research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structural characterization of quaternary selenites of tungsten(VI), A2W3SeO12 (A = NH4, Cs, Rb, K or Tl)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
*Correspondence e-mail: kvsagar@iitm.ac.in

Edited by P. Roussel, ENSCL, France (Received 22 February 2021; accepted 13 March 2021; online 19 March 2021)

The quaternary A2W3SeO12 (A = NH4, Cs, Rb, K or Tl) selenites have been prepared in the form of single crystals by hydro­thermal and novel solid-state reactions. They were characterized by X-ray diffraction, thermal and spectroscopic studies. All of them have a hexa­gonal tungsten oxide (HTO) related [W3SeO12]2− anionic framework with pyramidally coordinated Se4+ ions. The known A2W3SeO12 (A = NH4, Cs or Rb) compounds are isostructural with the Cs2W3TeO12 compound and have a non-centrosymmetric layered structure containing intra-layer Se—O bonds. The new compound K2W3SeO12(α) is isostructural with the K2W3TeO12 compound and has a centrosymmetric three-dimensional structure containing inter­layer Se—O bonds. It is inferred that the new Tl2W3SeO12 compound has the same three-dimensional structure as K2W3SeO12(α).

1. Chemical context

Non-centrosymmetric (NCS) compounds are widely studied as they have potentially useful symmetry-dependent properties such as piezoelectricity, ferroelectricity and second-order non-linear optical (NLO) behaviour (Halasyamani & Poeppelmeier 1998[Halasyamani, P. S. & Poeppelmeier, K. R. (1998). Chem. Mater. 10, 2753-2769.]). Many crystalline selenites and tellurites containing d0 transition-metal ions such as V5+, Mo6+, W6+ are non-centrosymmetric compounds. The solid-state chemistry of these oxides is inter­esting from the point of view of both structural diversity and second harmonic generation (SHG) activity. They have two types of second-order Jahn–Teller (SOJT) distortion. One is the distorted octa­hedral coordination of the d0 transition-metal ion and the other is pyramidal, disphenoidal and square-pyramidal coordinations of Se4+ and Te4+, which have stereoactive lone pairs. Both SOJT distortions lead to acentric coordination environments that are conducive for NCS structures (Halasyamani 2004[Halasyamani, P. S. (2004). Chem. Mater. 16, 3586-3592.]). For example, Cs2Mo3TeO12 (Vidyavathy Balraj & Vidyasagar, 1998[Vidyavathy Balraj, V. & Vidyasagar, K. (1998). Inorg. Chem. 37, 4764-4774.]) and YVSe2O8 (Kim et al., 2014[Kim, Y. H., Lee, D. W. & Ok, K. M. (2014). Inorg. Chem. 53, 1250-1256.]) have non-centrosymmetric layered structures with these SOJT distortions and exhibit SHG activity. It needs to be mentioned that quaternary selenites and tellurites containing d0 transition-metal ions, such as YVTe2O8 (Kim et al., 2014[Kim, Y. H., Lee, D. W. & Ok, K. M. (2014). Inorg. Chem. 53, 1250-1256.]), are also known to have centrosymmetric structures and exhibit no SHG activity.

A2Mo3SeO12 (A = NH4, Cs, Rb, Tl) (Harrison et al., 1994[Harrison, W. T. A., Dussack, L. L. & Jacobson, A. J. (1994). Inorg. Chem. 33, 6043-6049.]; Dussack et al., 1996[Dussack, L. L., Harrison, W. T. A. & Jacobson, A. J. (1996). Mater. Res. Bull. 31, 249-255.]; Chang et al., 2010[Chang, H. Y., Kim, S. W. & Halasyamani, P. S. (2010). Chem. Mater. 22, 3241-3250.]), A2W3SeO12 (A = NH4, Cs, Rb, K) (Harrison et al., 1995[Harrison, W. T. A., Dussack, L. L., Vogt, T. & Jacobson, A. J. (1995). J. Solid State Chem. 120, 112-120.]; Huang et al., 2014a[Huang, Y., Chen, X. & Qin, J. (2014a). Faming Zhuanli Shenqing 1-8.],b[Huang, Y., Meng, X. & Qin, J. (2014b). Chin. J. Inorg. Chem. 30, 179-184.]) and Na2W3SeO12·2H2O (Nguyen & Halasyamani 2013[Nguyen, S. D. & Halasyamani, P. S. (2013). Inorg. Chem. 52, 2637-2647.]), A2Mo3TeO12 (A = Cs, NH4) (Vidyavathy Balraj & Vidyasagar 1998[Vidyavathy Balraj, V. & Vidyasagar, K. (1998). Inorg. Chem. 37, 4764-4774.]), A2W3TeO12 (A = K, Rb and Cs) (Goodey et al., 2003[Goodey, J., Min Ok, K., Broussard, J., Hofmann, C., Escobedo, F. V. & Halasyamani, P. S. (2003). J. Solid State Chem. 175, 3-12.]; Zhao et al., 2015[Zhao, P., Cong, H., Tian, X., Sun, Y., Zhang, C., Xia, S., Gao, Z. & Tao, X. (2015). Cryst. Growth Des. 15, 4484-4489.]) are the 14 quaternary selenites and tellurites of hexa­valent molybdenum and tungsten that have hexa­gonal tungsten oxide (HTO) related [M3XO12]2− (M = Mo, W; X = Se, Te) anionic frameworks with pyramidally coordinated Se4+ and Te4+ ions. The single-crystal X-ray structures were determined for all except for the A2W3SeO12 (A = NH4, Cs, Rb) compounds, which were synthesized in polycrystalline form by the hydro­thermal method; the structures of the (NH4)2W3SeO12 and Cs2W3SeO12 compounds were determined by powder neutron diffraction (Harrison et al., 1995[Harrison, W. T. A., Dussack, L. L., Vogt, T. & Jacobson, A. J. (1995). J. Solid State Chem. 120, 112-120.]). K2W3TeO12 has a centrosymmetric three-dimensional structure (Goodey et al., 2003[Goodey, J., Min Ok, K., Broussard, J., Hofmann, C., Escobedo, F. V. & Halasyamani, P. S. (2003). J. Solid State Chem. 175, 3-12.]), whereas all of the others exhibit a non-centrosymmetric two-dimensional structure and show SHG response. It is noteworthy that the tellurites were synthesized by both hydro­thermal and solid-state reactions, whereas the selenites were synthesized only by the hydro­thermal method.

Ag2Mo3SeO12 (Ling & Albrecht-Schmitt 2007[Ling, J. & Albrecht-Schmitt, T. E. (2007). J. Solid State Chem. 180, 1601-1607.]), Li2Mo3TeO12 (Oh et al., 2018[Oh, S. J., Lim, S. J., You, T. S. & Ok, K. M. (2018). Chem. Eur. J. 24, 6712-6716.]) and A4Mo6Te2O24·6H2O (A = Rb, K) (Vidyavathy Balraj & Vidyasagar 1998[Vidyavathy Balraj, V. & Vidyasagar, K. (1998). Inorg. Chem. 37, 4764-4774.]) compounds are quaternary selenite and tellurites of molybdenum, whose [Mo3XO12]2− (X = Se, Te) anionic framework structures are not related to HTO. They have centrosymmetric layered and zero-dimensional structures and contain pyramidally coordinated Se4+ and pyramidally and disphenoidally coordinated Te4+ ions.

In this context, the structural characterization of new and known quaternary A2W3SeO12 (A = NH4, Cs, Rb, K, Tl) selenites of tungsten(VI) by single-crystal X-ray diffraction was considered necessary for their complete structural study and, therefore, was undertaken. This report is concerned with crystal growth by solid-state reactions and structural characterization of the known compounds A2W3SeO12 [A = NH4 (1), Cs (2) and Rb (3)] and new compounds K2W3SeO12 (4α) and Tl2W3SeO12 (5).

2. Structural commentary

The structures of compounds 15 are of two types, which contain a hexa­gonal tungsten oxide (HTO) related [W3SeO12]2− anionic framework. (NH4)2W3SeO12 (1), Cs2W3SeO12 (2) and Rb2W3SeO12 (3) crystallize in the P63 space group and have the structure of Cs2W3TeO12 (Zhao et al., 2015[Zhao, P., Cong, H., Tian, X., Sun, Y., Zhang, C., Xia, S., Gao, Z. & Tao, X. (2015). Cryst. Growth Des. 15, 4484-4489.]). They contain ammonium/caesium/rubidium ions between non-centrosymmetric HTO-related [W3SeO12]2− layers, which have only intra-layer type Se—O bonds. The absolute structure configuration of the rubidium compound (3) is the inverse of that of the ammonium (1) and caesium (2) compounds.

As an illustrative example, the structure of Rb2W3SeO12 (3) is discussed. Its asymmetric unit content of Rb2/3WTe1/3O4 has two, one, one and four crystallographically distinct rubidium, tungsten, selenium and oxygen atoms, respectively. The tungsten atom is octa­hedrally coordinated to the apical O1 and O2 atoms and two each of equatorial O3 and O4 atoms (Fig. 1[link]). The WO6 octa­hedron resides near the threefold rotation axis located at the Wyckoff site 2a and shares its two cis O3 equatorial oxygen atoms with two such octa­hedra to form a W3O15 moiety. Such trinuclear moieties are connected to one another through sharing of equatorial O4 atoms, forming a hexa­gonal–tungsten–oxide (HTO) layer of composition WO4 or W3O12. In other words, the HTO layer of WO4 is formed from the sharing of four equatorial O3 and O4 atoms of every WO6 octa­hedron with four such octa­hedra. The HTO layer of WO4 has three-ring holes made of either O3 or O4 atoms and six-ring holes made of alternating O3 and O4 atoms. The selenium atom resides on a threefold rotation axis located at the 2a site and has a pyramidal coordination of C3V symmetry, with three equivalent Se—O1 bonds. Thus, only three-ring holes of O3 are capped on one side of the layer, by bonding of the selenium atom to apical O1 oxygen atoms, to give rise to an asymmetric (W3SeO12)2− layer. These layers are stacked, as shown in Fig. 1[link], along the crystallographic c-axis direction in the ABAB… fashion because adjacent layers are rotated with respect to each other such that the six-ring hole of one layer is above the uncapped three-ring hole of the next layer. As the other apical oxygen O2 atoms are not bonded to selenium, the Se—O bonding is described as intra-layer bonding and, therefore, the structure is two-dimensional. The pyramidal SeO3 moieties and the lone-pair of electrons of Se4+ are respectively parallel and perpendicular to the HTO layers of WO4. The selenites 15 of the present study are found to contain the same staggered stacking of the HTO-related WO4 layers.

[Figure 1]
Figure 1
Polyhedral representation of (left) the unit-cell structure viewed along the a axis and (right) a (W3SeO12)2− layer along with the Rb+ counter-cations, viewed along the c axis, of Rb2W3SeO12 (3). A W3O15 moiety with a pyramidal selenium atom is indicated by a dashed red line and the net dipole directions of the WO6 octa­hedra and pyramidal SeO3 are shown.

K2W3SeO12 (β) was reported (Huang et al., 2014a[Huang, Y., Chen, X. & Qin, J. (2014a). Faming Zhuanli Shenqing 1-8.],b[Huang, Y., Meng, X. & Qin, J. (2014b). Chin. J. Inorg. Chem. 30, 179-184.]) to be obtained under hydro­thermal conditions and found to contain similar non-centrosymmetric HTO-related [W3SeO12]2− layers with intra-layer Se—O bonds. On the other hand, K2W3SeO12 (4α) of the present study was prepared by solid-state reaction and is isostructural with the reported K2W3TeO12 (Goodey et al., 2003[Goodey, J., Min Ok, K., Broussard, J., Hofmann, C., Escobedo, F. V. & Halasyamani, P. S. (2003). J. Solid State Chem. 175, 3-12.]). Its centrosymmetric, three-dimensional HTO-related [W3SeO12]2− framework contains inter-layer Se—O bonds (Fig. 2[link]) and its asymmetric unit has one formula unit. The three W1—W3 atoms are octa­hedrally coordinated to six apical O1–O6 and six equatorial O7–O12 oxygen atoms. The three WO6 octa­hedra in the trinuclear W1W2W3O15 moieties share equatorial O7–O9 oxygen atoms and these moieties are connected to one another through the other equatorial O10–O12 oxygen atoms to form the WO4 layer. The Se atom forms inter­layer Se—O bonds, by bonding to the apical O7, O10 and O12 oxygen atoms of W1W2W3O15 moieties of adjacent HTO layers (Fig. 2[link]) and thus the [W3SeO12]2− framework is three-dimensional in nature.

[Figure 2]
Figure 2
Polyhedral representation of (left) the unit-cell structure viewed along the −a axis and (right) a segment of the (W3SeO12)2− structure along with the K+ counter-cations, viewed along the −b axis, of K2W3SeO12 (4α). A W1W2W3O15 moiety with pyramidal selenium is indicated by a dashed red line and the net dipole directions of octa­hedral WO6 and pyramidal SeO3 are shown.

Tl2W3SeO12 (5) has an ortho­rhom­bic unit cell with ao = 11.5962 (10) Å, bo = 12.7206 (5) Å and co = 7.2362 (9) Å. The structure refinements in the non-centrosymmetric Pna21 and centrosymmetric Pnam space groups led to the respective structure agreement factor values of 6.37% and 15.98%; the structure refinements were unsatisfactory, mostly due to X-ray absorption. Its single crystal X-ray structure solution model is found to be same as the three-dimensional structure of K2W3SeO12 (4α) and its observed powder XRD pattern (Figure S1b in the supporting information) agrees reasonably with the one simulated on the basis of this model structure. Moreover, the powder XRD patterns and unit-cell parameters of these two compounds are similar. The ortho­rhom­bic unit-cell parameters of the thallium (5) compound are related to the monoclinic unit-cell parameters of the potassium (4α) compound as follows: aobm, bocm, coam and αo = 90° ≃ βm. The single-crystal X-ray data for the thallium compound (5) in the centrosymmetric P21/n space group, corresponding to the potassium compound (4α), led to the same structure model and a high value of 19.18% for the structure-agreement factor. It is inferred from these observations that the Tl2W3SeO12 compound (5) has the same three-dimensional structure as K2W3SeO12 (4α).

In the structurally characterized compounds 14α of the present study, the WO6 octa­hedra have C3 distortion as three W—O bonds are <1.9 Å long and their three trans W—O bonds are >1.9 Å long; the values of WO6 intra­octa­hedral distortions (Halasyamani 2004[Halasyamani, P. S. (2004). Chem. Mater. 16, 3586-3592.]), Δd, are calculated to be in the 0.73–0.86 range (Table S1). The Se4+ ions have pyramidal coordination. The W—O and Se—O bond-length values are in the 1.703 (17)–2.184 (9) Å and 1.695 (10)–1.739 (10) Å ranges, respectively. The ammonium and alkali metal ions are found to be six- to nine-coordinated (Figure S2), when the cut-off value of 3.6 Å is considered for N⋯O non-bonding distances and A—O bond lengths. The calculated values (Brese & O'Keeffe 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]) of bond-valence sums for W6+, Se4+ and monovalent alkali metal ions are in the 6.079–6.283, 3.807–3.975 and 0.060–1.275 ranges, respectively. The respective values of 3.210, 3.322 and 3.207 Å for the shortest inter­layer O⋯O non-bonding distances of compounds 13 with intra-layer Se—O bonds are significantly higher than the corresponding value of 2.563 Å for compound 4α with inter­layer Se—O bonds.

The net dipole moment values for the WO6 and SeO3 polyhedra were calculated by vector summation of the dipole moments (Maggard et al., 2003[Maggard, P. A., Nault, T. S., Stern, C. L. & Poeppelmeier, K. R. (2003). J. Solid State Chem. 175, 27-33.]; Ok & Halasyamani 2005[Ok, K. M. & Halasyamani, P. S. (2005). Inorg. Chem. 44, 3919-3925.]; Galy et al., 1975[Galy, J., Meunier, G., Andersson, S. & Åström, A. (1975). J. Solid State Chem. 13, 142-159.]) of six W—O bonds and three Se—O bonds and found to be in the 0.79–1.85 D and 5.73–9.13 D ranges, respectively (Tables S1–S3). The net dipole for the WO6 octa­hedron points towards the triangular face of three oxygen atoms with W—O bonds >1.9 Å long, whereas the net dipoles for the SeO3 polyhedra point opposite to the lone pair of electrons of selenium. In compounds 13, as shown for Rb2W3SeO12 (3) in Fig. 1[link], the intra-layer SeO3 dipole is oriented along the c-axis direction and perpendicular to the HTO layer. For the WO6 octa­hedra, the net dipole moment components along the a and b axes cancel one another, whereas the c-axis component is anti­parallel and additive to the net dipole moment of pyramidal SeO3. In the case of centrosymmetric three-dimensional K2W3SeO12 (4α), as shown in Fig. 2[link], the net dipole moments of the WO6 and SeO3 polyhedra macroscopically cancel one another and result in a zero net dipole moment.

The solid state UV–Visible absorption spectra (Fig. 3[link]) of compounds 15 reveal that their band gap values are in the range 2.7–3.5 eV (Kubelka & Munk, 1931[Kubelka, F. & Munk, P. (1931). Z. Tech. Phys. 12, 593-601.]). The additional absorption edge observed for the Tl2W3SeO12 compound (5) corresponds to band gap value of 2.0 eV. When compared to Cs2W3SeO12 (2), the corresponding Cs2W3TeO12 tellurite (Zhao et al., 2015[Zhao, P., Cong, H., Tian, X., Sun, Y., Zhang, C., Xia, S., Gao, Z. & Tao, X. (2015). Cryst. Growth Des. 15, 4484-4489.]) has a lower band gap of 2.89 eV.

[Figure 3]
Figure 3
Solid state UV–visible absorption spectra for the A2W3SeO12 [A = NH4 (1), Cs (2), Rb (3), K (4α) and Tl (5)] compounds.

Rb2W3SeO12 (3), K2W3SeO12 (4α) and Tl2W3SeO12 (5) undergo thermal decompositions and give rise to endothermic peaks at ∼600, ∼575 and ∼575°C and their respective observed weight losses of 10.0%, 12.3% and 9.0% compare well with those calculated for the loss of SeO2 (Figure S3). The other endothermic peaks at ∼850 and 750°C could not be assigned. It was reported (Harrison et al., 1995[Harrison, W. T. A., Dussack, L. L., Vogt, T. & Jacobson, A. J. (1995). J. Solid State Chem. 120, 112-120.]) that a similar thermal loss of SeO2 occurs in a single step between 500 and 600°C for Cs2W3SeO12 (2) and in two steps at 350 and 450°C for (NH4)2W3SeO12 (1). When compared to the tungsten selenites 15, analogous A2W3TeO12 (A = K, Rb, Cs) tellurites of tungsten (Goodey et al., 2003[Goodey, J., Min Ok, K., Broussard, J., Hofmann, C., Escobedo, F. V. & Halasyamani, P. S. (2003). J. Solid State Chem. 175, 3-12.]; Zhao et al., 2015[Zhao, P., Cong, H., Tian, X., Sun, Y., Zhang, C., Xia, S., Gao, Z. & Tao, X. (2015). Cryst. Growth Des. 15, 4484-4489.]) and A2Mo3SeO12 (A = Rb, Tl) selenites of molybdenum (Chang et al., 2010[Chang, H. Y., Kim, S. W. & Halasyamani, P. S. (2010). Chem. Mater. 22, 3241-3250.]) undergo single-step thermal decomposition at higher and lower temperatures of >700 and 300°C, respectively.

3. Syntheses and crystallization

Cs2CO3 (Alfa Aesar), Rb2CO3 (Alfa Aesar), TlNO3 (Sigma Aldrich), H2WO4 (Sigma Aldrich), SeO2 (Sigma Aldrich), NH4Cl (Sarabhai M Chemicals) of >99% purity, NH4OH (Fischer Scientific) of 25% dilution, WO3 and Tl2WO4 were used for the synthesis and crystal growth of compounds 15. WO3 was obtained by heating H2WO4 in the open air. Tl2WO4 was prepared by heating a stoichiometric mixture of TlNO3 and H2WO4. Teflon-lined stainless steel acid digestion vessels of 23 mL capacity were employed for the hydro­thermal reactions.

The reactants and their qu­anti­ties, the temperature and duration of heating and the yields of products for the synthesis and crystal growth of compounds 15 are presented in Table S4. The ammonium compound (1) was synthesized by the hydro­thermal method, with or without NH4Cl as mineralizer. The other four compounds (25) were obtained by solid-state reactions. The reactant mixtures were heated first in the open air and later in evacuated sealed silica ampoules. After the reaction, the solid product contents were washed with water to dissolve away the excess SeO2.

The hydro­thermal and solid-state synthetic methods enabled the growth and isolation of single crystals of compounds 15. The utilization of excess SeO2 as flux in the novel solid-state synthetic procedure facilitated the growth of single crystals of compounds 25. The powder XRD patterns of compounds 15 are presented in Figures S1a and S1b. (NH4)2W3SeO12 (1), Rb2W3SeO12 (3) and Tl2W3SeO12 (5) were obtained as homogeneous phases, as their observed powder XRD patterns compare reasonably well with the simulated ones. The powder XRD patterns of Cs2W3SeO12 (2), Rb2W3SeO12 (3) and K2W3SeO12 (4α) contained two or three additional reflections of <10% intensity due to WO3 or an unidentified phase; however, the homogeneous polycrystalline sample of Rb2W3SeO12 (3) could be obtained (Figure S1b), under a different set of solid-state synthetic conditions mentioned in Table S4. Cs2W3SeO12 (2) was prepared in polycrystalline form by the reported hydro­thermal method (Harrison et al., 1995[Harrison, W. T. A., Dussack, L. L., Vogt, T. & Jacobson, A. J. (1995). J. Solid State Chem. 120, 112-120.]). It is evident from the scanning electron micrographs (Figure S4) that crystallites of compounds 1 and 2 have a hexa­gonal prism shape and compounds 35 have block-shaped morphologies. The EDXA analyses confirmed the expected ratios of metal contents for all compounds 15.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The crystals of the ammonium (1) and rubidium (3) compounds are twinned by merohedry (Spek 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) by the [−1 0 0 1 1 0 0 0 − 1] and [1 0 0 − 1 −1 0 0 0 − 1] twin laws and their twinned lattices are generated through twofold rotation of the primary lattices about the [120] direction and the b axis, respectively. The crystal of the potassium (4α) compound is twinned by pseudo-merohedry (Spek 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) by the twin law [−1 0 0 0 − 1 0 0 0 1] and the twinned lattice is generated through twofold rotation of the primary lattice about the c axis, as the value of the β angle of its monoclinic system is very close to 90°. The respective values of refined batch scale factor for the ammonium (1), rubidium (3) and potassium (4α) compounds are 0.029, 0.192 and 0.385. The hydrogen atoms of the NH4+ ions in the ammonium compound (1) were not located in the difference-Fourier maps but are included in the formula. The final difference-Fourier maps did not show any chemically significant features and the Fourier difference peaks with an electron density of >1 e Å−3 were found to be ghosts. No reasonable structure solutions and refinements in the centrosymmetric P63/m space group were found for compounds 13.

Table 1
Experimental details

  1 2 3 4
Crystal data
Chemical formula (NH4)2W3SeO12 Cs2W3SeO12 Rb2W3SeO12 K2W3SeO12
Mr 858.59 1088.33 993.40 900.66
Crystal system, space group Hexagonal, P63 Hexagonal, P63 Hexagonal, P63 Monoclinic, P21/n
Temperature (K) 297 293 293 293
a, b, c (Å) 7.2303 (3), 7.2303 (3), 12.1491 (5) 7.2580 (3), 7.2580 (3), 12.5291 (5) 7.2380 (1), 7.2380 (1), 12.1115 (3) 7.2310 (2), 11.4863 (4), 12.6486 (4)
α, β, γ (°) 90, 90, 120 90, 90, 120 90, 90, 120 90, 90.096 (2), 90
V3) 550.03 (5) 571.59 (5) 549.50 (2) 1050.56 (6)
Z 2 2 2 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 34.67 39.63 43.49 37.09
Crystal size (mm) 0.10 × 0.10 × 0.05 0.10 × 0.08 × 0.05 0.10 × 0.05 × 0.05 0.08 × 0.05 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.129, 0.276 0.110, 0.242 0.098, 0.220 0.155, 0.524
No. of measured, independent and observed [I > 2σ(I)] reflections 14419, 1079, 1069 2825, 831, 730 3497, 675, 654 26562, 4026, 3456
Rint 0.049 0.058 0.033 0.073
(sin θ/λ)max−1) 0.702 0.643 0.666 0.770
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.052, 1.27 0.029, 0.054, 1.02 0.018, 0.033, 1.06 0.032, 0.105, 1.15
No. of reflections 1079 831 675 4026
No. of parameters 57 56 57 165
No. of restraints 1 13 7 24
H-atom treatment H-atom parameters not defined
Δρmax, Δρmin (e Å−3) 2.63, −2.37 1.90, −1.65 0.90, −1.14 3.94, −3.11
Absolute structure Flack x determined using 492 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 297 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 182 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])  
Absolute structure parameter 0.015 (13) 0.00 (3) −0.08 (3)
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2013 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Pennington, 1999[Pennington, W. T. (1999). J. Appl. Cryst. 32, 1028-1029.]) and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

The powder X-ray diffraction (XRD) patterns of compounds 15 were recorded on a Bruker D8 Advanced powder X-ray diffractometer using Cu Kα (λ = 1.5418 Å) radiation. The monophasic nature of each of these compounds was verified by comparing their powder XRD patterns with those simulated, using Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), on the basis of their single crystal X-ray structures.

Supporting information


Computing details top

For all structures, data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004). Program(s) used to solve structure: SHELXT2013 (Sheldrick, 2015a) for NH42W3SeO121; SHELXT2014/7 (Sheldrick, 2015a) for Cs2W3SeO122, Rb2W3SeO123, K2W3SeO124. Program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015b) for NH42W3SeO121; SHELXL2014/7 (Sheldrick, 2015b) for Cs2W3SeO122, K2W3SeO124; SHELXL2018/3 (Sheldrick, 2015b) for Rb2W3SeO123. For all structures, molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Pennington, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Diammonium tritungsten selenite (NH42W3SeO121) top
Crystal data top
(NH4)2W3SeO12Dx = 5.184 Mg m3
Mr = 858.59Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63Cell parameters from 7856 reflections
a = 7.2303 (3) Åθ = 3.3–30.4°
c = 12.1491 (5) ŵ = 34.67 mm1
V = 550.03 (5) Å3T = 297 K
Z = 2Block, colourless
F(000) = 7480.10 × 0.10 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
1069 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
φ and ω scansθmax = 30.0°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1010
Tmin = 0.129, Tmax = 0.276k = 1010
14419 measured reflectionsl = 1717
1079 independent reflections
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0097P)2 + 8.3615P]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.023Δρmax = 2.63 e Å3
wR(F2) = 0.052Δρmin = 2.37 e Å3
S = 1.27Extinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1079 reflectionsExtinction coefficient: 0.0100 (5)
57 parametersAbsolute structure: Flack x determined using 492 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.015 (13)
H-atom parameters not defined
Special details top

Experimental. Single crystals of compounds 15 were obtained along with the polycrystalline sample and the crystals were hand-picked for XRD study and mounted on thin glass fibres with epoxy glue and optically aligned on a Bruker APEXII charge-coupled device X-ray diffractometer using a digital camera. Intensity data were measured at 25 °C using Mo Kα (λ = 0.7103 Å) radiation. APEX II software (Bruker AXS) was used for preliminary determination of the cell constants and data collection control. The determination of integral intensities and global refinement were performed using SAINT-plus (Bruker AXS). A semi-empirical absorption correction was subsequently applied using SADABS. Space group determination, structure solution and least-squares refinement were carried out using SHELXTL (Sheldrick 2008) program. DIAMOND 3.0 (PENNINGTON 1999) and ORTEP-3 (Farrugia 1997) for windows were the graphic programs employed to draw the structures. The structures were solved by direct methods and refined by full matrix least squares on F2.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3333330.6666670.115 (3)0.042 (8)
N20.6666670.3333330.237 (2)0.025 (5)
W0.19142 (6)0.33979 (5)0.40000 (10)0.00766 (15)
Se0.0000000.0000000.16680 (15)0.0102 (5)
O10.1264 (15)0.2465 (16)0.2271 (7)0.0134 (17)
O20.4083 (16)0.1964 (16)0.0370 (8)0.0137 (18)
O30.2494 (12)0.1188 (12)0.4103 (12)0.0101 (19)
O40.0850 (15)0.5365 (14)0.3526 (8)0.0111 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.052 (13)0.052 (13)0.023 (14)0.026 (7)0.0000.000
N20.025 (8)0.025 (8)0.024 (12)0.012 (4)0.0000.000
W0.0069 (2)0.00476 (19)0.0108 (2)0.00250 (14)0.0007 (3)0.0006 (3)
Se0.0091 (5)0.0091 (5)0.0124 (12)0.0045 (2)0.0000.000
O10.013 (4)0.010 (4)0.015 (4)0.005 (4)0.004 (3)0.001 (3)
O20.010 (4)0.013 (5)0.016 (4)0.004 (4)0.001 (3)0.002 (3)
O30.006 (3)0.006 (3)0.019 (5)0.003 (2)0.002 (5)0.005 (5)
O40.011 (4)0.004 (4)0.018 (4)0.004 (3)0.003 (3)0.002 (3)
Geometric parameters (Å, º) top
W—O2i1.722 (10)W—O12.184 (9)
W—O31.848 (8)Se—O1iii1.709 (10)
W—O4ii1.874 (9)Se—O11.709 (10)
W—O3iii1.985 (8)Se—O1iv1.709 (10)
W—O42.010 (9)
O2i—W—O399.2 (6)O3—W—O184.5 (5)
O2i—W—O4ii99.3 (5)O4ii—W—O186.0 (4)
O3—W—O4ii96.7 (4)O3iii—W—O180.7 (5)
O2i—W—O3iii93.4 (6)O4—W—O181.0 (4)
O3—W—O3iii89.7 (4)O1iii—Se—O1102.9 (4)
O4ii—W—O3iii164.6 (5)O1iii—Se—O1iv102.9 (4)
O2i—W—O494.7 (4)O1—Se—O1iv102.9 (4)
O3—W—O4164.5 (5)Se—O1—W130.9 (5)
O4ii—W—O487.8 (6)W—O3—Wiv149.1 (5)
O3iii—W—O482.6 (4)Wv—O4—W132.5 (5)
O2i—W—O1173.1 (4)
Symmetry codes: (i) xy, x, z+1/2; (ii) y+1, xy+1, z; (iii) y, xy, z; (iv) x+y, x, z; (v) x+y, x+1, z.
Dicaesium tritungsten selenite (Cs2W3SeO122) top
Crystal data top
Cs2W3SeO12Dx = 6.323 Mg m3
Mr = 1088.33Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63Cell parameters from 706 reflections
a = 7.2580 (3) Åθ = 3.6–26.3°
c = 12.5291 (5) ŵ = 39.63 mm1
V = 571.59 (5) Å3T = 293 K
Z = 2Block, colourless
F(000) = 9240.10 × 0.08 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
730 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.058
phi and ω scansθmax = 27.2°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 68
Tmin = 0.110, Tmax = 0.242k = 99
2825 measured reflectionsl = 1614
831 independent reflections
Refinement top
Refinement on F2 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.029Δρmax = 1.90 e Å3
wR(F2) = 0.054Δρmin = 1.65 e Å3
S = 1.02Extinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
831 reflectionsExtinction coefficient: 0.0081 (4)
56 parametersAbsolute structure: Flack x determined using 297 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
13 restraintsAbsolute structure parameter: 0.00 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.3333330.6666670.0902 (2)0.0269 (9)
Cs20.6666670.3333330.22953 (19)0.0143 (7)
W0.14949 (10)0.33884 (11)0.39443 (8)0.0056 (2)
Se0.0000000.0000000.1700 (2)0.0058 (7)
O10.125 (2)0.250 (2)0.2270 (11)0.007 (3)
O20.401 (2)0.207 (2)0.0265 (14)0.015 (3)
O30.2495 (18)0.1279 (17)0.4056 (14)0.008 (3)
O40.088 (2)0.549 (2)0.3529 (11)0.010 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0277 (13)0.0277 (13)0.0251 (16)0.0139 (6)0.0000.000
Cs20.0160 (10)0.0160 (10)0.0110 (13)0.0080 (5)0.0000.000
W0.0048 (4)0.0031 (4)0.0083 (4)0.0016 (3)0.0004 (5)0.0001 (5)
Se0.0066 (9)0.0066 (9)0.0042 (18)0.0033 (5)0.0000.000
O10.013 (8)0.004 (7)0.002 (6)0.004 (7)0.000 (6)0.001 (6)
O20.015 (8)0.011 (9)0.020 (9)0.007 (7)0.010 (7)0.003 (7)
O30.008 (3)0.008 (3)0.009 (3)0.0042 (18)0.0001 (14)0.0003 (14)
O40.009 (3)0.009 (3)0.010 (3)0.0050 (19)0.0000 (14)0.0001 (14)
Geometric parameters (Å, º) top
Cs1—O1i3.132 (15)Cs2—O4ii3.066 (14)
Cs1—O13.132 (15)Cs2—O3vi3.427 (13)
Cs1—O1ii3.132 (15)Cs2—O33.427 (13)
Cs1—O3iii3.497 (15)Cs2—O3vii3.427 (13)
Cs1—O3iv3.497 (15)Cs2—O1vii3.667 (13)
Cs1—O3v3.497 (15)Cs2—O13.667 (13)
Cs1—O4i3.634 (14)Cs2—O1vi3.667 (13)
Cs1—O4ii3.634 (14)W—O2x1.703 (17)
Cs1—O43.634 (14)W—O3xi1.840 (11)
Cs1—O2i3.695 (14)W—O41.863 (13)
Cs1—O2ii3.695 (14)W—O4ii2.000 (13)
Cs1—O23.695 (14)W—O32.000 (10)
Cs2—O23.044 (16)W—O12.176 (14)
Cs2—O2vi3.044 (16)Se—O1xi1.723 (15)
Cs2—O2vii3.044 (16)Se—O11.724 (15)
Cs2—O4viii3.066 (14)Se—O1ix1.724 (15)
Cs2—O4ix3.066 (14)
O1i—Cs1—O192.9 (4)O4ii—Cs2—O1vi143.4 (3)
O1i—Cs1—O1ii92.9 (4)O3vi—Cs2—O1vi45.0 (3)
O1—Cs1—O1ii92.9 (4)O3—Cs2—O1vi97.0 (3)
O1i—Cs1—O3iii74.6 (3)O3vii—Cs2—O1vi127.0 (3)
O1—Cs1—O3iii132.9 (3)O1vii—Cs2—O1vi119.992 (7)
O1ii—Cs1—O3iii132.1 (3)O1—Cs2—O1vi119.993 (8)
O1i—Cs1—O3iv132.1 (3)O2x—W—O3xi97.7 (8)
O1—Cs1—O3iv74.6 (3)O2x—W—O498.5 (7)
O1ii—Cs1—O3iv132.9 (3)O3xi—W—O496.6 (5)
O3iii—Cs1—O3iv81.0 (4)O2x—W—O4ii93.8 (6)
O1i—Cs1—O3v132.9 (3)O3xi—W—O4ii167.0 (7)
O1—Cs1—O3v132.1 (3)O4—W—O4ii87.4 (8)
O1ii—Cs1—O3v74.6 (3)O2x—W—O392.3 (7)
O3iii—Cs1—O3v81.0 (4)O3xi—W—O389.9 (7)
O3iv—Cs1—O3v81.0 (4)O4—W—O3166.5 (7)
O1i—Cs1—O4i48.2 (3)O4ii—W—O383.7 (5)
O1—Cs1—O4i81.9 (3)O2x—W—O1172.7 (6)
O1ii—Cs1—O4i47.2 (3)O3xi—W—O185.8 (7)
O3iii—Cs1—O4i116.3 (3)O4—W—O187.5 (6)
O3iv—Cs1—O4i156.5 (3)O4ii—W—O182.1 (5)
O3v—Cs1—O4i115.9 (3)O3—W—O181.2 (6)
O1i—Cs1—O4ii81.9 (3)O2x—W—Cs2xii123.2 (5)
O1—Cs1—O4ii47.2 (3)O3xi—W—Cs2xii57.3 (4)
O1ii—Cs1—O4ii48.2 (3)O4—W—Cs2xii46.0 (4)
O3iii—Cs1—O4ii156.5 (3)O4ii—W—Cs2xii120.1 (4)
O3iv—Cs1—O4ii115.9 (3)O3—W—Cs2xii132.2 (4)
O3v—Cs1—O4ii116.3 (3)O1—W—Cs2xii64.1 (3)
O4i—Cs1—O4ii43.1 (4)O2x—W—Cs1xiii59.3 (5)
O1i—Cs1—O447.2 (3)O3xi—W—Cs1xiii53.6 (5)
O1—Cs1—O448.2 (3)O4—W—Cs1xiii68.7 (4)
O1ii—Cs1—O481.9 (3)O4ii—W—Cs1xiii138.9 (4)
O3iii—Cs1—O4115.9 (3)O3—W—Cs1xiii124.3 (4)
O3iv—Cs1—O4116.3 (3)O1—W—Cs1xiii127.4 (3)
O3v—Cs1—O4156.5 (3)Cs2xii—W—Cs1xiii65.81 (5)
O4i—Cs1—O443.1 (4)O2x—W—Cs2114.7 (5)
O4ii—Cs1—O443.1 (4)O3xi—W—Cs2127.9 (4)
O1i—Cs1—O2i57.5 (4)O4—W—Cs2116.1 (4)
O1—Cs1—O2i91.3 (3)O4ii—W—Cs240.4 (4)
O1ii—Cs1—O2i150.4 (4)O3—W—Cs251.3 (4)
O3iii—Cs1—O2i43.5 (3)O1—W—Cs258.5 (3)
O3iv—Cs1—O2i76.4 (3)Cs2xii—W—Cs2120.63 (6)
O3v—Cs1—O2i122.2 (4)Cs1xiii—W—Cs2173.49 (5)
O4i—Cs1—O2i104.7 (4)O2x—W—Cs1138.0 (6)
O4ii—Cs1—O2i121.5 (3)O3xi—W—Cs1116.2 (5)
O4—Cs1—O2i79.1 (3)O4—W—Cs155.9 (4)
O1i—Cs1—O2ii91.3 (3)O4ii—W—Cs156.4 (4)
O1—Cs1—O2ii150.4 (4)O3—W—Cs1110.6 (5)
O1ii—Cs1—O2ii57.5 (4)O1—W—Cs143.4 (4)
O3iii—Cs1—O2ii76.4 (3)Cs2xii—W—Cs165.44 (3)
O3iv—Cs1—O2ii122.2 (4)Cs1xiii—W—Cs1122.50 (3)
O3v—Cs1—O2ii43.5 (3)Cs2—W—Cs163.41 (3)
O4i—Cs1—O2ii79.1 (3)O2x—W—Cs1xiv54.8 (5)
O4ii—Cs1—O2ii104.7 (4)O3xi—W—Cs1xiv120.7 (4)
O4—Cs1—O2ii121.5 (3)O4—W—Cs1xiv134.5 (4)
O2i—Cs1—O2ii115.47 (19)O4ii—W—Cs1xiv62.2 (4)
O1i—Cs1—O2150.4 (4)O3—W—Cs1xiv48.1 (4)
O1—Cs1—O257.5 (4)O1—W—Cs1xiv117.9 (3)
O1ii—Cs1—O291.3 (3)Cs2xii—W—Cs1xiv177.46 (4)
O3iii—Cs1—O2122.2 (4)Cs1xiii—W—Cs1xiv111.82 (6)
O3iv—Cs1—O243.5 (3)Cs2—W—Cs1xiv61.72 (4)
O3v—Cs1—O276.4 (3)Cs1—W—Cs1xiv117.06 (2)
O4i—Cs1—O2121.5 (3)O1xi—Se—O1104.0 (5)
O4ii—Cs1—O279.1 (3)O1xi—Se—O1ix104.0 (5)
O4—Cs1—O2104.7 (4)O1—Se—O1ix104.0 (5)
O2i—Cs1—O2115.47 (19)O1xi—Se—Cs2xv58.6 (4)
O2ii—Cs1—O2115.47 (19)O1—Se—Cs2xv145.4 (5)
O2—Cs2—O2vi56.8 (5)O1ix—Se—Cs2xv58.6 (4)
O2—Cs2—O2vii56.8 (5)O1xi—Se—Cs2145.4 (5)
O2vi—Cs2—O2vii56.8 (5)O1—Se—Cs258.6 (4)
O2—Cs2—O4viii153.5 (4)O1ix—Se—Cs258.6 (4)
O2vi—Cs2—O4viii101.6 (4)Cs2xv—Se—Cs2116.99 (3)
O2vii—Cs2—O4viii99.6 (4)O1xi—Se—Cs2xii58.6 (4)
O2—Cs2—O4ix101.6 (4)O1—Se—Cs2xii58.6 (4)
O2vi—Cs2—O4ix99.6 (4)O1ix—Se—Cs2xii145.4 (5)
O2vii—Cs2—O4ix153.5 (4)Cs2xv—Se—Cs2xii116.99 (3)
O4viii—Cs2—O4ix96.8 (3)Cs2—Se—Cs2xii116.99 (3)
O2—Cs2—O4ii99.6 (4)O1xi—Se—Cs1xv37.9 (5)
O2vi—Cs2—O4ii153.5 (4)O1—Se—Cs1xv122.6 (4)
O2vii—Cs2—O4ii101.6 (4)O1ix—Se—Cs1xv122.6 (4)
O4viii—Cs2—O4ii96.8 (3)Cs2xv—Se—Cs1xv64.012 (17)
O4ix—Cs2—O4ii96.8 (3)Cs2—Se—Cs1xv176.68 (9)
O2—Cs2—O3vi139.0 (3)Cs2xii—Se—Cs1xv64.014 (17)
O2vi—Cs2—O3vi96.8 (4)O1xi—Se—Cs1122.6 (4)
O2vii—Cs2—O3vi137.8 (3)O1—Se—Cs137.9 (5)
O4viii—Cs2—O3vi50.0 (3)O1ix—Se—Cs1122.6 (4)
O4ix—Cs2—O3vi48.2 (3)Cs2xv—Se—Cs1176.68 (9)
O4ii—Cs2—O3vi109.7 (4)Cs2—Se—Cs164.013 (17)
O2—Cs2—O396.8 (4)Cs2xii—Se—Cs164.013 (17)
O2vi—Cs2—O3137.8 (3)Cs1xv—Se—Cs1114.79 (4)
O2vii—Cs2—O3139.0 (3)O1xi—Se—Cs1xvi122.6 (4)
O4viii—Cs2—O3109.7 (4)O1—Se—Cs1xvi122.6 (4)
O4ix—Cs2—O350.0 (3)O1ix—Se—Cs1xvi37.9 (5)
O4ii—Cs2—O348.2 (3)Cs2xv—Se—Cs1xvi64.014 (17)
O3vi—Cs2—O383.0 (4)Cs2—Se—Cs1xvi64.013 (17)
O2—Cs2—O3vii137.8 (3)Cs2xii—Se—Cs1xvi176.68 (9)
O2vi—Cs2—O3vii139.0 (3)Cs1xv—Se—Cs1xvi114.79 (4)
O2vii—Cs2—O3vii96.8 (4)Cs1—Se—Cs1xvi114.79 (4)
O4viii—Cs2—O3vii48.2 (3)Se—O1—W129.4 (8)
O4ix—Cs2—O3vii109.7 (4)Se—O1—Cs1122.3 (6)
O4ii—Cs2—O3vii50.0 (3)W—O1—Cs1108.1 (5)
O3vi—Cs2—O3vii83.0 (4)Se—O1—Cs297.7 (5)
O3—Cs2—O3vii83.0 (4)W—O1—Cs291.2 (4)
O2—Cs2—O1vii114.5 (4)Cs1—O1—Cs283.4 (3)
O2vi—Cs2—O1vii95.0 (4)Se—O1—Cs2xii97.7 (5)
O2vii—Cs2—O1vii58.5 (4)W—O1—Cs2xii83.6 (4)
O4viii—Cs2—O1vii47.1 (3)Cs1—O1—Cs2xii83.4 (3)
O4ix—Cs2—O1vii143.4 (3)Cs2—O1—Cs2xii163.5 (5)
O4ii—Cs2—O1vii83.8 (3)Wxvii—O2—Cs2159.8 (9)
O3vi—Cs2—O1vii97.0 (3)Wxvii—O2—Cs197.3 (5)
O3—Cs2—O1vii127.0 (3)Cs2—O2—Cs184.1 (4)
O3vii—Cs2—O1vii45.0 (3)Wxvii—O2—Cs1xvi103.6 (6)
O2—Cs2—O158.5 (4)Cs2—O2—Cs1xvi82.6 (3)
O2vi—Cs2—O1114.5 (4)Cs1—O2—Cs1xvi152.0 (6)
O2vii—Cs2—O195.0 (4)Wix—O3—W148.6 (7)
O4viii—Cs2—O1143.4 (3)Wix—O3—Cs295.8 (5)
O4ix—Cs2—O183.8 (3)W—O3—Cs2101.6 (5)
O4ii—Cs2—O147.1 (3)Wix—O3—Cs1xiv101.4 (5)
O3vi—Cs2—O1127.0 (3)W—O3—Cs1xiv106.7 (5)
O3—Cs2—O145.0 (3)Cs2—O3—Cs1xiv81.5 (2)
O3vii—Cs2—O197.0 (3)W—O4—Wi135.7 (8)
O1vii—Cs2—O1119.993 (7)W—O4—Cs2xii108.0 (5)
O2—Cs2—O1vi95.0 (4)Wi—O4—Cs2xii114.6 (5)
O2vi—Cs2—O1vi58.5 (4)W—O4—Cs199.0 (5)
O2vii—Cs2—O1vi114.5 (4)Wi—O4—Cs196.3 (5)
O4viii—Cs2—O1vi83.8 (3)Cs2xii—O4—Cs184.8 (3)
O4ix—Cs2—O1vi47.1 (3)
Symmetry codes: (i) x+y, x+1, z; (ii) y+1, xy+1, z; (iii) y, x+y+1, z1/2; (iv) xy, x, z1/2; (v) x+1, y+1, z1/2; (vi) y+1, xy, z; (vii) x+y+1, x+1, z; (viii) x+1, y, z; (ix) x+y, x, z; (x) xy, x, z+1/2; (xi) y, xy, z; (xii) x1, y, z; (xiii) x, y+1, z+1/2; (xiv) x+1, y+1, z+1/2; (xv) x1, y1, z; (xvi) x, y1, z; (xvii) y, x+y, z1/2.
Dirubidium tritungsten selenite (Rb2W3SeO123) top
Crystal data top
Rb2W3SeO12Dx = 6.004 Mg m3
Mr = 993.40Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63Cell parameters from 19378 reflections
a = 7.2380 (1) Åθ = 3.3–28.2°
c = 12.1115 (3) ŵ = 43.49 mm1
V = 549.50 (2) Å3T = 293 K
Z = 2Block, colourless
F(000) = 8520.10 × 0.05 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
654 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
phi and ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 98
Tmin = 0.098, Tmax = 0.220k = 89
3497 measured reflectionsl = 1116
675 independent reflections
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0065P)2 + 2.2061P]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.018Δρmax = 0.90 e Å3
wR(F2) = 0.033Δρmin = 1.14 e Å3
S = 1.06Extinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
675 reflectionsExtinction coefficient: 0.0058 (2)
57 parametersAbsolute structure: Flack x determined using 182 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
7 restraintsAbsolute structure parameter: 0.08 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.6666670.3333330.8979 (2)0.0389 (9)
Rb20.3333330.6666670.77053 (18)0.0181 (6)
W0.80778 (6)0.66034 (6)0.60562 (3)0.00482 (12)
Se1.0000001.0000000.83669 (14)0.0057 (4)
O10.8727 (15)0.7523 (15)0.7767 (6)0.0106 (18)
O20.5942 (14)0.8028 (15)0.9677 (7)0.0106 (17)
O30.7494 (12)0.8784 (12)0.5928 (8)0.0084 (16)
O40.9117 (13)0.4617 (13)0.6512 (6)0.0069 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0433 (13)0.0433 (13)0.0300 (16)0.0216 (7)0.0000.000
Rb20.0202 (9)0.0202 (9)0.0139 (11)0.0101 (4)0.0000.000
W0.0036 (2)0.0027 (2)0.00779 (17)0.00128 (19)0.0005 (4)0.0003 (3)
Se0.0062 (5)0.0062 (5)0.0047 (10)0.0031 (3)0.0000.000
O10.016 (5)0.008 (5)0.010 (4)0.008 (4)0.003 (4)0.003 (4)
O20.002 (4)0.011 (5)0.015 (4)0.000 (4)0.003 (3)0.004 (4)
O30.007 (3)0.006 (4)0.012 (5)0.004 (3)0.000 (4)0.001 (4)
O40.0065 (18)0.0069 (19)0.0077 (18)0.0038 (12)0.0003 (12)0.0002 (12)
Geometric parameters (Å, º) top
Rb1—O1i3.009 (9)Rb2—O4i3.012 (8)
Rb1—O13.009 (9)Rb2—O33.382 (8)
Rb1—O1ii3.009 (9)Rb2—O3vi3.382 (8)
Rb1—O4ii3.360 (8)Rb2—O3vii3.382 (8)
Rb1—O4i3.360 (8)Rb2—W3.9926 (11)
Rb1—O43.360 (8)Rb2—Wvii3.9926 (11)
Rb1—O3iii3.518 (9)Rb2—Wvi3.9926 (11)
Rb1—O3iv3.518 (9)W—O2x1.726 (8)
Rb1—O3v3.518 (9)W—O31.833 (8)
Rb1—W4.094 (2)W—O4i1.860 (8)
Rb1—Wi4.094 (2)W—O42.005 (8)
Rb1—Wii4.094 (2)W—O3xi2.011 (8)
Rb2—O22.894 (8)W—O12.155 (8)
Rb2—O2vi2.894 (8)Se—O1ix1.714 (9)
Rb2—O2vii2.894 (8)Se—O11.714 (9)
Rb2—O4viii3.012 (8)Se—O1xi1.714 (9)
Rb2—O4ix3.012 (8)
O1i—Rb1—O198.2 (2)O4ix—Rb2—O3vii111.8 (2)
O1i—Rb1—O1ii98.2 (2)O4i—Rb2—O3vii48.78 (18)
O1—Rb1—O1ii98.2 (2)O3—Rb2—O3vii83.8 (2)
O1i—Rb1—O4ii51.2 (2)O3vi—Rb2—O3vii83.8 (2)
O1—Rb1—O4ii88.0 (2)O2—Rb2—W89.89 (19)
O1ii—Rb1—O4ii50.2 (2)O2vi—Rb2—W147.69 (19)
O1i—Rb1—O4i50.2 (2)O2vii—Rb2—W113.3 (2)
O1—Rb1—O4i51.2 (2)O4viii—Rb2—W114.82 (16)
O1ii—Rb1—O4i88.0 (2)O4ix—Rb2—W75.92 (16)
O4ii—Rb1—O4i46.7 (2)O4i—Rb2—W26.34 (16)
O1i—Rb1—O488.0 (2)O3—Rb2—W27.21 (13)
O1—Rb1—O450.2 (2)O3vi—Rb2—W105.50 (16)
O1ii—Rb1—O451.2 (2)O3vii—Rb2—W70.55 (14)
O4ii—Rb1—O446.7 (2)O2—Rb2—Wvii147.69 (19)
O4i—Rb1—O446.7 (2)O2vi—Rb2—Wvii113.3 (2)
O1i—Rb1—O3iii130.6 (2)O2vii—Rb2—Wvii89.89 (19)
O1—Rb1—O3iii130.6 (2)O4viii—Rb2—Wvii26.34 (16)
O1ii—Rb1—O3iii71.3 (2)O4ix—Rb2—Wvii114.82 (16)
O4ii—Rb1—O3iii114.97 (19)O4i—Rb2—Wvii75.92 (16)
O4i—Rb1—O3iii159.4 (2)O3—Rb2—Wvii105.50 (16)
O4—Rb1—O3iii115.6 (2)O3vi—Rb2—Wvii70.55 (14)
O1i—Rb1—O3iv130.6 (2)O3vii—Rb2—Wvii27.21 (13)
O1—Rb1—O3iv71.3 (2)W—Rb2—Wvii97.16 (4)
O1ii—Rb1—O3iv130.6 (2)O2—Rb2—Wvi113.3 (2)
O4ii—Rb1—O3iv159.4 (2)O2vi—Rb2—Wvi89.89 (19)
O4i—Rb1—O3iv115.6 (2)O2vii—Rb2—Wvi147.69 (19)
O4—Rb1—O3iv115.0 (2)O4viii—Rb2—Wvi75.92 (16)
O3iii—Rb1—O3iv79.9 (2)O4ix—Rb2—Wvi26.34 (16)
O1i—Rb1—O3v71.3 (2)O4i—Rb2—Wvi114.82 (16)
O1—Rb1—O3v130.6 (2)O3—Rb2—Wvi70.55 (14)
O1ii—Rb1—O3v130.6 (2)O3vi—Rb2—Wvi27.21 (13)
O4ii—Rb1—O3v115.6 (2)O3vii—Rb2—Wvi105.50 (16)
O4i—Rb1—O3v114.97 (19)W—Rb2—Wvi97.16 (4)
O4—Rb1—O3v159.4 (2)Wvii—Rb2—Wvi97.16 (4)
O3iii—Rb1—O3v79.9 (2)O2x—W—O398.3 (4)
O3iv—Rb1—O3v79.9 (2)O2x—W—O4i99.3 (4)
O1i—Rb1—W76.74 (18)O3—W—O4i97.5 (3)
O1—Rb1—W30.77 (17)O2x—W—O493.8 (4)
O1ii—Rb1—W79.82 (18)O3—W—O4166.2 (4)
O4ii—Rb1—W57.35 (14)O4i—W—O487.0 (5)
O4i—Rb1—W26.63 (15)O2x—W—O3xi91.7 (5)
O4—Rb1—W29.14 (14)O3—W—O3xi90.0 (4)
O3iii—Rb1—W142.01 (14)O4i—W—O3xi165.5 (4)
O3iv—Rb1—W102.05 (14)O4—W—O3xi83.0 (3)
O3v—Rb1—W138.07 (13)O2x—W—O1172.2 (4)
O1i—Rb1—Wi30.77 (17)O3—W—O185.6 (4)
O1—Rb1—Wi79.82 (18)O4i—W—O186.8 (3)
O1ii—Rb1—Wi76.74 (17)O4—W—O181.6 (3)
O4ii—Rb1—Wi26.63 (14)O3xi—W—O181.4 (4)
O4i—Rb1—Wi29.14 (15)O2x—W—Rb2123.2 (3)
O4—Rb1—Wi57.35 (14)O3—W—Rb257.5 (3)
O3iii—Rb1—Wi138.07 (13)O4i—W—Rb245.9 (2)
O3iv—Rb1—Wi142.01 (14)O4—W—Rb2120.2 (2)
O3v—Rb1—Wi102.05 (14)O3xi—W—Rb2133.0 (3)
W—Rb1—Wi51.57 (3)O1—W—Rb264.6 (2)
O1i—Rb1—Wii79.82 (18)O2x—W—Rb1135.6 (3)
O1—Rb1—Wii76.73 (17)O3—W—Rb1118.2 (3)
O1ii—Rb1—Wii30.77 (17)O4i—W—Rb154.1 (2)
O4ii—Rb1—Wii29.14 (15)O4—W—Rb154.7 (2)
O4i—Rb1—Wii57.35 (14)O3xi—W—Rb1111.4 (3)
O4—Rb1—Wii26.63 (14)O1—W—Rb145.6 (3)
O3iii—Rb1—Wii102.05 (14)Rb2—W—Rb166.84 (2)
O3iv—Rb1—Wii138.07 (13)O2x—W—Rb1xii59.3 (3)
O3v—Rb1—Wii142.01 (14)O3—W—Rb1xii53.8 (3)
W—Rb1—Wii51.57 (3)O4i—W—Rb1xii70.4 (2)
Wi—Rb1—Wii51.57 (3)O4—W—Rb1xii139.6 (2)
O2—Rb2—O2vi58.6 (3)O3xi—W—Rb1xii123.7 (2)
O2—Rb2—O2vii58.6 (3)O1—W—Rb1xii127.9 (3)
O2vi—Rb2—O2vii58.6 (3)Rb2—W—Rb1xii66.06 (5)
O2—Rb2—O4viii153.0 (2)Rb1—W—Rb1xii123.06 (2)
O2vi—Rb2—O4viii97.5 (2)O2x—W—Rb2xiii113.1 (3)
O2vii—Rb2—O4viii99.5 (3)O3—W—Rb2xiii128.1 (3)
O2—Rb2—O4ix97.5 (2)O4i—W—Rb2xiii115.7 (2)
O2vi—Rb2—O4ix99.5 (2)O4—W—Rb2xiii39.5 (2)
O2vii—Rb2—O4ix153.0 (2)O3xi—W—Rb2xiii50.7 (2)
O4viii—Rb2—O4ix98.91 (18)O1—W—Rb2xiii59.5 (2)
O2—Rb2—O4i99.5 (2)Rb2—W—Rb2xiii122.13 (5)
O2vi—Rb2—O4i153.0 (2)Rb1—W—Rb2xiii64.26 (2)
O2vii—Rb2—O4i97.5 (2)Rb1xii—W—Rb2xiii171.73 (3)
O4viii—Rb2—O4i98.91 (18)O1ix—Se—O1103.3 (3)
O4ix—Rb2—O4i98.91 (18)O1ix—Se—O1xi103.3 (3)
O2—Rb2—O395.1 (2)O1—Se—O1xi103.3 (3)
O2vi—Rb2—O3138.5 (3)Se—O1—W130.6 (5)
O2vii—Rb2—O3137.5 (3)Se—O1—Rb1125.7 (4)
O4viii—Rb2—O3111.8 (2)W—O1—Rb1103.7 (3)
O4ix—Rb2—O348.78 (18)Wxiv—O2—Rb2159.3 (5)
O4i—Rb2—O351.09 (19)W—O3—Wix148.3 (5)
O2—Rb2—O3vi137.5 (3)W—O3—Rb295.3 (3)
O2vi—Rb2—O3vi95.1 (2)Wix—O3—Rb2101.9 (3)
O2vii—Rb2—O3vi138.5 (2)W—O3—Rb1xii101.4 (3)
O4viii—Rb2—O3vi48.78 (18)Wix—O3—Rb1xii107.3 (3)
O4ix—Rb2—O3vi51.09 (19)Rb2—O3—Rb1xii81.68 (17)
O4i—Rb2—O3vi111.8 (2)Wii—O4—W134.3 (4)
O3—Rb2—O3vi83.8 (2)Wii—O4—Rb2xiii107.7 (3)
O2—Rb2—O3vii138.5 (2)W—O4—Rb2xiii115.5 (3)
O2vi—Rb2—O3vii137.5 (3)Wii—O4—Rb199.3 (3)
O2vii—Rb2—O3vii95.1 (2)W—O4—Rb196.2 (3)
O4viii—Rb2—O3vii51.09 (19)Rb2xiii—O4—Rb188.54 (18)
Symmetry codes: (i) y+1, xy, z; (ii) x+y+1, x+1, z; (iii) y, x+y, z+1/2; (iv) xy+1, x, z+1/2; (v) x+1, y+1, z+1/2; (vi) y+1, xy+1, z; (vii) x+y, x+1, z; (viii) x1, y, z; (ix) x+y+1, x+2, z; (x) xy+1, x, z1/2; (xi) y+2, xy+1, z; (xii) x+1, y+1, z1/2; (xiii) x+1, y, z; (xiv) y, x+y+1, z+1/2.
Dipotassium tritungsten selenite (K2W3SeO124) top
Crystal data top
K2W3SeO12F(000) = 1559
Mr = 900.66Dx = 5.694 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.2310 (2) ÅCell parameters from 9566 reflections
b = 11.4863 (4) Åθ = 3.2–33.2°
c = 12.6486 (4) ŵ = 37.09 mm1
β = 90.096 (2)°T = 293 K
V = 1050.56 (6) Å3Block, colourless
Z = 40.08 × 0.05 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
3456 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.073
phi and ω scansθmax = 33.2°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.155, Tmax = 0.524k = 1717
26562 measured reflectionsl = 1919
4026 independent reflections
Refinement top
Refinement on F224 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0554P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.032(Δ/σ)max < 0.001
wR(F2) = 0.105Δρmax = 3.94 e Å3
S = 1.15Δρmin = 3.11 e Å3
4026 reflectionsExtinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
165 parametersExtinction coefficient: 0.00176 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.2501 (5)0.4522 (3)0.9115 (3)0.0223 (6)
K20.2548 (5)0.0822 (3)0.8952 (3)0.0234 (7)
W10.22893 (7)0.79646 (4)0.08433 (4)0.00612 (10)
W20.01720 (7)0.75074 (4)0.82437 (4)0.00629 (11)
W30.50663 (8)0.75947 (4)0.84420 (4)0.00583 (11)
Se0.25041 (19)0.49742 (10)0.17926 (9)0.0078 (2)
O10.2536 (13)0.6087 (8)0.0913 (8)0.0164 (19)
O20.2387 (16)0.9444 (8)0.0619 (7)0.016 (2)
O30.0634 (14)0.4225 (9)0.1258 (9)0.013 (2)
O40.0680 (14)0.8954 (9)0.7993 (9)0.014 (2)
O50.4324 (14)0.4206 (9)0.1236 (8)0.012 (2)
O60.4376 (14)0.8956 (9)0.8021 (9)0.015 (2)
O70.0615 (15)0.7625 (9)0.9781 (9)0.012 (2)
O80.2548 (14)0.6902 (7)0.8102 (7)0.0093 (16)
O90.4378 (15)0.7668 (9)0.9828 (8)0.0100 (19)
O100.9354 (14)0.7050 (10)0.6903 (8)0.014 (2)
O110.7529 (15)0.7855 (8)0.8637 (7)0.0096 (16)
O120.0599 (14)0.7924 (9)0.1938 (8)0.0110 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0208 (14)0.0264 (14)0.0197 (14)0.0030 (13)0.0020 (17)0.0005 (13)
K20.0269 (17)0.0211 (14)0.0223 (16)0.0007 (14)0.0005 (14)0.0060 (12)
W10.00737 (19)0.00678 (18)0.00421 (17)0.00057 (16)0.00022 (19)0.00021 (17)
W20.0049 (2)0.0084 (2)0.0056 (2)0.0003 (2)0.00087 (18)0.00082 (15)
W30.0047 (2)0.0074 (2)0.0054 (2)0.00025 (19)0.00025 (19)0.00006 (16)
Se0.0090 (5)0.0065 (4)0.0078 (5)0.0005 (4)0.0003 (5)0.0003 (4)
O10.017 (2)0.016 (2)0.016 (2)0.0001 (10)0.0001 (10)0.0005 (10)
O20.030 (6)0.006 (4)0.012 (4)0.001 (4)0.005 (4)0.002 (3)
O30.008 (4)0.010 (4)0.021 (5)0.002 (4)0.009 (4)0.002 (4)
O40.013 (2)0.014 (2)0.014 (2)0.0003 (10)0.0000 (10)0.0001 (10)
O50.011 (4)0.010 (4)0.016 (5)0.003 (4)0.003 (4)0.003 (4)
O60.013 (5)0.005 (4)0.025 (6)0.000 (4)0.002 (4)0.008 (4)
O70.012 (2)0.012 (2)0.011 (2)0.0002 (10)0.0004 (10)0.0002 (10)
O80.003 (4)0.010 (4)0.015 (4)0.003 (4)0.003 (4)0.001 (3)
O90.010 (2)0.010 (2)0.010 (2)0.0002 (10)0.0005 (10)0.0004 (10)
O100.006 (4)0.026 (6)0.008 (5)0.005 (4)0.004 (3)0.000 (4)
O110.008 (4)0.011 (4)0.009 (4)0.002 (4)0.003 (4)0.004 (3)
O120.007 (4)0.019 (5)0.007 (4)0.006 (4)0.000 (3)0.001 (4)
Geometric parameters (Å, º) top
K1—O3i2.726 (10)K2—W1ii3.993 (4)
K1—O5ii2.757 (11)W1—O21.724 (9)
K1—O1iii2.899 (10)W1—O7x1.849 (11)
K1—O5iii3.009 (11)W1—O121.849 (10)
K1—O83.019 (9)W1—O10xi2.005 (10)
K1—O4iv3.046 (11)W1—O9x2.013 (11)
K1—O3iii3.050 (12)W1—O12.166 (9)
K1—O6iv3.091 (12)W2—O41.731 (11)
K1—Seiii3.427 (4)W2—O81.863 (10)
K1—Seii3.835 (4)W2—O10xii1.870 (10)
K1—Sei3.839 (3)W2—O71.975 (11)
K1—W23.975 (3)W2—O11xii2.016 (11)
K2—O2v2.639 (9)W2—O3i2.167 (10)
K2—O6vi2.780 (11)W3—O61.726 (10)
K2—O4vi2.809 (11)W3—O111.822 (11)
K2—O10vii2.861 (11)W3—O91.825 (11)
K2—O8iv2.879 (9)W3—O12xiii2.031 (10)
K2—O12i2.918 (10)W3—O82.032 (10)
K2—O9viii3.213 (11)W3—O5ii2.153 (10)
K2—O7ix3.316 (12)Se—O11.695 (10)
K2—O11viii3.408 (9)Se—O51.735 (10)
K2—W2iv3.767 (3)Se—O31.739 (10)
K2—W1i3.775 (4)
O3i—K1—O5ii112.6 (3)O12—W1—K2i49.0 (3)
O3i—K1—O1iii79.3 (3)O10xi—W1—K2i130.3 (3)
O5ii—K1—O1iii78.0 (3)O9x—W1—K2i143.4 (3)
O3i—K1—O5iii125.5 (3)O1—W1—K2i116.2 (3)
O5ii—K1—O5iii81.0 (3)O2—W1—K2ii68.2 (4)
O1iii—K1—O5iii51.1 (3)O7x—W1—K2ii137.1 (4)
O3i—K1—O857.2 (3)O12—W1—K2ii125.4 (3)
O5ii—K1—O856.1 (3)O10xi—W1—K2ii42.7 (3)
O1iii—K1—O876.8 (3)O9x—W1—K2ii53.0 (3)
O5iii—K1—O8118.8 (3)O1—W1—K2ii105.6 (3)
O3i—K1—O4iv108.8 (3)K2i—W1—K2ii137.13 (9)
O5ii—K1—O4iv67.2 (3)O2—W1—K2xiv26.6 (3)
O1iii—K1—O4iv144.7 (3)O7x—W1—K2xiv76.9 (3)
O5iii—K1—O4iv124.4 (3)O12—W1—K2xiv119.5 (3)
O8—K1—O4iv79.5 (3)O10xi—W1—K2xiv111.4 (3)
O3i—K1—O3iii81.0 (3)O9x—W1—K2xiv74.1 (3)
O5ii—K1—O3iii124.9 (3)O1—W1—K2xiv145.5 (3)
O1iii—K1—O3iii51.3 (3)K2i—W1—K2xiv77.64 (8)
O5iii—K1—O3iii52.3 (2)K2ii—W1—K2xiv73.29 (8)
O8—K1—O3iii118.9 (3)O4—W2—O898.3 (4)
O4iv—K1—O3iii161.2 (3)O4—W2—O10xii99.8 (5)
O3i—K1—O6iv66.2 (3)O8—W2—O10xii95.6 (4)
O5ii—K1—O6iv109.6 (3)O4—W2—O794.6 (5)
O1iii—K1—O6iv145.0 (3)O8—W2—O788.4 (4)
O5iii—K1—O6iv160.9 (3)O10xii—W2—O7164.3 (5)
O8—K1—O6iv79.9 (3)O4—W2—O11xii93.2 (4)
O4iv—K1—O6iv51.6 (3)O8—W2—O11xii166.7 (4)
O3iii—K1—O6iv124.0 (3)O10xii—W2—O11xii88.9 (4)
O3i—K1—Seiii95.2 (2)O7—W2—O11xii84.0 (4)
O5ii—K1—Seiii94.6 (2)O4—W2—O3i172.6 (4)
O1iii—K1—Seiii29.60 (19)O8—W2—O3i86.2 (4)
O5iii—K1—Seiii30.4 (2)O10xii—W2—O3i85.5 (4)
O8—K1—Seiii106.4 (2)O7—W2—O3i79.6 (4)
O4iv—K1—Seiii153.9 (2)O11xii—W2—O3i81.6 (4)
O3iii—K1—Seiii30.43 (19)O4—W2—K2xv105.4 (4)
O6iv—K1—Seiii153.6 (2)O8—W2—K2xv48.1 (3)
O3i—K1—Seii130.7 (3)O10xii—W2—K2xv47.6 (3)
O5ii—K1—Seii24.1 (2)O7—W2—K2xv133.7 (3)
O1iii—K1—Seii97.7 (2)O11xii—W2—K2xv134.4 (3)
O5iii—K1—Seii82.7 (2)O3i—W2—K2xv82.0 (3)
O8—K1—Seii74.0 (2)O4—W2—K1142.1 (3)
O4iv—K1—Seii50.4 (2)O8—W2—K146.7 (3)
O3iii—K1—Seii134.5 (2)O10xii—W2—K198.2 (3)
O6iv—K1—Seii100.5 (2)O7—W2—K173.6 (3)
Seiii—K1—Seii105.89 (9)O11xii—W2—K1120.3 (3)
O3i—K1—Sei23.8 (2)O3i—W2—K140.7 (3)
O5ii—K1—Sei131.1 (2)K2xv—W2—K164.86 (8)
O1iii—K1—Sei98.5 (2)O4—W2—K1xv40.9 (4)
O5iii—K1—Sei134.1 (2)O8—W2—K1xv76.3 (3)
O8—K1—Sei75.4 (2)O10xii—W2—K1xv68.4 (3)
O4iv—K1—Sei100.3 (2)O7—W2—K1xv127.3 (3)
O3iii—K1—Sei82.19 (19)O11xii—W2—K1xv117.0 (3)
O6iv—K1—Sei50.05 (19)O3i—W2—K1xv146.4 (3)
Seiii—K1—Sei105.76 (9)K2xv—W2—K1xv64.97 (7)
Seii—K1—Sei140.87 (10)K1—W2—K1xv120.66 (4)
O3i—K1—W231.2 (2)O6—W3—O11100.1 (4)
O5ii—K1—W281.4 (2)O6—W3—O9100.1 (5)
O1iii—K1—W271.7 (2)O11—W3—O997.5 (5)
O5iii—K1—W2122.4 (2)O6—W3—O12xiii91.8 (5)
O8—K1—W226.7 (2)O11—W3—O12xiii89.3 (4)
O4iv—K1—W297.2 (2)O9—W3—O12xiii165.0 (4)
O3iii—K1—W298.9 (2)O6—W3—O891.8 (4)
O6iv—K1—W275.8 (2)O11—W3—O8165.4 (4)
Seiii—K1—W298.21 (8)O9—W3—O888.6 (4)
Seii—K1—W2100.71 (8)O12xiii—W3—O881.8 (4)
Sei—K1—W252.29 (5)O6—W3—O5ii171.1 (4)
O2v—K2—O6vi84.1 (3)O11—W3—O5ii86.1 (4)
O2v—K2—O4vi82.2 (3)O9—W3—O5ii85.3 (4)
O6vi—K2—O4vi57.1 (3)O12xiii—W3—O5ii81.8 (4)
O2v—K2—O10vii129.3 (4)O8—W3—O5ii81.2 (4)
O6vi—K2—O10vii81.2 (3)O6—W3—K1135.8 (3)
O4vi—K2—O10vii126.1 (3)O11—W3—K1124.0 (3)
O2v—K2—O8iv168.0 (3)O9—W3—K173.4 (3)
O6vi—K2—O8iv87.8 (3)O12xiii—W3—K191.6 (3)
O4vi—K2—O8iv85.9 (3)O8—W3—K145.4 (2)
O10vii—K2—O8iv57.6 (3)O5ii—W3—K138.9 (3)
O2v—K2—O12i124.7 (4)O6—W3—K2xv95.1 (4)
O6vi—K2—O12i126.0 (3)O11—W3—K2xv129.0 (3)
O4vi—K2—O12i80.6 (3)O9—W3—K2xv127.2 (3)
O10vii—K2—O12i102.8 (3)O12xiii—W3—K2xv41.6 (3)
O8iv—K2—O12i54.6 (3)O8—W3—K2xv40.4 (3)
O2v—K2—O9viii88.4 (3)O5ii—W3—K2xv75.9 (3)
O6vi—K2—O9viii106.9 (3)K1—W3—K2xv61.03 (7)
O4vi—K2—O9viii162.1 (3)O6—W3—K2viii88.1 (4)
O10vii—K2—O9viii51.2 (3)O11—W3—K2viii54.1 (3)
O8iv—K2—O9viii102.5 (3)O9—W3—K2viii47.8 (3)
O12i—K2—O9viii117.2 (3)O12xiii—W3—K2viii142.7 (3)
O2v—K2—O7ix84.6 (3)O8—W3—K2viii135.5 (3)
O6vi—K2—O7ix161.5 (3)O5ii—W3—K2viii100.7 (3)
O4vi—K2—O7ix106.7 (3)K1—W3—K2viii113.79 (7)
O10vii—K2—O7ix117.3 (3)K2xv—W3—K2viii174.68 (8)
O8iv—K2—O7ix100.8 (3)O1—Se—O596.1 (5)
O12i—K2—O7ix51.9 (3)O1—Se—O397.5 (5)
O9viii—K2—O7ix87.4 (3)O5—Se—O3100.4 (4)
O2v—K2—O11viii63.4 (3)O1—Se—K1x57.7 (3)
O6vi—K2—O11viii137.0 (3)O5—Se—K1x61.4 (3)
O4vi—K2—O11viii135.9 (3)O3—Se—K1x62.7 (4)
O10vii—K2—O11viii97.6 (3)O1—Se—K1ii71.1 (3)
O8iv—K2—O11viii127.9 (3)O5—Se—K1ii40.5 (3)
O12i—K2—O11viii96.4 (3)O3—Se—K1ii133.7 (4)
O9viii—K2—O11viii48.8 (3)K1x—Se—K1ii74.10 (9)
O7ix—K2—O11viii46.8 (3)O1—Se—K1i72.8 (3)
O2v—K2—W2iv156.5 (3)O5—Se—K1i132.1 (4)
O6vi—K2—W2iv82.8 (2)O3—Se—K1i39.3 (3)
O4vi—K2—W2iv106.6 (2)K1x—Se—K1i74.24 (9)
O10vii—K2—W2iv28.8 (2)K1ii—Se—K1i140.87 (10)
O8iv—K2—W2iv28.8 (2)Se—O1—W1141.0 (6)
O12i—K2—W2iv78.7 (2)Se—O1—K1x92.7 (4)
O9viii—K2—W2iv76.9 (2)W1—O1—K1x125.8 (4)
O7ix—K2—W2iv112.5 (2)W1—O2—K2xiv136.4 (5)
O11viii—K2—W2iv115.99 (18)Se—O3—W2i123.4 (5)
O2v—K2—W1i97.2 (3)Se—O3—K1i116.9 (5)
O6vi—K2—W1i139.0 (2)W2i—O3—K1i108.1 (4)
O4vi—K2—W1i82.3 (2)Se—O3—K1x86.8 (4)
O10vii—K2—W1i124.7 (2)W2i—O3—K1x118.7 (4)
O8iv—K2—W1i83.2 (2)K1i—O3—K1x99.0 (3)
O12i—K2—W1i28.6 (2)W2—O4—K2xvi139.1 (5)
O9viii—K2—W1i114.1 (2)W2—O4—K1xv117.3 (5)
O7ix—K2—W1i29.32 (19)K2xvi—O4—K1xv90.3 (3)
O11viii—K2—W1i76.0 (2)Se—O5—W3ii124.5 (5)
W2iv—K2—W1i105.51 (8)Se—O5—K1ii115.3 (5)
O2v—K2—W1ii101.5 (3)W3ii—O5—K1ii111.7 (4)
O6vi—K2—W1ii81.5 (2)Se—O5—K1x88.2 (4)
O4vi—K2—W1ii138.0 (2)W3ii—O5—K1x112.0 (4)
O10vii—K2—W1ii28.4 (2)K1ii—O5—K1x99.0 (3)
O8iv—K2—W1ii85.9 (2)W3—O6—K2xvi134.9 (6)
O12i—K2—W1ii125.5 (2)W3—O6—K1xv125.9 (5)
O9viii—K2—W1ii30.0 (2)K2xvi—O6—K1xv90.0 (3)
O7ix—K2—W1ii115.2 (2)W1iii—O7—W2146.6 (6)
O11viii—K2—W1ii78.6 (2)W1iii—O7—K2ix89.2 (4)
W2iv—K2—W1ii57.20 (5)W2—O7—K2ix113.7 (4)
W1i—K2—W1ii137.13 (9)W2—O8—W3131.3 (5)
O2—W1—O7x96.6 (5)W2—O8—K2xv103.1 (4)
O2—W1—O12100.1 (5)W3—O8—K2xv112.3 (4)
O7x—W1—O1296.1 (4)W2—O8—K1106.6 (4)
O2—W1—O10xi95.0 (5)W3—O8—K1106.0 (3)
O7x—W1—O10xi166.0 (5)K2xv—O8—K189.6 (3)
O12—W1—O10xi89.5 (4)W3—O9—W1iii145.8 (6)
O2—W1—O9x91.8 (5)W3—O9—K2viii107.3 (4)
O7x—W1—O9x89.5 (4)W1iii—O9—K2viii96.9 (4)
O12—W1—O9x166.1 (4)W2xvii—O10—W1xiii147.4 (6)
O10xi—W1—O9x82.3 (4)W2xvii—O10—K2xviii103.6 (4)
O2—W1—O1169.9 (4)W1xiii—O10—K2xviii109.0 (4)
O7x—W1—O182.7 (4)W3—O11—W2xvii149.4 (5)
O12—W1—O189.9 (4)W3—O11—K2viii100.2 (4)
O10xi—W1—O184.4 (4)W2xvii—O11—K2viii109.0 (4)
O9x—W1—O178.2 (4)W1—O12—W3xi146.7 (5)
O2—W1—K2i71.7 (4)W1—O12—K2i102.4 (4)
O7x—W1—K2i61.4 (3)W3xi—O12—K2i110.9 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y, z+1; (iv) x+1/2, y1/2, z+3/2; (v) x, y1, z+1; (vi) x, y1, z; (vii) x+3/2, y1/2, z+3/2; (viii) x+1, y+1, z+2; (ix) x, y+1, z+2; (x) x, y, z1; (xi) x1/2, y+3/2, z1/2; (xii) x1, y, z; (xiii) x+1/2, y+3/2, z+1/2; (xiv) x, y+1, z1; (xv) x+1/2, y+1/2, z+3/2; (xvi) x, y+1, z; (xvii) x+1, y, z; (xviii) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

Miss Rintu Robert helped immensely by redoing the single-crystal X-ray structure determinations and some of the crystal growth experiments. We thank Mrs S. Srividya and Mr V. Ramkumar of the Department of Chemistry for the powder and single-crystal X-ray data collection, respectively. The X-ray powder diffractometer in the Department of Chemistry of the IIT Madras was purchased with financial assistance, received under the FIST scheme (SR/FST/CSI-158/2007), from the SERC Division of the Department of Science and Technology, Ministry of Science and Technology, Government of India. We thank the Departments of Chemistry, Physics and SAIF of the IIT Madras for the powder and single-crystal X-ray data, SEM, EDXA and thermal studies.

References

First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChang, H. Y., Kim, S. W. & Halasyamani, P. S. (2010). Chem. Mater. 22, 3241–3250.  CrossRef ICSD CAS Google Scholar
First citationDussack, L. L., Harrison, W. T. A. & Jacobson, A. J. (1996). Mater. Res. Bull. 31, 249–255.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGaly, J., Meunier, G., Andersson, S. & Åström, A. (1975). J. Solid State Chem. 13, 142–159.  CrossRef CAS Web of Science Google Scholar
First citationGoodey, J., Min Ok, K., Broussard, J., Hofmann, C., Escobedo, F. V. & Halasyamani, P. S. (2003). J. Solid State Chem. 175, 3–12.  CrossRef ICSD CAS Google Scholar
First citationHalasyamani, P. S. (2004). Chem. Mater. 16, 3586–3592.  Web of Science CrossRef CAS Google Scholar
First citationHalasyamani, P. S. & Poeppelmeier, K. R. (1998). Chem. Mater. 10, 2753–2769.  Web of Science CrossRef CAS Google Scholar
First citationHarrison, W. T. A., Dussack, L. L. & Jacobson, A. J. (1994). Inorg. Chem. 33, 6043–6049.  CrossRef ICSD CAS Google Scholar
First citationHarrison, W. T. A., Dussack, L. L., Vogt, T. & Jacobson, A. J. (1995). J. Solid State Chem. 120, 112–120.  CrossRef ICSD CAS Google Scholar
First citationHuang, Y., Chen, X. & Qin, J. (2014a). Faming Zhuanli Shenqing 1–8.  Google Scholar
First citationHuang, Y., Meng, X. & Qin, J. (2014b). Chin. J. Inorg. Chem. 30, 179–184.  CAS Google Scholar
First citationKim, Y. H., Lee, D. W. & Ok, K. M. (2014). Inorg. Chem. 53, 1250–1256.  CrossRef ICSD CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKubelka, F. & Munk, P. (1931). Z. Tech. Phys. 12, 593–601.  Google Scholar
First citationLing, J. & Albrecht-Schmitt, T. E. (2007). J. Solid State Chem. 180, 1601–1607.  CrossRef ICSD CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaggard, P. A., Nault, T. S., Stern, C. L. & Poeppelmeier, K. R. (2003). J. Solid State Chem. 175, 27–33.  Web of Science CrossRef ICSD CAS Google Scholar
First citationNguyen, S. D. & Halasyamani, P. S. (2013). Inorg. Chem. 52, 2637–2647.  CrossRef ICSD CAS PubMed Google Scholar
First citationOh, S. J., Lim, S. J., You, T. S. & Ok, K. M. (2018). Chem. Eur. J. 24, 6712–6716.  CSD CrossRef CAS PubMed Google Scholar
First citationOk, K. M. & Halasyamani, P. S. (2005). Inorg. Chem. 44, 3919–3925.  CrossRef ICSD PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPennington, W. T. (1999). J. Appl. Cryst. 32, 1028–1029.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVidyavathy Balraj, V. & Vidyasagar, K. (1998). Inorg. Chem. 37, 4764–4774.  PubMed Google Scholar
First citationZhao, P., Cong, H., Tian, X., Sun, Y., Zhang, C., Xia, S., Gao, Z. & Tao, X. (2015). Cryst. Growth Des. 15, 4484–4489.  CrossRef ICSD Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds