research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of allyl 7-(di­ethyl­amino)-2-oxo-2H-chromene-3-carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aOtto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, D-24098 Kiel, Germany, and bInstitut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth Str. 2, D-24118 Kiel, Germany
*Correspondence e-mail: luening@oc.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 18 February 2021; accepted 24 February 2021; online 2 March 2021)

The title compound, C17H19NO4, was synthesized by the reaction of 7-(di­ethyl­amino)-2-oxo-2H-chromene-3-carb­oxy­lic acid with allyl bromide and purified by flash column chromatography on silica gel. Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from acetone. The aromatic core of the mol­ecule is not planar with the di­ethyl­amino group and with the carboxyl group that are rotated out of the 2-oxo-2H-chromene plane by 6.7 (2)° and 11.4 (2)°. The NC2 unit of the di­ethyl­amino group is planar with an angle sum close to 360°. Inter­molecular Car—H⋯Ocarbon­yl inter­actions lead to the formation of chains parallel to the b axis. X-ray powder diffraction analysis proves that the title compound was obtained as a pure phase.

1. Chemical context

Coumarins or 2H-1-benzo­pyran-2-ones are fluoro­phores with a wide range of biological and chemical applications (Bardajee et al., 2006a[Bardajee, G. R., Winnik, M. A. & Lough, A. J. (2006a). Acta Cryst. E62, o3076-o3078.]). One of the most important aspects is the detection of enzymatic activity from bacteria like Enterococci or Streptococci (Devriese et al., 1999[Devriese, L. A., Hommez, J., Laevens, H., Pot, B., Vandamme, P. & Haesebrouck, F. (1999). Vet. Microbiol. 70, 87-94.]). Within the enzymatic reaction, naturally occurring aesculin is hydrolysed with a concomitant loss of fluorescence (Edberg et al., 1976[Edberg, S. C., Gam, K., Bottenbley, C. J. & Singer, J. M. (1976). J. Clin. Microbiol. 4, 180-184.]). In addition, (coumarin-4-yl)methyl esters are often used as a photocleavable protecting group that could be useful for proton detection in biological processes (Geissler et al., 2005[Geissler, D., Antonenko, Y. N., Schmidt, R., Keller, S., Krylova, O. O., Wiesner, B., Bendig, J., Pohl, P. & Hagen, V. (2005). Angew. Chem. Int. Ed. 44, 1195-1198.]). Another emerging field of application is photoelectricity such as in organic light-emitting diodes (OLEDs) or laser dyes (Bardajee et al., 2006a[Bardajee, G. R., Winnik, M. A. & Lough, A. J. (2006a). Acta Cryst. E62, o3076-o3078.]; Jones et al., 1985[Jones, G. II, Jackson, W. R., Choi, C. & Bergmark, W. R. (1985). J. Phys. Chem. 89, 294-300.]; Jones & Rahman, 1992[Jones, G. II & Rahman, M. A. (1992). Chem. Phys. Lett. 200, 241-250.], 1994[Jones, G. II & Rahman, M. A. (1994). J. Phys. Chem. 98, 13028-13037.]; Cui et al., 2018[Cui, R. R., Lv, Y. C., Zhao, Y. S., Zhao, N. & Li, N. (2018). Mater. Chem. Front. 2, 910-916.]). In this context, Cui et al. (2018[Cui, R. R., Lv, Y. C., Zhao, Y. S., Zhao, N. & Li, N. (2018). Mater. Chem. Front. 2, 910-916.]) developed two coumarines that show solid-state fluorescence influenced by NH3 or HCl gas.

In a current research project, we planed to insert a coumarin moiety as part of a pH-sensitive polymer to visualize material damage. For this purpose, allyl 7-(di­ethyl­amino)-2-oxo-2H-chromene-3-carboxyl­ate was synthesized from 7-(di­ethyl­amino)-2-oxo-2H-chromene-3-carb­oxy­lic acid and allyl bromide with potassium carbonate for deprotonation and dry N,N-di­methyl­formamide as solvent (Fig. 1[link]). The obtained title compound was characterized by 1H NMR (Fig. S1 in the supporting information) and 13C NMR (Fig. S2) spectroscopy, mass spectrometry, IR spectroscopy and elemental analysis. Recrystallization from acetone led to crystals that were characterized by single-crystal X-ray diffraction. Based on the results of the structure determination, a powder X-ray pattern was calculated and compared with the experimental pattern, revealing that the title compound was obtained as a pure phase (Fig. S3).

[Scheme 1]
[Figure 1]
Figure 1
Synthesis of allyl 7-(di­ethyl­amino)-2-oxo-2H-chromene-3-carboxyl­ate by esterification of 7-(di­ethyl­amino)-2-oxo-2H-chromene-3-carb­oxy­lic acid with allyl bromide.

2. Structural commentary

The mol­ecular structure of the title compound, C17H19NO4, consists of a central 2-oxo-2H-chromene (2-benzo­pyrane) unit with a carb­oxy­lic acid allyl ester in 3-position and a di­ethyl­amino group in 7-position. All atoms of the mol­ecule are in general positions (Fig. 2[link]). The 2H-chromene unit is essentially planar with a maximum deviation for O2 of 0.1021 (6) Å from the least-squares plane calculated through C1–C7 and O1 and O2. The carboxyl group (C10,O3,O4) is slightly twisted from the 2-oxo-2H-chromene unit, with the dihedral angle between the plane calculated through the ring system and that of the carboxyl group being 6.7 (2)° (Fig. 3[link]). The NC3 unit (N1,C7,C14,C16) of the di­ethyl­amino group is nearly planar with a maximum deviation of the N atom from the mean plane of 0.0873 Å; planarity is also obvious from the sum of the C—N—C angles of 358.9°. This unit is rotated from the 2-oxo-2H-chromene plane by 11.4 (2)° (Fig. 3[link]), which points to conjugation between the ring system and the di­ethyl­amino group. The latter feature is also reflected by the C7—N1 bond length of 1.3597 (12)°.

[Figure 2]
Figure 2
Mol­ecular structure of the title compound with atom labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
The orientation of the substituents in the mol­ecular structure of the title compound.

3. Supra­molecular features

In the crystal structure of the title compound, the mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonding between one of the aromatic hydrogen atoms of a 2-oxo-2H-chromene unit and a carbonyl oxygen atom of a neighbouring mol­ecule into chains extending parallel to the crystallographic b axis (Fig. 4[link]; Table 1[link]). The C—H⋯O angle is close to linearity, indicating that this is a relatively strong inter­action. The mol­ecules are additionally stacked into columns that are directed along the crystallographic c axis but the mean planes of the 2H-chromene rings of neighbouring mol­ecules are not parallel (Fig. 5[link]). They are rotated by 33.2°, which prevents ππ inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2i 0.95 2.45 3.3958 (12) 171
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 4]
Figure 4
The formation of C—H⋯O hydrogen-bonded chains in the title compound in a view along the crystallographic c axis. Hydrogen bonds are shown as dashed lines.
[Figure 5]
Figure 5
Packing of mol­ecules in the crystal structure of the title compound in a view along the crystallographic b axis. Inter­molecular C—H⋯O hydrogen bonding is shown as dashed lines.

4. Database survey

A search in the Cambridge Structural Database (CSD Version 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed eight structures of 7-(di­ethyl­amino)-2-oxo-2H-chromene-3-carboxyl­ate derivatives. Three of them relate to the crystal structures of the carb­oxy­lic acid, which crystallizes in two different polymorphs (Bardajee et al., 2006a[Bardajee, G. R., Winnik, M. A. & Lough, A. J. (2006a). Acta Cryst. E62, o3076-o3078.]; Cui et al., 2018[Cui, R. R., Lv, Y. C., Zhao, Y. S., Zhao, N. & Li, N. (2018). Mater. Chem. Front. 2, 910-916.]; Zhang et al., 2008[Zhang, H., Yu, T., Zhao, Y., Fan, D., Chen, L., Qiu, Y., Qian, L., Zhang, K. & Yang, C. (2008). Spectrochim. Acta A Mol. Biomol. Spectrosc. 69, 1136-1139.]).

Five more crystal structures relate to esterificated coumarin derivatives. One of them is 3-carb­oxy­ethyl-7-di­ethyl­amino­coumarin (Li et al., 2009[Li, X., Lim, W. T., Kim, S.-H. & Son, Y.-A. (2009). Z. Kristallogr. NCS, 224, 593.]). Another one is succinimidyl 7-(di­ethyl­amino)-2-oxo-2H-chromene-3-carboxyl­ate, which was obtained as a chloro­form solvate (Bardajee et al., 2006b[Bardajee, G. R., Winnik, M. A. & Lough, A. J. (2006b). Acta Cryst. E62, o3079-o3081.]). The hits also include 4-cyano­biphenyl-4-yl 7-di­ethyl­amino-2-oxo-2H-chromene-3-carboxyl­ate (Sreenivasa et al., 2013[Sreenivasa, S., Srinivasa, H. T., Palakshamurthy, B. S., Kumar, V. & Devarajegowda, H. C. (2013). Acta Cryst. E69, o266.]). Furthermore, two bis­chromophoric acid derivatives are reported. The first one is (2R,3R)-diethyl tartrate-2,3-bis­(7-di­ethyl­amino­coumarin-3-carboxyl­ate) and the second is (2S,3R)-N,O-bis­(7-di­ethyl­amino­coumarin-3-carbon­yl)-threonine methyl ester (Lo et al., 2001[Lo, L.-C., Chen, J.-Y., Yang, C.-T. & Gu, D.-S. (2001). Chirality, 13, 266-271.]).

5. Synthesis and crystallization

All reagents and solvents were commercially available and were used without further purification: allyl bromide (abcr), 7-(di­ethyl­amino)-2-oxo-2H-chromene-3-carb­oxy­lic acid (Fluoro­chem). For the reaction, flasks were flame-dried, evacuated and flooded with a stream of nitro­gen. The NMR spectra were measured with a Bruker AvanceNeo 500 (1H NMR: 500 MHz, 13C NMR: 125 MHz) in di­methyl­sulfoxide-d6 (deutero) as solvent. TMS was used as reference. The melting point was measured with a Melting Point Apparatus from Electrothermal. The mass spectrum was measured in the positive mode with an AccuTOF GCV 4G (Jeol, EI, 70 eV). Rf values were determined by thin-layer chromatography using ALUGRAMM® Xtra Sil G/UV254 plates (Machery-Nagel). Flash column chromatography was performed using cartridge SNAP Ultra 25 g (Biotage®) on a Isolera one (Biotage®). Infrared spectroscopy was performed on a Perkin–Elmer 1600 series FTIR spectrometer. An AG531-G Golden-Gate-Diamond-ATR unit was used. The elemental analysis was performed with a vario MICRO CUBE (Elementar). The probe was put into a zinc container and was burned in an oxygen atmosphere.

Under nitro­gen atmosphere, 7-(di­ethyl­amino)-2-oxo-2H-chromene-3-carb­oxy­lic acid (298 mg, 1.14 mmol) and potassium carbonate (324 mg, 2.34 mmol) were suspended in dry N,N-di­methyl­formamide (20 ml). Allyl bromide (320 µl, 3.70 mmol) was added and the solution was stirred for 21.5 h at room temperature. After addition of water (50 ml), the mixture was extracted with di­chloro­methane (4 × 20 ml). The combined organic layer was washed with 1M NaOH solution (30 ml) and dried with magnesium sulfate. After filtration, the solvent was removed in vacuo. The crude product was purified by flash column chromatography on silica gel [di­chloro­methane:ethyl acetate = 100:0 → 80:20, Rf (di­chloro­methane:ethyl acetate = 8:2) = 0.67] to yield the title compound (256 mg, 850 µmol, 75%) as a yellow solid. A small amount of the title compound was recrystallized from acetone, leading to crystals suitable for single crystal X-ray diffraction.

Melting point: 361 K. 1H NMR (500 MHz, DMSO-d6, 298 K, TMS): δ = 8.59 (s, 1 H, H-4), 7.65 (d, 3J = 9.0 Hz, 1 H, H-5), 6.78 (dd, 3J = 9.0 Hz, 4J = 2.5 Hz, 1 H, H-6), 6.54 (d, 4J = 2.3 Hz, 1 H, H-8), 6.01 (ddt, 2J = 17.2, 10.5 Hz, 3J = 5.2 Hz, 1 H, CH=CH2), 5.48–5.22 (m, 2 H, CH=CH2), 4.72 (dt, 3J = 5.2 Hz, 4J = 1.5 Hz, 2 H, OCH2), 3.48 (q, 3J = 7.0 Hz, 4 H, NCH2), 1.14 (t, 3J = 7.0 Hz, 6 H, NCH2CH3) ppm. 13C NMR (125 MHz, DMSO-d6, 298 K, TMS): δ = 163.1 (s, COOCH2), 158.1 (s, C-8a), 157.0 (s, C-2), 152.9 (s, C-7), 149.5 (d, C-4), 132.7 (d, CH=CH2), 131.9 (d, C-5), 117.6 (t, CH=CH2), 109.8 (d, C-6), 107.0 (s, C-4a), 106.9 (s, C-3), 95.8 (d, C-8), 64.7 (t, OCH2), 44.4 (t, NCH2), 12.3 (q, NCH2CH3) ppm. MS (EI, 70 eV): m/z (%) = 301.13 (43) [M]+., 244.10 (20) [M –OCH2CH=CH2]+. HR–MS (EI, 70 eV): found: m/z = 301.1313 [M]+., calculated: m/z = 301.1314 [M]+. (Δ = 0.32 ppm). IR (ATR) wavenumbers: 2972 (w, C—H), 1729, 1685 (s, C=O), 1585 (s, arom.), 1216, 1185, 1114 (s, C—O) cm−1. Elemental analysis C17H19NO4 calculated: C: 67.76, H: 6.36, N: 4.65; found: C: 67.67, H: 6.38, N: 4.54.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C—H hydrogen atoms were located in difference maps but were positioned with idealized geometry (methyl H atoms allowed to rotate but not to tip) and refined isotropically with Uiso(H) = 1.2Ueq(C) (1.5 for methyl H atoms) using a riding model.

Table 2
Experimental details

Crystal data
Chemical formula C17H19NO4
Mr 301.33
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.72487 (9), 13.05333 (9), 8.55970 (6)
β (°) 95.5220 (6)
V3) 1526.40 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.77
Crystal size (mm) 0.08 × 0.06 × 0.05
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.796, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 26198, 3125, 2975
Rint 0.025
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.090, 1.03
No. of reflections 3125
No. of parameters 202
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.18
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), DIAMOND (Brandenburg, 2014[Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2020); cell refinement: CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009) and DIAMOND (Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

Allyl 7-(diethylamino)-2-oxo-2H-chromene-3-carboxylate top
Crystal data top
C17H19NO4F(000) = 640
Mr = 301.33Dx = 1.311 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 13.72487 (9) ÅCell parameters from 18730 reflections
b = 13.05333 (9) Åθ = 3.2–79.5°
c = 8.55970 (6) ŵ = 0.77 mm1
β = 95.5220 (6)°T = 100 K
V = 1526.40 (2) Å3Block, colorless
Z = 40.08 × 0.06 × 0.05 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3125 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2975 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.0000 pixels mm-1θmax = 74.5°, θmin = 3.2°
ω scansh = 1717
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
k = 1616
Tmin = 0.796, Tmax = 1.000l = 109
26198 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.4857P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.27 e Å3
3125 reflectionsΔρmin = 0.18 e Å3
202 parametersExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00051 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42522 (5)0.43406 (5)0.62496 (8)0.02005 (16)
O20.30849 (5)0.49523 (5)0.45723 (9)0.02685 (18)
O30.14546 (5)0.22199 (6)0.48871 (10)0.03164 (19)
O40.15018 (5)0.37908 (6)0.38321 (9)0.02571 (18)
N10.69931 (6)0.32538 (6)0.96569 (9)0.02028 (19)
C10.33583 (7)0.42197 (7)0.53540 (11)0.0200 (2)
C20.28755 (7)0.32340 (7)0.54870 (11)0.0200 (2)
C30.33465 (7)0.24639 (7)0.63486 (11)0.0208 (2)
H30.3029950.1819660.6406210.025*
C40.42814 (7)0.25947 (7)0.71496 (11)0.0196 (2)
C50.48286 (7)0.18288 (7)0.80087 (11)0.0213 (2)
H50.4572330.1153200.8023080.026*
C60.57144 (7)0.20301 (7)0.88188 (11)0.0208 (2)
H60.6066520.1493820.9370290.025*
C70.61162 (7)0.30412 (7)0.88437 (11)0.0187 (2)
C80.55922 (7)0.38049 (7)0.79458 (11)0.0194 (2)
H80.5847760.4480040.7911900.023*
C90.47128 (7)0.35691 (7)0.71221 (11)0.0184 (2)
C100.18826 (7)0.30202 (8)0.47158 (11)0.0220 (2)
C110.05028 (7)0.36342 (9)0.31361 (13)0.0278 (2)
H11A0.0057400.3534470.3966890.033*
H11B0.0466690.3020410.2453610.033*
C120.02189 (8)0.45623 (9)0.22007 (14)0.0333 (3)
H120.0565630.4714260.1320520.040*
C130.04888 (9)0.51877 (10)0.25251 (17)0.0408 (3)
H13A0.0847530.5054120.3398540.049*
H13B0.0640010.5771910.1885420.049*
C140.74215 (7)0.42822 (8)0.96559 (12)0.0237 (2)
H14A0.7303190.4578180.8589630.028*
H14B0.8138250.4230830.9918180.028*
C150.69959 (9)0.49949 (8)1.08247 (13)0.0303 (2)
H15A0.6300560.5112061.0499630.045*
H15B0.7346050.5649961.0856920.045*
H15C0.7067140.4681171.1869640.045*
C160.74742 (7)0.25546 (8)1.08276 (11)0.0231 (2)
H16A0.6997580.2027711.1090810.028*
H16B0.7676450.2944691.1796710.028*
C170.83648 (8)0.20262 (9)1.02778 (14)0.0324 (3)
H17A0.8160190.1578260.9387400.049*
H17B0.8686530.1616461.1137860.049*
H17C0.8822910.2542450.9953080.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0191 (3)0.0158 (3)0.0244 (3)0.0008 (2)0.0025 (3)0.0018 (3)
O20.0244 (4)0.0199 (4)0.0343 (4)0.0021 (3)0.0069 (3)0.0057 (3)
O30.0251 (4)0.0236 (4)0.0446 (5)0.0067 (3)0.0054 (3)0.0041 (3)
O40.0182 (3)0.0256 (4)0.0319 (4)0.0036 (3)0.0048 (3)0.0050 (3)
N10.0187 (4)0.0214 (4)0.0205 (4)0.0016 (3)0.0006 (3)0.0009 (3)
C10.0184 (4)0.0192 (5)0.0222 (5)0.0002 (4)0.0001 (4)0.0009 (4)
C20.0193 (5)0.0189 (5)0.0218 (5)0.0014 (4)0.0015 (4)0.0017 (4)
C30.0227 (5)0.0172 (4)0.0228 (5)0.0026 (4)0.0035 (4)0.0015 (4)
C40.0212 (5)0.0176 (5)0.0201 (4)0.0004 (4)0.0027 (4)0.0006 (3)
C50.0253 (5)0.0163 (4)0.0225 (5)0.0007 (4)0.0030 (4)0.0004 (4)
C60.0240 (5)0.0180 (5)0.0206 (4)0.0036 (4)0.0029 (4)0.0016 (3)
C70.0182 (4)0.0209 (5)0.0173 (4)0.0018 (4)0.0037 (3)0.0010 (3)
C80.0200 (5)0.0168 (4)0.0215 (5)0.0008 (3)0.0021 (4)0.0000 (3)
C90.0201 (4)0.0167 (4)0.0188 (4)0.0020 (3)0.0031 (3)0.0006 (3)
C100.0211 (5)0.0201 (5)0.0245 (5)0.0013 (4)0.0013 (4)0.0019 (4)
C110.0177 (5)0.0297 (5)0.0348 (6)0.0043 (4)0.0044 (4)0.0022 (4)
C120.0241 (5)0.0370 (6)0.0366 (6)0.0075 (5)0.0082 (4)0.0101 (5)
C130.0346 (6)0.0311 (6)0.0529 (8)0.0015 (5)0.0156 (6)0.0041 (5)
C140.0202 (5)0.0249 (5)0.0253 (5)0.0022 (4)0.0011 (4)0.0016 (4)
C150.0335 (6)0.0246 (5)0.0317 (6)0.0004 (4)0.0021 (4)0.0030 (4)
C160.0223 (5)0.0268 (5)0.0196 (4)0.0027 (4)0.0007 (4)0.0022 (4)
C170.0257 (5)0.0366 (6)0.0348 (6)0.0104 (5)0.0020 (4)0.0064 (5)
Geometric parameters (Å, º) top
O1—C11.3916 (11)C8—H80.9500
O1—C91.3714 (11)C8—C91.3729 (13)
O2—C11.2062 (12)C11—H11A0.9900
O3—C101.2142 (13)C11—H11B0.9900
O4—C101.3346 (12)C11—C121.4833 (15)
O4—C111.4558 (11)C12—H120.9500
N1—C71.3597 (12)C12—C131.3188 (19)
N1—C141.4655 (13)C13—H13A0.9500
N1—C161.4648 (12)C13—H13B0.9500
C1—C21.4567 (13)C14—H14A0.9900
C2—C31.3713 (14)C14—H14B0.9900
C2—C101.4824 (13)C14—C151.5233 (15)
C3—H30.9500C15—H15A0.9800
C3—C41.4059 (13)C15—H15B0.9800
C4—C51.4134 (13)C15—H15C0.9800
C4—C91.4041 (13)C16—H16A0.9900
C5—H50.9500C16—H16B0.9900
C5—C61.3660 (14)C16—C171.5173 (14)
C6—H60.9500C17—H17A0.9800
C6—C71.4297 (14)C17—H17B0.9800
C7—C81.4125 (13)C17—H17C0.9800
C9—O1—C1123.53 (8)O4—C11—H11B110.3
C10—O4—C11115.36 (8)O4—C11—C12107.12 (8)
C7—N1—C14121.47 (8)H11A—C11—H11B108.5
C7—N1—C16122.79 (8)C12—C11—H11A110.3
C16—N1—C14114.62 (8)C12—C11—H11B110.3
O1—C1—C2116.15 (8)C11—C12—H12118.2
O2—C1—O1115.24 (8)C13—C12—C11123.54 (12)
O2—C1—C2128.61 (9)C13—C12—H12118.2
C1—C2—C10122.49 (9)C12—C13—H13A120.0
C3—C2—C1119.67 (9)C12—C13—H13B120.0
C3—C2—C10117.84 (9)H13A—C13—H13B120.0
C2—C3—H3118.9N1—C14—H14A109.1
C2—C3—C4122.29 (9)N1—C14—H14B109.1
C4—C3—H3118.9N1—C14—C15112.32 (8)
C3—C4—C5125.60 (9)H14A—C14—H14B107.9
C9—C4—C3117.93 (9)C15—C14—H14A109.1
C9—C4—C5116.46 (9)C15—C14—H14B109.1
C4—C5—H5119.0C14—C15—H15A109.5
C6—C5—C4122.04 (9)C14—C15—H15B109.5
C6—C5—H5119.0C14—C15—H15C109.5
C5—C6—H6119.7H15A—C15—H15B109.5
C5—C6—C7120.55 (9)H15A—C15—H15C109.5
C7—C6—H6119.7H15B—C15—H15C109.5
N1—C7—C6121.14 (9)N1—C16—H16A108.9
N1—C7—C8120.91 (9)N1—C16—H16B108.9
C8—C7—C6117.90 (9)N1—C16—C17113.25 (8)
C7—C8—H8120.1H16A—C16—H16B107.7
C9—C8—C7119.84 (9)C17—C16—H16A108.9
C9—C8—H8120.1C17—C16—H16B108.9
O1—C9—C4120.09 (8)C16—C17—H17A109.5
O1—C9—C8116.83 (8)C16—C17—H17B109.5
C8—C9—C4123.08 (9)C16—C17—H17C109.5
O3—C10—O4123.31 (9)H17A—C17—H17B109.5
O3—C10—C2122.88 (9)H17A—C17—H17C109.5
O4—C10—C2113.80 (8)H17B—C17—H17C109.5
O4—C11—H11A110.3
O1—C1—C2—C35.62 (13)C5—C6—C7—N1179.41 (8)
O1—C1—C2—C10174.60 (8)C5—C6—C7—C83.06 (14)
O2—C1—C2—C3174.72 (10)C6—C7—C8—C91.82 (13)
O2—C1—C2—C105.06 (16)C7—N1—C14—C1581.70 (11)
O4—C11—C12—C13115.91 (12)C7—N1—C16—C17107.68 (11)
N1—C7—C8—C9179.35 (8)C7—C8—C9—O1178.72 (8)
C1—O1—C9—C40.28 (13)C7—C8—C9—C41.57 (14)
C1—O1—C9—C8180.00 (8)C9—O1—C1—O2175.17 (8)
C1—C2—C3—C41.44 (14)C9—O1—C1—C25.12 (13)
C1—C2—C10—O3176.05 (10)C9—C4—C5—C62.31 (14)
C1—C2—C10—O43.33 (13)C10—O4—C11—C12179.62 (9)
C2—C3—C4—C5177.39 (9)C10—C2—C3—C4178.77 (9)
C2—C3—C4—C93.51 (14)C11—O4—C10—O33.12 (14)
C3—C2—C10—O34.17 (15)C11—O4—C10—C2176.26 (8)
C3—C2—C10—O4176.45 (8)C14—N1—C7—C6178.43 (8)
C3—C4—C5—C6176.79 (9)C14—N1—C7—C80.97 (13)
C3—C4—C9—O14.15 (13)C14—N1—C16—C1784.26 (11)
C3—C4—C9—C8175.56 (9)C16—N1—C7—C614.31 (13)
C4—C5—C6—C70.96 (14)C16—N1—C7—C8168.23 (8)
C5—C4—C9—O1176.67 (8)C16—N1—C14—C1586.53 (10)
C5—C4—C9—C83.62 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.952.453.3958 (12)171
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Funding information

VN gratefully thanks the Christian-Albrechts-Universität zu Kiel for a scholarship to fund this work. We acknowledge financial support by the DFG within the funding programme `Open Access Publizieren'.

References

First citationBardajee, G. R., Winnik, M. A. & Lough, A. J. (2006a). Acta Cryst. E62, o3076–o3078.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBardajee, G. R., Winnik, M. A. & Lough, A. J. (2006b). Acta Cryst. E62, o3079–o3081.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCui, R. R., Lv, Y. C., Zhao, Y. S., Zhao, N. & Li, N. (2018). Mater. Chem. Front. 2, 910–916.  Web of Science CSD CrossRef CAS Google Scholar
First citationDevriese, L. A., Hommez, J., Laevens, H., Pot, B., Vandamme, P. & Haesebrouck, F. (1999). Vet. Microbiol. 70, 87–94.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEdberg, S. C., Gam, K., Bottenbley, C. J. & Singer, J. M. (1976). J. Clin. Microbiol. 4, 180–184.  CAS PubMed Web of Science Google Scholar
First citationGeissler, D., Antonenko, Y. N., Schmidt, R., Keller, S., Krylova, O. O., Wiesner, B., Bendig, J., Pohl, P. & Hagen, V. (2005). Angew. Chem. Int. Ed. 44, 1195–1198.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJones, G. II, Jackson, W. R., Choi, C. & Bergmark, W. R. (1985). J. Phys. Chem. 89, 294–300.  CrossRef CAS Web of Science Google Scholar
First citationJones, G. II & Rahman, M. A. (1992). Chem. Phys. Lett. 200, 241–250.  CrossRef Web of Science Google Scholar
First citationJones, G. II & Rahman, M. A. (1994). J. Phys. Chem. 98, 13028–13037.  CrossRef CAS Web of Science Google Scholar
First citationLi, X., Lim, W. T., Kim, S.-H. & Son, Y.-A. (2009). Z. Kristallogr. NCS, 224, 593.  Google Scholar
First citationLo, L.-C., Chen, J.-Y., Yang, C.-T. & Gu, D.-S. (2001). Chirality, 13, 266–271.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSreenivasa, S., Srinivasa, H. T., Palakshamurthy, B. S., Kumar, V. & Devarajegowda, H. C. (2013). Acta Cryst. E69, o266.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, H., Yu, T., Zhao, Y., Fan, D., Chen, L., Qiu, Y., Qian, L., Zhang, K. & Yang, C. (2008). Spectrochim. Acta A Mol. Biomol. Spectrosc. 69, 1136–1139.  Web of Science CSD CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds