research communications
Structural characterization of quaternary selenites of tungsten(VI), A2W3SeO12 (A = NH4, Cs, Rb, K or Tl)
aDepartment of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
*Correspondence e-mail: kvsagar@iitm.ac.in
The quaternary A2W3SeO12 (A = NH4, Cs, Rb, K or Tl) selenites have been prepared in the form of single crystals by hydrothermal and novel solid-state reactions. They were characterized by X-ray diffraction, thermal and spectroscopic studies. All of them have a hexagonal tungsten oxide (HTO) related [W3SeO12]2− anionic framework with pyramidally coordinated Se4+ ions. The known A2W3SeO12 (A = NH4, Cs or Rb) compounds are isostructural with the Cs2W3TeO12 compound and have a non-centrosymmetric layered structure containing intra-layer Se—O bonds. The new compound K2W3SeO12(α) is isostructural with the K2W3TeO12 compound and has a centrosymmetric three-dimensional structure containing interlayer Se—O bonds. It is inferred that the new Tl2W3SeO12 compound has the same three-dimensional structure as K2W3SeO12(α).
Keywords: single-crystal X-ray structure; quaternary selenite; tungsten.
1. Chemical context
Non-centrosymmetric (NCS) compounds are widely studied as they have potentially useful symmetry-dependent properties such as ). Many crystalline selenites and tellurites containing d0 transition-metal ions such as V5+, Mo6+, W6+ are non-centrosymmetric compounds. The solid-state chemistry of these oxides is interesting from the point of view of both structural diversity and second harmonic generation (SHG) activity. They have two types of second-order Jahn–Teller (SOJT) distortion. One is the distorted octahedral coordination of the d0 transition-metal ion and the other is pyramidal, disphenoidal and square-pyramidal coordinations of Se4+ and Te4+, which have stereoactive lone pairs. Both SOJT distortions lead to acentric coordination environments that are conducive for NCS structures (Halasyamani 2004). For example, Cs2Mo3TeO12 (Vidyavathy Balraj & Vidyasagar, 1998) and YVSe2O8 (Kim et al., 2014) have non-centrosymmetric layered structures with these SOJT distortions and exhibit SHG activity. It needs to be mentioned that quaternary selenites and tellurites containing d0 transition-metal ions, such as YVTe2O8 (Kim et al., 2014), are also known to have centrosymmetric structures and exhibit no SHG activity.
ferroelectricity and second-order non-linear optical (NLO) behaviour (Halasyamani & Poeppelmeier 1998A2Mo3SeO12 (A = NH4, Cs, Rb, Tl) (Harrison et al., 1994; Dussack et al., 1996; Chang et al., 2010), A2W3SeO12 (A = NH4, Cs, Rb, K) (Harrison et al., 1995; Huang et al., 2014a,b) and Na2W3SeO12·2H2O (Nguyen & Halasyamani 2013), A2Mo3TeO12 (A = Cs, NH4) (Vidyavathy Balraj & Vidyasagar 1998), A2W3TeO12 (A = K, Rb and Cs) (Goodey et al., 2003; Zhao et al., 2015) are the 14 quaternary selenites and tellurites of hexavalent molybdenum and tungsten that have hexagonal tungsten oxide (HTO) related [M3XO12]2− (M = Mo, W; X = Se, Te) anionic frameworks with pyramidally coordinated Se4+ and Te4+ ions. The single-crystal X-ray structures were determined for all except for the A2W3SeO12 (A = NH4, Cs, Rb) compounds, which were synthesized in polycrystalline form by the hydrothermal method; the structures of the (NH4)2W3SeO12 and Cs2W3SeO12 compounds were determined by powder neutron diffraction (Harrison et al., 1995). K2W3TeO12 has a centrosymmetric three-dimensional structure (Goodey et al., 2003), whereas all of the others exhibit a non-centrosymmetric two-dimensional structure and show SHG response. It is noteworthy that the tellurites were synthesized by both hydrothermal and solid-state reactions, whereas the selenites were synthesized only by the hydrothermal method.
Ag2Mo3SeO12 (Ling & Albrecht-Schmitt 2007), Li2Mo3TeO12 (Oh et al., 2018) and A4Mo6Te2O24·6H2O (A = Rb, K) (Vidyavathy Balraj & Vidyasagar 1998) compounds are quaternary selenite and tellurites of molybdenum, whose [Mo3XO12]2− (X = Se, Te) anionic framework structures are not related to HTO. They have centrosymmetric layered and zero-dimensional structures and contain pyramidally coordinated Se4+ and pyramidally and disphenoidally coordinated Te4+ ions.
In this context, the structural characterization of new and known quaternary A2W3SeO12 (A = NH4, Cs, Rb, K, Tl) selenites of tungsten(VI) by single-crystal X-ray diffraction was considered necessary for their complete structural study and, therefore, was undertaken. This report is concerned with crystal growth by solid-state reactions and structural characterization of the known compounds A2W3SeO12 [A = NH4 (1), Cs (2) and Rb (3)] and new compounds K2W3SeO12 (4α) and Tl2W3SeO12 (5).
2. Structural commentary
The structures of compounds 1–5 are of two types, which contain a hexagonal tungsten oxide (HTO) related [W3SeO12]2− anionic framework. (NH4)2W3SeO12 (1), Cs2W3SeO12 (2) and Rb2W3SeO12 (3) crystallize in the P63 and have the structure of Cs2W3TeO12 (Zhao et al., 2015). They contain ammonium/caesium/rubidium ions between non-centrosymmetric HTO-related [W3SeO12]2− layers, which have only intra-layer type Se—O bonds. The configuration of the rubidium compound (3) is the inverse of that of the ammonium (1) and caesium (2) compounds.
As an illustrative example, the structure of Rb2W3SeO12 (3) is discussed. Its content of Rb2/3WTe1/3O4 has two, one, one and four crystallographically distinct rubidium, tungsten, selenium and oxygen atoms, respectively. The tungsten atom is octahedrally coordinated to the apical O1 and O2 atoms and two each of equatorial O3 and O4 atoms (Fig. 1). The WO6 octahedron resides near the threefold rotation axis located at the Wyckoff site 2a and shares its two cis O3 equatorial oxygen atoms with two such octahedra to form a W3O15 moiety. Such trinuclear moieties are connected to one another through sharing of equatorial O4 atoms, forming a hexagonal–tungsten–oxide (HTO) layer of composition WO4 or W3O12. In other words, the HTO layer of WO4 is formed from the sharing of four equatorial O3 and O4 atoms of every WO6 octahedron with four such octahedra. The HTO layer of WO4 has three-ring holes made of either O3 or O4 atoms and six-ring holes made of alternating O3 and O4 atoms. The selenium atom resides on a threefold rotation axis located at the 2a site and has a pyramidal coordination of C3V symmetry, with three equivalent Se—O1 bonds. Thus, only three-ring holes of O3 are capped on one side of the layer, by bonding of the selenium atom to apical O1 oxygen atoms, to give rise to an asymmetric (W3SeO12)2− layer. These layers are stacked, as shown in Fig. 1, along the crystallographic c-axis direction in the ABAB… fashion because adjacent layers are rotated with respect to each other such that the six-ring hole of one layer is above the uncapped three-ring hole of the next layer. As the other apical oxygen O2 atoms are not bonded to selenium, the Se—O bonding is described as intra-layer bonding and, therefore, the structure is two-dimensional. The pyramidal SeO3 moieties and the lone-pair of electrons of Se4+ are respectively parallel and perpendicular to the HTO layers of WO4. The selenites 1–5 of the present study are found to contain the same staggered stacking of the HTO-related WO4 layers.
K2W3SeO12 (β) was reported (Huang et al., 2014a,b) to be obtained under hydrothermal conditions and found to contain similar non-centrosymmetric HTO-related [W3SeO12]2− layers with intra-layer Se—O bonds. On the other hand, K2W3SeO12 (4α) of the present study was prepared by solid-state reaction and is isostructural with the reported K2W3TeO12 (Goodey et al., 2003). Its centrosymmetric, three-dimensional HTO-related [W3SeO12]2− framework contains inter-layer Se—O bonds (Fig. 2) and its has one formula unit. The three W1—W3 atoms are octahedrally coordinated to six apical O1–O6 and six equatorial O7–O12 oxygen atoms. The three WO6 octahedra in the trinuclear W1W2W3O15 moieties share equatorial O7–O9 oxygen atoms and these moieties are connected to one another through the other equatorial O10–O12 oxygen atoms to form the WO4 layer. The Se atom forms interlayer Se—O bonds, by bonding to the apical O7, O10 and O12 oxygen atoms of W1W2W3O15 moieties of adjacent HTO layers (Fig. 2) and thus the [W3SeO12]2− framework is three-dimensional in nature.
Tl2W3SeO12 (5) has an orthorhombic with ao = 11.5962 (10) Å, bo = 12.7206 (5) Å and co = 7.2362 (9) Å. The structure refinements in the non-centrosymmetric Pna21 and centrosymmetric Pnam space groups led to the respective structure agreement factor values of 6.37% and 15.98%; the structure refinements were unsatisfactory, mostly due to X-ray absorption. Its single crystal X-ray structure solution model is found to be same as the three-dimensional structure of K2W3SeO12 (4α) and its observed powder XRD pattern (Figure S1b in the supporting information) agrees reasonably with the one simulated on the basis of this model structure. Moreover, the powder XRD patterns and unit-cell parameters of these two compounds are similar. The orthorhombic unit-cell parameters of the thallium (5) compound are related to the monoclinic unit-cell parameters of the potassium (4α) compound as follows: ao ≃ bm, bo ≃ cm, co ≃ am and αo = 90° ≃ βm. The single-crystal X-ray data for the thallium compound (5) in the centrosymmetric P21/n corresponding to the potassium compound (4α), led to the same structure model and a high value of 19.18% for the structure-agreement factor. It is inferred from these observations that the Tl2W3SeO12 compound (5) has the same three-dimensional structure as K2W3SeO12 (4α).
In the structurally characterized compounds 1–4α of the present study, the WO6 octahedra have C3 distortion as three W—O bonds are <1.9 Å long and their three trans W—O bonds are >1.9 Å long; the values of WO6 intraoctahedral distortions (Halasyamani 2004), Δd, are calculated to be in the 0.73–0.86 range (Table S1). The Se4+ ions have pyramidal coordination. The W—O and Se—O bond-length values are in the 1.703 (17)–2.184 (9) Å and 1.695 (10)–1.739 (10) Å ranges, respectively. The ammonium and alkali metal ions are found to be six- to nine-coordinated (Figure S2), when the cut-off value of 3.6 Å is considered for N⋯O non-bonding distances and A—O bond lengths. The calculated values (Brese & O'Keeffe 1991) of bond-valence sums for W6+, Se4+ and monovalent alkali metal ions are in the 6.079–6.283, 3.807–3.975 and 0.060–1.275 ranges, respectively. The respective values of 3.210, 3.322 and 3.207 Å for the shortest interlayer O⋯O non-bonding distances of compounds 1–3 with intra-layer Se—O bonds are significantly higher than the corresponding value of 2.563 Å for compound 4α with interlayer Se—O bonds.
The net 6 and SeO3 polyhedra were calculated by vector summation of the dipole moments (Maggard et al., 2003; Ok & Halasyamani 2005; Galy et al., 1975) of six W—O bonds and three Se—O bonds and found to be in the 0.79–1.85 D and 5.73–9.13 D ranges, respectively (Tables S1–S3). The net dipole for the WO6 octahedron points towards the triangular face of three oxygen atoms with W—O bonds >1.9 Å long, whereas the net dipoles for the SeO3 polyhedra point opposite to the lone pair of electrons of selenium. In compounds 1–3, as shown for Rb2W3SeO12 (3) in Fig. 1, the intra-layer SeO3 dipole is oriented along the c-axis direction and perpendicular to the HTO layer. For the WO6 octahedra, the net components along the a and b axes cancel one another, whereas the c-axis component is antiparallel and additive to the net of pyramidal SeO3. In the case of centrosymmetric three-dimensional K2W3SeO12 (4α), as shown in Fig. 2, the net dipole moments of the WO6 and SeO3 polyhedra macroscopically cancel one another and result in a zero net dipole moment.
values for the WOThe solid state UV–Visible absorption spectra (Fig. 3) of compounds 1–5 reveal that their band gap values are in the range 2.7–3.5 eV (Kubelka & Munk, 1931). The additional observed for the Tl2W3SeO12 compound (5) corresponds to band gap value of 2.0 eV. When compared to Cs2W3SeO12 (2), the corresponding Cs2W3TeO12 tellurite (Zhao et al., 2015) has a lower band gap of 2.89 eV.
Rb2W3SeO12 (3), K2W3SeO12 (4α) and Tl2W3SeO12 (5) undergo thermal decompositions and give rise to endothermic peaks at ∼600, ∼575 and ∼575°C and their respective observed weight losses of 10.0%, 12.3% and 9.0% compare well with those calculated for the loss of SeO2 (Figure S3). The other endothermic peaks at ∼850 and 750°C could not be assigned. It was reported (Harrison et al., 1995) that a similar thermal loss of SeO2 occurs in a single step between 500 and 600°C for Cs2W3SeO12 (2) and in two steps at 350 and 450°C for (NH4)2W3SeO12 (1). When compared to the tungsten selenites 1–5, analogous A2W3TeO12 (A = K, Rb, Cs) tellurites of tungsten (Goodey et al., 2003; Zhao et al., 2015) and A2Mo3SeO12 (A = Rb, Tl) selenites of molybdenum (Chang et al., 2010) undergo single-step thermal decomposition at higher and lower temperatures of >700 and 300°C, respectively.
3. Syntheses and crystallization
Cs2CO3 (Alfa Aesar), Rb2CO3 (Alfa Aesar), TlNO3 (Sigma Aldrich), H2WO4 (Sigma Aldrich), SeO2 (Sigma Aldrich), NH4Cl (Sarabhai M Chemicals) of >99% purity, NH4OH (Fischer Scientific) of 25% dilution, WO3 and Tl2WO4 were used for the synthesis and crystal growth of compounds 1–5. WO3 was obtained by heating H2WO4 in the open air. Tl2WO4 was prepared by heating a stoichiometric mixture of TlNO3 and H2WO4. Teflon-lined stainless steel acid digestion vessels of 23 mL capacity were employed for the hydrothermal reactions.
The reactants and their quantities, the temperature and duration of heating and the yields of products for the synthesis and crystal growth of compounds 1–5 are presented in Table S4. The ammonium compound (1) was synthesized by the hydrothermal method, with or without NH4Cl as mineralizer. The other four compounds (2–5) were obtained by solid-state reactions. The reactant mixtures were heated first in the open air and later in evacuated sealed silica ampoules. After the reaction, the solid product contents were washed with water to dissolve away the excess SeO2.
The hydrothermal and solid-state synthetic methods enabled the growth and isolation of single crystals of compounds 1–5. The utilization of excess SeO2 as in the novel solid-state synthetic procedure facilitated the growth of single crystals of compounds 2–5. The powder XRD patterns of compounds 1–5 are presented in Figures S1a and S1b. (NH4)2W3SeO12 (1), Rb2W3SeO12 (3) and Tl2W3SeO12 (5) were obtained as homogeneous phases, as their observed powder XRD patterns compare reasonably well with the simulated ones. The powder XRD patterns of Cs2W3SeO12 (2), Rb2W3SeO12 (3) and K2W3SeO12 (4α) contained two or three additional reflections of <10% intensity due to WO3 or an unidentified phase; however, the homogeneous polycrystalline sample of Rb2W3SeO12 (3) could be obtained (Figure S1b), under a different set of solid-state synthetic conditions mentioned in Table S4. Cs2W3SeO12 (2) was prepared in polycrystalline form by the reported hydrothermal method (Harrison et al., 1995). It is evident from the scanning electron micrographs (Figure S4) that crystallites of compounds 1 and 2 have a hexagonal prism shape and compounds 3–5 have block-shaped morphologies. The EDXA analyses confirmed the expected ratios of metal contents for all compounds 1–5.
4. Refinement
Crystal data, data collection and structure . The crystals of the ammonium (1) and rubidium (3) compounds are twinned by (Spek 2020) by the [−1 0 0 1 1 0 0 0 − 1] and [1 0 0 − 1 −1 0 0 0 − 1] twin laws and their twinned lattices are generated through twofold rotation of the primary lattices about the [120] direction and the b axis, respectively. The crystal of the potassium (4α) compound is twinned by pseudo-merohedry (Spek 2020) by the [−1 0 0 0 − 1 0 0 0 1] and the twinned lattice is generated through twofold rotation of the primary lattice about the c axis, as the value of the β angle of its monoclinic system is very close to 90°. The respective values of refined batch scale factor for the ammonium (1), rubidium (3) and potassium (4α) compounds are 0.029, 0.192 and 0.385. The hydrogen atoms of the NH4+ ions in the ammonium compound (1) were not located in the difference-Fourier maps but are included in the formula. The final difference-Fourier maps did not show any chemically significant features and the Fourier difference peaks with an electron density of >1 e Å−3 were found to be ghosts. No reasonable structure solutions and refinements in the centrosymmetric P63/m were found for compounds 1–3.
details are summarized in Table 1The powder X-ray diffraction (XRD) patterns of compounds 1–5 were recorded on a Bruker D8 Advanced powder X-ray diffractometer using Cu Kα (λ = 1.5418 Å) radiation. The monophasic nature of each of these compounds was verified by comparing their powder XRD patterns with those simulated, using Mercury (Macrae et al., 2020), on the basis of their single crystal X-ray structures.
Supporting information
https://doi.org/10.1107/S2056989021002735/ru2074sup1.cif
contains datablocks global, NH42W3SeO121, Cs2W3SeO122, Rb2W3SeO123, K2W3SeO124. DOI:Structure factors: contains datablock NH42W3SeO121. DOI: https://doi.org/10.1107/S2056989021002735/ru2074NH42W3SeO121sup2.hkl
Structure factors: contains datablock Cs2W3SeO122. DOI: https://doi.org/10.1107/S2056989021002735/ru2074Cs2W3SeO122sup3.hkl
Structure factors: contains datablock Rb2W3SeO123. DOI: https://doi.org/10.1107/S2056989021002735/ru2074Rb2W3SeO123sup4.hkl
Structure factors: contains datablock K2W3SeO124. DOI: https://doi.org/10.1107/S2056989021002735/ru2074K2W3SeO124sup5.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989021002735/ru2074sup6.pdf
Rietveld powder data: contains datablock NH42W3SeO121. DOI: https://doi.org/10.1107/S2056989021002735/ru2074NH42W3SeO121sup7.rtv
Rietveld powder data: contains datablock Cs2W3SeO122. DOI: https://doi.org/10.1107/S2056989021002735/ru2074Cs2W3SeO122sup8.rtv
Rietveld powder data: contains datablock Rb2W3SeO123. DOI: https://doi.org/10.1107/S2056989021002735/ru2074Rb2W3SeO123sup9.rtv
Rietveld powder data: contains datablock K2W3SeO124. DOI: https://doi.org/10.1107/S2056989021002735/ru2074K2W3SeO124sup10.rtv
For all structures, data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004). Program(s) used to solve structure: SHELXT2013 (Sheldrick, 2015a) for NH42W3SeO121; SHELXT2014/7 (Sheldrick, 2015a) for Cs2W3SeO122, Rb2W3SeO123, K2W3SeO124. Program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015b) for NH42W3SeO121; SHELXL2014/7 (Sheldrick, 2015b) for Cs2W3SeO122, K2W3SeO124; SHELXL2018/3 (Sheldrick, 2015b) for Rb2W3SeO123. For all structures, molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Pennington, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).(NH4)2W3SeO12 | Dx = 5.184 Mg m−3 |
Mr = 858.59 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P63 | Cell parameters from 7856 reflections |
a = 7.2303 (3) Å | θ = 3.3–30.4° |
c = 12.1491 (5) Å | µ = 34.67 mm−1 |
V = 550.03 (5) Å3 | T = 297 K |
Z = 2 | Block, colourless |
F(000) = 748 | 0.10 × 0.10 × 0.05 mm |
Bruker APEXII CCD diffractometer | 1069 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.049 |
φ and ω scans | θmax = 30.0°, θmin = 3.4° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −10→10 |
Tmin = 0.129, Tmax = 0.276 | k = −10→10 |
14419 measured reflections | l = −17→17 |
1079 independent reflections |
Refinement on F2 | w = 1/[σ2(Fo2) + (0.0097P)2 + 8.3615P] where P = (Fo2 + 2Fc2)/3 |
Least-squares matrix: full | (Δ/σ)max < 0.001 |
R[F2 > 2σ(F2)] = 0.023 | Δρmax = 2.63 e Å−3 |
wR(F2) = 0.052 | Δρmin = −2.37 e Å−3 |
S = 1.27 | Extinction correction: SHELXL-2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1079 reflections | Extinction coefficient: 0.0100 (5) |
57 parameters | Absolute structure: Flack x determined using 492 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: 0.015 (13) |
H-atom parameters not defined |
Experimental. Single crystals of compounds 1–5 were obtained along with the polycrystalline sample and the crystals were hand-picked for XRD study and mounted on thin glass fibres with epoxy glue and optically aligned on a Bruker APEXII charge-coupled device X-ray diffractometer using a digital camera. Intensity data were measured at 25 °C using Mo Kα (λ = 0.7103 Å) radiation. APEX II software (Bruker AXS) was used for preliminary determination of the cell constants and data collection control. The determination of integral intensities and global refinement were performed using SAINT-plus (Bruker AXS). A semi-empirical absorption correction was subsequently applied using SADABS. Space group determination, structure solution and least-squares refinement were carried out using SHELXTL (Sheldrick 2008) program. DIAMOND 3.0 (PENNINGTON 1999) and ORTEP-3 (Farrugia 1997) for windows were the graphic programs employed to draw the structures. The structures were solved by direct methods and refined by full matrix least squares on F2. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a two-component twin |
x | y | z | Uiso*/Ueq | ||
N1 | 0.333333 | 0.666667 | 0.115 (3) | 0.042 (8) | |
N2 | 0.666667 | 0.333333 | 0.237 (2) | 0.025 (5) | |
W | 0.19142 (6) | 0.33979 (5) | 0.40000 (10) | 0.00766 (15) | |
Se | 0.000000 | 0.000000 | 0.16680 (15) | 0.0102 (5) | |
O1 | 0.1264 (15) | 0.2465 (16) | 0.2271 (7) | 0.0134 (17) | |
O2 | 0.4083 (16) | 0.1964 (16) | 0.0370 (8) | 0.0137 (18) | |
O3 | 0.2494 (12) | 0.1188 (12) | 0.4103 (12) | 0.0101 (19) | |
O4 | 0.0850 (15) | 0.5365 (14) | 0.3526 (8) | 0.0111 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.052 (13) | 0.052 (13) | 0.023 (14) | 0.026 (7) | 0.000 | 0.000 |
N2 | 0.025 (8) | 0.025 (8) | 0.024 (12) | 0.012 (4) | 0.000 | 0.000 |
W | 0.0069 (2) | 0.00476 (19) | 0.0108 (2) | 0.00250 (14) | −0.0007 (3) | −0.0006 (3) |
Se | 0.0091 (5) | 0.0091 (5) | 0.0124 (12) | 0.0045 (2) | 0.000 | 0.000 |
O1 | 0.013 (4) | 0.010 (4) | 0.015 (4) | 0.005 (4) | −0.004 (3) | 0.001 (3) |
O2 | 0.010 (4) | 0.013 (5) | 0.016 (4) | 0.004 (4) | −0.001 (3) | 0.002 (3) |
O3 | 0.006 (3) | 0.006 (3) | 0.019 (5) | 0.003 (2) | −0.002 (5) | 0.005 (5) |
O4 | 0.011 (4) | 0.004 (4) | 0.018 (4) | 0.004 (3) | −0.003 (3) | −0.002 (3) |
W—O2i | 1.722 (10) | W—O1 | 2.184 (9) |
W—O3 | 1.848 (8) | Se—O1iii | 1.709 (10) |
W—O4ii | 1.874 (9) | Se—O1 | 1.709 (10) |
W—O3iii | 1.985 (8) | Se—O1iv | 1.709 (10) |
W—O4 | 2.010 (9) | ||
O2i—W—O3 | 99.2 (6) | O3—W—O1 | 84.5 (5) |
O2i—W—O4ii | 99.3 (5) | O4ii—W—O1 | 86.0 (4) |
O3—W—O4ii | 96.7 (4) | O3iii—W—O1 | 80.7 (5) |
O2i—W—O3iii | 93.4 (6) | O4—W—O1 | 81.0 (4) |
O3—W—O3iii | 89.7 (4) | O1iii—Se—O1 | 102.9 (4) |
O4ii—W—O3iii | 164.6 (5) | O1iii—Se—O1iv | 102.9 (4) |
O2i—W—O4 | 94.7 (4) | O1—Se—O1iv | 102.9 (4) |
O3—W—O4 | 164.5 (5) | Se—O1—W | 130.9 (5) |
O4ii—W—O4 | 87.8 (6) | W—O3—Wiv | 149.1 (5) |
O3iii—W—O4 | 82.6 (4) | Wv—O4—W | 132.5 (5) |
O2i—W—O1 | 173.1 (4) |
Symmetry codes: (i) x−y, x, z+1/2; (ii) −y+1, x−y+1, z; (iii) −y, x−y, z; (iv) −x+y, −x, z; (v) −x+y, −x+1, z. |
Cs2W3SeO12 | Dx = 6.323 Mg m−3 |
Mr = 1088.33 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P63 | Cell parameters from 706 reflections |
a = 7.2580 (3) Å | θ = 3.6–26.3° |
c = 12.5291 (5) Å | µ = 39.63 mm−1 |
V = 571.59 (5) Å3 | T = 293 K |
Z = 2 | Block, colourless |
F(000) = 924 | 0.10 × 0.08 × 0.05 mm |
Bruker APEXII CCD diffractometer | 730 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.058 |
phi and ω scans | θmax = 27.2°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −6→8 |
Tmin = 0.110, Tmax = 0.242 | k = −9→9 |
2825 measured reflections | l = −16→14 |
831 independent reflections |
Refinement on F2 | w = 1/[σ2(Fo2)] where P = (Fo2 + 2Fc2)/3 |
Least-squares matrix: full | (Δ/σ)max < 0.001 |
R[F2 > 2σ(F2)] = 0.029 | Δρmax = 1.90 e Å−3 |
wR(F2) = 0.054 | Δρmin = −1.65 e Å−3 |
S = 1.02 | Extinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
831 reflections | Extinction coefficient: 0.0081 (4) |
56 parameters | Absolute structure: Flack x determined using 297 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
13 restraints | Absolute structure parameter: 0.00 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cs1 | 0.333333 | 0.666667 | 0.0902 (2) | 0.0269 (9) | |
Cs2 | 0.666667 | 0.333333 | 0.22953 (19) | 0.0143 (7) | |
W | 0.14949 (10) | 0.33884 (11) | 0.39443 (8) | 0.0056 (2) | |
Se | 0.000000 | 0.000000 | 0.1700 (2) | 0.0058 (7) | |
O1 | 0.125 (2) | 0.250 (2) | 0.2270 (11) | 0.007 (3) | |
O2 | 0.401 (2) | 0.207 (2) | 0.0265 (14) | 0.015 (3) | |
O3 | 0.2495 (18) | 0.1279 (17) | 0.4056 (14) | 0.008 (3) | |
O4 | 0.088 (2) | 0.549 (2) | 0.3529 (11) | 0.010 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cs1 | 0.0277 (13) | 0.0277 (13) | 0.0251 (16) | 0.0139 (6) | 0.000 | 0.000 |
Cs2 | 0.0160 (10) | 0.0160 (10) | 0.0110 (13) | 0.0080 (5) | 0.000 | 0.000 |
W | 0.0048 (4) | 0.0031 (4) | 0.0083 (4) | 0.0016 (3) | 0.0004 (5) | −0.0001 (5) |
Se | 0.0066 (9) | 0.0066 (9) | 0.0042 (18) | 0.0033 (5) | 0.000 | 0.000 |
O1 | 0.013 (8) | 0.004 (7) | 0.002 (6) | 0.004 (7) | 0.000 (6) | −0.001 (6) |
O2 | 0.015 (8) | 0.011 (9) | 0.020 (9) | 0.007 (7) | −0.010 (7) | 0.003 (7) |
O3 | 0.008 (3) | 0.008 (3) | 0.009 (3) | 0.0042 (18) | 0.0001 (14) | −0.0003 (14) |
O4 | 0.009 (3) | 0.009 (3) | 0.010 (3) | 0.0050 (19) | 0.0000 (14) | −0.0001 (14) |
Cs1—O1i | 3.132 (15) | Cs2—O4ii | 3.066 (14) |
Cs1—O1 | 3.132 (15) | Cs2—O3vi | 3.427 (13) |
Cs1—O1ii | 3.132 (15) | Cs2—O3 | 3.427 (13) |
Cs1—O3iii | 3.497 (15) | Cs2—O3vii | 3.427 (13) |
Cs1—O3iv | 3.497 (15) | Cs2—O1vii | 3.667 (13) |
Cs1—O3v | 3.497 (15) | Cs2—O1 | 3.667 (13) |
Cs1—O4i | 3.634 (14) | Cs2—O1vi | 3.667 (13) |
Cs1—O4ii | 3.634 (14) | W—O2x | 1.703 (17) |
Cs1—O4 | 3.634 (14) | W—O3xi | 1.840 (11) |
Cs1—O2i | 3.695 (14) | W—O4 | 1.863 (13) |
Cs1—O2ii | 3.695 (14) | W—O4ii | 2.000 (13) |
Cs1—O2 | 3.695 (14) | W—O3 | 2.000 (10) |
Cs2—O2 | 3.044 (16) | W—O1 | 2.176 (14) |
Cs2—O2vi | 3.044 (16) | Se—O1xi | 1.723 (15) |
Cs2—O2vii | 3.044 (16) | Se—O1 | 1.724 (15) |
Cs2—O4viii | 3.066 (14) | Se—O1ix | 1.724 (15) |
Cs2—O4ix | 3.066 (14) | ||
O1i—Cs1—O1 | 92.9 (4) | O4ii—Cs2—O1vi | 143.4 (3) |
O1i—Cs1—O1ii | 92.9 (4) | O3vi—Cs2—O1vi | 45.0 (3) |
O1—Cs1—O1ii | 92.9 (4) | O3—Cs2—O1vi | 97.0 (3) |
O1i—Cs1—O3iii | 74.6 (3) | O3vii—Cs2—O1vi | 127.0 (3) |
O1—Cs1—O3iii | 132.9 (3) | O1vii—Cs2—O1vi | 119.992 (7) |
O1ii—Cs1—O3iii | 132.1 (3) | O1—Cs2—O1vi | 119.993 (8) |
O1i—Cs1—O3iv | 132.1 (3) | O2x—W—O3xi | 97.7 (8) |
O1—Cs1—O3iv | 74.6 (3) | O2x—W—O4 | 98.5 (7) |
O1ii—Cs1—O3iv | 132.9 (3) | O3xi—W—O4 | 96.6 (5) |
O3iii—Cs1—O3iv | 81.0 (4) | O2x—W—O4ii | 93.8 (6) |
O1i—Cs1—O3v | 132.9 (3) | O3xi—W—O4ii | 167.0 (7) |
O1—Cs1—O3v | 132.1 (3) | O4—W—O4ii | 87.4 (8) |
O1ii—Cs1—O3v | 74.6 (3) | O2x—W—O3 | 92.3 (7) |
O3iii—Cs1—O3v | 81.0 (4) | O3xi—W—O3 | 89.9 (7) |
O3iv—Cs1—O3v | 81.0 (4) | O4—W—O3 | 166.5 (7) |
O1i—Cs1—O4i | 48.2 (3) | O4ii—W—O3 | 83.7 (5) |
O1—Cs1—O4i | 81.9 (3) | O2x—W—O1 | 172.7 (6) |
O1ii—Cs1—O4i | 47.2 (3) | O3xi—W—O1 | 85.8 (7) |
O3iii—Cs1—O4i | 116.3 (3) | O4—W—O1 | 87.5 (6) |
O3iv—Cs1—O4i | 156.5 (3) | O4ii—W—O1 | 82.1 (5) |
O3v—Cs1—O4i | 115.9 (3) | O3—W—O1 | 81.2 (6) |
O1i—Cs1—O4ii | 81.9 (3) | O2x—W—Cs2xii | 123.2 (5) |
O1—Cs1—O4ii | 47.2 (3) | O3xi—W—Cs2xii | 57.3 (4) |
O1ii—Cs1—O4ii | 48.2 (3) | O4—W—Cs2xii | 46.0 (4) |
O3iii—Cs1—O4ii | 156.5 (3) | O4ii—W—Cs2xii | 120.1 (4) |
O3iv—Cs1—O4ii | 115.9 (3) | O3—W—Cs2xii | 132.2 (4) |
O3v—Cs1—O4ii | 116.3 (3) | O1—W—Cs2xii | 64.1 (3) |
O4i—Cs1—O4ii | 43.1 (4) | O2x—W—Cs1xiii | 59.3 (5) |
O1i—Cs1—O4 | 47.2 (3) | O3xi—W—Cs1xiii | 53.6 (5) |
O1—Cs1—O4 | 48.2 (3) | O4—W—Cs1xiii | 68.7 (4) |
O1ii—Cs1—O4 | 81.9 (3) | O4ii—W—Cs1xiii | 138.9 (4) |
O3iii—Cs1—O4 | 115.9 (3) | O3—W—Cs1xiii | 124.3 (4) |
O3iv—Cs1—O4 | 116.3 (3) | O1—W—Cs1xiii | 127.4 (3) |
O3v—Cs1—O4 | 156.5 (3) | Cs2xii—W—Cs1xiii | 65.81 (5) |
O4i—Cs1—O4 | 43.1 (4) | O2x—W—Cs2 | 114.7 (5) |
O4ii—Cs1—O4 | 43.1 (4) | O3xi—W—Cs2 | 127.9 (4) |
O1i—Cs1—O2i | 57.5 (4) | O4—W—Cs2 | 116.1 (4) |
O1—Cs1—O2i | 91.3 (3) | O4ii—W—Cs2 | 40.4 (4) |
O1ii—Cs1—O2i | 150.4 (4) | O3—W—Cs2 | 51.3 (4) |
O3iii—Cs1—O2i | 43.5 (3) | O1—W—Cs2 | 58.5 (3) |
O3iv—Cs1—O2i | 76.4 (3) | Cs2xii—W—Cs2 | 120.63 (6) |
O3v—Cs1—O2i | 122.2 (4) | Cs1xiii—W—Cs2 | 173.49 (5) |
O4i—Cs1—O2i | 104.7 (4) | O2x—W—Cs1 | 138.0 (6) |
O4ii—Cs1—O2i | 121.5 (3) | O3xi—W—Cs1 | 116.2 (5) |
O4—Cs1—O2i | 79.1 (3) | O4—W—Cs1 | 55.9 (4) |
O1i—Cs1—O2ii | 91.3 (3) | O4ii—W—Cs1 | 56.4 (4) |
O1—Cs1—O2ii | 150.4 (4) | O3—W—Cs1 | 110.6 (5) |
O1ii—Cs1—O2ii | 57.5 (4) | O1—W—Cs1 | 43.4 (4) |
O3iii—Cs1—O2ii | 76.4 (3) | Cs2xii—W—Cs1 | 65.44 (3) |
O3iv—Cs1—O2ii | 122.2 (4) | Cs1xiii—W—Cs1 | 122.50 (3) |
O3v—Cs1—O2ii | 43.5 (3) | Cs2—W—Cs1 | 63.41 (3) |
O4i—Cs1—O2ii | 79.1 (3) | O2x—W—Cs1xiv | 54.8 (5) |
O4ii—Cs1—O2ii | 104.7 (4) | O3xi—W—Cs1xiv | 120.7 (4) |
O4—Cs1—O2ii | 121.5 (3) | O4—W—Cs1xiv | 134.5 (4) |
O2i—Cs1—O2ii | 115.47 (19) | O4ii—W—Cs1xiv | 62.2 (4) |
O1i—Cs1—O2 | 150.4 (4) | O3—W—Cs1xiv | 48.1 (4) |
O1—Cs1—O2 | 57.5 (4) | O1—W—Cs1xiv | 117.9 (3) |
O1ii—Cs1—O2 | 91.3 (3) | Cs2xii—W—Cs1xiv | 177.46 (4) |
O3iii—Cs1—O2 | 122.2 (4) | Cs1xiii—W—Cs1xiv | 111.82 (6) |
O3iv—Cs1—O2 | 43.5 (3) | Cs2—W—Cs1xiv | 61.72 (4) |
O3v—Cs1—O2 | 76.4 (3) | Cs1—W—Cs1xiv | 117.06 (2) |
O4i—Cs1—O2 | 121.5 (3) | O1xi—Se—O1 | 104.0 (5) |
O4ii—Cs1—O2 | 79.1 (3) | O1xi—Se—O1ix | 104.0 (5) |
O4—Cs1—O2 | 104.7 (4) | O1—Se—O1ix | 104.0 (5) |
O2i—Cs1—O2 | 115.47 (19) | O1xi—Se—Cs2xv | 58.6 (4) |
O2ii—Cs1—O2 | 115.47 (19) | O1—Se—Cs2xv | 145.4 (5) |
O2—Cs2—O2vi | 56.8 (5) | O1ix—Se—Cs2xv | 58.6 (4) |
O2—Cs2—O2vii | 56.8 (5) | O1xi—Se—Cs2 | 145.4 (5) |
O2vi—Cs2—O2vii | 56.8 (5) | O1—Se—Cs2 | 58.6 (4) |
O2—Cs2—O4viii | 153.5 (4) | O1ix—Se—Cs2 | 58.6 (4) |
O2vi—Cs2—O4viii | 101.6 (4) | Cs2xv—Se—Cs2 | 116.99 (3) |
O2vii—Cs2—O4viii | 99.6 (4) | O1xi—Se—Cs2xii | 58.6 (4) |
O2—Cs2—O4ix | 101.6 (4) | O1—Se—Cs2xii | 58.6 (4) |
O2vi—Cs2—O4ix | 99.6 (4) | O1ix—Se—Cs2xii | 145.4 (5) |
O2vii—Cs2—O4ix | 153.5 (4) | Cs2xv—Se—Cs2xii | 116.99 (3) |
O4viii—Cs2—O4ix | 96.8 (3) | Cs2—Se—Cs2xii | 116.99 (3) |
O2—Cs2—O4ii | 99.6 (4) | O1xi—Se—Cs1xv | 37.9 (5) |
O2vi—Cs2—O4ii | 153.5 (4) | O1—Se—Cs1xv | 122.6 (4) |
O2vii—Cs2—O4ii | 101.6 (4) | O1ix—Se—Cs1xv | 122.6 (4) |
O4viii—Cs2—O4ii | 96.8 (3) | Cs2xv—Se—Cs1xv | 64.012 (17) |
O4ix—Cs2—O4ii | 96.8 (3) | Cs2—Se—Cs1xv | 176.68 (9) |
O2—Cs2—O3vi | 139.0 (3) | Cs2xii—Se—Cs1xv | 64.014 (17) |
O2vi—Cs2—O3vi | 96.8 (4) | O1xi—Se—Cs1 | 122.6 (4) |
O2vii—Cs2—O3vi | 137.8 (3) | O1—Se—Cs1 | 37.9 (5) |
O4viii—Cs2—O3vi | 50.0 (3) | O1ix—Se—Cs1 | 122.6 (4) |
O4ix—Cs2—O3vi | 48.2 (3) | Cs2xv—Se—Cs1 | 176.68 (9) |
O4ii—Cs2—O3vi | 109.7 (4) | Cs2—Se—Cs1 | 64.013 (17) |
O2—Cs2—O3 | 96.8 (4) | Cs2xii—Se—Cs1 | 64.013 (17) |
O2vi—Cs2—O3 | 137.8 (3) | Cs1xv—Se—Cs1 | 114.79 (4) |
O2vii—Cs2—O3 | 139.0 (3) | O1xi—Se—Cs1xvi | 122.6 (4) |
O4viii—Cs2—O3 | 109.7 (4) | O1—Se—Cs1xvi | 122.6 (4) |
O4ix—Cs2—O3 | 50.0 (3) | O1ix—Se—Cs1xvi | 37.9 (5) |
O4ii—Cs2—O3 | 48.2 (3) | Cs2xv—Se—Cs1xvi | 64.014 (17) |
O3vi—Cs2—O3 | 83.0 (4) | Cs2—Se—Cs1xvi | 64.013 (17) |
O2—Cs2—O3vii | 137.8 (3) | Cs2xii—Se—Cs1xvi | 176.68 (9) |
O2vi—Cs2—O3vii | 139.0 (3) | Cs1xv—Se—Cs1xvi | 114.79 (4) |
O2vii—Cs2—O3vii | 96.8 (4) | Cs1—Se—Cs1xvi | 114.79 (4) |
O4viii—Cs2—O3vii | 48.2 (3) | Se—O1—W | 129.4 (8) |
O4ix—Cs2—O3vii | 109.7 (4) | Se—O1—Cs1 | 122.3 (6) |
O4ii—Cs2—O3vii | 50.0 (3) | W—O1—Cs1 | 108.1 (5) |
O3vi—Cs2—O3vii | 83.0 (4) | Se—O1—Cs2 | 97.7 (5) |
O3—Cs2—O3vii | 83.0 (4) | W—O1—Cs2 | 91.2 (4) |
O2—Cs2—O1vii | 114.5 (4) | Cs1—O1—Cs2 | 83.4 (3) |
O2vi—Cs2—O1vii | 95.0 (4) | Se—O1—Cs2xii | 97.7 (5) |
O2vii—Cs2—O1vii | 58.5 (4) | W—O1—Cs2xii | 83.6 (4) |
O4viii—Cs2—O1vii | 47.1 (3) | Cs1—O1—Cs2xii | 83.4 (3) |
O4ix—Cs2—O1vii | 143.4 (3) | Cs2—O1—Cs2xii | 163.5 (5) |
O4ii—Cs2—O1vii | 83.8 (3) | Wxvii—O2—Cs2 | 159.8 (9) |
O3vi—Cs2—O1vii | 97.0 (3) | Wxvii—O2—Cs1 | 97.3 (5) |
O3—Cs2—O1vii | 127.0 (3) | Cs2—O2—Cs1 | 84.1 (4) |
O3vii—Cs2—O1vii | 45.0 (3) | Wxvii—O2—Cs1xvi | 103.6 (6) |
O2—Cs2—O1 | 58.5 (4) | Cs2—O2—Cs1xvi | 82.6 (3) |
O2vi—Cs2—O1 | 114.5 (4) | Cs1—O2—Cs1xvi | 152.0 (6) |
O2vii—Cs2—O1 | 95.0 (4) | Wix—O3—W | 148.6 (7) |
O4viii—Cs2—O1 | 143.4 (3) | Wix—O3—Cs2 | 95.8 (5) |
O4ix—Cs2—O1 | 83.8 (3) | W—O3—Cs2 | 101.6 (5) |
O4ii—Cs2—O1 | 47.1 (3) | Wix—O3—Cs1xiv | 101.4 (5) |
O3vi—Cs2—O1 | 127.0 (3) | W—O3—Cs1xiv | 106.7 (5) |
O3—Cs2—O1 | 45.0 (3) | Cs2—O3—Cs1xiv | 81.5 (2) |
O3vii—Cs2—O1 | 97.0 (3) | W—O4—Wi | 135.7 (8) |
O1vii—Cs2—O1 | 119.993 (7) | W—O4—Cs2xii | 108.0 (5) |
O2—Cs2—O1vi | 95.0 (4) | Wi—O4—Cs2xii | 114.6 (5) |
O2vi—Cs2—O1vi | 58.5 (4) | W—O4—Cs1 | 99.0 (5) |
O2vii—Cs2—O1vi | 114.5 (4) | Wi—O4—Cs1 | 96.3 (5) |
O4viii—Cs2—O1vi | 83.8 (3) | Cs2xii—O4—Cs1 | 84.8 (3) |
O4ix—Cs2—O1vi | 47.1 (3) |
Symmetry codes: (i) −x+y, −x+1, z; (ii) −y+1, x−y+1, z; (iii) y, −x+y+1, z−1/2; (iv) x−y, x, z−1/2; (v) −x+1, −y+1, z−1/2; (vi) −y+1, x−y, z; (vii) −x+y+1, −x+1, z; (viii) x+1, y, z; (ix) −x+y, −x, z; (x) x−y, x, z+1/2; (xi) −y, x−y, z; (xii) x−1, y, z; (xiii) −x, −y+1, z+1/2; (xiv) −x+1, −y+1, z+1/2; (xv) x−1, y−1, z; (xvi) x, y−1, z; (xvii) y, −x+y, z−1/2. |
Rb2W3SeO12 | Dx = 6.004 Mg m−3 |
Mr = 993.40 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P63 | Cell parameters from 19378 reflections |
a = 7.2380 (1) Å | θ = 3.3–28.2° |
c = 12.1115 (3) Å | µ = 43.49 mm−1 |
V = 549.50 (2) Å3 | T = 293 K |
Z = 2 | Block, colourless |
F(000) = 852 | 0.10 × 0.05 × 0.05 mm |
Bruker APEXII CCD diffractometer | 654 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.033 |
phi and ω scans | θmax = 28.3°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −9→8 |
Tmin = 0.098, Tmax = 0.220 | k = −8→9 |
3497 measured reflections | l = −11→16 |
675 independent reflections |
Refinement on F2 | w = 1/[σ2(Fo2) + (0.0065P)2 + 2.2061P] where P = (Fo2 + 2Fc2)/3 |
Least-squares matrix: full | (Δ/σ)max < 0.001 |
R[F2 > 2σ(F2)] = 0.018 | Δρmax = 0.90 e Å−3 |
wR(F2) = 0.033 | Δρmin = −1.14 e Å−3 |
S = 1.06 | Extinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
675 reflections | Extinction coefficient: 0.0058 (2) |
57 parameters | Absolute structure: Flack x determined using 182 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
7 restraints | Absolute structure parameter: −0.08 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a two-component twin |
x | y | z | Uiso*/Ueq | ||
Rb1 | 0.666667 | 0.333333 | 0.8979 (2) | 0.0389 (9) | |
Rb2 | 0.333333 | 0.666667 | 0.77053 (18) | 0.0181 (6) | |
W | 0.80778 (6) | 0.66034 (6) | 0.60562 (3) | 0.00482 (12) | |
Se | 1.000000 | 1.000000 | 0.83669 (14) | 0.0057 (4) | |
O1 | 0.8727 (15) | 0.7523 (15) | 0.7767 (6) | 0.0106 (18) | |
O2 | 0.5942 (14) | 0.8028 (15) | 0.9677 (7) | 0.0106 (17) | |
O3 | 0.7494 (12) | 0.8784 (12) | 0.5928 (8) | 0.0084 (16) | |
O4 | 0.9117 (13) | 0.4617 (13) | 0.6512 (6) | 0.0069 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rb1 | 0.0433 (13) | 0.0433 (13) | 0.0300 (16) | 0.0216 (7) | 0.000 | 0.000 |
Rb2 | 0.0202 (9) | 0.0202 (9) | 0.0139 (11) | 0.0101 (4) | 0.000 | 0.000 |
W | 0.0036 (2) | 0.0027 (2) | 0.00779 (17) | 0.00128 (19) | 0.0005 (4) | −0.0003 (3) |
Se | 0.0062 (5) | 0.0062 (5) | 0.0047 (10) | 0.0031 (3) | 0.000 | 0.000 |
O1 | 0.016 (5) | 0.008 (5) | 0.010 (4) | 0.008 (4) | 0.003 (4) | 0.003 (4) |
O2 | 0.002 (4) | 0.011 (5) | 0.015 (4) | 0.000 (4) | −0.003 (3) | −0.004 (4) |
O3 | 0.007 (3) | 0.006 (4) | 0.012 (5) | 0.004 (3) | 0.000 (4) | 0.001 (4) |
O4 | 0.0065 (18) | 0.0069 (19) | 0.0077 (18) | 0.0038 (12) | −0.0003 (12) | −0.0002 (12) |
Rb1—O1i | 3.009 (9) | Rb2—O4i | 3.012 (8) |
Rb1—O1 | 3.009 (9) | Rb2—O3 | 3.382 (8) |
Rb1—O1ii | 3.009 (9) | Rb2—O3vi | 3.382 (8) |
Rb1—O4ii | 3.360 (8) | Rb2—O3vii | 3.382 (8) |
Rb1—O4i | 3.360 (8) | Rb2—W | 3.9926 (11) |
Rb1—O4 | 3.360 (8) | Rb2—Wvii | 3.9926 (11) |
Rb1—O3iii | 3.518 (9) | Rb2—Wvi | 3.9926 (11) |
Rb1—O3iv | 3.518 (9) | W—O2x | 1.726 (8) |
Rb1—O3v | 3.518 (9) | W—O3 | 1.833 (8) |
Rb1—W | 4.094 (2) | W—O4i | 1.860 (8) |
Rb1—Wi | 4.094 (2) | W—O4 | 2.005 (8) |
Rb1—Wii | 4.094 (2) | W—O3xi | 2.011 (8) |
Rb2—O2 | 2.894 (8) | W—O1 | 2.155 (8) |
Rb2—O2vi | 2.894 (8) | Se—O1ix | 1.714 (9) |
Rb2—O2vii | 2.894 (8) | Se—O1 | 1.714 (9) |
Rb2—O4viii | 3.012 (8) | Se—O1xi | 1.714 (9) |
Rb2—O4ix | 3.012 (8) | ||
O1i—Rb1—O1 | 98.2 (2) | O4ix—Rb2—O3vii | 111.8 (2) |
O1i—Rb1—O1ii | 98.2 (2) | O4i—Rb2—O3vii | 48.78 (18) |
O1—Rb1—O1ii | 98.2 (2) | O3—Rb2—O3vii | 83.8 (2) |
O1i—Rb1—O4ii | 51.2 (2) | O3vi—Rb2—O3vii | 83.8 (2) |
O1—Rb1—O4ii | 88.0 (2) | O2—Rb2—W | 89.89 (19) |
O1ii—Rb1—O4ii | 50.2 (2) | O2vi—Rb2—W | 147.69 (19) |
O1i—Rb1—O4i | 50.2 (2) | O2vii—Rb2—W | 113.3 (2) |
O1—Rb1—O4i | 51.2 (2) | O4viii—Rb2—W | 114.82 (16) |
O1ii—Rb1—O4i | 88.0 (2) | O4ix—Rb2—W | 75.92 (16) |
O4ii—Rb1—O4i | 46.7 (2) | O4i—Rb2—W | 26.34 (16) |
O1i—Rb1—O4 | 88.0 (2) | O3—Rb2—W | 27.21 (13) |
O1—Rb1—O4 | 50.2 (2) | O3vi—Rb2—W | 105.50 (16) |
O1ii—Rb1—O4 | 51.2 (2) | O3vii—Rb2—W | 70.55 (14) |
O4ii—Rb1—O4 | 46.7 (2) | O2—Rb2—Wvii | 147.69 (19) |
O4i—Rb1—O4 | 46.7 (2) | O2vi—Rb2—Wvii | 113.3 (2) |
O1i—Rb1—O3iii | 130.6 (2) | O2vii—Rb2—Wvii | 89.89 (19) |
O1—Rb1—O3iii | 130.6 (2) | O4viii—Rb2—Wvii | 26.34 (16) |
O1ii—Rb1—O3iii | 71.3 (2) | O4ix—Rb2—Wvii | 114.82 (16) |
O4ii—Rb1—O3iii | 114.97 (19) | O4i—Rb2—Wvii | 75.92 (16) |
O4i—Rb1—O3iii | 159.4 (2) | O3—Rb2—Wvii | 105.50 (16) |
O4—Rb1—O3iii | 115.6 (2) | O3vi—Rb2—Wvii | 70.55 (14) |
O1i—Rb1—O3iv | 130.6 (2) | O3vii—Rb2—Wvii | 27.21 (13) |
O1—Rb1—O3iv | 71.3 (2) | W—Rb2—Wvii | 97.16 (4) |
O1ii—Rb1—O3iv | 130.6 (2) | O2—Rb2—Wvi | 113.3 (2) |
O4ii—Rb1—O3iv | 159.4 (2) | O2vi—Rb2—Wvi | 89.89 (19) |
O4i—Rb1—O3iv | 115.6 (2) | O2vii—Rb2—Wvi | 147.69 (19) |
O4—Rb1—O3iv | 115.0 (2) | O4viii—Rb2—Wvi | 75.92 (16) |
O3iii—Rb1—O3iv | 79.9 (2) | O4ix—Rb2—Wvi | 26.34 (16) |
O1i—Rb1—O3v | 71.3 (2) | O4i—Rb2—Wvi | 114.82 (16) |
O1—Rb1—O3v | 130.6 (2) | O3—Rb2—Wvi | 70.55 (14) |
O1ii—Rb1—O3v | 130.6 (2) | O3vi—Rb2—Wvi | 27.21 (13) |
O4ii—Rb1—O3v | 115.6 (2) | O3vii—Rb2—Wvi | 105.50 (16) |
O4i—Rb1—O3v | 114.97 (19) | W—Rb2—Wvi | 97.16 (4) |
O4—Rb1—O3v | 159.4 (2) | Wvii—Rb2—Wvi | 97.16 (4) |
O3iii—Rb1—O3v | 79.9 (2) | O2x—W—O3 | 98.3 (4) |
O3iv—Rb1—O3v | 79.9 (2) | O2x—W—O4i | 99.3 (4) |
O1i—Rb1—W | 76.74 (18) | O3—W—O4i | 97.5 (3) |
O1—Rb1—W | 30.77 (17) | O2x—W—O4 | 93.8 (4) |
O1ii—Rb1—W | 79.82 (18) | O3—W—O4 | 166.2 (4) |
O4ii—Rb1—W | 57.35 (14) | O4i—W—O4 | 87.0 (5) |
O4i—Rb1—W | 26.63 (15) | O2x—W—O3xi | 91.7 (5) |
O4—Rb1—W | 29.14 (14) | O3—W—O3xi | 90.0 (4) |
O3iii—Rb1—W | 142.01 (14) | O4i—W—O3xi | 165.5 (4) |
O3iv—Rb1—W | 102.05 (14) | O4—W—O3xi | 83.0 (3) |
O3v—Rb1—W | 138.07 (13) | O2x—W—O1 | 172.2 (4) |
O1i—Rb1—Wi | 30.77 (17) | O3—W—O1 | 85.6 (4) |
O1—Rb1—Wi | 79.82 (18) | O4i—W—O1 | 86.8 (3) |
O1ii—Rb1—Wi | 76.74 (17) | O4—W—O1 | 81.6 (3) |
O4ii—Rb1—Wi | 26.63 (14) | O3xi—W—O1 | 81.4 (4) |
O4i—Rb1—Wi | 29.14 (15) | O2x—W—Rb2 | 123.2 (3) |
O4—Rb1—Wi | 57.35 (14) | O3—W—Rb2 | 57.5 (3) |
O3iii—Rb1—Wi | 138.07 (13) | O4i—W—Rb2 | 45.9 (2) |
O3iv—Rb1—Wi | 142.01 (14) | O4—W—Rb2 | 120.2 (2) |
O3v—Rb1—Wi | 102.05 (14) | O3xi—W—Rb2 | 133.0 (3) |
W—Rb1—Wi | 51.57 (3) | O1—W—Rb2 | 64.6 (2) |
O1i—Rb1—Wii | 79.82 (18) | O2x—W—Rb1 | 135.6 (3) |
O1—Rb1—Wii | 76.73 (17) | O3—W—Rb1 | 118.2 (3) |
O1ii—Rb1—Wii | 30.77 (17) | O4i—W—Rb1 | 54.1 (2) |
O4ii—Rb1—Wii | 29.14 (15) | O4—W—Rb1 | 54.7 (2) |
O4i—Rb1—Wii | 57.35 (14) | O3xi—W—Rb1 | 111.4 (3) |
O4—Rb1—Wii | 26.63 (14) | O1—W—Rb1 | 45.6 (3) |
O3iii—Rb1—Wii | 102.05 (14) | Rb2—W—Rb1 | 66.84 (2) |
O3iv—Rb1—Wii | 138.07 (13) | O2x—W—Rb1xii | 59.3 (3) |
O3v—Rb1—Wii | 142.01 (14) | O3—W—Rb1xii | 53.8 (3) |
W—Rb1—Wii | 51.57 (3) | O4i—W—Rb1xii | 70.4 (2) |
Wi—Rb1—Wii | 51.57 (3) | O4—W—Rb1xii | 139.6 (2) |
O2—Rb2—O2vi | 58.6 (3) | O3xi—W—Rb1xii | 123.7 (2) |
O2—Rb2—O2vii | 58.6 (3) | O1—W—Rb1xii | 127.9 (3) |
O2vi—Rb2—O2vii | 58.6 (3) | Rb2—W—Rb1xii | 66.06 (5) |
O2—Rb2—O4viii | 153.0 (2) | Rb1—W—Rb1xii | 123.06 (2) |
O2vi—Rb2—O4viii | 97.5 (2) | O2x—W—Rb2xiii | 113.1 (3) |
O2vii—Rb2—O4viii | 99.5 (3) | O3—W—Rb2xiii | 128.1 (3) |
O2—Rb2—O4ix | 97.5 (2) | O4i—W—Rb2xiii | 115.7 (2) |
O2vi—Rb2—O4ix | 99.5 (2) | O4—W—Rb2xiii | 39.5 (2) |
O2vii—Rb2—O4ix | 153.0 (2) | O3xi—W—Rb2xiii | 50.7 (2) |
O4viii—Rb2—O4ix | 98.91 (18) | O1—W—Rb2xiii | 59.5 (2) |
O2—Rb2—O4i | 99.5 (2) | Rb2—W—Rb2xiii | 122.13 (5) |
O2vi—Rb2—O4i | 153.0 (2) | Rb1—W—Rb2xiii | 64.26 (2) |
O2vii—Rb2—O4i | 97.5 (2) | Rb1xii—W—Rb2xiii | 171.73 (3) |
O4viii—Rb2—O4i | 98.91 (18) | O1ix—Se—O1 | 103.3 (3) |
O4ix—Rb2—O4i | 98.91 (18) | O1ix—Se—O1xi | 103.3 (3) |
O2—Rb2—O3 | 95.1 (2) | O1—Se—O1xi | 103.3 (3) |
O2vi—Rb2—O3 | 138.5 (3) | Se—O1—W | 130.6 (5) |
O2vii—Rb2—O3 | 137.5 (3) | Se—O1—Rb1 | 125.7 (4) |
O4viii—Rb2—O3 | 111.8 (2) | W—O1—Rb1 | 103.7 (3) |
O4ix—Rb2—O3 | 48.78 (18) | Wxiv—O2—Rb2 | 159.3 (5) |
O4i—Rb2—O3 | 51.09 (19) | W—O3—Wix | 148.3 (5) |
O2—Rb2—O3vi | 137.5 (3) | W—O3—Rb2 | 95.3 (3) |
O2vi—Rb2—O3vi | 95.1 (2) | Wix—O3—Rb2 | 101.9 (3) |
O2vii—Rb2—O3vi | 138.5 (2) | W—O3—Rb1xii | 101.4 (3) |
O4viii—Rb2—O3vi | 48.78 (18) | Wix—O3—Rb1xii | 107.3 (3) |
O4ix—Rb2—O3vi | 51.09 (19) | Rb2—O3—Rb1xii | 81.68 (17) |
O4i—Rb2—O3vi | 111.8 (2) | Wii—O4—W | 134.3 (4) |
O3—Rb2—O3vi | 83.8 (2) | Wii—O4—Rb2xiii | 107.7 (3) |
O2—Rb2—O3vii | 138.5 (2) | W—O4—Rb2xiii | 115.5 (3) |
O2vi—Rb2—O3vii | 137.5 (3) | Wii—O4—Rb1 | 99.3 (3) |
O2vii—Rb2—O3vii | 95.1 (2) | W—O4—Rb1 | 96.2 (3) |
O4viii—Rb2—O3vii | 51.09 (19) | Rb2xiii—O4—Rb1 | 88.54 (18) |
Symmetry codes: (i) −y+1, x−y, z; (ii) −x+y+1, −x+1, z; (iii) y, −x+y, z+1/2; (iv) x−y+1, x, z+1/2; (v) −x+1, −y+1, z+1/2; (vi) −y+1, x−y+1, z; (vii) −x+y, −x+1, z; (viii) x−1, y, z; (ix) −x+y+1, −x+2, z; (x) x−y+1, x, z−1/2; (xi) −y+2, x−y+1, z; (xii) −x+1, −y+1, z−1/2; (xiii) x+1, y, z; (xiv) y, −x+y+1, z+1/2. |
K2W3SeO12 | F(000) = 1559 |
Mr = 900.66 | Dx = 5.694 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2310 (2) Å | Cell parameters from 9566 reflections |
b = 11.4863 (4) Å | θ = 3.2–33.2° |
c = 12.6486 (4) Å | µ = 37.09 mm−1 |
β = 90.096 (2)° | T = 293 K |
V = 1050.56 (6) Å3 | Block, colourless |
Z = 4 | 0.08 × 0.05 × 0.02 mm |
Bruker APEXII CCD diffractometer | 3456 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.073 |
phi and ω scans | θmax = 33.2°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −11→11 |
Tmin = 0.155, Tmax = 0.524 | k = −17→17 |
26562 measured reflections | l = −19→19 |
4026 independent reflections |
Refinement on F2 | 24 restraints |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0554P)2] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.032 | (Δ/σ)max < 0.001 |
wR(F2) = 0.105 | Δρmax = 3.94 e Å−3 |
S = 1.15 | Δρmin = −3.11 e Å−3 |
4026 reflections | Extinction correction: SHELXL2018/3 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
165 parameters | Extinction coefficient: 0.00176 (12) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a two-component twin |
x | y | z | Uiso*/Ueq | ||
K1 | 0.2501 (5) | 0.4522 (3) | 0.9115 (3) | 0.0223 (6) | |
K2 | 0.2548 (5) | 0.0822 (3) | 0.8952 (3) | 0.0234 (7) | |
W1 | 0.22893 (7) | 0.79646 (4) | 0.08433 (4) | 0.00612 (10) | |
W2 | 0.01720 (7) | 0.75074 (4) | 0.82437 (4) | 0.00629 (11) | |
W3 | 0.50663 (8) | 0.75947 (4) | 0.84420 (4) | 0.00583 (11) | |
Se | 0.25041 (19) | 0.49742 (10) | 0.17926 (9) | 0.0078 (2) | |
O1 | 0.2536 (13) | 0.6087 (8) | 0.0913 (8) | 0.0164 (19) | |
O2 | 0.2387 (16) | 0.9444 (8) | 0.0619 (7) | 0.016 (2) | |
O3 | 0.0634 (14) | 0.4225 (9) | 0.1258 (9) | 0.013 (2) | |
O4 | 0.0680 (14) | 0.8954 (9) | 0.7993 (9) | 0.014 (2) | |
O5 | 0.4324 (14) | 0.4206 (9) | 0.1236 (8) | 0.012 (2) | |
O6 | 0.4376 (14) | 0.8956 (9) | 0.8021 (9) | 0.015 (2) | |
O7 | 0.0615 (15) | 0.7625 (9) | 0.9781 (9) | 0.012 (2) | |
O8 | 0.2548 (14) | 0.6902 (7) | 0.8102 (7) | 0.0093 (16) | |
O9 | 0.4378 (15) | 0.7668 (9) | 0.9828 (8) | 0.0100 (19) | |
O10 | 0.9354 (14) | 0.7050 (10) | 0.6903 (8) | 0.014 (2) | |
O11 | 0.7529 (15) | 0.7855 (8) | 0.8637 (7) | 0.0096 (16) | |
O12 | 0.0599 (14) | 0.7924 (9) | 0.1938 (8) | 0.0110 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
K1 | 0.0208 (14) | 0.0264 (14) | 0.0197 (14) | 0.0030 (13) | −0.0020 (17) | 0.0005 (13) |
K2 | 0.0269 (17) | 0.0211 (14) | 0.0223 (16) | 0.0007 (14) | −0.0005 (14) | 0.0060 (12) |
W1 | 0.00737 (19) | 0.00678 (18) | 0.00421 (17) | 0.00057 (16) | −0.00022 (19) | 0.00021 (17) |
W2 | 0.0049 (2) | 0.0084 (2) | 0.0056 (2) | −0.0003 (2) | −0.00087 (18) | 0.00082 (15) |
W3 | 0.0047 (2) | 0.0074 (2) | 0.0054 (2) | 0.00025 (19) | 0.00025 (19) | −0.00006 (16) |
Se | 0.0090 (5) | 0.0065 (4) | 0.0078 (5) | 0.0005 (4) | −0.0003 (5) | 0.0003 (4) |
O1 | 0.017 (2) | 0.016 (2) | 0.016 (2) | 0.0001 (10) | 0.0001 (10) | 0.0005 (10) |
O2 | 0.030 (6) | 0.006 (4) | 0.012 (4) | 0.001 (4) | −0.005 (4) | 0.002 (3) |
O3 | 0.008 (4) | 0.010 (4) | 0.021 (5) | 0.002 (4) | −0.009 (4) | −0.002 (4) |
O4 | 0.013 (2) | 0.014 (2) | 0.014 (2) | 0.0003 (10) | 0.0000 (10) | 0.0001 (10) |
O5 | 0.011 (4) | 0.010 (4) | 0.016 (5) | 0.003 (4) | 0.003 (4) | 0.003 (4) |
O6 | 0.013 (5) | 0.005 (4) | 0.025 (6) | 0.000 (4) | −0.002 (4) | 0.008 (4) |
O7 | 0.012 (2) | 0.012 (2) | 0.011 (2) | 0.0002 (10) | −0.0004 (10) | 0.0002 (10) |
O8 | 0.003 (4) | 0.010 (4) | 0.015 (4) | 0.003 (4) | −0.003 (4) | −0.001 (3) |
O9 | 0.010 (2) | 0.010 (2) | 0.010 (2) | −0.0002 (10) | 0.0005 (10) | −0.0004 (10) |
O10 | 0.006 (4) | 0.026 (6) | 0.008 (5) | 0.005 (4) | −0.004 (3) | 0.000 (4) |
O11 | 0.008 (4) | 0.011 (4) | 0.009 (4) | −0.002 (4) | −0.003 (4) | −0.004 (3) |
O12 | 0.007 (4) | 0.019 (5) | 0.007 (4) | 0.006 (4) | 0.000 (3) | 0.001 (4) |
K1—O3i | 2.726 (10) | K2—W1ii | 3.993 (4) |
K1—O5ii | 2.757 (11) | W1—O2 | 1.724 (9) |
K1—O1iii | 2.899 (10) | W1—O7x | 1.849 (11) |
K1—O5iii | 3.009 (11) | W1—O12 | 1.849 (10) |
K1—O8 | 3.019 (9) | W1—O10xi | 2.005 (10) |
K1—O4iv | 3.046 (11) | W1—O9x | 2.013 (11) |
K1—O3iii | 3.050 (12) | W1—O1 | 2.166 (9) |
K1—O6iv | 3.091 (12) | W2—O4 | 1.731 (11) |
K1—Seiii | 3.427 (4) | W2—O8 | 1.863 (10) |
K1—Seii | 3.835 (4) | W2—O10xii | 1.870 (10) |
K1—Sei | 3.839 (3) | W2—O7 | 1.975 (11) |
K1—W2 | 3.975 (3) | W2—O11xii | 2.016 (11) |
K2—O2v | 2.639 (9) | W2—O3i | 2.167 (10) |
K2—O6vi | 2.780 (11) | W3—O6 | 1.726 (10) |
K2—O4vi | 2.809 (11) | W3—O11 | 1.822 (11) |
K2—O10vii | 2.861 (11) | W3—O9 | 1.825 (11) |
K2—O8iv | 2.879 (9) | W3—O12xiii | 2.031 (10) |
K2—O12i | 2.918 (10) | W3—O8 | 2.032 (10) |
K2—O9viii | 3.213 (11) | W3—O5ii | 2.153 (10) |
K2—O7ix | 3.316 (12) | Se—O1 | 1.695 (10) |
K2—O11viii | 3.408 (9) | Se—O5 | 1.735 (10) |
K2—W2iv | 3.767 (3) | Se—O3 | 1.739 (10) |
K2—W1i | 3.775 (4) | ||
O3i—K1—O5ii | 112.6 (3) | O12—W1—K2i | 49.0 (3) |
O3i—K1—O1iii | 79.3 (3) | O10xi—W1—K2i | 130.3 (3) |
O5ii—K1—O1iii | 78.0 (3) | O9x—W1—K2i | 143.4 (3) |
O3i—K1—O5iii | 125.5 (3) | O1—W1—K2i | 116.2 (3) |
O5ii—K1—O5iii | 81.0 (3) | O2—W1—K2ii | 68.2 (4) |
O1iii—K1—O5iii | 51.1 (3) | O7x—W1—K2ii | 137.1 (4) |
O3i—K1—O8 | 57.2 (3) | O12—W1—K2ii | 125.4 (3) |
O5ii—K1—O8 | 56.1 (3) | O10xi—W1—K2ii | 42.7 (3) |
O1iii—K1—O8 | 76.8 (3) | O9x—W1—K2ii | 53.0 (3) |
O5iii—K1—O8 | 118.8 (3) | O1—W1—K2ii | 105.6 (3) |
O3i—K1—O4iv | 108.8 (3) | K2i—W1—K2ii | 137.13 (9) |
O5ii—K1—O4iv | 67.2 (3) | O2—W1—K2xiv | 26.6 (3) |
O1iii—K1—O4iv | 144.7 (3) | O7x—W1—K2xiv | 76.9 (3) |
O5iii—K1—O4iv | 124.4 (3) | O12—W1—K2xiv | 119.5 (3) |
O8—K1—O4iv | 79.5 (3) | O10xi—W1—K2xiv | 111.4 (3) |
O3i—K1—O3iii | 81.0 (3) | O9x—W1—K2xiv | 74.1 (3) |
O5ii—K1—O3iii | 124.9 (3) | O1—W1—K2xiv | 145.5 (3) |
O1iii—K1—O3iii | 51.3 (3) | K2i—W1—K2xiv | 77.64 (8) |
O5iii—K1—O3iii | 52.3 (2) | K2ii—W1—K2xiv | 73.29 (8) |
O8—K1—O3iii | 118.9 (3) | O4—W2—O8 | 98.3 (4) |
O4iv—K1—O3iii | 161.2 (3) | O4—W2—O10xii | 99.8 (5) |
O3i—K1—O6iv | 66.2 (3) | O8—W2—O10xii | 95.6 (4) |
O5ii—K1—O6iv | 109.6 (3) | O4—W2—O7 | 94.6 (5) |
O1iii—K1—O6iv | 145.0 (3) | O8—W2—O7 | 88.4 (4) |
O5iii—K1—O6iv | 160.9 (3) | O10xii—W2—O7 | 164.3 (5) |
O8—K1—O6iv | 79.9 (3) | O4—W2—O11xii | 93.2 (4) |
O4iv—K1—O6iv | 51.6 (3) | O8—W2—O11xii | 166.7 (4) |
O3iii—K1—O6iv | 124.0 (3) | O10xii—W2—O11xii | 88.9 (4) |
O3i—K1—Seiii | 95.2 (2) | O7—W2—O11xii | 84.0 (4) |
O5ii—K1—Seiii | 94.6 (2) | O4—W2—O3i | 172.6 (4) |
O1iii—K1—Seiii | 29.60 (19) | O8—W2—O3i | 86.2 (4) |
O5iii—K1—Seiii | 30.4 (2) | O10xii—W2—O3i | 85.5 (4) |
O8—K1—Seiii | 106.4 (2) | O7—W2—O3i | 79.6 (4) |
O4iv—K1—Seiii | 153.9 (2) | O11xii—W2—O3i | 81.6 (4) |
O3iii—K1—Seiii | 30.43 (19) | O4—W2—K2xv | 105.4 (4) |
O6iv—K1—Seiii | 153.6 (2) | O8—W2—K2xv | 48.1 (3) |
O3i—K1—Seii | 130.7 (3) | O10xii—W2—K2xv | 47.6 (3) |
O5ii—K1—Seii | 24.1 (2) | O7—W2—K2xv | 133.7 (3) |
O1iii—K1—Seii | 97.7 (2) | O11xii—W2—K2xv | 134.4 (3) |
O5iii—K1—Seii | 82.7 (2) | O3i—W2—K2xv | 82.0 (3) |
O8—K1—Seii | 74.0 (2) | O4—W2—K1 | 142.1 (3) |
O4iv—K1—Seii | 50.4 (2) | O8—W2—K1 | 46.7 (3) |
O3iii—K1—Seii | 134.5 (2) | O10xii—W2—K1 | 98.2 (3) |
O6iv—K1—Seii | 100.5 (2) | O7—W2—K1 | 73.6 (3) |
Seiii—K1—Seii | 105.89 (9) | O11xii—W2—K1 | 120.3 (3) |
O3i—K1—Sei | 23.8 (2) | O3i—W2—K1 | 40.7 (3) |
O5ii—K1—Sei | 131.1 (2) | K2xv—W2—K1 | 64.86 (8) |
O1iii—K1—Sei | 98.5 (2) | O4—W2—K1xv | 40.9 (4) |
O5iii—K1—Sei | 134.1 (2) | O8—W2—K1xv | 76.3 (3) |
O8—K1—Sei | 75.4 (2) | O10xii—W2—K1xv | 68.4 (3) |
O4iv—K1—Sei | 100.3 (2) | O7—W2—K1xv | 127.3 (3) |
O3iii—K1—Sei | 82.19 (19) | O11xii—W2—K1xv | 117.0 (3) |
O6iv—K1—Sei | 50.05 (19) | O3i—W2—K1xv | 146.4 (3) |
Seiii—K1—Sei | 105.76 (9) | K2xv—W2—K1xv | 64.97 (7) |
Seii—K1—Sei | 140.87 (10) | K1—W2—K1xv | 120.66 (4) |
O3i—K1—W2 | 31.2 (2) | O6—W3—O11 | 100.1 (4) |
O5ii—K1—W2 | 81.4 (2) | O6—W3—O9 | 100.1 (5) |
O1iii—K1—W2 | 71.7 (2) | O11—W3—O9 | 97.5 (5) |
O5iii—K1—W2 | 122.4 (2) | O6—W3—O12xiii | 91.8 (5) |
O8—K1—W2 | 26.7 (2) | O11—W3—O12xiii | 89.3 (4) |
O4iv—K1—W2 | 97.2 (2) | O9—W3—O12xiii | 165.0 (4) |
O3iii—K1—W2 | 98.9 (2) | O6—W3—O8 | 91.8 (4) |
O6iv—K1—W2 | 75.8 (2) | O11—W3—O8 | 165.4 (4) |
Seiii—K1—W2 | 98.21 (8) | O9—W3—O8 | 88.6 (4) |
Seii—K1—W2 | 100.71 (8) | O12xiii—W3—O8 | 81.8 (4) |
Sei—K1—W2 | 52.29 (5) | O6—W3—O5ii | 171.1 (4) |
O2v—K2—O6vi | 84.1 (3) | O11—W3—O5ii | 86.1 (4) |
O2v—K2—O4vi | 82.2 (3) | O9—W3—O5ii | 85.3 (4) |
O6vi—K2—O4vi | 57.1 (3) | O12xiii—W3—O5ii | 81.8 (4) |
O2v—K2—O10vii | 129.3 (4) | O8—W3—O5ii | 81.2 (4) |
O6vi—K2—O10vii | 81.2 (3) | O6—W3—K1 | 135.8 (3) |
O4vi—K2—O10vii | 126.1 (3) | O11—W3—K1 | 124.0 (3) |
O2v—K2—O8iv | 168.0 (3) | O9—W3—K1 | 73.4 (3) |
O6vi—K2—O8iv | 87.8 (3) | O12xiii—W3—K1 | 91.6 (3) |
O4vi—K2—O8iv | 85.9 (3) | O8—W3—K1 | 45.4 (2) |
O10vii—K2—O8iv | 57.6 (3) | O5ii—W3—K1 | 38.9 (3) |
O2v—K2—O12i | 124.7 (4) | O6—W3—K2xv | 95.1 (4) |
O6vi—K2—O12i | 126.0 (3) | O11—W3—K2xv | 129.0 (3) |
O4vi—K2—O12i | 80.6 (3) | O9—W3—K2xv | 127.2 (3) |
O10vii—K2—O12i | 102.8 (3) | O12xiii—W3—K2xv | 41.6 (3) |
O8iv—K2—O12i | 54.6 (3) | O8—W3—K2xv | 40.4 (3) |
O2v—K2—O9viii | 88.4 (3) | O5ii—W3—K2xv | 75.9 (3) |
O6vi—K2—O9viii | 106.9 (3) | K1—W3—K2xv | 61.03 (7) |
O4vi—K2—O9viii | 162.1 (3) | O6—W3—K2viii | 88.1 (4) |
O10vii—K2—O9viii | 51.2 (3) | O11—W3—K2viii | 54.1 (3) |
O8iv—K2—O9viii | 102.5 (3) | O9—W3—K2viii | 47.8 (3) |
O12i—K2—O9viii | 117.2 (3) | O12xiii—W3—K2viii | 142.7 (3) |
O2v—K2—O7ix | 84.6 (3) | O8—W3—K2viii | 135.5 (3) |
O6vi—K2—O7ix | 161.5 (3) | O5ii—W3—K2viii | 100.7 (3) |
O4vi—K2—O7ix | 106.7 (3) | K1—W3—K2viii | 113.79 (7) |
O10vii—K2—O7ix | 117.3 (3) | K2xv—W3—K2viii | 174.68 (8) |
O8iv—K2—O7ix | 100.8 (3) | O1—Se—O5 | 96.1 (5) |
O12i—K2—O7ix | 51.9 (3) | O1—Se—O3 | 97.5 (5) |
O9viii—K2—O7ix | 87.4 (3) | O5—Se—O3 | 100.4 (4) |
O2v—K2—O11viii | 63.4 (3) | O1—Se—K1x | 57.7 (3) |
O6vi—K2—O11viii | 137.0 (3) | O5—Se—K1x | 61.4 (3) |
O4vi—K2—O11viii | 135.9 (3) | O3—Se—K1x | 62.7 (4) |
O10vii—K2—O11viii | 97.6 (3) | O1—Se—K1ii | 71.1 (3) |
O8iv—K2—O11viii | 127.9 (3) | O5—Se—K1ii | 40.5 (3) |
O12i—K2—O11viii | 96.4 (3) | O3—Se—K1ii | 133.7 (4) |
O9viii—K2—O11viii | 48.8 (3) | K1x—Se—K1ii | 74.10 (9) |
O7ix—K2—O11viii | 46.8 (3) | O1—Se—K1i | 72.8 (3) |
O2v—K2—W2iv | 156.5 (3) | O5—Se—K1i | 132.1 (4) |
O6vi—K2—W2iv | 82.8 (2) | O3—Se—K1i | 39.3 (3) |
O4vi—K2—W2iv | 106.6 (2) | K1x—Se—K1i | 74.24 (9) |
O10vii—K2—W2iv | 28.8 (2) | K1ii—Se—K1i | 140.87 (10) |
O8iv—K2—W2iv | 28.8 (2) | Se—O1—W1 | 141.0 (6) |
O12i—K2—W2iv | 78.7 (2) | Se—O1—K1x | 92.7 (4) |
O9viii—K2—W2iv | 76.9 (2) | W1—O1—K1x | 125.8 (4) |
O7ix—K2—W2iv | 112.5 (2) | W1—O2—K2xiv | 136.4 (5) |
O11viii—K2—W2iv | 115.99 (18) | Se—O3—W2i | 123.4 (5) |
O2v—K2—W1i | 97.2 (3) | Se—O3—K1i | 116.9 (5) |
O6vi—K2—W1i | 139.0 (2) | W2i—O3—K1i | 108.1 (4) |
O4vi—K2—W1i | 82.3 (2) | Se—O3—K1x | 86.8 (4) |
O10vii—K2—W1i | 124.7 (2) | W2i—O3—K1x | 118.7 (4) |
O8iv—K2—W1i | 83.2 (2) | K1i—O3—K1x | 99.0 (3) |
O12i—K2—W1i | 28.6 (2) | W2—O4—K2xvi | 139.1 (5) |
O9viii—K2—W1i | 114.1 (2) | W2—O4—K1xv | 117.3 (5) |
O7ix—K2—W1i | 29.32 (19) | K2xvi—O4—K1xv | 90.3 (3) |
O11viii—K2—W1i | 76.0 (2) | Se—O5—W3ii | 124.5 (5) |
W2iv—K2—W1i | 105.51 (8) | Se—O5—K1ii | 115.3 (5) |
O2v—K2—W1ii | 101.5 (3) | W3ii—O5—K1ii | 111.7 (4) |
O6vi—K2—W1ii | 81.5 (2) | Se—O5—K1x | 88.2 (4) |
O4vi—K2—W1ii | 138.0 (2) | W3ii—O5—K1x | 112.0 (4) |
O10vii—K2—W1ii | 28.4 (2) | K1ii—O5—K1x | 99.0 (3) |
O8iv—K2—W1ii | 85.9 (2) | W3—O6—K2xvi | 134.9 (6) |
O12i—K2—W1ii | 125.5 (2) | W3—O6—K1xv | 125.9 (5) |
O9viii—K2—W1ii | 30.0 (2) | K2xvi—O6—K1xv | 90.0 (3) |
O7ix—K2—W1ii | 115.2 (2) | W1iii—O7—W2 | 146.6 (6) |
O11viii—K2—W1ii | 78.6 (2) | W1iii—O7—K2ix | 89.2 (4) |
W2iv—K2—W1ii | 57.20 (5) | W2—O7—K2ix | 113.7 (4) |
W1i—K2—W1ii | 137.13 (9) | W2—O8—W3 | 131.3 (5) |
O2—W1—O7x | 96.6 (5) | W2—O8—K2xv | 103.1 (4) |
O2—W1—O12 | 100.1 (5) | W3—O8—K2xv | 112.3 (4) |
O7x—W1—O12 | 96.1 (4) | W2—O8—K1 | 106.6 (4) |
O2—W1—O10xi | 95.0 (5) | W3—O8—K1 | 106.0 (3) |
O7x—W1—O10xi | 166.0 (5) | K2xv—O8—K1 | 89.6 (3) |
O12—W1—O10xi | 89.5 (4) | W3—O9—W1iii | 145.8 (6) |
O2—W1—O9x | 91.8 (5) | W3—O9—K2viii | 107.3 (4) |
O7x—W1—O9x | 89.5 (4) | W1iii—O9—K2viii | 96.9 (4) |
O12—W1—O9x | 166.1 (4) | W2xvii—O10—W1xiii | 147.4 (6) |
O10xi—W1—O9x | 82.3 (4) | W2xvii—O10—K2xviii | 103.6 (4) |
O2—W1—O1 | 169.9 (4) | W1xiii—O10—K2xviii | 109.0 (4) |
O7x—W1—O1 | 82.7 (4) | W3—O11—W2xvii | 149.4 (5) |
O12—W1—O1 | 89.9 (4) | W3—O11—K2viii | 100.2 (4) |
O10xi—W1—O1 | 84.4 (4) | W2xvii—O11—K2viii | 109.0 (4) |
O9x—W1—O1 | 78.2 (4) | W1—O12—W3xi | 146.7 (5) |
O2—W1—K2i | 71.7 (4) | W1—O12—K2i | 102.4 (4) |
O7x—W1—K2i | 61.4 (3) | W3xi—O12—K2i | 110.9 (4) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x, y, z+1; (iv) −x+1/2, y−1/2, −z+3/2; (v) x, y−1, z+1; (vi) x, y−1, z; (vii) −x+3/2, y−1/2, −z+3/2; (viii) −x+1, −y+1, −z+2; (ix) −x, −y+1, −z+2; (x) x, y, z−1; (xi) x−1/2, −y+3/2, z−1/2; (xii) x−1, y, z; (xiii) x+1/2, −y+3/2, z+1/2; (xiv) x, y+1, z−1; (xv) −x+1/2, y+1/2, −z+3/2; (xvi) x, y+1, z; (xvii) x+1, y, z; (xviii) −x+3/2, y+1/2, −z+3/2. |
Acknowledgements
Miss Rintu Robert helped immensely by redoing the single-crystal X-ray structure determinations and some of the crystal growth experiments. We thank Mrs S. Srividya and Mr V. Ramkumar of the Department of Chemistry for the powder and single-crystal X-ray data collection, respectively. The X-ray powder diffractometer in the Department of Chemistry of the IIT Madras was purchased with financial assistance, received under the FIST scheme (SR/FST/CSI-158/2007), from the SERC Division of the Department of Science and Technology, Ministry of Science and Technology, Government of India. We thank the Departments of Chemistry, Physics and SAIF of the IIT Madras for the powder and single-crystal X-ray data, SEM, EDXA and thermal studies.
References
Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chang, H. Y., Kim, S. W. & Halasyamani, P. S. (2010). Chem. Mater. 22, 3241–3250. CrossRef ICSD CAS Google Scholar
Dussack, L. L., Harrison, W. T. A. & Jacobson, A. J. (1996). Mater. Res. Bull. 31, 249–255. CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Galy, J., Meunier, G., Andersson, S. & Åström, A. (1975). J. Solid State Chem. 13, 142–159. CrossRef CAS Web of Science Google Scholar
Goodey, J., Min Ok, K., Broussard, J., Hofmann, C., Escobedo, F. V. & Halasyamani, P. S. (2003). J. Solid State Chem. 175, 3–12. CrossRef ICSD CAS Google Scholar
Halasyamani, P. S. (2004). Chem. Mater. 16, 3586–3592. Web of Science CrossRef CAS Google Scholar
Halasyamani, P. S. & Poeppelmeier, K. R. (1998). Chem. Mater. 10, 2753–2769. Web of Science CrossRef CAS Google Scholar
Harrison, W. T. A., Dussack, L. L. & Jacobson, A. J. (1994). Inorg. Chem. 33, 6043–6049. CrossRef ICSD CAS Google Scholar
Harrison, W. T. A., Dussack, L. L., Vogt, T. & Jacobson, A. J. (1995). J. Solid State Chem. 120, 112–120. CrossRef ICSD CAS Google Scholar
Huang, Y., Chen, X. & Qin, J. (2014a). Faming Zhuanli Shenqing 1–8. Google Scholar
Huang, Y., Meng, X. & Qin, J. (2014b). Chin. J. Inorg. Chem. 30, 179–184. CAS Google Scholar
Kim, Y. H., Lee, D. W. & Ok, K. M. (2014). Inorg. Chem. 53, 1250–1256. CrossRef ICSD CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kubelka, F. & Munk, P. (1931). Z. Tech. Phys. 12, 593–601. Google Scholar
Ling, J. & Albrecht-Schmitt, T. E. (2007). J. Solid State Chem. 180, 1601–1607. CrossRef ICSD CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Maggard, P. A., Nault, T. S., Stern, C. L. & Poeppelmeier, K. R. (2003). J. Solid State Chem. 175, 27–33. Web of Science CrossRef ICSD CAS Google Scholar
Nguyen, S. D. & Halasyamani, P. S. (2013). Inorg. Chem. 52, 2637–2647. CrossRef ICSD CAS PubMed Google Scholar
Oh, S. J., Lim, S. J., You, T. S. & Ok, K. M. (2018). Chem. Eur. J. 24, 6712–6716. CSD CrossRef CAS PubMed Google Scholar
Ok, K. M. & Halasyamani, P. S. (2005). Inorg. Chem. 44, 3919–3925. CrossRef ICSD PubMed CAS Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pennington, W. T. (1999). J. Appl. Cryst. 32, 1028–1029. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Vidyavathy Balraj, V. & Vidyasagar, K. (1998). Inorg. Chem. 37, 4764–4774. PubMed Google Scholar
Zhao, P., Cong, H., Tian, X., Sun, Y., Zhang, C., Xia, S., Gao, Z. & Tao, X. (2015). Cryst. Growth Des. 15, 4484–4489. CrossRef ICSD Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.