D1A119.5D5B—Cl1A—D5Ai120.9 (9)
C2—N1—D1A119.5C1A—N1A—C2A121.1 (5)
C1—N2—C4124.5 (4)C1A—N1A—D1AA119.5
C1—N2—D2A117.7C2A—N1A—D1AA119.5
C4—N2—D2A117.7C1A—N2A—C4A124.7 (8)
N2—C1—N1119.3 (4)C1A—N2A—D2AA117.6
N2—C1—C5118.7 (5)C4A—N2A—D2AA117.6
N1—C1—C5122.1 (4)N2A—C1A—N1A119.1 (8)
C3—C2—N1121.4 (4)N2A—C1A—C5A118.4 (8)
C3—C2—Cl1123.1 (4)N1A—C1A—C5A122.5 (8)
N1—C2—Cl1115.4 (3)C3A—C2A—N1A121.4 (8)
C2—C3—C4118.5 (5)C3A—C2A—Cl1A123.0 (8)
C2—C3—D3A120.8N1A—C2A—Cl1A115.6 (7)
C4—C3—D3A120.8C2A—C3A—C4A118.5 (8)
O1—C4—N2117.6 (6)C2A—C3A—D3AA120.7
O1—C4—C3127.2 (6)C4A—C3A—D3AA120.7
N2—C4—C3115.2 (3)O1A—C4A—N2A117.2 (10)
C1—C5—D5A105.3 (8)O1A—C4A—C3A127.7 (10)
C1—C5—D5B105.3 (8)N2A—C4A—C3A115.2 (5)
D5A—C5—D5B108.7 (8)C1A—C5A—D5C105.2 (9)
C1—C5—D5Ai105.3 (8)C1A—C5A—D5D105.2 (9)
D5A—C5—D5Ai122 (2)D5C—C5A—D5D109.3 (8)
D5B—C5—D5Ai108.7 (8)C1A—C5A—D5Di105.2 (9)
C2A—Cl1A—D5A95.4 (7)D5C—C5A—D5Di109.3 (8)
C2A—Cl1A—D5B122.1 (14)D5D—C5A—D5Di121 (3)
C4—N2—C1—N10.0C4A—N2A—C1A—N1A0.0
C4—N2—C1—C5180.0C4A—N2A—C1A—C5A180.0
C2—N1—C1—N20.0C2A—N1A—C1A—N2A0.0
C2—N1—C1—C5180.0C2A—N1A—C1A—C5A180.0
C1—N1—C2—C30.0C1A—N1A—C2A—C3A0.0
C1—N1—C2—Cl1180.0C1A—N1A—C2A—Cl1A180.0
N1—C2—C3—C40.0N1A—C2A—C3A—C4A0.0
Cl1—C2—C3—C4180.0Cl1A—C2A—C3A—C4A180.0
C1—N2—C4—O1180.0C1A—N2A—C4A—O1A180.0
C1—N2—C4—C30.0C1A—N2A—C4A—C3A0.0
C2—C3—C4—O1180.0C2A—C3A—C4A—O1A180.0
C2—C3—C4—N20.0C2A—C3A—C4A—N2A0.0
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—D1A···Cl2ii0.882.233.103 (4)175
N2—D2A···Cl2iii0.882.243.119 (6)178
C3—D3A···Cl2iv0.952.823.769 (7)175
C5—D5B···Cl2ii0.95 (1)2.96 (1)3.798 (6)148 (1)
C5—D5B···O1v0.95 (1)2.44 (1)3.040 (8)121 (1)
Cl1A—D5B···O1Av0.63 (1)2.57 (2)2.960 (16)123 (1)
N1A—D1AA···Cl2Aii0.882.373.24 (3)172
N2A—D2AA···Cl2Aiv0.882.032.91 (4)177
C3A—D3AA···Cl2Aiii0.952.943.88 (3)171
C5A—D5C···O1Avi0.95 (1)2.36 (2)2.985 (16)123 (1)
C5A—D5D···O1Avii0.95 (1)2.66 (1)3.582 (9)163 (1)
Symmetry codes: (ii) x, y+1/2, z+1; (iii) x+2, y, z+1; (iv) x+1, y, z+1; (v) x+2, y+1/2, z; (vi) x+1, y+1/2, z; (vii) x+1, y, z.
 

Funding information

RJB wishes to acknowledge the ONR Summer Faculty Research Program for funding in 2019 and 2020.

References

First citationAbu-Hashem, A. A., El-Shehry, M. F. & Badria, F. A. (2010). Acta Pharm. 60, 311–323.  CAS PubMed Google Scholar
First citationAbu-Hashem, A. A., Youssef, M. M. & Hussein, H. A. R. (2011). Jnl Chin. Chem. Soc. 58, 41–48.  CAS Google Scholar
First citationAdamo, C. & Barone, V. (1999). J. Chem. Phys. 110, 6158–6170.  Web of Science CrossRef CAS Google Scholar
First citationAgarwal, N., Raghuwanshi, S. K., Upadhyay, D. N., Shukla, P. K. & Ram, V. J. (2000). Bioorg. Med. Chem. Lett. 10, 703–706.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAlam, O., Khan, S. A., Siddiqui, N., Ahsan, W., Verma, S. P. & Gilani, S. J. (2010). Eur. J. Med. Chem. 45, 5113–5119.  CrossRef CAS PubMed Google Scholar
First citationAlptuzun, V., Cakiroglu, G., Limoncu, E. M., Erac, B., Hosgor-Limoncu, M. & Erciyas, E. (2013). J. Enzyme Inhib. Med. Chem. 28, 960–967.  CrossRef CAS PubMed Google Scholar
First citationAmir, M., Javed, S. A. & Kumar, H. (2007). Indian J. Pharm. Sci. 69, 337–343.  CrossRef CAS Google Scholar
First citationAprà, E., Bylaska, E. J., de Jong, W. A., Govind, N., Kowalski, K., Straatsma, T. P., Valiev, M., van Dam, H. J. J., Alexeev, Y., Anchell, J., Anisimov, V., Aquino, F. W., Atta-Fynn, R., Autschbach, J., Bauman, N. P., Becca, J. C., Bernholdt, D. E., Bhaskaran-Nair, K., Bogatko, S., Borowski, P., Boschen, J., Brabec, J., Bruner, A., Cauët, E., Chen, Y., Chuev, G. N., Cramer, C. J., Daily, J., Deegan, M. J. O., Dunning, T. H. Jr, Dupuis, M., Dyall, K. G., Fann, G. I., Fischer, S. A., Fonari, A., Früchtl, H., Gagliardi, L., Garza, J., Gawande, N., Ghosh, S., Glaesemann, K., Götz, A. W., Hammond, J., Helms, V., Hermes, E. D., Hirao, K., Hirata, S., Jacquelin, M., Jensen, L., Johnson, B. G., Jónsson, H., Kendall, R. A., Klemm, M., Kobayashi, R., Konkov, V., Krishnamoorthy, S., Krishnan, M., Lin, Z., Lins, R. D., Littlefield, R. J., Logsdail, A. J., Lopata, K., Ma, W., Marenich, A. V., Martin del Campo, J., Mejia-Rodriguez, D., Moore, J. E., Mullin, J. M., Nakajima, T., Nascimento, D. R., Nichols, J. A., Nichols, P. J., Nieplocha, J., Otero-de-la-Roza, A., Palmer, B., Panyala, A., Pirojsirikul, T., Peng, B., Peverati, R., Pittner, J., Pollack, L., Richard, R. M., Sadayappan, P., Schatz, G. C., Shelton, W. A., Silverstein, D. W., Smith, D. M. A., Soares, T. A., Song, D., Swart, M., Taylor, H. L., Thomas, G. S., Tipparaju, V., Truhlar, D. G., Tsemekhman, K., Van Voorhis, T., Vázquez-Mayagoitia, , Verma, P., Villa, O., Vishnu, A., Vogiatzis, K. D., Wang, D., Weare, J. H., Williamson, M. J., Windus, T. L., Woliński, K., Wong, A. T., Wu, Q., Yang, C., Yu, Q., Zacharias, M., Zhang, Z., Zhao, Y. & Harrison, R. J. (2020). J. Chem. Phys. 152, 184102.  Google Scholar
First citationBalzarini, J. & McGuigan, C. (2002). J. Antimicrob. Chemother. 50, 5–9.  CrossRef PubMed CAS Google Scholar
First citationBotta, M., Artico, M., Massa, S., Gambacorta, A., Marongiu, M., Pani, A. & La Colla, P. (1992). Eur. J. Med. Chem. 27, 251–257.  CrossRef CAS Google Scholar
First citationBrown, D. J. (1984). Comprehensive Heterocyclic Chemistry, Vol. 14, edited by A. R. Katritzky and C. W. Rees. Oxford: Pergamon Press.  Google Scholar
First citationBruice, P. Y. (2007). Essential Organic Chemistry, 3rd ed. Singapore: Pearson Education.  Google Scholar
First citationBruker (2002). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2.Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCieplik, J., Stolarczyk, M., Pluta, J., Gubrynowicz, O., Bryndal, I., Lis, T. & Mikulewicz, M. (2015). Acta Pol. Pharm. 72, 53–64.  Web of Science PubMed Google Scholar
First citationDavidson, E. R. (1996). Chem. Phys. Lett. 260, 514–518.  CrossRef CAS Google Scholar
First citationDunning, T. H. Jr (1989). J. Chem. Phys. 90, 1007–1023.  CrossRef CAS Web of Science Google Scholar
First citationElderfield, R. C. (1957). Heterocyclic Compounds, vol. 6. New York: John Wiley & Sons.  Google Scholar
First citationEl-Sharkawy, K. A., AlBratty, M. M. & Alhazmi, H. A. (2018). Braz. J. Pharm. Sci. 54, e00153.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGupta, A. K., Sanjay, K. H. P., Singh, A., Sharma, G. & Mishra, K. C. (1994). Indian J. Pharmacol. 26, 227–228.  CAS Google Scholar
First citationGupta, J. K., Sharma, P. K., Dudhe, R., Mondal, S. C., Chaudhary, A. & Verma, P. K. (2011). Acta Pol. Pharm. 68, 785–793.  CAS PubMed Google Scholar
First citationGupta, P. P., Srimal, R. C., Avasthi, K., Garg, N., Chandra, T. & Bhakuni, D. S. (1995). Indian J. Exp. Biol. 33, 38–40.  CAS PubMed Google Scholar
First citationHannah, D. R. & Stevens, M. F. G. (2003). J. Chem. Res. pp. 398–401.  CrossRef Google Scholar
First citationJuby, P. F., Hudyma, T. W., Brown, M., Essery, J. M. & Partyka, R. A. (1979). J. Med. Chem. 22, 263–269.  CrossRef CAS PubMed Google Scholar
First citationKaldrikyan, M. A., Grigoryan, L. A., Geboyan, V. A., Arsenyan, F. G., Stepanyan, G. M. & Garibdzhanyan, B. T. (2000). Pharm. Chem. J. 34, 521–524.  CrossRef CAS Google Scholar
First citationKappe, C. O. (1993). Tetrahedron, 49, 6937–6963.  CrossRef CAS Google Scholar
First citationKawai, T., Yasuoka, N., Kasai, N. & Kakudo, M. (1973). Cryst. Struct. Comm. 2, 663–666.  CAS Google Scholar
First citationKendall, R. A., Dunning, T. H. Jr & Harrison, R. J. (1992). J. Chem. Phys. 96, 6796–6806.  CrossRef CAS Web of Science Google Scholar
First citationKimura, T., Teraoka, S., Kuze, J., Watanabe, K., Kondo, S., Ho, I. K. & Yamamoto, I. (1993). Nucleic Acids Symp. Ser. pp. 51–52.  Google Scholar
First citationKrivonogov, V. P., Myshkin, V. A., Sivkova, G. A., Greben'kova, N. A., Srubillin, D. V., Kozlova, G. G., Abdrakhmanov, I. B., Mannapova, R. T., Spirikhin, L. V. & Tolstikov, G. A. (2001). Pharm. Chem. J. 35, 411–413.  CrossRef CAS Google Scholar
First citationKumar, B., Kaur, B., Kaur, J., Parmar, A., Anand, R. D. & Kumar, H. (2002). Indian Journal of Chemistry B, 41, 1526–1530.  Google Scholar
First citationLee, H. W., Kim, B. Y., Ahn, J. B., Kang, S. K., Lee, J. H., Shin, J. S., Ahn, S. K., Lee, S. J. & Yoon, S. S. (2005). Eur. J. Med. Chem. 40, 862–874.  CrossRef PubMed CAS Google Scholar
First citationLi, K.-J., Qu, R.-Y., Liu, Y.-C., Yang, J.-F., Devendar, P., Chen, Q., Niu, C.-W., Xi, Z. & Yang, G.-F. (2018). J. Agric. Food Chem. 66, 3773–3782.  CrossRef CAS PubMed Google Scholar
First citationMohamed, A. M., El-Sayed, W. A., Alsharari, M. A., Al-Qalawi, H. R. M. & Germoush, M. O. (2013). Arch. Pharm. Res. 36, 1055–1065.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMuthiah, P. T., Hemamalini, M., Bocelli, G. & Cantoni, A. (2004). Acta Cryst. E60, o2038–o2040.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNasr, M. N. & Gineinah, M. M. (2002). Arch. Pharm. Pharm. Med. Chem. 335, 289–295.  Web of Science CrossRef CAS Google Scholar
First citationNezu, Y., Miyazaki, M., Sugiyama, K. & Kajiwara, I. (1996). Pestic. Sci. 47, 103–113.  CrossRef CAS Google Scholar
First citationOliver, J. D., Sibley, G. E. M., Beckmann, N., Dobb, K. S., Slater, M. J., McEntee, L., du Pré, S., Livermore, J., Bromley, M. J., Wiederhold, N. P., Hope, W. W., Anthony, J., Kennedy, A. J., Law, D. & Birch, M. (2016). PNAS 113, 12809–12814.  CrossRef CAS PubMed Google Scholar
First citationOrtner, N. J. & Striessnig, J. (2016). Channels, 10, 7–13.  CrossRef PubMed Google Scholar
First citationPerdew, J. P., Burke, K. & Ernzerhof, M. (1996). Phys. Rev. Lett. 77, 3865–3868.  CrossRef PubMed CAS Web of Science Google Scholar
First citationPrakash, O., Bhardwaj, V., Kumar, R., Tyagi, P. & Aneja, K. R. (2004). Eur. J. Med. Chem. 39, 1073–1077.  CrossRef PubMed CAS Google Scholar
First citationPrasad, Y. R. & Rahaman, S. A. (2008). Int. J. Chem. Sci. 6, 2038–2044.  CAS Google Scholar
First citationRahaman, S. A., Rajendra Pasad, Y., Kumar, P. & Kumar, B. (2009). Saudi Pharm. J. 17, 255–258.  CrossRef PubMed Google Scholar
First citationRam, V. J., Haque, N. & Guru, P. Y. (1992). Eur. J. Med. Chem. 27, 851–855.  CrossRef CAS Google Scholar
First citationRana, K., Kaur, B. & Kumar, B. (2004). Indian J. Chem. B, 43, 1553–1557.  Google Scholar
First citationReddy, B. N., Ruddarraju, R. R., Kiran, G., Pathak, M. & Reddy, A. R. N. (2019). Chemistry Select, 4, 10072–10078.  CAS Google Scholar
First citationRodrigues, A. L., Rosa, J. M., Gadotti, V. M., Goulart, E. C., Santos, M. M., Silva, A. V., Sehnem, B., Rosa, L. S., Gonçalves, R. M., Corrêa, R. & Santos, A. R. (2005). Pharmacol. Biochem. Behav. 82, 156–162.  CrossRef PubMed CAS Google Scholar
First citationShaquiquzzaman, M., Khan, S. A., Amir, M. & Alam, M. M. (2012). Saudi Pharm. J. 20, 149–154.  CrossRef PubMed Google Scholar
First citationSharma, P., Rane, N. & Gurram, V. K. (2004). Bioorg. Med. Chem. Lett. 14, 4185–4190.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, P. A. S. & Kan, R. O. (1964). J. Org. Chem. 29, 2261–2265.  CrossRef CAS Web of Science Google Scholar
First citationSondhi, S. M., Jain, S., Dwivedi, A. D., Shukla, R. & Raghubir, R. (2008). Indian J. Chem. B, 47, 136–143.  Google Scholar
First citationSuleiman Gwaram, N., Khaledi, H. & Mohd Ali, H. (2010). Acta Cryst. E66, o2294.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTani, J., Yamada, Y., Oine, T., Ochiai, T., Ishida, R. & Inoue, I. (1979). J. Med. Chem. 22, 95–99.  CrossRef CAS PubMed Web of Science Google Scholar
First citationTapmeyer, L. & Prill, D. (2019). IUCrData, 4, x190689.  Google Scholar
First citationVega, S., Alonso, J., Diaz, J. A. & Junquera, F. (1990). J. Heterocycl. Chem. 27, 269–273.  CrossRef CAS Web of Science Google Scholar
First citationWoon, D. E. & Dunning, T. H. Jr (1993). J. Chem. Phys. 98, 1358–1371.  CrossRef CAS Web of Science Google Scholar
First citationXie, F., Zhao, H., Zhao, L., Lou, L. & Hu, Y. (2009). Bioorg. Med. Chem. Lett. 19, 275–278.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYanagida, S., Ohoka, M., Okahara, M. & Komori, S. (1968). Tetrahedron Lett. 9, 2351–2353.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds